Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download ""

Transcript

1 Ombra una scaletta ue gran avente uno spgolo vertcale appartenente al PV.

2 2 S assegnano le lettere a vertc ella fgura. A" D" B" C" I" L" N" M"

3 3 Se possble, s sfruttano anche le conzon parallelsmo tra gl spgol a proettare e pan su qual gl spgol proettano le ombre. S nota, n questo caso, che le facce ella scala sono n parte e rettangol parallel al PO.Questo consente etermnare faclmente l'ombra parzale su PO ella facca nferore e ella prma peata ella scala. A" D" B" C" I" L" N" M" ombra IN su PO ombra EH su PO

4 4 I punt ella porzone ell'ombra che s proetta sul PO sono stat nvuat. Tutt gl altr punt s troveranno unque sul PV. Poché non è possble collegare rettamente punt 'ombra gacent su pan vers, sarà necessaro rcercare, per ogn segmento che s "spezza" fra PO e PV l'ombra vrtuale ognuno e suo estrem. A esempo, ato l sgmento HG, poché la sua ombra s ve fra PO e PV, s può costrure o l'ombra H su, o quella G su (n questo caso s è costruta l'ombra H su ). A" D" B" C" I" L" N" M" ombra IN su PO ombra EH su PO ( rappresenta l'ombra vrtuale H su, pertanto lo s può collegare all'ombra G su )

5 5 A" D" B" C" I" L" N" M" ombra EH su PO 1 ombra IN su PO Il punto (l segno meno vene qu usato per ncare l'appartenenza a un sempano negatvo) rappresenta l'ombra vrtuale H su, pertanto questa può essere collegata all'ombra G su. Il punto 1 (cerchato) su LT appartene smultaneamente al PO e al PV. ombra reale è quella che va a 1 a, mentre la parte restante, a 1 a, rappresenta la porzone ombra vrtuale, su, el segmento GH (la parte 'ombra vrtuale è n tratteggo). S not che l punto 1 poteva essere etermnato anche senza rcorrere all'ombra vrtuale, nfatt esso rappresenta anche un estremo ell'ombra ella prma peata sul PO.

6 6 S prosegue la costruzone etermnano tutt punt 'ombra sul PV. Sul PO non c sono altr punt a nvuare oltre a quell gà costrut, pertanto la porzone ell'ombra totale sul PO può gà essere rempta. S not che punt D e L concono con le loro ombre sul PV (ncazon n rosso). A" D" O D " B" C" I" L" O L " N" M" ombra EH su PO 1 ombra IN su PO

7 7 Ottenut punt 'ombra anche sul PV, s procee al loro collegamento. ombra fnale sarà l contorno esterno tutt segment che unscono le ombre e vertc. È bene prestare attenzone: 1) a unre soltanto punt che nella fgura reale erano effettvamente collegat; se un punto A è collegato a un punto B, allora anche OA" e OB" saranno (almeno vrtualmente) collegat. Se nvece ue punt real non sono collegat, allora anche loro corrsponent punt 'ombra non ovranno esserlo; 2) al fatto che costrure l'ombra una fgura su ue pan coornat è come realzzare su ess la sua proezone oblqua. Alcun e vertc tale proezone rmarranno nglobat all'nterno ell'area ell'ombra. Per renere pù charamente l concetto, s sono rpassat n blu gl spgol ella proezone oblqua e punt ntern alla superfce n ombra; 3) a rappresentare l'ombra teneno conto ella sua poszone rspetto al solo, che n questo caso la nascone parzalmente. A" D" O D " B" C" I" L" O L " N" M" O A " O C " O F " O E " O M " O B " O M '- O I " 1 Rappresentazone fnale ell'ombra portata ella scala

8 8 Qu sotto: vsualzzazone non stanar ell'ombra come se fosse la proezone oblqua ella scala su PO e PV. A" D" O D " B" C" I" L" O L " N" M" O A " O F " O M " O C " O E " O B " O I "

9 9 Qu sotto: vsualzzazone non stanar ell'ombra come se fosse la proezone assonometrca oblqua ella scala sul solo PV ( punt n rosso appartengono a ). A" D" O D " B" C" I" L" O L " N" M" O A " O F " O M " O C " O E " O B " O I " O N "-

POLITECNICO DI BARI - DICATECh Corso di Laurea in Ingegneria Ambientale e del Territorio IDRAULICA AMBIENTALE - A.A. 2015/2016 ESONERO 15/01/2016

POLITECNICO DI BARI - DICATECh Corso di Laurea in Ingegneria Ambientale e del Territorio IDRAULICA AMBIENTALE - A.A. 2015/2016 ESONERO 15/01/2016 POLITECNICO DI BARI - DICATECh Corso d Laurea n Ingegnera Ambentale e del Terrtoro IDRAULICA AMBIENTALE - A.A. 015/016 ESONERO 15/01/016 ESERCIZIO 1 S consder la rete aperta n fgura, nella quale le portate

Dettagli

Studio grafico-analitico di una funzioni reale in una variabile reale

Studio grafico-analitico di una funzioni reale in una variabile reale Studo grafco-analtco d una funzon reale n una varable reale f : R R a = f ( ) n Sequenza de pass In pratca 1 Stablre l tpo d funzone da studare es. f ( ) Determnare l domno D (o campo d esstenza) della

Dettagli

COMUNE DI CAFASSE Servizio Edilizia/Urbanistica

COMUNE DI CAFASSE Servizio Edilizia/Urbanistica COMUNE DI CAFASSE Servzo Edlza/Urbanstca PERMESSO DI COSTRUIRE N. DEL INTESTATARIO: METODO OPERATIVO PER LA DETERMINAZIONE DEL COSTO DI COSTRUZIONE a sens degl artt. 6 e 10 della L.R. 28/01/1977 n. 10;

Dettagli

Relazione attività in classe sul Teorema di Pitagora

Relazione attività in classe sul Teorema di Pitagora Relazione attività in classe sul Teorema di Pitagora Lez. 2/04. Prima Lezione A.S. 2011/2012 Insegnante: Siamo nel VI secolo a.c. in Grecia. In questo periodo visse Pitagora che nacque a Samo e vi restò

Dettagli

Circuiti di ingresso differenziali

Circuiti di ingresso differenziali rcut d ngresso dfferenzal - rcut d ngresso dfferenzal - Il rfermento per potenzal Gl stad sngle-ended e dfferenzal I segnal elettrc prodott da trasduttor, oppure preleat da un crcuto o da un apparato elettrco,

Dettagli

Rilevazione degli apprendimenti

Rilevazione degli apprendimenti Rilevazione degli apprendimenti Anno Scolastico 00-0 PROVA DI MATEMATIA Scuola secondaria di II grado lasse... Studente... Simulazioni di prove costruite secondo il Quadro di riferimento Invalsi pubblicato

Dettagli

x 2 + y2 4 = 1 x = cos(t), y = 2 sin(t), t [0, 2π] Al crescere di t l ellisse viene percorsa in senso antiorario.

x 2 + y2 4 = 1 x = cos(t), y = 2 sin(t), t [0, 2π] Al crescere di t l ellisse viene percorsa in senso antiorario. Le soluzioni del foglio 2. Esercizio Calcolare il lavoro compiuto dal campo vettoriale F = (y + 3x, 2y x) per far compiere ad una particella un giro dell ellisse 4x 2 + y 2 = 4 in senso orario... Soluzione.

Dettagli

Prova di verifica n.0 Elettronica I (26/2/2015)

Prova di verifica n.0 Elettronica I (26/2/2015) Proa d erfca n.0 lettronca I (26/2/2015) OUT he hfe + L OUT - Fgura 1 Con rfermento alla rete elettrca d Fg.1, determnare: OUT / OUT / la resstenza sta dal generatore ( V ) la resstenza sta dall uscta

Dettagli

La teoria delle ombre nelle proiezioni ortogonali

La teoria delle ombre nelle proiezioni ortogonali La teoria delle ombre nelle proiezioni ortogonali Nello studio della storia dell'arte è facilmente verificabile come la luce sia sempre stata considerata un importante mezzo espressivo. Artisti di ogni

Dettagli

Corso di Laurea in Scienze della Formazione Primaria Università di Genova MATEMATICA Il

Corso di Laurea in Scienze della Formazione Primaria Università di Genova MATEMATICA Il Lezione 5:10 Marzo 2003 SPAZIO E GEOMETRIA VERBALE (a cura di Elisabetta Contardo e Elisabetta Pronsati) Esercitazione su F5.1 P: sarebbe ottimale a livello di scuola dell obbligo, fornire dei concetti

Dettagli

Guida all uso del Portale Web

Guida all uso del Portale Web Help On-Line Guida all uso del Portale Web Gestione Utente/Password Come iscriversi agli Eventi Formativi Informazioni sull'estratto Conto Come contattare la segreteria dell'ordine Professionale Gestione

Dettagli

Appunti sul galleggiamento

Appunti sul galleggiamento Appunti sul galleggiamento Prof.sa Enrica Giordano Corso di Didattica della fisica 1B a.a. 2006/7 Ad uso esclusivo degli studenti frequentanti, non diffondere senza l autorizzazione della professoressa

Dettagli

GIOCHI A SQUADRE 2013

GIOCHI A SQUADRE 2013 GIOCHI A SQUADRE 2013 1. Trovate il più piccolo intero naturale che, diviso per 3, dà come resto 1; diviso per 4, dà il resto di 2, diviso per 5, dà il resto di 3 e, diviso per 6, dà il resto di 4. 58

Dettagli

Massimizzazione del Profitto e offerta concorrenziale. G. Pignataro Microeconomia SPOSI

Massimizzazione del Profitto e offerta concorrenziale. G. Pignataro Microeconomia SPOSI Massimizzazione del Profitto e offerta concorrenziale 1 Mercati perfettamente concorrenziali 1. Price taking Poiché ogni impresa vende una porzione relativamente piccola della produzione complessiva del

Dettagli

Approfondimento B1.2 La teoria delle ombre 1

Approfondimento B1.2 La teoria delle ombre 1 Approfondimento B1.2 La teoria delle ombre 1 Galleria fotografica: la teoria delle ombre si comprende con l osservazione diretta 1. Camminando sotto il portico più lungo del mondo (Portico di San Luca

Dettagli

L espressione torna invece sempre vera (quindi la soluzione originale) se cambiamo contemporaneamente il verso: 1 < 0.

L espressione torna invece sempre vera (quindi la soluzione originale) se cambiamo contemporaneamente il verso: 1 < 0. EQUAZIONI E DISEQUAZIONI Le uguaglianze fra espressioni numeriche si chiamano equazioni. Cercare le soluzioni dell equazione vuol dire cercare quelle combinazioni delle lettere che vi compaiono che la

Dettagli

Obiettivo del gioco. Contenuto del gioco: Dedico questo gioco alle mie sorelle Ilona, Kasia e Mariola. Adam Kałuża

Obiettivo del gioco. Contenuto del gioco: Dedico questo gioco alle mie sorelle Ilona, Kasia e Mariola. Adam Kałuża autore: Adam Kałuża IlLustrazioni: Piotr Socha i s t r u z i o n i un gioco per 2-4 giocatori Durata di una partita circa 30 minuti Dai 7 anni in su Contenuto del gioco: tabellone 120 tessere granchio

Dettagli

OTTICA TORNA ALL'INDICE

OTTICA TORNA ALL'INDICE OTTICA TORNA ALL'INDICE La luce è energia che si propaga in linea retta da un corpo, sorgente, in tutto lo spazio ad esso circostante. Le direzioni di propagazione sono dei raggi che partono dal corpo

Dettagli

Verifica termoigrometrica delle pareti

Verifica termoigrometrica delle pareti Unverstà Medterranea d Reggo Calabra Facoltà d Archtettura Corso d Tecnca del Controllo Ambentale A.A. 2009-200 Verfca termogrometrca delle paret Prof. Marna Mstretta ANALISI IGROTERMICA DEGLI ELEMENTI

Dettagli

a) Il campo di esistenza di f(x) è dato da 2x 0, ovvero x 0. Il grafico di f(x) è quello di una iperbole -1 1

a) Il campo di esistenza di f(x) è dato da 2x 0, ovvero x 0. Il grafico di f(x) è quello di una iperbole -1 1 LE FUNZIONI EALI DI VAIABILE EALE Soluzioni di quesiti e problemi estratti dal Corso Base Blu di Matematica volume 5 Q[] Sono date le due funzioni: ) = e g() = - se - se = - Determina il campo di esistenza

Dettagli

Aritmetica e architetture

Aritmetica e architetture Unverstà degl stud d Parma Dpartmento d Ingegnera dell Informazone Poltecnco d Mlano Artmetca e archtetture Sommator Rpple Carry e CLA Bozza da completare del 7 nov 03 La rappresentazone de numer Rappresentazone

Dettagli

Primo allenamento per i Giochi Kangourou della Matematica

Primo allenamento per i Giochi Kangourou della Matematica Primo allenamento per i Giochi Kangourou della Matematica Per gli alunni di prima e seconda media i quesiti sono dal numero 1 al numero 11 Per gli alunni di terza media i quesiti sono dal numero 7 al numero

Dettagli

Ai fini economici i costi di un impresa sono distinti principalmente in due gruppi: costi fissi e costi variabili. Vale ovviamente la relazione:

Ai fini economici i costi di un impresa sono distinti principalmente in due gruppi: costi fissi e costi variabili. Vale ovviamente la relazione: 1 Lastoriadiun impresa Il Signor Isacco, che ormai conosciamo per il suo consumo di caviale, decide di intraprendere l attività di produttore di caviale! (Vuole essere sicuro della qualità del caviale

Dettagli

TEST D INGRESSO MATEMATICA 24/05/2011

TEST D INGRESSO MATEMATICA 24/05/2011 TEST D INGRESSO MATEMATICA // COGNOME NOME ISTITUTO COMPRENSIVO/SCUOLA MEDIA CITTA Legg attentamente. ISTRUZIONI PER LA COMPILAZIONE DEL QUESTIONARIO Inza a lavorare solo quando te lo drà l nsegnante e

Dettagli

CONTROLLO DELLA RADIAZIONE SOLARE

CONTROLLO DELLA RADIAZIONE SOLARE CAPITL 4 CTRLL DLLA RADIAZI LAR 4.1 Generalità La localizzazione e l orientamento di un edificio per ridurre l esposizione solare estiva e valorizzare quella invernale, sono obiettivi fondamentali per

Dettagli

Lezione 6 (16/10/2014)

Lezione 6 (16/10/2014) Lezione 6 (16/10/2014) Esercizi svolti a lezione Esercizio 1. La funzione f : R R data da f(x) = 10x 5 x è crescente? Perché? Soluzione Se f fosse crescente avrebbe derivata prima (strettamente) positiva.

Dettagli

Ministero della Salute D.G. della programmazione sanitaria --- GLI ACC - L ANALISI DELLA VARIABILITÀ METODOLOGIA

Ministero della Salute D.G. della programmazione sanitaria --- GLI ACC - L ANALISI DELLA VARIABILITÀ METODOLOGIA Mnstero della Salute D.G. della programmazone santara --- GLI ACC - L ANALISI DELLA VARIABILITÀ METODOLOGIA La valutazone del coeffcente d varabltà dell mpatto economco consente d ndvduare gl ACC e DRG

Dettagli

REDDITO E RISPARMIO DELLE FAMIGLIE E PROFITTI DELLE SOCIETÀ

REDDITO E RISPARMIO DELLE FAMIGLIE E PROFITTI DELLE SOCIETÀ 1 ottobre 2015 II trimestre 2015 REDDITO E RISPARMIO DELLE FAMIGLIE E PROFITTI DELLE SOCIETÀ Il reddito disponibile delle famiglie consumatrici in valori correnti è aumentato dello 0,5% rispetto al trimestre

Dettagli

Angius Anna Carla Licheri Daniele Monaco Emanuele Podda Francesco Puddu Alessio Saba Carolina Tedde Gregorio

Angius Anna Carla Licheri Daniele Monaco Emanuele Podda Francesco Puddu Alessio Saba Carolina Tedde Gregorio Angius Anna Carla Licheri Daniele Monaco Emanuele Podda Francesco Puddu Alessio Saba Carolina Tedde Gregorio Per superficie minima si intende quella superficie che minimizza la propria area. E difficile

Dettagli

di Dirk Henn per 2-6 giocatori dai 10 anni in su

di Dirk Henn per 2-6 giocatori dai 10 anni in su di Dirk Henn per 2-6 giocatori dai 10 anni in su Traduzione e adattamento a cura di Gylas per Giochi Rari Revisione a cura di Leles Versione 1.1 Gennaio 2010 http://www.giochirari.it e-mail: giochirari@giochirari.it

Dettagli

Sapienza, Università di Roma. Ingegneria, Scienze M. F.N., Scienze Statistiche 11 settembre 2009

Sapienza, Università di Roma. Ingegneria, Scienze M. F.N., Scienze Statistiche 11 settembre 2009 Sapienza, Università di Roma Facoltà di Ingegneria, Scienze M. F.N., Scienze Statistiche 11 settembre 009 1. È data una sequenza di n numeri dispari consecutivi. etto M il maggiore della sequenza ed m

Dettagli

CORSO DI LAUREA IN INGEGNERIA.

CORSO DI LAUREA IN INGEGNERIA. CORSO DI LAUREA IN INGEGNERIA. FOGLIO DI ESERCIZI 4 GEOMETRIA E ALGEBRA LINEARE 2010/11 Esercizio 4.1 (2.2). Determinare l equazione parametrica e Cartesiana della retta dello spazio (a) Passante per i

Dettagli

Statistica e calcolo delle Probabilità. Allievi INF

Statistica e calcolo delle Probabilità. Allievi INF Statstca e calcolo delle Probabltà. Allev INF Proff. L. Ladell e G. Posta 06.09.10 I drtt d autore sono rservat. Ogn sfruttamento commercale non autorzzato sarà perseguto. Cognome e Nome: Matrcola: Docente:

Dettagli

REGOLE PER L INSERIMENTO ONLINE DELLE UNITÀ

REGOLE PER L INSERIMENTO ONLINE DELLE UNITÀ REGOLE PER L INSERIMENTO ONLINE DELLE UNITÀ Al momento del primo utilizzo del programma di inserimento online è necessario accettare il presente regolamento dello stesso disponibile sotto il menu Il mio

Dettagli

Macchine. 5 Esercitazione 5

Macchine. 5 Esercitazione 5 ESERCITAZIONE 5 Lavoro nterno d una turbomacchna. Il lavoro nterno massco d una turbomacchna può essere determnato not trangol d veloctà che s realzzano all'ngresso e all'uscta della macchna stessa. Infatt

Dettagli

Economia Applicata ai sistemi produttivi. 06.05.05 Lezione II Maria Luisa Venuta 1

Economia Applicata ai sistemi produttivi. 06.05.05 Lezione II Maria Luisa Venuta 1 Economia Applicata ai sistemi produttivi 06.05.05 Lezione II Maria Luisa Venuta 1 Schema della lezione di oggi Argomento della lezione: il comportamento del consumatore. Gli economisti assumono che il

Dettagli

Amplificatori operazionali

Amplificatori operazionali mplfcator operazonal Parte www.e.ng.unbo.t/pers/mastr/attca.htm (ersone el 9-5-0) mplfcatore operazonale L amplfcatore operazonale è un sposto, normalmente realzzato come crcuto ntegrato, otato tre termnal

Dettagli

La propagazione delle onde luminose può essere studiata per mezzo delle equazioni di Maxwell. Tuttavia, nella maggior parte dei casi è possibile

La propagazione delle onde luminose può essere studiata per mezzo delle equazioni di Maxwell. Tuttavia, nella maggior parte dei casi è possibile Elementi di ottica L ottica si occupa dello studio dei percorsi dei raggi luminosi e dei fenomeni legati alla propagazione della luce in generale. Lo studio dell ottica nella fisica moderna si basa sul

Dettagli

Anno 4 Grafico di funzione

Anno 4 Grafico di funzione Anno 4 Grafico di funzione Introduzione In questa lezione impareremo a disegnare il grafico di una funzione reale. Per fare ciò è necessario studiare alcune caratteristiche salienti della funzione che

Dettagli

LA LUCE CHE PROVIENE DAL SOLE

LA LUCE CHE PROVIENE DAL SOLE LA LUCE CHE PROVIENE DAL SOLE Forma del fascio di luce e distanza Quesiti per un indagine sulle idee spontanee 1. Quale forma attribuiresti al fascio di luce solare che illumina un area circolare a livello

Dettagli

CHE COSA TI FA VENIRE IN MENTE QUESTA PAROLA?

CHE COSA TI FA VENIRE IN MENTE QUESTA PAROLA? CHE COSA TI FA VENIRE IN MENTE QUESTA PAROLA? Mi fa pensare all'oscurità, perchè l'ombra è oscura, nera e paurosa. Penso ad un bambino che non ha paura della sua ombra perchè è la sua. Mi fa venire in

Dettagli

Corso di Laurea in Scienze e Tecnologie Biomolecolari. NOME COGNOME N. Matr.

Corso di Laurea in Scienze e Tecnologie Biomolecolari. NOME COGNOME N. Matr. Corso di Laurea in Scienze e Tecnologie Biomolecolari Matematica e Statistica II Prova di esame del 18/7/2013 NOME COGNOME N. Matr. Rispondere ai punti degli esercizi nel modo più completo possibile, cercando

Dettagli

Gli impatti dei cambiamenti climatici sull atmosfera e sul mare: il ruolo dei Climate Services

Gli impatti dei cambiamenti climatici sull atmosfera e sul mare: il ruolo dei Climate Services Gl mpatt de cambament clmatc sull atmosfera e sul mare: l ruolo de Clmate Servces Maurzo Mauger Dpartmento d Fsca Va Celora 16 I20133 MILANO maurzo.mauger@unm.t Indce Descrzone dell UdR UnM Un esempo d

Dettagli

Ottica geometrica. Capitolo. 1. Come si riflette la luce? Cosa è la luce? Come possiamo classificare le sorgenti luminose?

Ottica geometrica. Capitolo. 1. Come si riflette la luce? Cosa è la luce? Come possiamo classificare le sorgenti luminose? Captolo 8 Ottca geometrca 1. Come s rflette la luce? Cosa è la luce? Spacente: per l momento non rsponderemo a questa domanda. Invece d dre cosa la luce sa, ne analzzeremo dapprma l comportamento, utlzzando

Dettagli

Misure di base su una carta. Calcoli di distanze

Misure di base su una carta. Calcoli di distanze Misure di base su una carta Calcoli di distanze Per calcolare la distanza tra due punti su una carta disegnata si opera nel modo seguente: 1. Occorre identificare la scala della carta o ricorrendo alle

Dettagli

CORSO DI FONDAMENTI DI DISEGNO TECNICO LEZIONE 2 PROIEZIONI ORTOGONALI

CORSO DI FONDAMENTI DI DISEGNO TECNICO LEZIONE 2 PROIEZIONI ORTOGONALI PERCORSI ABILITANTI SPECIALI (PAS) - A.A. 2013-2014 UNIVERSITÀ DI PISA DIPARTIMENTO DI INGEGNERIA CIVILE E INDUSTRIALE (DICI) CORSO DI FONDAMENTI DI DISEGNO TECNICO LEZIONE 2 PROIEZIONI ORTOGONALI 1 CENNI

Dettagli

TITOLO: L INCERTEZZA DI TARATURA DELLE MACCHINE PROVA MATERIALI (MPM)

TITOLO: L INCERTEZZA DI TARATURA DELLE MACCHINE PROVA MATERIALI (MPM) Identfcazone: SIT/Tec-012/05 Revsone: 0 Data 2005-06-06 Pagna 1 d 7 Annotazon: Il presente documento fornsce comment e lnee guda sull applcazone della ISO 7500-1 COPIA CONTROLLATA N CONSEGNATA A: COPIA

Dettagli

Percorsi, strategie e geometrie in gioco Complementi e spunti di lavoro Primaria e Secondaria Inferiore

Percorsi, strategie e geometrie in gioco Complementi e spunti di lavoro Primaria e Secondaria Inferiore Percorsi, strategie e geometrie in gioco Complementi e spunti di lavoro Primaria e Secondaria Inferiore In queste note troverete suggerimenti e osservazioni per attività che traggono spunto dal problema

Dettagli

Discuteremo di. Domanda individuale e domanda di mercato. Scelta razionale

Discuteremo di. Domanda individuale e domanda di mercato. Scelta razionale Discuteremo di. La determinazione dell insieme delle alternative all interno del quale sceglie il consumatore La descrizione e la rappresentazione delle sue preferenze Come si determina la scelta ottima

Dettagli

(- ½ ; 2) (1-1; -1) EQUAZIONI DISEQUAZIONI - PL C. 1

(- ½ ; 2) (1-1; -1) EQUAZIONI DISEQUAZIONI - PL C. 1 Commercio (C M) - Matematica Preparazione lavoro scritto /II semestre / Maggio 0 EQUAZIONI ISEQUAZIONI - PL A. B 6 0 5 0 0 C. ( ) ( ) (a) (b). Un commerciante ordina delle canne da pesca di tipo A e di

Dettagli

RILEVAZIONE CAF. - Schema di raccordo per le voci di bilancio. - Schema per la classificazione delle controparti

RILEVAZIONE CAF. - Schema di raccordo per le voci di bilancio. - Schema per la classificazione delle controparti RILEVAZIONE CAF - Schema di raccordo per le voci di bilancio - Schema per la classificazione delle controparti - Schema per la segnalazione delle partecipazioni - Schema per la segnalazione delle quote

Dettagli

CONVESSITÀ NELLA GEOMETRIA DEL TAXI DI MINKOWSKI

CONVESSITÀ NELLA GEOMETRIA DEL TAXI DI MINKOWSKI CONVESSITÀ NELLA GEOMETRIA DEL TAXI DI MINKOWSKI ELISABETTA AVIZZANO NICOLETTA CAPOTORTO CHIARA CEROCCHI GIORGIO CICCARELLA IVAN COLAVITA EMANUELE DI CARO SERENA NUNZIATA AMANDA PISELLI ANDREA PIEPOLI

Dettagli

PlaniVolumetrici per AutoCAD

PlaniVolumetrici per AutoCAD PlaniVolumetrici per AutoCAD - 2 - Indice Descrizione pag. 3 Installazione pag. 4 Comando PV_CFG, configurazione del programma pag. 5 Comando PV, disegno delle ombre pag. 7 Comando PV_ALBERI, inserimento

Dettagli

Pertanto la formula per una prima approssimazione del tasso di rendimento a scadenza fornisce

Pertanto la formula per una prima approssimazione del tasso di rendimento a scadenza fornisce A. Peretti Svolgimento dei temi d esame di MDEF A.A. 015/16 1 PROVA CONCLUSIVA DI MATEMATICA per le DECISIONI ECONOMICO-FINANZIARIE Vicenza, 9/01/016 ESERCIZIO 1. Data l obbligazione con le seguenti caratteristiche:

Dettagli

CAPITOLO IV CENNI SULLE MACCHINE SEQUENZIALI

CAPITOLO IV CENNI SULLE MACCHINE SEQUENZIALI Cenn sulle macchne seuenzal CAPITOLO IV CENNI SULLE MACCHINE SEQUENZIALI 4.) La macchna seuenzale. Una macchna seuenzale o macchna a stat fnt M e' un automatsmo deale a n ngress e m uscte defnto da: )

Dettagli

Mensile. www.ecostampa.it

Mensile. www.ecostampa.it Data Pagina Foglio 05-2012 40/45 4/6 Red Laser Barcode Scanner ScontiBomba Prezzo Gratuita Compatibile con iphone, ipod touch Prezzo Gratuita Compatibile con iphone, ipod touch, ipad Un pratico lettore

Dettagli

12. Le date possono essere scritte in forma numerica usando le otto cifre. Per esempio, il 19 gennaio 2005 può essere scritto come 19-01-2005.

12. Le date possono essere scritte in forma numerica usando le otto cifre. Per esempio, il 19 gennaio 2005 può essere scritto come 19-01-2005. Logica matematica 12. Le date possono essere scritte in forma numerica usando le otto cifre. Per esempio, il 19 gennaio 2005 può essere scritto come 19-01-2005. In quale anno cadrà la prossima data nella

Dettagli

NEWS FEBBRAIO 2016 NEWS IL REGOLAMENTO DEL PRESTITO VITALIZIO IPOTECARIO

NEWS FEBBRAIO 2016 NEWS IL REGOLAMENTO DEL PRESTITO VITALIZIO IPOTECARIO NEWS FEBBRAIO 2016 NEWS IL REGOLAMENTO DEL PRESTITO VITALIZIO IPOTECARIO Le procedure di vendita dell immobile, in caso di non rimborso del prestito, sono le seguenti: " stima di perito indipendente incaricato

Dettagli

Parte Seconda. Geometria

Parte Seconda. Geometria Parte Seconda Geometria Geometria piana 99 CAPITOLO I GEOMETRIA PIANA Geometria: scienza che studia le proprietà delle figure geometriche piane e solide, cioè la forma, l estensione e la posizione dei

Dettagli

Gestionale Web Agenzia Immobiliare

Gestionale Web Agenzia Immobiliare Gestionale Web Agenzia Immobiliare Il Gestionale Web per Agenzia Immobiliare è uno strumento completo che vi permette, oltre a gestire i vostri immobili sul sito, di avere a disposizione tutti gli strumenti

Dettagli

Università degli studi di Messina facoltà di Scienze mm ff nn. Progetto Lauree Scientifiche (FISICA) Prisma ottico

Università degli studi di Messina facoltà di Scienze mm ff nn. Progetto Lauree Scientifiche (FISICA) Prisma ottico Università degli studi di Messina facoltà di Scienze mm ff nn Progetto Lauree Scientifiche (FISICA) Prisma ottico Parte teorica Fenomenologia di base La luce che attraversa una finestra, un foro, una fenditura,

Dettagli

Giornale e mastro Appunti di contabilità Giornale e Mastro. Luca Dossena - Docente

Giornale e mastro Appunti di contabilità Giornale e Mastro. Luca Dossena - Docente Appunti di contabilità Giornale e Mastro Luca Dossena - Docente Capitolo:

Dettagli

Codici ed affreschi. Questa chiesa rupestre merita un approfondimento e una pubblicazione monografica.

Codici ed affreschi. Questa chiesa rupestre merita un approfondimento e una pubblicazione monografica. Codici ed affreschi. Alcuni studiosi della storia dell arte hanno accennato alla possibilità di uno stretto contatto tra codici miniati ed affreschi. Qui presentiamo un caso significativo: un particolare

Dettagli

SPECTER OPS. L'obiettivo del giocatore agente è quello che il suo agente completi 3 su 4 missioni obiettivo qualsiasi

SPECTER OPS. L'obiettivo del giocatore agente è quello che il suo agente completi 3 su 4 missioni obiettivo qualsiasi SPECTER OPS REGOLE 2-3 giocatori: 1 agente e 2 cacciatori - Le 4 missioni obiettivo sono conosciute dai giocatori: si lancia il dado e si segnano col relativo gettone sul lato verde sulla plancia e sul

Dettagli

CONVENZIONE USA - SVIZZERA

CONVENZIONE USA - SVIZZERA CONVENZIONE USA - SVIZZERA CONVENZIONE TRA LA CONFEDERAZIONE SVIZZERA E GLI STATI UNITI D'AMERICA PER EVITARE LE DOPPIE IMPOSIZIONI IN MATERIA DI IMPOSTE SUL REDDITO, CONCLUSA IL 2 OTTOBRE 1996 ENTRATA

Dettagli

PROVA INVALSI Scuola Secondaria di I grado Classe Prima

PROVA INVALSI Scuola Secondaria di I grado Classe Prima SNV 2010-2011; SNV 2011-2012; SNV 2012-2013 SPAZIO E FIGURE SNV 2011 10 quesiti su 29 (12 item di cui 6 a risposta aperta) SNV 2012 11 quesiti su 30 (13 item di cui 2 a risposta aperta) SNV 2013 9 quesiti

Dettagli

Questa sezione descrive come creare oggetti geometrici solidi tridimensionali e come gestirli in PicturesToExe.

Questa sezione descrive come creare oggetti geometrici solidi tridimensionali e come gestirli in PicturesToExe. 2015/05/03 14:36 1/12 Questa sezione descrive come creare oggetti geometrici solidi tridimensionali e come gestirli in PicturesToExe. Cornici Una cornice è un oggetto (normalmente) trasparente al quale

Dettagli

Le Scelte scelte in in condizioni di d incertezza

Le Scelte scelte in in condizioni di d incertezza 6 Le Scelte scelte in in condizioni di d incertezza 6.1 a. Ibenicontingentisonoilconsumo se esce uno eilconsumo se esce due, tre, quattro, cinque o sei. Consumo se non esce uno 240 Vincolo di bilancio

Dettagli

Massimi e minimi vincolati di funzioni in due variabili

Massimi e minimi vincolati di funzioni in due variabili Massimi e minimi vincolati di funzioni in due variabili I risultati principali della teoria dell ottimizzazione, il Teorema di Fermat in due variabili e il Test dell hessiana, si applicano esclusivamente

Dettagli

Soluzioni del giornalino n. 16

Soluzioni del giornalino n. 16 Soluzioni del giornalino n. 16 Gruppo Tutor Soluzione del Problema 1 Soluzioni corrette ci sono pervenute da : Gianmarco Chinello, Andrea Conti, Simone Costa, Marco Di Liberto, Simone Di Marino, Valerio

Dettagli

PROGETTO DEFINITIVO DEL NUOVO CENTRO POLIFUNZIONALE DI MOLINA DI MALO

PROGETTO DEFINITIVO DEL NUOVO CENTRO POLIFUNZIONALE DI MOLINA DI MALO IL COMMITTENTE AMMINISTRAZIONE DI MALO C O M U N E D I M A LO P R O V I N C I A D I V I C E N Z A I PROGETTISTI ATI "A31 workte@m" PAOLO CENSI LUCA PELLEGRINI LUCA MENEGUZZO MARCO DELLAI PAOLO MOSELE PROGETTO

Dettagli

2. Spiegare brevemente qual è la funzione del compilatore e la sua importanza per il programmatore.

2. Spiegare brevemente qual è la funzione del compilatore e la sua importanza per il programmatore. 1 Esercizio 1 1. Immaginate di avere una calcolatore che invece che poter rappresentare i classici due valori per ogni bit (0/1) possa rappresentare 7 valori per ogni bit. (a) Quanti bit gli occorreranno

Dettagli

Capitolo 7. La «sintesi neoclassica» e il modello IS-LM. 2. La curva IS

Capitolo 7. La «sintesi neoclassica» e il modello IS-LM. 2. La curva IS Captolo 7 1. Il modello IS-LM La «sntes neoclassca» e l modello IS-LM Defnzone: ndvdua tutte le combnazon d reddto e saggo d nteresse per le qual l mercato de ben (curva IS) e l mercato della moneta (curva

Dettagli

Ombre in assonometria

Ombre in assonometria Ombre n assonometra Prma entrare nel ettaglo el charoscura e veere come s ombreggano gl oggett è necessaro capre n che moo la luce crea le ombre ncontrano gl oggett. Come avevamo gà vsto n preceenza quano

Dettagli

Teoria delle code. Sistemi stazionari: M/M/1 M/M/1/K M/M/S

Teoria delle code. Sistemi stazionari: M/M/1 M/M/1/K M/M/S Teoria delle code Sistemi stazionari: M/M/1 M/M/1/K M/M/S Fabio Giammarinaro 04/03/2008 Sommario INTRODUZIONE... 3 Formule generali di e... 3 Leggi di Little... 3 Cosa cerchiamo... 3 Legame tra N e le

Dettagli

Teoria in sintesi 10. Attività di sportello 1, 24 - Attività di sportello 2, 24 - Verifica conclusiva, 25. Teoria in sintesi 26

Teoria in sintesi 10. Attività di sportello 1, 24 - Attività di sportello 2, 24 - Verifica conclusiva, 25. Teoria in sintesi 26 Indice L attività di recupero 6 Funzioni Teoria in sintesi 0 Obiettivo Ricerca del dominio e del codominio di funzioni note Obiettivo Ricerca del dominio di funzioni algebriche; scrittura del dominio Obiettivo

Dettagli

da 2 a 5 giocatori, dai 10 anni in su, durata 30 minuti

da 2 a 5 giocatori, dai 10 anni in su, durata 30 minuti da 2 a 5 giocatori, dai 10 anni in su, durata 30 minuti OBIETTIVO Il vincitore è colui che, dopo due round di gioco, delle sue 11 ordinazioni, ne ha consegnate il maggior numero. CONTENUTO DELLA SCATOLA

Dettagli

Funzioni con dominio in R 2

Funzioni con dominio in R 2 0.1 Grafici e curve di livello Politecnico di Torino. Funzioni con dominio in R 2 Nota Bene: delle lezioni. Questo materiale non deve essere considerato come sostituto Il dominio U di una funzione f e

Dettagli

Spiegazioni del sito

Spiegazioni del sito Spiegazioni del sito In questa guida ti verrà spiegato brevemente il sito di Profits25. Guarda le immagini, leggi le descrizioni e dopo aver fatto alcune volte i vari passaggi ti sarà facile muoverti al

Dettagli

Da 2 a 4 Giocatori Autore Martin Wallace

Da 2 a 4 Giocatori Autore Martin Wallace Traduzione La Strada Da 2 a 4 Giocatori Autore Martin Wallace Scopo del Gioco Ogni giocatore, impersona un Ricco Mercante ed è alla ricerca di Nuovi Mercati nelle crescenti cittadine che vi permetteranno

Dettagli

Capitolo 5. La teoria della domanda. Soluzioni delle Domande di ripasso

Capitolo 5. La teoria della domanda. Soluzioni delle Domande di ripasso Capitolo 5 La teoria della domanda Soluzioni delle Domande di ripasso 1. La curva prezzo-consumo mostra l insieme dei panieri ottimi di due beni, diciamo X e Y, corrispondenti a diversi livelli del prezzo

Dettagli

Proiezioni Ortogonali Scopo del Disegno e del Disegno Tecnico Disegno: Rappresentare su un piano bidimensionale (ad esempio un foglio di carta) un oggetto nella realtà tridimensionale. Non è richiesta

Dettagli

Matematica e giochi di gruppo

Matematica e giochi di gruppo Matematica e giochi di gruppo Possiamo riempire di contenuti matematici situazioni di piccola sfida personale, situazioni di giochi di società. Di seguito proponiamo attività che affrontano i seguenti

Dettagli

1 Principali funzioni e loro domini

1 Principali funzioni e loro domini Principali funzioni e loro domini Tipo di funzione Rappresentazione Dominio Polinomio intero p() = a n + + a n R p() Polinomio fratto q() 6= q() 2n Radici pari p f() f() 2n+ Radici dispari p f() R Moduli

Dettagli

CORSI I principali programmi Adobe Photoshop/InDesign/Illustrator Nozioni di base

CORSI I principali programmi Adobe Photoshop/InDesign/Illustrator Nozioni di base CORSI I principali programmi Adobe Photoshop/InDesign/Illustrator Nozioni di base Interfaccia programma InDesign Comprendere il concetto dei programmi Adobe e la loro funzione Prima di tutto bisogna tener

Dettagli

GLI ANGOLI. Ricordiamo insieme: ogni volta che una linea spezzata, chiusa o aperta, cambia orientamento si forma un angolo.

GLI ANGOLI. Ricordiamo insieme: ogni volta che una linea spezzata, chiusa o aperta, cambia orientamento si forma un angolo. GLI ANGOLI Ricordiamo insieme: ogni volta che una linea spezzata, chiusa o aperta, cambia orientamento si forma un angolo. A. Osserva questa linea spezzata aperta e continua tu a colorare gli angoli, come

Dettagli

Progetto Pilota Valutazione della scuola italiana. Anno Scolastico 2002 2003 PROVA DI MATEMATICA. Scuola Secondaria Superiore.

Progetto Pilota Valutazione della scuola italiana. Anno Scolastico 2002 2003 PROVA DI MATEMATICA. Scuola Secondaria Superiore. Gruppo di lavoro per la predisposizione degli indirizzi per l attuazione delle disposizioni concernenti la valutazione del servizio scolastico Progetto Pilota Valutazione della scuola italiana Anno Scolastico

Dettagli

PERCHE ESISTONO IL Dì E LA NOTTE?

PERCHE ESISTONO IL Dì E LA NOTTE? PERCHE ESISTONO IL Dì E LA NOTTE? LEZIONE PROPOSTA IN UNA CLASSE TERZA, formata da 19 alunni. Premetto che sono insegnante unica: insegno tutte le materie, tranne religione; tempo scuola: 24 ore Ho proposto

Dettagli

Vademecum studio funzione

Vademecum studio funzione Vademecum studio funzione Campo di Esistenza di una funzione o dominio: Studiare una funzione significa determinare gli elementi caratteristici che ci permettono di disegnarne il grafico, a partire dalla

Dettagli

LE FESTIVITÀ RISTORANTE. Natale 2014

LE FESTIVITÀ RISTORANTE. Natale 2014 LE FESTIVITÀ AL RISTORANTE Natale 2014 il natale Il giorno di Natale il Suo ristorante sarà aperto? 31,6% Si 68,4% Saranno 4,1 milioni (il 7,6% in meno rispetto al 2013) i clienti che consumeranno il pranzo

Dettagli

Le strategie di marketing

Le strategie di marketing Stampa Le strategie di marketing admin in Professione Consulente Con l analisi di mercato è possibile mettere a punto i prodotti o servizi corrispondenti alle esigenze di ogni segmento di mercato. Essa

Dettagli

CONTROLLO IN TENSIONE DI LED

CONTROLLO IN TENSIONE DI LED Applicazioni Ver. 1.1 INTRODUZIONE CONTROLLO IN TENSIONE DI LED In questo documento vengono fornite delle informazioni circa la possibilità di pilotare diodi led tramite una sorgente in tensione. La trattazione

Dettagli

AMBITO DISTRETTUALE BASSA BRESCIANA ORIENTALE Comuni di Acquafredda, Calcinato, Calvisano, Carpenedolo, Montichiari, Remedello e Visano

AMBITO DISTRETTUALE BASSA BRESCIANA ORIENTALE Comuni di Acquafredda, Calcinato, Calvisano, Carpenedolo, Montichiari, Remedello e Visano 1 !" " $" " "" %!! & " % %!" $!" ''('')+(('' $, $ -. +(/(''' "!!" (!01('')+ %('' 0"%!! -0 2 %!!,32 $ +-4-4.!"$ " " % $ %55-2$ - -! -, - - 4! 67)8'$!!%+'/(''/98!"! %3:!1-2$ ( - (8 -! 9 -, +9 - ( - 4 (,;

Dettagli

Centro di Documentazione per l Integrazione

Centro di Documentazione per l Integrazione Centro di Documentazione per l Integrazione I.C. Crespellano -Scuola Primaria Gabriella Degli Esposti Calcara, Valsamoggia (BO) Classe 4^ primaria Operatori: Andrea Maffia e Luisa Zaghi Periodo: Gennaio-Marzo

Dettagli

12. Un cane troppo fedele

12. Un cane troppo fedele 42 La commissaria 12. Un cane troppo fedele Personaggi Sara Corelli & Pippo Caraffa Anita Ruffini - una signora Tino Saffi - un amico di Anita Ruffini Carmine Rossi - un amico di Anita Ruffini Fido - il

Dettagli

0 < a < 1 a > 1. In entrambi i casi la funzione y = log a (x) si può studiare per punti e constatare che essa presenta i seguenti andamenti y

0 < a < 1 a > 1. In entrambi i casi la funzione y = log a (x) si può studiare per punti e constatare che essa presenta i seguenti andamenti y INTRODUZIONE Osserviamo, in primo luogo, che le funzioni logaritmiche sono della forma y = log a () con a costante positiva diversa da (il caso a = è banale per cui non sarà oggetto del nostro studio).

Dettagli

INTERVISTA CLINICA GENERAZIONALE. (rivisitata) Luca Pappalardo ITFF - ITFB

INTERVISTA CLINICA GENERAZIONALE. (rivisitata) Luca Pappalardo ITFF - ITFB INTERVISTA CLINICA GENERAZIONALE (rivisitata) Luca Pappalardo ITFF - ITFB Asse 1 Le origini Bene, innanzi tutto vi chiediamo di calarmi mentalmente, di immergervi nelle vostre origini, vale a dire l ambiente

Dettagli

per attivare la funzionalità di pagamento con carte abilitate al circuito PagoBancomat su apparecchiature di ns. fabbricazione, è necessario:

per attivare la funzionalità di pagamento con carte abilitate al circuito PagoBancomat su apparecchiature di ns. fabbricazione, è necessario: Oggetto: PROCEDURA DI ATTIVAZIONE BANCOMAT Gilbarco S.r.l. Via de' Cattani 220/G 50145 Firenze ITALIA Tel: +39 055 30941 Fax: +39 055 318603 www.gilbarco.it Spettabile Gestore, per attivare la funzionalità

Dettagli

Tutorial 3DRoom. 3DRoom

Tutorial 3DRoom. 3DRoom Il presente paragrafo tratta il rilievo di interni ed esterni eseguito con. L utilizzo del software è molto semplice ed immediato. Dopo aver fatto uno schizzo del vano si passa all inserimento delle diagonali

Dettagli