Elettromagnetismo. Marcello Borromeo corso di Fisica per Farmacia - Anno Accademico

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Elettromagnetismo. Marcello Borromeo corso di Fisica per Farmacia - Anno Accademico"

Transcript

1 Elettromagnetismo È lo studio deli fenomeni collegati alle cariche elettriche in quiete o in movimento Alcuni fenomeni sono stati osservati fin dall antichità sull ambra (electron) e su materiali provenienti da una cava vicina alla città di Magnesia Le forze che tengono insieme gli atomi e le molecole Protoni ed elettroni si attraggono e si legano a formare atomi Le applicazioni sono tantissime: luce elettrica, forno a microonde, cellulari, radio e televisione In medicina: radiografie, risonanza magnetica, PET e vari strumenti di diagnosi Radioterapia e adroterapia per i tumori, laser per la chirurgia

2 Outline Inizialmente si studia l interazione di cariche puntiformi Si introduce quindi il campo elettrico Poi le distribuzioni di carica superficiali e volumetriche Per semplificare i problemi con elevata simmetria e per alcuni risultati teorici, si usano il concetto di flusso ed il teorema di Gauss Con questo si possono studiare i conduttori, ed i condensatori in particolare Si vede che il campo elettrico porta energia Si studiano i dipoli, che sono i mattoni elementari utili per capire gli isolanti

3 Atomi Sono costituiti da un nucleo fatto da cariche positive e neutre (protoni e neutroni) e da particelle più esterne negative (elettroni) Protoni e neutroni hanno massa quasi 2000 volte più grande degli elettroni Protoni e neutroni sono tenuti insieme dalle interazioni nucleari forti Gli elettroni si possono pensare come fossero pianeti che girano attorno al nucleo La loro forza centripeta è data dall attrazione elettrica tra protone ed elettrone

4 Quantizzazione e conservazione della carica elettrica La carica elettrica è quantizzata: le cariche più piccole misurate sono quelle del protone, positiva, indicata con +e e quelal dell elettrone, negativa, indicata con e; queste sono tra loro opposte. Tutte le altre cariche osservate sono multiple di queste I quark, se esistono, hanno carica ± 2 3 e oppure ± 1 3e, ma queste non sono mai state osservate da sole La carica elettrica totale di ogni reazione è conservata: non si sono mai osservate sparizioni o creazioni di carica elettrica, neppure quando la materia si trasforma in energia. materia e antimateria devono avere cariche elettriche opposte, altrimenti non si potrebbero annichilare

5 Densità di carica Spesso conviene trattare la carica come un continuo, anche se so che è quantizzata. Si può distribuire sulla superficie, quindi posso definire la carica per unità di superficie come i σ = q i S σ è la densitá di carica superficiale questo avviene di solito sui conduttori si può distribuire nello spazio, dove ho i ρ = q i V ρ è la densità di carica volumetrica

6 Forza tra cariche Sperimentalmente trovo che la forza tra protone ed elettroneè attrattiva e vale k vale N m 2 F = k r 2 La forza tra due protoni e tra due elettroni è la stessa in modulo ma opposta in verso, quindi è repulsiva La forza che agisce tra due cariche qualsiasi è proprzionale a ciascuna delle cariche l unità di misura della carica nel SI è il Coulomb ed è tale che la carica del protone vale e = C Quando si dice che su di un corpo è presente una certa carica elettrica, significa che quella è la differenza tra carica positiva e negativa

7 Campi Come si trasmette la forza? La meccanica quantistica relativistica stabilisce che avviene scambiando particelle Nella fisica classica abbiamo l azione a distanza Se mettiamo una carica (di prova) q 0 in presenza di un altra carica q, c è una forza tra le due: dico che q crea un campo Una particella carica in un campo elettrico e magnetico sente una forza (di Lorentz) ( ) F L = q E + v B Diciamo che E è il campo elettrico e B è il campo magnetico

8 Carica puntiforme È una carica le cui dimensioni possono essere trascurate Genera un campo elettrico della forma E = ε 0 è una costante universale che vale 1 4πε 0 ε r Q r 2 ˆr ε 0 = N m 2 /C 2 ε r dipende dal materiale nel quale si trovano le cariche ed è sempre ε r 1. Nel vuoto ε r = 1 La forza tra due cariche puntiformi ha quindi modulo F = 1 q 1 q 2 4πε 0 ε r r 2 Legge di Coulomb Ha per direzione la retta congiungente le due cariche ed è attrattiva se le cariche hanno segno opposto, repulsiva altrimenti

9 Principio di sovrapposizione Se ho due cariche q 1 e q 2, queste generano campi elettrici E 1 ed E 2 Dall espressione per la forza di Lorentz, per cariche in quiete vedo che F = q E Una carica di prova q 0 sarebbe soggetta alle forze e quindi ad una forza totale F 1 = q 0 E1 e F2 = q 0 E2 F = F 1 + F 2 = q 0 ( E 1 + E 2 ) Ne deduco che anche il campo elettrico è un vettore e che vale il principio di sovrapposizione per cui E = E 1 + E 2 Il campo elettrico generato da due cariche è uguale alla somma dei campi elettrici generati separatamente da ciascuna delle cariche

10 Flusso di un campo attraverso una superficie Disegno le linee di campo, alle quali il campo è tangente in ogni punto Le linee sono tanto più fitte quanto più il campo è intenso Definisco il flusso Φ attraverso una superficie come una quantità proporzionale alle linee del campo che attraversano la superficie Per una superficie con normale che fa un angolo θ col campo elettrico sarà Φ(E) = E S cos(θ) Considero positive le linee che vengono da un verso, negative da verso opposto (angolo maggiore di 180 o )

11 Teorema di Gauss Se la sorgente del campo è esterna a una superficie chiusa, tante linee entrano quante escono: il flusso è quindi nullo Se la sorgente è interna, non importa in quale punto la metto, le linee che escono sono sempre le stesse e quindi anche il flusso Se deformo la superficie questo non canbia, è importante solo sapere se la sorgente sta dentro o fuori Se prendo una superficie sferica con una carica nel mezzo, il flusso è proporzionale a Q Φ = 4πε 0 ε r r 2 4πr 2 = Q ε 0 ε r Quindi posso dire che questo è vero per ogni superficie chiusa

12 Teorema di Gauss forma matematica Posso scrivere il flusso come un integrale Se ho più cariche il flusso si somma, dato che così fanno i campi elettrici Ogni flusso dovuto a cariche interne da un contributo Φ = Q ε 0 ε r Ogni carica esterna da un contributo nullo Formalmente posso scrivere il teorema di Gauss Φ = E ˆn = Q int ε 0 ε r S

13 Conduttori All equilibrio le cariche non subiscono alcuna forza, altrimenti si muoverebbero Fanno eccezione le cariche sulla superficie, dove si possono muovere solo paralellamente alla superficie Ne deduco che 1 Il campo elettrico nell interno è nullo 2 Sulla superficie E deve essere perpendicolare alla superficie Posso calcolare E sulla superficie dal teorema di Gauss Dividendo per la superficie Φ = Q ε 0 ε r = E S E = σ ε 0 ε r

14 Condensatori Condensatori piani Due superfici conduttrici piane e parallele formano un condensatore piano Se c è una carica Q sulla prima superficie, ci deve essere una carica opposta sull altra (per il teorema di Gauss) Il sistema ha simmetria per traslazione in due direzioni, e il campo elettrico deve essere perpendicolare alle superfici ed uniforme Il campo elettrico vale σ ε 0 ε r

15 Condensatori Condensatori cilindrci È costituito da due cilindri coassiali, di raggio R 1 e R 2 Posso calcolare il campo elettrico attraverso una superficie coassiale di raggio r Il teorema di Gauss, applicato ad un cilindro di lunghezza L e raggio r, con R 1 < r < R 2 da con ε = ε 0 ε r. Ne deduco che E(r) 2 π r L = Q/ε = σ 2 π R 1 L/ε E(r) = σ ε R 1 r

16 Energia di un condensatore Immagino di fare del lavoro per caricare un condensatore piano, inizialmente scarico Dopo averci portato una carica dq, compare un campo elettrico contrario dq/sε. Dopo aver ripetuto questa operazione un certo numero di volte, ci sarà una carica q sul condensatore, e uun campo contrario q/sε Per portare un altra carica elettrica dq devo quindi fare un lavoro contro il campo dato da dw = dq q Sε d Per calcolare il lavoro totale, devo integrare al variare della carica tra 0 e Q Q q Q2 W = d dq = Sε 2Sε d 0

17 Densità di energia del campo elettrico Dove risiede l energia nel condensatore? Posso immaginare che sia distribuita nello spazio tra le armature Calcolo allora la densità di energia w = Q2 d / (S d) = 1 2Sε 2ε ( ) Q 2 = σ2 S 2ε = 1 2 εe 2 Questo risultato è del tutto generale, e non limitato al caso del condensatore piano. L energia del campo elettrico è quindi distribuita uniformemente nello spazio con densità w = 1 2 εe 2

18 Dipolo elettrico È costituito da due cariche elettriche opposte a distanza piccola rispetto a quella dove si osserva il campo elettrico Il prodotto carica distanza si chiama momento di dipolo elettrico Il campo elettrico del dipolo va a zero, per grandi distanze, come 1 r 3. Quindi ci si accorge del dipolo solo per le sostanze neutre Gli atomi delle sostanze isolanti diventano dipoli sotto l azione di un campo elettrico esterno i dipoli di queste sostanze scheramano il campo elettrico

19 Dipolo elettrico Sul dipolo, in un campo elettrico agisce un momento torcente di modulo τ = qe b = qe d sin(θ) = pe sin(θ) Se considero il verso di rotazione, vedo che posso scrivere l equazione vettoriale τ = p E Per spostare un dipolo in un campo elettrico devo fare del lavoro, quindi c è un energia potenziale associata alla posizione del dipolo data da U = p E

Elettromagnetismo. Marcello Borromeo corso di Fisica per Farmacia - Anno Accademico

Elettromagnetismo. Marcello Borromeo corso di Fisica per Farmacia - Anno Accademico Elettromagnetismo Fenomeni osservati fino dall antichità sull ambra (electron) e su materiali provenienti da una cava vicinio alla città di Magnesia Studia le forze che tengono insieme gli atomi Protoni

Dettagli

CAPITOLO 1 ELETTROSTATICA

CAPITOLO 1 ELETTROSTATICA CAPITOLO 1 1.1 Introduzione Nell elettromagnetismo studieremo fenomeni elettrici e magnetici che rappresentano un altra interazione fondamentale della natura (dopo quella gravitazionale che abbiamo visto

Dettagli

Elettromagnetismo (1/6) Cariche, forze e campi Lezione 19, 10/12/2018, JW , 23.7

Elettromagnetismo (1/6) Cariche, forze e campi Lezione 19, 10/12/2018, JW , 23.7 Elettromagnetismo (1/6) Cariche, forze e campi Lezione 19, 10/12/2018, JW 23.1-23.5, 23.7 1 1. L'elettricità statica Le prime osservazioni sugli effetti della carica elettrica furono quelle sull elettricità

Dettagli

Dotto Formazione a tutto tondo Rapid Training 2018 Corso di Fisica Argomento 12 Elettricità: forza e campo elettrico

Dotto Formazione a tutto tondo Rapid Training 2018 Corso di Fisica Argomento 12 Elettricità: forza e campo elettrico Dotto Formazione a tutto tondo Rapid Training 2018 Corso di Fisica Argomento 12 Elettricità: forza e campo elettrico 2 La carica elettrica La carica elettrica è una proprietà della materia. si è stabilito

Dettagli

CAPITOLO 1 FORZA ELETTROSTATICA CAMPO ELETTROSTATICO

CAPITOLO 1 FORZA ELETTROSTATICA CAMPO ELETTROSTATICO CAPITOLO 1 FORZA ELETTROSTATICA CAMPO ELETTROSTATICO Elisabetta Bissaldi (Politecnico di Bari) 2 L elettromagnetismo INTERAZIONE ELETTROMAGNETICA = INTERAZIONE FONDAMENTALE Fenomeni elettrici e fenomeni

Dettagli

CAPITOLO 1 FORZA ELETTROSTATICA CAMPO ELETTROSTATICO

CAPITOLO 1 FORZA ELETTROSTATICA CAMPO ELETTROSTATICO CAPITOLO 1 FORZA ELETTROSTATICA CAMPO ELETTROSTATICO Elisabetta Bissaldi (Politecnico di Bari) A.A. 2018-2019 2 L elettromagnetismo INTERAZIONE ELETTROMAGNETICA = INTERAZIONE FONDAMENTALE Fenomeni elettrici

Dettagli

Conservazione della carica

Conservazione della carica Elettricità Le forze elettriche legano la materia Le onde luminose sono di natura elettrica I processi chimici e biologici sono di tipo elettrico (la gravità in confronto è troppo debole per avere un ruolo

Dettagli

Elettricità e Magnetismo. M. Cobal, Università di Udine

Elettricità e Magnetismo. M. Cobal, Università di Udine Elettricità e Magnetismo M. Cobal, Università di Udine Forza di Coulomb Principio di Sovrapposizione Lineare Campo Ele8rico Linee di campo Flusso, teorema di Gauss e applicazioni Condu8ori Energia potenziale

Dettagli

Capitolo Cariche elettriche, forze 23 e campi

Capitolo Cariche elettriche, forze 23 e campi Capitolo Cariche elettriche, forze 23 e campi 1 Capitolo 23 - Contenuti 1. Carica elettrica 2. Isolanti e conduttori 3. La legge di Coulomb 4. Il campo elettrico 5. Le linee del campo elettrico 6. La schermatura

Dettagli

CAPITOLO 3 LA LEGGE DI GAUSS

CAPITOLO 3 LA LEGGE DI GAUSS CAPITOLO 3 LA LEGGE DI GAUSS Elisabetta Bissaldi (Politecnico di Bari) - A.A. 2018-2019 2 Premessa TEOREMA DI GAUSS Formulazione equivalente alla legge di Coulomb Trae vantaggio dalle situazioni nelle

Dettagli

Dipolo Elettrico: due cariche (puntiformi) +q e q (stesso modulo, segno opposto) a distanza a. Momento di Dipolo, P: Vettore di modulo

Dipolo Elettrico: due cariche (puntiformi) +q e q (stesso modulo, segno opposto) a distanza a. Momento di Dipolo, P: Vettore di modulo Il Dipolo Elettrico Dipolo Elettrico: due cariche (puntiformi) q e q (stesso modulo, segno opposto) a distanza a. Momento di Dipolo, P: Vettore di modulo qa che va da qq a q Dato un punto P molto distante

Dettagli

Interazioni fondamentali (origine. delle forze) Elettromagnetica : lungo raggio lega elettroni e protoni per. per formare i nuclei. molecole,, etc.

Interazioni fondamentali (origine. delle forze) Elettromagnetica : lungo raggio lega elettroni e protoni per. per formare i nuclei. molecole,, etc. Interazioni fondamentali (origine delle forze) orte : corto raggio ~10-14 m lega i protoni ed i neutroni per formare i nuclei Elettromagnetica : lungo raggio lega elettroni e protoni per formare atomi,

Dettagli

Fondamenti di Fisica necessari per i corsi di informatica ed elettronica

Fondamenti di Fisica necessari per i corsi di informatica ed elettronica Fondamenti di Fisica necessari per i corsi di informatica ed elettronica Ricordiamo che: La velocità è data dal percorso fatto nel tempo. Esempio: una velocità di 30Km/ora indica che in un ora si percorrono

Dettagli

ELETTRICITÀ. In natura esistono due tipi di elettricità: positiva e negativa.

ELETTRICITÀ. In natura esistono due tipi di elettricità: positiva e negativa. ELETTRICITÀ Quando alcuni corpi (vetro, ambra, ecc.) sono strofinati con un panno di lana, essi acquistano una carica elettrica netta, cioè acquistano la proprietà di attrarre o di respingere altri corpi

Dettagli

approfondimento Struttura atomica e conservazione della carica nei fenomeni elettrici

approfondimento Struttura atomica e conservazione della carica nei fenomeni elettrici approfondimento Struttura atomica e conservazione della carica nei fenomeni elettrici Flusso del campo elettrico e legge di Gauss: Il campo elettrico generato da distribuzioni di carica a simmetria sferica

Dettagli

Definizione di Flusso

Definizione di Flusso Definizione di Flusso Il flusso aumenta se il campo elettrico aumenta!! Δφ E ΔA EΔAcosθ E Il flusso è la quantità di materia che passa attraverso una superficie nell unità di tempo. Se si parla di campo

Dettagli

si elettrizzano per strofinio forza attrattiva repulsiva trasferimento di carica elettrica si caricano

si elettrizzano per strofinio forza attrattiva repulsiva trasferimento di carica elettrica si caricano Elettrostatica Alcune sostanze (ambra, vetro, materie plastiche, ) si elettrizzano per strofinio, cioè strofinate con un panno acuistano la capacità di attrarre corpi leggeri. Due oggetti elettrizzati

Dettagli

CAPITOLO 3 LA LEGGE DI GAUSS

CAPITOLO 3 LA LEGGE DI GAUSS CAPITOLO 3 LA LEGGE DI GAUSS Elisabetta Bissaldi (Politecnico di Bari) - A.A. 2017-2018 2 Premesse TEOREMA DI GAUSS Formulazione equivalente alla legge di Coulomb Trae vantaggio dalle situazioni nelle

Dettagli

CAPITOLO 3 TEOREMA DI GAUSS

CAPITOLO 3 TEOREMA DI GAUSS CAPITOLO 3 3.1 Il concetto di flusso Una formulazione equivalente alla legge di Coulomb è quella stabilita dal teorema di Gauss, che trae vantaggio dalle situazioni nelle quali vi è una simmetria nella

Dettagli

Elettrostatica si elettrizzano per strofinio forza attrattiva repulsiva trasferimento di carica elettrica si caricano

Elettrostatica si elettrizzano per strofinio forza attrattiva repulsiva trasferimento di carica elettrica si caricano Elettrostatica Alcune sostanze (ambra, vetro, materie plastiche, ) si elettrizzano per strofinio, cioè strofinate con un panno acuistano la capacità di attrarre corpi leggeri. Due oggetti elettrizzati

Dettagli

CARICA ELETTRICA E LEGGE DI COULOMB

CARICA ELETTRICA E LEGGE DI COULOMB QUESITI 1 CARICA ELETTRICA E LEGGE DI COULOMB 1. (Da Medicina e Odontoiatria 2015) Due particelle cariche e isolate sono poste, nel vuoto, a una certa distanza. La forza elettrostatica tra le due particelle

Dettagli

Lezione 12 - Azione a distanza

Lezione 12 - Azione a distanza Lezione 12 - Azione a distanza Immaginiamo di disporre di un corpo puntiforme con carica q 1 e di mettere nelle sue vicinanze un secondo corpo con carica q 2 In base alla legge di Coulomb possiamo affermare

Dettagli

CAMPO ELETTRICO. F r e = q E r. Newton ;

CAMPO ELETTRICO. F r e = q E r. Newton ; 1 CAMPO ELETTRICO Si definisce campo elettrico (o elettrostatico) una qualunque regione dello spazio nella quale si manifestano azioni su cariche elettriche. 1. DESCRIZIONE DEL CAMPO Per descrivere un

Dettagli

Corrente elettrica. Marcello Borromeo corso di Fisica per Farmacia - Anno Accademico

Corrente elettrica. Marcello Borromeo corso di Fisica per Farmacia - Anno Accademico Corrente elettrica Sotto l effetto di un campo elettrico le cariche si possono muovere In un filo elettrico, se una carica dq attraversa una sezione del filo nel tempo dt abbiamo una corrente di intensità

Dettagli

Elementi di Fisica L interazione Elettrostatica

Elementi di Fisica L interazione Elettrostatica Prerequisiti e strumenti matematici e fisici per l elettronica delle telecomunicazioni Elementi di Fisica L interazione Elettrostatica Ing. Nicola Cappuccio 2014 U.F.5 ELEMENTI SCIENTIFICI ED ELETTRONICI

Dettagli

Magnetismo. La carica elettrica

Magnetismo. La carica elettrica Introduzione L elettromagnetismo descrive tanti fenomeni: Cariche elettriche Correnti elettriche Magnetismo Onde elettromagnetiche 121 La carica elettrica Due bacchette di vetro strofinate con seta si

Dettagli

Conduttori e condensatori 1

Conduttori e condensatori 1 Induzione elettrica onduttori e condensatori Su un conduttore (neutro) in un campo elettrico esterno si induce una distribuzione di cariche che produce al suo interno un campo elettrico uguale e opposto

Dettagli

Applicazioni del Teorema di Gauss

Applicazioni del Teorema di Gauss Applicazioni del Teorema di Gauss Simone Alghisi Liceo Scientifico Luzzago Ottobre 2011 Simone Alghisi Liceo Scientifico Luzzago Applicazioni del Teorema di Gauss Ottobre 2011 1 / 8 Definizione Dato un

Dettagli

Soluzioni. Perché un oggetto neutro diventi carico positivamente occorre:.

Soluzioni. Perché un oggetto neutro diventi carico positivamente occorre:. 01 02 Soluzioni Perché un oggetto neutro diventi carico positivamente occorre:. Una carica puntiforme isolata produce un campo elettrico di intensità E in un punto a 2 m di distanza. Un punto in cui il

Dettagli

Il campo magnetico. n I poli magnetici di nome contrario non possono essere separati: non esiste il monopolo magnetico

Il campo magnetico. n I poli magnetici di nome contrario non possono essere separati: non esiste il monopolo magnetico Il campo magnetico n Le prime osservazioni dei fenomeni magnetici risalgono all antichità n Agli antichi greci era nota la proprietà della magnetite di attirare la limatura di ferro n Un ago magnetico

Dettagli

Indice CAPITOLO I. I.1 La carica elettrica... I.2 Il campo elettrostatico... CAPITOLO II. Il potenziale elettrostatico...

Indice CAPITOLO I. I.1 La carica elettrica... I.2 Il campo elettrostatico... CAPITOLO II. Il potenziale elettrostatico... Indice CAPITOLO I I.1 La carica elettrica... I.2 Il campo elettrostatico... 7 9 CAPITOLO II Il potenziale elettrostatico... 17 CAPITOLO III III.1 Conduttori in equilibrio elettrostatico... III.2 Condensatori...

Dettagli

Facoltà di Ingegneria 1 a prova in itinere di Fisica II 15-Aprile Compito A

Facoltà di Ingegneria 1 a prova in itinere di Fisica II 15-Aprile Compito A Facoltà di Ingegneria a prova in itinere di Fisica II 5-Aprile-3 - Compito A Esercizio n. Un filo isolante di lunghezza è piegato ad arco di circonferenza di raggio (vedi figura). Su di esso è depositata

Dettagli

Formulario Elettromagnetismo

Formulario Elettromagnetismo Formulario Elettromagnetismo. Elettrostatica Legge di Coulomb: F = q q 2 u 4 0 r 2 Forza elettrostatica tra due cariche puntiformi; ε 0 = costante dielettrica del vuoto; q = cariche (in C); r = distanza

Dettagli

LA CARICA ELETTRICA E LA LEGGE DI COULOMB V CLASSICO PROF.SSA DELFINO M. G.

LA CARICA ELETTRICA E LA LEGGE DI COULOMB V CLASSICO PROF.SSA DELFINO M. G. LA CARICA ELETTRICA E LA LEGGE DI COULOMB 1 V CLASSICO PROF.SSA DELFINO M. G. UNITÀ 1 - LA CARICA ELETTRICA E LA LEGGE DI COULOMB 1. Le cariche elettriche 2. La legge di Coulomb 2 LEZIONE 1 - LE CARICHE

Dettagli

Definizione di Flusso

Definizione di Flusso Definizione di Flusso Il flusso aumenta se il campo elettrico aumenta!! Δφ E ΔA EΔAcosθ E Il flusso è la quantità di materia che passa attraverso una superficie nell unità di tempo. Se si parla di campo

Dettagli

Dario D Amore Corso di Elettrotecnica (AA 08 09)

Dario D Amore Corso di Elettrotecnica (AA 08 09) Dario D Amore Corso di Elettrotecnica (AA 08 09) Si dice campo scalare uno scalare funzione del punto, per es. la temperatura in una stanza, la densità della materia in una regione dello spazio Un campo

Dettagli

PROPRIETÀ DEL CAMPO ELETTROSTATICO. G. Pugliese 1

PROPRIETÀ DEL CAMPO ELETTROSTATICO. G. Pugliese 1 PROPRIETÀ DEL CAMPO ELETTROTATICO G. Pugliese 1 Flusso di un vettore Il flusso di un liuido o d aria (la portata), è la uantità di liuido che passa in un determinato tempo attraverso una sezione del tubo.

Dettagli

Fenomeni elettrici. Strofinando un righello di plastica questo ha la proprietà di attrarre dei pezzettini di carta.

Fenomeni elettrici. Strofinando un righello di plastica questo ha la proprietà di attrarre dei pezzettini di carta. Fenomeni elettrici Strofinando un righello di plastica questo ha la proprietà di attrarre dei pezzettini di carta. Una nuova forza? Quali proprietà ha questa forza? Differenze e analogie con la forza gravitazionale?

Dettagli

Fisica II Modulo. A. Mastroserio, S. Rainò

Fisica II Modulo. A. Mastroserio, S. Rainò Fisica II Modulo A. Mastroserio, S. Rainò Argomenti n ELETTROSTATICA n CORRENTE ELETTRICA n MAGNETISMO n OTTICA ELETTROSTATICA Carica elettrica n I primi studi di cui si ha notizia sui fenomeni di natura

Dettagli

Il Corso di Fisica per Scienze Biologiche

Il Corso di Fisica per Scienze Biologiche Il Corso di Fisica per Scienze Biologiche Ø Prof. Attilio Santocchia Ø Ufficio presso il Dipartimento di Fisica (Quinto Piano) Tel. 075-585 708 Ø E-mail: attilio.santocchia@pg.infn.it Ø Web: http://www.fisica.unipg.it/~attilio.santocchia

Dettagli

Primo Parziale Fisica Generale T-B

Primo Parziale Fisica Generale T-B Primo Parziale Fisica Generale T-B (CdL Ingegneria Civile e Informatica [A-K]) Prof. M. Sioli 23/11/2012 Soluzioni Compito B Esercizi Ex. 1 Tre cariche puntiformi sono disposte ai vertici di un uadrato

Dettagli

= E qz = 0. 1 d 3 = N

= E qz = 0. 1 d 3 = N Prova scritta d esame di Elettromagnetismo 7 ebbraio 212 Proff.. Lacava,. Ricci, D. Trevese Elettromagnetismo 1 o 12 crediti: esercizi 1, 2, 4 tempo 3 h; Elettromagnetismo 5 crediti: esercizi 3, 4 tempo

Dettagli

Conservazione della carica elettrica

Conservazione della carica elettrica Elettrostatica La forza elettromagnetica è una delle interazioni fondamentali dell universo L elettrostatica studia le interazioni fra le cariche elettriche non in movimento Da esperimenti di elettrizzazione

Dettagli

IL CAMPO ELETTRICO ED IL POTENZIALE

IL CAMPO ELETTRICO ED IL POTENZIALE IL CAMPO ELETTRICO ED IL POTENZIALE 1 V CLASSICO PROF.SSA DELFINO M. G. UNITÀ 2 - IL CAMPO ELETTRICO ED IL POTENZIALE 1. Il campo elettrico 2. La differenza di potenziale 3. I condensatori 2 LEZIONE 1

Dettagli

Tutorato di Fisica 2 Anno Accademico 2010/2011

Tutorato di Fisica 2 Anno Accademico 2010/2011 Matteo Luca Ruggiero DIFIS@Politecnico di Torino Tutorato di Fisica 2 Anno Accademico 2010/2011 () 2 1.1 Una carica q è posta nell origine di un riferimento cartesiano. (1) Determinare le componenti del

Dettagli

CORSO DI FISICA dispensa n.4 ELETTROSTATICA/CORRENTE ELETTRICA

CORSO DI FISICA dispensa n.4 ELETTROSTATICA/CORRENTE ELETTRICA CORSO DI FISICA dispensa n.4 ELETTROSTATICA/CORRENTE ELETTRICA Elettrostatica L elettrostatica é lo studio dei fenomeni elettrici in presenza di cariche a riposo. Fin dall antichitá sono note alcune proprietá

Dettagli

ELETTROSTATICA parte I a

ELETTROSTATICA parte I a Richiami di ELETTROSTATICA parte I a - CARICA ELETTRICA E FORZA DI COULOMB - CAMPO ELETTROSTATICO - ENERGIA POTENZIALE ELETTROSTATICA - POTENZIALE ELETTRICO CARICA ELETTRICA e FORZA di COULOMB 4 a grandezza

Dettagli

1.2 Moto di cariche in campo elettrico

1.2 Moto di cariche in campo elettrico 1.2 Moto di cariche in campo elettrico Capitolo 1 Elettrostatica 1.2 Moto di cariche in campo elettrico Esercizio 11 Una carica puntiforme q = 2.0 10 7 C, massa m = 2 10 6 kg, viene attratta da una carica

Dettagli

Elettrostatica. Tutorato #8

Elettrostatica. Tutorato #8 Tutorato #8 Elettrostatica La Carica Elettrica Tutta la materia a noi nota è costituita da atomi. Un atomo è costituito da un nucleo molto denso in massa, e con carica positiva, e circondato da una nube

Dettagli

Data una carica puntiforme Q

Data una carica puntiforme Q Data una carica puntiforme Q Come posso descrivere in modo sintetico il possibile effetto che Q esercita su una qualsiasi carica posta nello spazio circostante? Uso la carica q - - Estendendo il procedimento

Dettagli

σ int =. σ est = Invece, se il guscio è collegato a massa, la superficie esterna si scarica e la densità di carica σ est è nulla. E =.

σ int =. σ est = Invece, se il guscio è collegato a massa, la superficie esterna si scarica e la densità di carica σ est è nulla. E =. Esercizio 1 a) Poiché la carica è interamente contenuta all interno di una cavità circondata da materiale conduttore, si ha il fenomeno dell induzione totale. Quindi sulla superficie interna della sfera

Dettagli

4πε. Esercizio 1. per r > R A. E = 0 per r R A, E =

4πε. Esercizio 1. per r > R A. E = 0 per r R A, E = Esercizio 1 a) Il campo elettrostatico E all interno e all esterno della sfera di raggio R A deve essere, per simmetria, radiale ed assumere lo stesso valore in ogni punto di una generica sfera concentrica

Dettagli

Esame di Fisica Data: 18 Febbraio Fisica. 18 Febbraio Problema 1

Esame di Fisica Data: 18 Febbraio Fisica. 18 Febbraio Problema 1 Fisica 18 Febbraio 2013 ˆ Esame meccanica: problemi 1, 2 e 3. ˆ Esame elettromagnetismo: problemi 4, 5 e 6. Problema 1 Un corpo di massa M = 12 kg, inizialmente in quiete, viene spinto da una forza di

Dettagli

Elettrostatica II. Energia Elettrostatica (richiamo) Potenziale Elettrico. Potenziale di cariche puntiformi. Superfici equipotenziali.

Elettrostatica II. Energia Elettrostatica (richiamo) Potenziale Elettrico. Potenziale di cariche puntiformi. Superfici equipotenziali. Elettrostatica II Energia Elettrostatica (richiamo) Potenziale Elettrico Potenziale di cariche puntiformi Superfici equipotenziali Condensatori Dielettrici Energia potenziale di due cariche Si può dimostrare

Dettagli

POTENZIALE V T O R I ELETTRICO g. bonomi fisica sperimentale (mecc., elettrom.) Introduzione

POTENZIALE V T O R I ELETTRICO g. bonomi fisica sperimentale (mecc., elettrom.) Introduzione Introduzione Mentre era su una piattaforma panoramica questa ragazza si accorse che i suoi capelli le si rizzavano in testa. Suo fratello, divertito, le scattò questa foto. Cinque minuti dopo un fulmine

Dettagli

La legge di Gauss. Il flusso elettrico

La legge di Gauss. Il flusso elettrico La legge di Gauss La legge di Gauss mette in relazione il flusso elettrico Φ attraverso una superficie chiusa e la carica q %& dentro: Se più linee di flusso escono di quante ne entrano, contiene una carica

Dettagli

All interno di una sfera di raggio R posta nel vuoto esiste una densità di carica ρ = ρ 0 distanza dal centro della sfera e ρ 0.

All interno di una sfera di raggio R posta nel vuoto esiste una densità di carica ρ = ρ 0 distanza dal centro della sfera e ρ 0. Esercizio 1 All interno di una sfera di raggio posta nel vuoto esiste una densità di carica ρ = ρ r 2 distanza dal centro della sfera e ρ. Determinare: 1. La carica totale della sfera 2. Il campo elettrico

Dettagli

1.2-struttura elettrica della materia e induzione elettrostatica

1.2-struttura elettrica della materia e induzione elettrostatica 2 1.1-CONDUTTORI E ISOLANTI 1 Cap 1- Elettrostatica Cap 1-vol2-Elettrostatica Nell elettromagnetismo studieremo fenomeni elettrici e magnetici che rappresentano un altra interazione fondamentale della

Dettagli

Elettrostatica I. Forza di Coulomb. Principio di Sovrapposizione Lineare. Campo Elettrico. Linee di campo. Flusso, teorema di Gauss e sue applicazioni

Elettrostatica I. Forza di Coulomb. Principio di Sovrapposizione Lineare. Campo Elettrico. Linee di campo. Flusso, teorema di Gauss e sue applicazioni Elettrostatica I Forza di Coulomb Principio di Sovrapposizione Lineare Campo Elettrico Linee di campo Flusso, teorema di Gauss e sue applicazioni Conduttori Energia potenziale elettrostatica Elettricità

Dettagli

Fenomeni elettrici. Modello dell atomo, carica elettrica, forza tra cariche stazionarie. Campo elettrico e potenziale elettrostatico

Fenomeni elettrici. Modello dell atomo, carica elettrica, forza tra cariche stazionarie. Campo elettrico e potenziale elettrostatico Fenomeni elettrici Legge di Coulomb Modello dell atomo, carica elettrica, forza tra cariche stazionarie Campo elettrico e potenziale elettrostatico Campo elettrico, linee di forza, lavoro della forza elettrostatica,

Dettagli

Corrente elettrica. Marcello Borromeo corso di Fisica per Farmacia - Anno Accademico

Corrente elettrica. Marcello Borromeo corso di Fisica per Farmacia - Anno Accademico Corrente elettrica Sotto l effetto di un campo elettrico le cariche si possono muovere In un filo elettrico, se una carica dq attraversa una sezione del filo nel tempo dt abbiamo una corrente di intensità

Dettagli

1 Prove esami Fisica II

1 Prove esami Fisica II 1 Prove esami Fisica II Prova - 19-11-2002 Lo studente risponda alle seguenti domande: 1) Scrivere il teorema di Gauss (2 punti). 2) Scrivere, per un conduttore percorso da corrente, il legame tra la resistenza

Dettagli

Elettrostatica nel vuoto

Elettrostatica nel vuoto Elettrostatica nel vuoto Come abbiamo visto nella parte di meccanica le forze sono o di contatto (attrito, pressione, forza elastica) o a distanza (gravitazione): osservazioni sperimentali hanno mostrato

Dettagli

Il campo elettrico T R AT TO DA:

Il campo elettrico T R AT TO DA: Il campo elettrico Michael Faraday T R AT TO DA: I P R O B L E M I D E L L A F I S I C A - C u t n e l l, J o h n s o n, Yo u n g, S t a n d l e r Z a n i c h e l l i e d i t o r e I n t e g ra z i o n

Dettagli

Alcune applicazioni del teorema di Gauss

Alcune applicazioni del teorema di Gauss Alcune applicazioni del teorema di Gauss Diamo innanzitutto la definizione di flusso del vettore v attraverso la superficie S. Per cominciare col caso più semplice, consideriamo un fluido (per esempio,

Dettagli

CARICA ELETTRICA, LEGGE DI COULOMB, CAMPO ELETTRICO DOMANDE, ESERCIZI

CARICA ELETTRICA, LEGGE DI COULOMB, CAMPO ELETTRICO DOMANDE, ESERCIZI CARICA ELETTRICA, LEGGE DI COULOMB, CAMPO ELETTRICO DOMANDE, ESERCIZI 1) Qual è la prima osservazione documentata dell esistenza della carica elettrica? ) Da dove deriva il termine elettricità? 3) Cosa

Dettagli

La storia. Talete di Mileto (IV secolo AC) XVIII secolo iniziò uno studio approfondito. Esperimenti con l'ambra

La storia. Talete di Mileto (IV secolo AC) XVIII secolo iniziò uno studio approfondito. Esperimenti con l'ambra Elettrostatica La storia Talete di Mileto (IV secolo AC) Esperimenti con l'ambra XVIII secolo iniziò uno studio approfondito Elettrizzazione per strofinio La forza dipende dalla distanza La forza elettrica

Dettagli

Esercitazione 1. Matteo Luca Ruggiero 1. Anno Accademico 2010/ Dipartimento di Fisica del Politecnico di Torino

Esercitazione 1. Matteo Luca Ruggiero 1. Anno Accademico 2010/ Dipartimento di Fisica del Politecnico di Torino Esercitazione 1 Matteo Luca Ruggiero 1 1 Dipartimento di Fisica del Politecnico di Torino Anno Accademico 2010/2011 ML Ruggiero (DIFIS) Esercitazione 1: Elettrostatica E1.2010/2011 1 / 29 Sommario 1 Riferimenti

Dettagli

I.S.I.S.S. A. Giordano Venafro (IS) Appunti di Fisica n. 3

I.S.I.S.S. A. Giordano Venafro (IS) Appunti di Fisica n. 3 I.S.I.S.S. A. Giordano Venafro (IS) 1 Fenomeni Magnetici prof. Valerio D Andrea VB ST - A.S. 2017/2018 Appunti di Fisica n. 3 In natura esiste un minerale che è in grado di attirare oggetti di ferro: la

Dettagli

IL CAMPO MAGNETICO FENOMENI MAGNETICI FONDAMENTALI CARATTERISTICHE DEL CAMPO MAGNETICO INDUZIONE ELETTROMAGNETICA

IL CAMPO MAGNETICO FENOMENI MAGNETICI FONDAMENTALI CARATTERISTICHE DEL CAMPO MAGNETICO INDUZIONE ELETTROMAGNETICA IL CAMPO MAGNETICO FENOMENI MAGNETICI FONDAMENTALI CARATTERISTICHE DEL CAMPO MAGNETICO INDUZIONE ELETTROMAGNETICA MAGNETI E SOSTANZE FERROMAGNETICHE MAGNETI capaci di attirare oggetti di ferro naturali

Dettagli

Elettrostatica nel vuoto

Elettrostatica nel vuoto Elettrostatica nel vuoto Esercizio 1.1 Una particella avente carica q e velocità V 0 attraversa, perpendicolarmente alle linee di campo, una regione di lunghezza s in cui eè presente un campo elettrico

Dettagli

Appunti sul campo elettrico

Appunti sul campo elettrico Appunti sul campo elettrico E. Modica erasmo@galois.it Istituto Provinciale di Cultura e Lingue Ninni Cassarà A.S. 2010/2011 Si dice che una regione di spazio è sede di un campo elettrico se una carica

Dettagli

Esercizi di Elettricità

Esercizi di Elettricità Università di Cagliari Laurea Triennale in Biologia Corso di Fisica Esercizi di Elettricità 1. Quattro cariche puntiformi uguali Q = 160 nc sono poste sui vertici di un quadrato di lato a. Quale carica

Dettagli

Conduttori e dielettrici

Conduttori e dielettrici Conduttori e dielettrici a.a. 2017-2018 Testo di riferimento: Elementi di Fisica, Mazzoldi, Nigro, Voci 23 Aprile 2018, Bari Dal programma o 2.0 CFU Conduttori e Dielettrici Corpi conduttori in equilibrio

Dettagli

Esercizi di Fisica II svolti in aula. Federico Di Paolo (22/02/2013)

Esercizi di Fisica II svolti in aula. Federico Di Paolo (22/02/2013) Esercizi di Fisica II svolti in aula Federico Di Paolo (22/02/203) Esercizio L elettrone e il protone hanno rispettivamente una massa di 9. 0 3 kg e, 67 0 27 kg. La loro carica elettrica è pari a.6 0 9

Dettagli

FISICA (modulo 1) PROVA SCRITTA 07/07/2014. ESERCIZI (Motivare sempre i vari passaggi nelle soluzioni)

FISICA (modulo 1) PROVA SCRITTA 07/07/2014. ESERCIZI (Motivare sempre i vari passaggi nelle soluzioni) FISICA (modulo 1) PROVA SCRITTA 07/07/2014 ESERCIZI (Motivare sempre i vari passaggi nelle soluzioni) E1. Un blocco di legno di massa M = 1 kg è appeso ad un filo di lunghezza l = 50 cm. Contro il blocco

Dettagli

Nome: Cognome: Matricola:

Nome: Cognome: Matricola: Esercizio 1: Una particella ++ si trova in quiete ad una distanza d = 100 µm da un piano metallico verticale mantenuto a potenziale nullo. i. Calcolare le componenti del campo E in un generico punto P

Dettagli

Facoltà di Ingegneria Prova scritta di Fisica II - VO 15-Aprile-2003

Facoltà di Ingegneria Prova scritta di Fisica II - VO 15-Aprile-2003 Facoltà di Ingegneria Prova scritta di Fisica II - VO 5-Aprile-003 Esercizio n. Un campo magnetico B è perpendicolare al piano individuato da due fili paralleli, cilindrici e conduttori, distanti l uno

Dettagli

Interazioni di tipo magnetico II

Interazioni di tipo magnetico II INGEGNERIA GESTIONALE corso di Fisica Generale Prof. E. Puddu Interazioni di tipo magnetico II 1 Forza magnetica su una carica in moto Una particella di carica q in moto risente di una forza magnetica

Dettagli

CAMPO MAGNETICO Proprietà della magnetite (Fe 3 O 4 ): attira a sé materiali ferrosi o altre sostanze dette magnetiche Poli del magnete = parti in

CAMPO MAGNETICO Proprietà della magnetite (Fe 3 O 4 ): attira a sé materiali ferrosi o altre sostanze dette magnetiche Poli del magnete = parti in CAMPO MAGNETICO Proprietà della magnetite (Fe 3 O 4 ): attira a sé materiali ferrosi o altre sostanze dette magnetiche Poli del magnete = parti in cui si evidenzia tale proprietà Proprietà magnetiche possono

Dettagli

Sulla superficie interna del guscio sferico (induzione totale) si avrà la carica indotta q distribuita uniformemente, quindi

Sulla superficie interna del guscio sferico (induzione totale) si avrà la carica indotta q distribuita uniformemente, quindi 1) Una sfera conduttrice di raggio r = 5 cm possiede una carica q = 10 8 C ed è posta nel centro di un guscio sferico conduttore, di raggio interno R = 20 cm, posto in contatto con la terra (a massa).

Dettagli

1.2-struttura elettrica della materia e induzione elettrostatica

1.2-struttura elettrica della materia e induzione elettrostatica 2 1.1-CONDUTTORI E ISOLANTI 1 Cap 1- Elettrostatica Cap 1-vol2-Elettrostatica Nell elettromagnetismo studieremo fenomeni elettrici e magnetici che rappresentano un altra interazione fondamentale della

Dettagli

IL CAMPO ELETTRICO. Test

IL CAMPO ELETTRICO. Test Test 1 Quali delle seguenti affermazioni sul concetto di campo elettrico è corretta? A Il campo elettrico in un punto dello spazio ha sempre la stessa direzione e lo stesso verso della forza elettrica

Dettagli

3 1.2-struttura elettrica della materia e induzione elettrostatica

3 1.2-struttura elettrica della materia e induzione elettrostatica Nicola3 GigliettoA.A. 1.-STRUTTURA 017/18 ELETTRICA DELLA MATERIA E INDUZIONE ELETTROSTATICA 1 Cap 1- Elettrostatica Cap 1-vol-Elettrostatica Nell elettromagnetismo studieremo fenomeni elettrici e magnetici

Dettagli

IL CAMPO ELETTRICO Problemi di Fisica ELETTROMAGNETISMO Il campo elettrico

IL CAMPO ELETTRICO Problemi di Fisica ELETTROMAGNETISMO Il campo elettrico Problemi di Fisica LTTROMAGNTISMO Il campo elettrico Data la distribuzione di carica rappresentata in figura, calcolare il campo elettrico prodotto nell origine degli assi cartesiani. I dati sono: -e +e

Dettagli

Corso di Fisica Generale II Elementi di elettromagnetismo

Corso di Fisica Generale II Elementi di elettromagnetismo Corso di Fisica Generale II Elementi di elettromagnetismo P. Gaudio 1 ! Contatti:! E-mail: gaudio@ing.uniroma2.it! 3 piano Ed. Ingegneria Industriale! Didattica web 2.0 Info per Programma ed Esami! Prenotazioni

Dettagli

Tesina di Fisica Generale II

Tesina di Fisica Generale II Tesina di Fisica Generale II Corso di laurea di scienza e ingegneria dei materiali 1 gruppo Coordinatore Scotti di Uccio Umberto Tesina svolta da: nnalisa Volpe N50000281 Catello Staiano N50000285 Raffaele

Dettagli

Fisica Generale II (prima parte)

Fisica Generale II (prima parte) Corso di Laurea in Ing. Medica Fisica Generale II (prima parte) Cognome Nome n. matricola Voto 4.2.2011 Esercizio n.1 Determinare il campo elettrico in modulo direzione e verso generato nel punto O dalle

Dettagli

Fisica Generale LB. Prof. Mauro Villa. Esercizi di elettrostatica nel vuoto

Fisica Generale LB. Prof. Mauro Villa. Esercizi di elettrostatica nel vuoto Fisica Generale LB Prof. Mauro Villa Esercizi di elettrostatica nel vuoto A - Forza di Coulomb, campi elettrici 1. Calcolare la forza elettrostatica esercitata su di una carica Q 3, posta in mezzo ad altre

Dettagli

Fenomenologia Forza magnetica su carica in moto e definizione di campo magnetico Forza magnetica su conduttore percorso da corrente

Fenomenologia Forza magnetica su carica in moto e definizione di campo magnetico Forza magnetica su conduttore percorso da corrente CAMPO MAGNETICO Fenomenologia Forza magnetica su carica in moto e definizione di campo magnetico Forza magnetica su conduttore percorso da corrente INTERAZIONI MAGNETICHE Le proprietà magnetiche di alcuni

Dettagli

Soluzione Compitino Fisica Generale I Ing. Elettronica e Telecomunicazioni 01 Giugno 2018

Soluzione Compitino Fisica Generale I Ing. Elettronica e Telecomunicazioni 01 Giugno 2018 oluzione Compitino Fisica Generale I Ing. Elettronica e Telecomunicazioni 01 Giugno 2018 Esercizio 1 1) Le rotazioni attorno ad un asse ortogonale ai piani e le traslazioni in una direzione parallela ai

Dettagli

Cosa differenzia un conduttore da un dielettrico? Come si comporta un conduttore? Come si utilizza un conduttore?

Cosa differenzia un conduttore da un dielettrico? Come si comporta un conduttore? Come si utilizza un conduttore? 1 Cosa differenzia un conduttore da un dielettrico? A livello macroscopico A livello microscopico Come si comporta un conduttore? In elettrostatica In presenza di cariche in moto (correnti)... Come si

Dettagli

Flusso Elettrico Legge di Gauss: Motivazione & Definizione Legge di Coulomb come conseguenza della legge di Gauss Cariche sui Conduttori

Flusso Elettrico Legge di Gauss: Motivazione & Definizione Legge di Coulomb come conseguenza della legge di Gauss Cariche sui Conduttori Legge di Gauss Flusso Elettrico Legge di Gauss: Motivazione & Definizione Legge di Coulomb come conseguenza della legge di Gauss Cariche sui Conduttori La legge di Gauss mette in relazione i campi su una

Dettagli

Elettrostatica. 1. Concetto di Carica. 2. Concetto di Campo. 3. Legge di Gauss. 4. Dal Campo alla Forza. 5. Potenziale elettrico II - 0

Elettrostatica. 1. Concetto di Carica. 2. Concetto di Campo. 3. Legge di Gauss. 4. Dal Campo alla Forza. 5. Potenziale elettrico II - 0 Elettrostatica 1. Concetto di Carica 2. Concetto di Campo 3. Legge di Gauss 4. Dal Campo alla Forza 5. Potenziale elettrico II - 0 Cariche e Forze Fondamentali della Natura Quarks PARTICELLE ( ( ( u c

Dettagli

I prova di esonero del corso di Elettromagnetismo (a.a. 2009/2010) (Proff. F. Lacava, F. Ricci, D. Trevese) 23 aprile 2010

I prova di esonero del corso di Elettromagnetismo (a.a. 2009/2010) (Proff. F. Lacava, F. Ricci, D. Trevese) 23 aprile 2010 I prova di esonero del corso di Elettromagnetismo a.a. 2009/2010 Proff. F. Lacava, F. Ricci, D. Trevese 23 aprile 2010 Esercizio 1 Un dischetto sottile di raggio R, costituito da materiale isolante a densità

Dettagli

Olimpiadi di Fisica 2015 Campo elettrico Franco Villa

Olimpiadi di Fisica 2015 Campo elettrico Franco Villa 1 Olimpiadi di Fisica 015 ampo elettrico Franco illa 1. ate le cariche Q = -1 µ e Q = - µ (ale in cm O=0, O=10, =10, O=0) determinare: il potenziale elettrico ed il campo elettrico E (modulo, direzione

Dettagli

ELETTROSTATICA. Elettrostatica Pagina il dipolo elettrico; 31. campo elettrico uniforme

ELETTROSTATICA. Elettrostatica Pagina il dipolo elettrico; 31. campo elettrico uniforme ELETTROSTATICA 1. La carica elettrica. Carica elettrica positiva e negativa 3. Protoni, elettroni, neutroni e carica elettrica; 4. Struttura interna dei protoni e dei neutroni (quarks) e carica elettrica

Dettagli

MOTO RETTILINEO UNIFORME

MOTO RETTILINEO UNIFORME MOTO RETTILINEO UNIORME a = 0 v = cost v = costante ( x-x o )/t = cost x = x o + v t a v x t t x o t 51 MOTO RETTILINEO UNIORMEMENTE ACCELERATO a = costante a = cost = v - v 0 t v = v o + a t x = x o +

Dettagli

Capacità. Capacità elettrica Condensatore Condensatore = sistema per immagazzinare energia (elettrica)

Capacità. Capacità elettrica Condensatore Condensatore = sistema per immagazzinare energia (elettrica) Capacità Capacità elettrica Condensatore Condensatore = sistema per immagazzinare energia (elettrica) Definizione C Capacità Q V La capacità è una misura di quanta carica debba possedere un certo tipo

Dettagli

Dielettrici V = V 0. E = V h = V 0 kh = E 0

Dielettrici V = V 0. E = V h = V 0 kh = E 0 Dielettrici Dielettrico: materiale non conduttore (gomma, vetro, carta paraffinata) Al contrario dei conduttori anche in presenza di un campo elettrico esterno in essi non si genera un movimento di cariche.

Dettagli