IL PENSIERO. Katiuscia Sacco

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "IL PENSIERO. Katiuscia Sacco"

Transcript

1 IL PENSIERO Katiuscia Sacco Il pensiero è l attività mentale che ci consente di elaborare le informazioni provenienti dal mondo esterno, metterle in relazione tra loro e con le conoscenze che già possediamo, al fine di risolvere problemi, inferire nuove informazioni, prendere decisioni. E dunque il ponte tra percezione e azione, ciò che media il rapporto tra l uomo e l ambiente naturale e sociale consentendo risposte non automatiche ma pensate ; in una parola, il pensiero è ciò che guida l agire intenzionale. Le ricerche in psicologia si sono concentrate sulle tre principali funzioni a cui assolve il pensiero: la risoluzione di problemi (problem solving), il ragionamento (reasoning), la presa di decisioni (decision making). 1. La risoluzione di proble mi Data una situazione-problema, come arriviamo alla sua soluzione? Tutti i giorni ci troviamo a dover risolvere problemi più o meno complessi. In generale, abbiamo un problema quando dobbiamo raggiungere un certo obiettivo e non sappiamo esattamente come fare, cioè non è immediato come passare dalla situazione in cui ci troviamo alla situazione desiderata. La risoluzione di problemi richiede creatività: oltre a rappresentare appropriatamente i dati del compito e a compiere una serie di inferenze, bisogna saper trovare i legami rilevanti tra gli elementi del problema. Pensiamo per esempio alla scoperta della penicillina. Fleming, un microbiologo che stava lavorando sull influenza, aveva lasciato una coltura di batteri su una piastra ed era andato in vacanza. Al suo ritorno, notò che sulla piastra c era una zona in cui i batteri non erano cresciuti: in quella zona era finita una muffa, in seguito identificata come appartenente al genere Penicillium. Probabilmente, altri ricercatori prima di lui avevano osservato in una coltura gli stessi cambiamenti, ma quelle colture andate a male erano state immediatamente gettate via. La creatività di Fleming è consistita nel cogliere il legame tra la presenza della muffa e la mancata crescita dei batteri: egli ipotizzò che quella muffa avesse causato la morte dei batteri e pensò dunque che si potesse utilizzare per combattere quel tipo Questo capitolo è stato realizzato grazie al contributo MURST, cofinanziamento 1999 ( , Processi di ragionamento e modelli Mentali). Ringrazio Francesca M. Bosco, Monica Bucciarelli e Marco Duretti per la lettura di una precedente versione.

2 di batteri. Questa, come la maggior parte delle scoperte scientifiche, è avvenuta grazie ad un intuizione circa un legame causale fino a quel momento sconosciuto. In questo paragrafo, per prima cosa ripercorreremo le principali correnti teoriche che, a partire dal secolo scorso, hanno studiato in che modo le persone giungano a risolvere problemi; vedremo inoltre cosa delle teorie presentate è ancora valido e come può essere utilizzato negli attuali studi sulla risoluzione di problemi. In seguito, definiremo alcuni concetti fondamentali e vedremo quali sono le questioni ancora aperte, che costituiscono gli attuali ambiti di ricerca in questo campo. 1.1 Teorie sulla risoluzione di problemi La teoria comportamentista (anni Venti) Secondo la teoria comportamentista, i problemi vengono risolti per tentativi ed errori. Consideriamo l esperimento di Thorndike sui gatti (1905). Thorndike mise dei gatti affamati in una gabbia chiusa, da cui essi potevano vedere una ciotola di cibo collocata all esterno. La porta della gabbia poteva essere aperta quando un paletto collocato al suo interno veniva colpito. All inizio i gatti si lanciavano contro le sbarre della gabbia mordendole. Inevitabilmente, ad un certo punto i gatti nella gabbia colpivano anche il paletto interno ed aprivano lo sportello. Dopo ripetute sedute sperimentali i gatti sembravano imparare che colpire il paletto faceva aprire lo sportello della gabbia. Così, quando i gatti venivano chiusi nella gabbia andavano direttamente verso il paletto, lo colpivano, aprivano lo sportello e fuggivano. Si concluse così che i nuovi problemi vengono affrontati con una strategia per tentativi ed errori e che le soluzioni corrette, attuate per caso, vengono riprodotte quando viene presentato lo stimolo appropriato. La teoria della Gestalt (anni Trenta) Secondo la teoria della Gestalt, il processo di soluzione di un problema è più che una semplice riproduzione di risposte apprese: esso implica un processo di riorganizzazione degli elementi del problema. Tale riorganizzazione non avviene per caso, né per tentativi ciechi, né per associazioni, bensì grazie all insight cioè un intuizione che si verifica all improvviso (vedi per esempio Wertheimer, 1945). Per risolvere un problema si deve avere un insight circa 2

3 la struttura del problema e ristrutturare il problema in modo diverso. Non sempre l uso diretto dell esperienza passata facilita il raggiungimento della soluzione di un problema; a volte può portare a commettere errori. Quando si affronta un problema che è simile ad altri già incontrati in passato, si tende a risolverlo con lo stesso meccanismo che si era applicato in precedenza. Quando l apprendimento antecedente è applicabile efficacemente al nuovo problema, il trasferimento della strategia utilizzata in precedenza facilita la risoluzione del nuovo problema. Tuttavia, a volte gli apprendimenti precedenti possono impedire di riorganizzare gli elementi del nuovo problema in modo utile alla sua risoluzione. Un esempio ne è la fissità funzionale: il soggetto rimane fissato sulla funzione abituale di un oggetto e non riesce a riconcettualizzarlo in modo diverso. Consideriamo il problema della candela: [Problema della candela] Avete a vostra disposizione una candela, una scatola di puntine da disegno e una bustina di fiammiferi. Il vostro compito è attaccare la candela al muro al di sopra di un tavolo, in modo tale che la cera sciolta non goccioli sopra il tavolo. La risoluzione del problema della candela è il seguente: [Soluzione del problema della candela] Usare la scatola che contiene le puntine come portacandele e attaccarla al muro. I soggetti sottoposti all esperimento inizialmente non riuscivano a risolvere il problema perché erano fissati sulla funzione normale della scatola, quella di contenere le puntine, e questo impediva loro di riconcettualizzarla in modo diverso. Quando lo sperimentatore toglieva le puntine dalla scatola e le disponeva sparse sul tavolo accanto alla scatola vuota, i soggetti avevano un intuizione improvvisa: i soggetti riconcettualizzano la funzione della scatola (non solo è un contenitore, ma può anche essere usata come sostegno per la candela). Quindi, il raggiungimento di una soluzione creativa avviene attraverso quattro fasi: (a) il problema viene formulato e vengono fatti i primi tentativi per risolverlo (b) il problema viene messo da parte per dedicarsi ad altre attività (c) la soluzione del problema viene in mente come un illuminazione improvvisa (d) il solutore si accerta che la soluzione trovata funzioni effettivamente. La teoria cognitivista (anni Sessanta) 3

4 Consideriamo il problema della Torre di Hanoi: [Problema della Torre di Hanoi] Disegnate una tavoletta in cui sono infissi tre pioli. Nel primo piolo sono infilati, in ordine decrescente di diametro, un numero variabile di dischi forati al centro, così che il disco più grande sta sotto tutti gli altri ed il più piccolo sta in cima alla pila. Meta: trasportare tutti i dischi dal primo al terzo piolo, nello stesso ordine. Regole: si può spostare solo un disco alla volta; un disco più grande non può essere collocato sopra un disco più piccolo. Newell e Simon (1972) hanno sviluppato la teoria dello spazio problemico, che presentiamo ora con riferimento al problema della Torre di Hanoi. Quando le persone risolvono un problema si rappresentano mentalmente lo stato iniziale del problema (tutti i dischi sono collocati sul primo piolo) e lo stato finale del problema (tutti i dischi sono infilati sull ultimo piolo nello stesso ordine). Per passare dallo stato iniziale a quello finale, passano attraverso una serie di stati intermedi grazie all applicazione di operatori mentali (es. sposta il disco più piccolo dal primo al terzo piolo, sposta il disco intermedio dal primo al secondo piolo, ecc.). Gli operatori mentali specificano le mosse consentite e quelle non consentite (collocare un disco più grande sopra uno più piccolo). Nel passaggio da ciascuno stato al successivo sono possibili numerosi percorsi alternativi, ovvero un grande numero di mosse diverse. Per spostarsi in modo efficiente da uno stato all altro, cioè per scegliere la mossa che, ad ogni stato, consente di avvicinarsi il più possibile allo stato finale, le persone usano delle strategie o euristiche. Le euristiche sono procedure approssimate, che non specificano ogni azione, ma guidano la ricerca e la sequenza delle azioni da fare. A differenza degli algoritmi, che sono serie di regole esplicite che, seguite in modo sistematico, portano definitivamente alla soluzione del problema, le euristiche non garantiscono di arrivare alla soluzione, ma se hanno successo implicano un risparmio di tempo e fatica. Uno dei metodi euristici più utilizzati è l analisi mezzi- fini, che consiste nei passi seguenti. (a) Notare le differenze tra stato attuale e stato finale. Ad es. se il solutore del problema della torre di Hanoi si trova al seguente stato: INSERIRE FIGURA 1 rileva che il disco piccolo è sul primo piolo invece di essere sul terzo. 4

5 (b) Creare una sotto-meta, per ridurre la differenza tra i due stati. In questo caso, spostare il disco piccolo dal primo al terzo piolo. (c) Selezionare un operatore che risolverà questa sotto-meta. In questo caso, prendere il disco piccolo e metterlo sul terzo piolo. L applicazione di un algoritmo a questo stato del problema comporterebbe di analizzare sistematicamente tutte le mosse consentite: spostare il disco piccolo sul secondo piolo, spostare il disco intermedio sul secondo piolo, spostare il disco piccolo sul terzo piolo. Solo dopo averle analizzate tutte, verrebbe scelta l ultima di queste mosse perché consente la soluzione. La risoluzione del problema della Torre di Hanoi, richiede un minimo di sette spostamenti o mosse. Essi sono illustrati in figura 2. INSERIRE FIGURA 2 Valutazione delle teorie sulla risoluzione di problemi Rispetto alle teorie illustrate, non possiamo dire che ce ne siano di giuste e di sbagliate. Nel risolvere problemi procediamo talvolta per tentativi ed errori, talvolta grazie ad un insight che ci consente di vedere una soluzione non considerata prima, talvolta attraverso l uso di strategie euristiche. Il merito della teoria della Gestalt è stato quello di mostrare che nel pensiero umano vi sono aspetti che vanno oltre la riproduzione di soluzioni già note. Anche se il tempo migliore per la scuola della Gestalt è ormai passato, i concetti di fissità funzionale, insight e ristrutturazione continuano a rivestire un ruolo importante nelle moderne teorie cognitiviste sull elaborazione di informazioni. Queste ultime si sono affermate per la loro capacità di predire in modo adeguato ciò che le persone fanno quando cercano la soluzione di un problema. Esse sono state applicate con successo a problemi ben definiti (vedi il paragrafo seguente) come quello della Torre di Hanoi, ma è necessario ancora molto lavoro per estenderle a problemi mal definiti quali quelli che normalmente si incontrano nel mondo reale. 1.2 Fattori rilevanti nella risoluzione di problemi 5

6 Nella risoluzione di un problema entrano in gioco numerosi fattori; in particolare risultano rilevanti le caratteristiche del problema, le caratteristiche del solutore e la loro interazione. Consideriamo separatamente questi fattori. Caratteristiche del problema Una prima distinzione riguarda problemi ben definiti e problemi mal definiti. Un problema è ben definito quando la situazione da cui si parte, la situazione a cui si deve arrivare e le mosse che sono consentite per raggiungere la soluzione sono specificate in modo chiaro. Problemi ben definiti sono i rompicapi: si pensi ai giochi delle riviste di enigmistica, a molti dei problemi usati nei test di ammissione all università e nella selezione del personale, o più specificamente al problema della Torre di Hanoi presentato nel paragrafo precedente. Al contrario, un problema è mal definito quando le situazioni iniziali e finali sono incerte o non chiare, e le mosse possibili devono essere scoperte. I problemi che incontriamo nella vita di tutti i giorni sono di solito mal definiti. Supponiamo di aver dimenticato le chiavi del nostro appartamento al suo interno. La situazione iniziale comprenderà senz altro le chiavi e l appartamento, ma può comprendere anche il pompiere, il falegname, l amico muscoloso in grado di sfondare la porta e così via. La situazione finale sarà identificata col riuscire ad entrare nell appartamento, ma questa situazione andrà ulteriormente definita sulla base delle nostre esigenze e possibilità, per esempio possiamo scegliere di entrare senza fare troppi danni, ma ancora si tratta di una definizione che richiede ulteriori specificazioni. Le mosse possibili sono anch esse numerose e sta a noi decidere quali riteniamo adeguate e quali no; per esempio possiamo decidere che sfondare la porta non è una mossa adeguata per le spese che questo comporta. Una seconda distinzione riguarda problemi che richiedono conoscenza dominio generale, cioè conoscenza delle strategie e dei metodi che si applicano a molti tipi di problemi, e problemi che richiedono conoscenza dominio specifica, cioè conoscenza relativa al dominio entro cui il problema si applica. I rompicapi di cui sopra richiedono di solito conoscenza dominio generale: per esempio, nel problema della Torre di Hanoi non ci è richiesta alcuna conoscenza specifica rispetto alle torri o a i pioli, ciò che ci serve è ipotizzare spostamenti, prevedere mentalmente le loro conseguenze, trovare la strategia che ci consente di raggiungere la situazione finale il più rapidamente possibile. Si tratta dunque di abilità 6

7 richieste dalla maggior parte dei problemi, che non hanno a che vedere col contenuto del problema in questione. Al contrario, il gioco degli scacchi o un problema di fisica richiedono conoscenza relativa a quello specifico dominio: per giocare a scacchi bisogna conoscere le possibili configurazioni delle pedine sulla scacchiera e, se si è bravi, ricordare quali sono le mosse migliori a partire da una certa configurazione; per risolvere un problema di fisica occorre avere nozioni circa la massa, la forza, la gravità e le loro relazioni. Caratteristiche del solutore Di fronte a problemi che richiedono solo conoscenza dominio generale, i solutori possono rivelarsi più o meno abili nel raggiungere la conclusione in base alla loro abilità intellettiva. Di fronte a problemi che richiedono conoscenza dominio specifica, invece, la differenza tra un buon solutore e un cattivo solutore dipende dalla quantità di conoscenza che questi possiede rispetto all area o dominio del problema. Sulla base della conoscenza specifica posseduta, definita expertise, possiamo distinguere solutori novizi, che hanno poca conoscenza specifica, e solutori esperti, che, grazie all esperienza maturata nel dominio in questione, possiedono una notevole conoscenza specifica. Pensiamo per esempio alla differente abilità di un giocatore di scacchi alle prime armi, rispetto ad un giocatore esperto (vedi L acquisizione di competenze specifiche nel paragrafo seguente). Un altra variabile relativa al solutore riguarda la sua esperienza precedente con problemi analoghi a quello che si trova ad affrontare. Se il solutore ha incontrato in passato problemi che avevano la stessa struttura di quello che si trova ad affrontare, può utilizzare le strategie impiegate in passato per risolvere il problema in corso (vedi La risoluzione di problemi per analogia nel paragrafo seguente). 1.3 Ambiti di ricerca L acquisizione di competenze specifiche Una domanda che gli studiosi della risoluzione di problemi si sono posti è: come si diventa esperti? Diventare esperti significa acquisire molta conoscenza specifica per il dominio in cui si intende operare. Anderson (1982) ha sviluppato una teoria sullo sviluppo di abilità specifiche, secondo cui l acquisizione di abilità consiste nel passare dall uso di 7

8 conoscenza dichiarativa all uso di conoscenza procedurale. Supponiamo di esserci appena iscritti alla scuola guida. Nelle prime lezioni l insegnante di guida ci darà una serie di istruzioni: per accelerare o frenare devi usare il piede destro, per cambiare marcia devi prima premere la frizione col piede sinistro e poi inserire la marcia col cambio manuale, e così via. Durante queste prime esperienze di guida, procederemo pensando a queste istruzioni, e ci capiterà di ripetercele mentalmente prima di applicarle; per esempio, quando dobbiamo cambiare marcia penseremo <<se devo cambiare marcia, allora devo prima premere la frizione e questo si fa col piede sinistro>>. Applicare le istruzioni che ci sono state fornite significa usare conoscenza dichiarativa. Tuttavia, con il ripetersi delle esperienze alla guida, impareremo a procedere senza dover più ricordare a noi stessi le istruzioni: per esempio, di fronte alla necessità di cambiare marcia, premeremo la frizione senza dover pensare di farlo e a come farlo. Ciò significa che è avvenuta una proceduralizzazione: l applicazione ripetuta della conoscenza dichiarativa relativa, in questo caso, al cambiare marcia è stata trasformata in una procedura tale che, ogni volta che ci troviamo nella condizione <<devi cambiare marcia>>, l azione necessaria a questo scopo verrà eseguita velocemente e in modo automatico, senza più richiedere un pensiero cosciente. Siamo passati ad usare conoscenza procedurale. La risoluzione di problemi per analogia Abbiamo detto che se il solutore ha incontrato in precedenza problemi analoghi a quello che si trova ad affrontare, potrebbe far ricorso alle medesime strategie. Due problemi si dicono analoghi quando sono strutturalmente simili, anche se hanno caratteristiche superficiali diverse e appartengono a domini diversi. Un esempio chiarirà la questione. Supponiamo che il nostro ipotetico solutore si sia trovato di fronte al problema seguente: [Problema della fortezza] Al centro di un territorio si trova una fortezza; dalla fortezza si dipartono molte strade. Un generale vuole distruggere la fortezza con il suo esercito. Il problema del generale è questo: per distruggere la fortezza deve usare l intero esercito, ma poiché tutte le strade di accesso alla fortezza sono minate esse esploderebbero nel momento in cui un intero esercito passasse sopra le mine, e distruggerebbero quindi anche l esercito e i villaggi vicini; un piccolo gruppo dell esercito non farebbe esplodere le mine, ma non sarebbe efficace per distruggere la fortezza. Cosa può fare il generale? 8

9 e poniamo che il solutore abbia raggiunto, o gli sia stata illustrata, una valida conclusione, come la seguente: [Soluzione del problema della fortezza] Il generale divide l esercito in piccoli gruppi. Dispone ciascun gruppo su una strada diversa. I piccoli gruppi convergono simultaneamente alla fortezza. In tal modo l esercito distrugge la fortezza. Supponiamo ora che gli venga presentato il problema seguente: [Problema della radiazione] Un paziente ha un tumore inoperabile allo stomaco. Il medico decide di distruggere il tumore usando un fascio di radiazioni. Il problema del medico è questo: per distruggere il tessuto malato deve usare raggi ad alta intensità, ma questi distruggerebbero anche i tessuti sani che circondano il tumore; raggi a bassa intensità non danneggerebbero i tessuti sani, ma il tumore non verrebbe eliminato. Cosa può fare il medico? Il problema della fortezza e quello della radiazione sono superficialmente diversi e appartengono uno al dominio della medicina, l altro al domino militare; tuttavia, la struttura dei due problemi è la medesima. Infatti, in entrambi i casi si tratta di usare una forza per distruggere un obiettivo centrale, tale forza deve essere sufficientemente intensa, ma non la si può applicare lungo un unico percorso. Pertanto, dato che la meta, le risorse e vincoli dei due problemi sono simili, il solutore che ha già affrontato il problema della fortezza può astrarre il piano di soluzione là adottato (soluzione della <<convergenza>>: applicare forze deboli simultaneamente lungo molti percorsi che convergano sull obiettivo) e raggiungere così la soluzione del problema della radiazione: [Soluzione del problema della radiazione] Il medico divide i raggi in fasci a bassa intensità. Dispone l emissione di raggi a bassa intensità lungo varie direzioni intorno al corpo del paziente. I raggi a bassa intensità convergono simultaneamente sul tumore. In tal modo i raggi distruggono il tumore. Ma le persone, normalmente, tendono a risolvere problemi attraverso l analogia? Tendono, in altre parole, a trasferire l apprendimento da un dominio ad un altro? Per rispondere a questa domanda sono stati condotti alcuni esperimenti. In uno di questi, i soggetti sperimentali venivano divisi in tre gruppi. Al gruppo 1 veniva presentato il racconto della fortezza (cioè il problema della fortezza e la sua soluzione), e poi il problema della radiazione, 9

10 e veniva detto che per risolvere il problema della radiazione avrebbero potuto utilizzare il racconto della fortezza. Al gruppo 2 veniva presentato il racconto della fortezza, e poi il problema della radiazione, ma non veniva detto alcunché su un possibile legame tra l uno e l altro. Al gruppo 3 veniva presentato solo il problema della radiazione. A tutti i gruppi era richiesto di risolvere il problema della radiazione. I soggetti che hanno raggiunto la soluzione della <<convergenza>> sono stati: il 60% nel gruppo 1; il 20% nel gruppo 2; il 10% nel gruppo 3. Questi risultati mostrano che le persone sono in grado di usare un racconto in modo analogico per risolvere un problema, cioè riescono a confrontare gli aspetti della situazione iniziale del problema con quelli del racconto, e a trasferire la conoscenza da un dominio all altro (infatti, il 60% dei soggetti a cui era stato suggerito di usare l analogia per raggiungere la conclusione è riuscito a farlo). E l uso dell analogia li aiuta notevolmente nella soluzione di problemi (infatti, il 60% dei soggetti a cui era stato suggerito di usare l analogia ha raggiunto la soluzione, mentre solo il 10% dei soggetti che non avevano la possibilità di usare l analogia ha raggiunto la conclusione). Tuttavia, le persone non sembrano usare l analogia in modo spontaneo, cioè quando non venga loro esplicitamente suggerito; sembrano, cioè, avere difficoltà a riconoscere spontaneamente le somiglianze tra problemi (infatti, solo il 20% dei soggetti a cui non era stata suggerita un analogia tra i due problemi è riuscito a coglierla). 2. Il ragionamento Dato un insieme di osservazioni o descrizioni del mondo (premesse), in che modo riusciamo a inferire informazioni nuove (conclusioni)? Considereremo prima i due fondamentali tipi di ragionamento, deduttivo e induttivo, e i principali tipi di compito a cui si applicano; vedremo poi le principali correnti teoriche che cercano di spiegare come avvengono i processi di ragionamento. 2.1 Il ragionamento deduttivo 10

11 Nel ragionamento deduttivo si parte da affermazioni generali ritenute vere per giungere ad una conclusione necessariamente vera. Per esempio: Premessa 1 (affermazione generale): I pesci fuori dall acqua muoiono Premessa 2 (asserzione categorica): Fishy è un pesce Conclusione (su caso particolare): Fishy fuori dall acqua muore. Il ragionamento deduttivo fornisce certezze. Dato che la conclusione si limita ad esplicitare informazioni già contenute in modo implicito nelle premesse, se le premesse sono vere ne segue una conclusione necessariamente vera. Nello studio del ragionamento, molte ricerche si sono concentrate sul ragionamento deduttivo: infatti, per la sua caratteristica di fornire conclusioni valide, consente di valutare le conclusioni tratte dai soggetti sottoposti all'esperimento come giuste o sbagliate. L analisi degli errori compiuti dai soggetti dà utili indicazioni sul loro modo di ragionare. In particolare, gli esperimenti sul ragionamento consistono per la maggior parte nel presentare ai soggetti sperimentali: compiti con sillogismi lineari, compiti con sillogismi categoriali, compiti con proposizioni, il compito di selezione di Wason. Il ragionamento con sillogismi lineari (o ragionamento relazionale) I sillogismi sono argomentazioni che consistono di due premesse e di una conclusione. Nei compiti con sillogismi lineari (o compiti relazionali) le premesse esprimono relazioni lineari tra elementi. Tali relazioni possono essere di tipo spaziale (alla destra/sinistra di; sopra/sotto a ), relative a ordini di altezza (più alto/basso di), relativi a ordini di specifiche qualità (più ricco/povero di; più giovane/vecchio di ), e così via. Per esempio: Premessa 1: Premessa 2: Gabriella è alla destra di Francesca Francesca è alla destra di Rita La conclusione dovrà esplicitare le relazioni contenute solo in modo implicito nelle premesse. In questo caso, la relazione implicita è quella tra Rita e Gabriella: le premesse non dicono nulla di esplicito su tale relazione, ma collegando la prima alla seconda premessa attraverso l uso del termine medio, cioè quello che ricorre in entrambe le premesse (Francesca), è possibile trarre la conclusione: 11

12 Conclusione: Rita è alla sinistra di Gabriella. Il ragionamento con sillogismi categoriali Nei compiti con sillogismi categoriali le premesse esprimono l appartenenza dei termini (persone/oggetti) a categorie. Ad esempio, date le premesse seguenti: Prima premessa: Seconda premessa: Tutte le Bibite sono Analcoliche Tutte le Coca-cola sono Bibite si può derivare la conclusione: Conclusione: Tutte le Coca-cola sono Analcoliche Anche qui, la conclusione indica la relazione non esplicitata nelle premesse, in questo caso la relazione tra le Coca-cola e la proprietà di essere Analcoliche; tale conclusione è raggiunta collegando le due premesse attraverso l uso del termine medio (quello che, ricorrendo due volte, connette le due premesse), in questo caso Bibite. I sillogismi hanno due caratteristiche fondamentali: il modo e la figura. Il modo di ogni premessa è indicato dal tipo di quantificatore utilizzato. Al posto di usare il quantificatore universale affermativo tutti, si può usare il quantificatore universale negativo nessuno, il quantificatore particolare affermativo alcuni, il quantificatore particolare negativo alcuni non. La figura riguarda invece la posizione dei tre termini all interno delle premesse. Il termine medio (B) può trovarsi in quattro posizioni diverse, che danno origine alle quattro possibili figure del sillogismo: A B B A A B B A B C C B C B B C Quindi, le due premesse possono dare origine a 64 sillogismi (4 modi della prima premessa x 4 modi della seconda premessa x 4 figure). Di questi, solo 27 hanno una conclusione valida; 12

13 gli altri si definiscono NVC (no valid conclusion) in quanto non si può dire alcunché sulla relazione tra gli elementi non esplicitamente collegati. Il ragionamento proposizionale Le premesse esprimono relazioni tra proposizioni. Tali relazioni sono espresse attraverso l uso di connettivi, quali la congiunzione e, la disgiunzione o, il bicondizionale solo se allora, il condizionale se allora. Prendiamo ad esempio il condizionale se allora: Premessa 1 (affermazione condizionale): Premessa 2 (affermazione categorica): Conclusione: Se piove, allora Mauro si bagna Piove Mauro si bagna Questa inferenza è molto semplice e la maggior parte delle persone riesce a trarla senza difficoltà. Ma prendiamo la stessa premessa condizionale Se piove, allora Mauro si bagna seguita da Non piove. Quale conclusione è possibile trarre? Perché? La conclusione Mauro non si bagna non è valida perché la premessa dice se piove e non solo se piove, cioè la pioggia non è posta come l unica causa possibile perché Mauro si bagni. Ci possono essere altri eventi, ad esempio la signora che innaffia i fiori distrattamente, a poter bagnare Mauro. Per il condizionale se allora, come per tutti i connettivi, è possibile costruire una tavola di verità, rappresentazione logica che descrive i casi in cui la proposizione è vera e i casi in cui è falsa. La tavola di verità del condizionale è la seguente: INSERIRE TABELLA 1 Il compito di selezione di Wason Si tratta di un compito ipotetico-deduttivo, dove cioè è necessario non solo fare inferenze deduttive ma anche generare ipotesi e valutarne le conseguenze. Il compito di selezione di Wason (1966) è stato realizzato sia in una versione astratta che in una versione concreta. Presenterò le due versioni del compito (modificate nel contenuto rispetto all originale): provate a trovare la conclusione corretta; troverete di seguito le risposte corrette e il perché. Nella versione astratta ai soggetti vengono mostrate le seguenti quattro carte: 13

14 E B 4 7 Si dice al soggetto: Ciascuna carta porta stampata una lettera su di una lato e un numero sull altro lato.volta le carte che ritieni necessarie e sufficienti per controllare la regola: <<Se da un lato c è una vocale, dall altro lato c è un numero pari>>. Nella versione concreta ai soggetti vengono mostrate le seguenti quattro buste: Si dice al soggetto: Ogni busta può essere chiusa o aperta, ed avere un francobollo da 800 lire o da 500 lire. Immagina di lavorare in un ufficio postale e dover scoprire se qualcuna delle buste viola la regola seguente: <<Se una busta è chiusa, deve avere un francobollo da 800 lire>>. Volta le buste che ritieni necessarie e sufficienti per controllare la regola. Nella versione astratta, la risposta corretta è di girare solo due carte: la carta E e la carta 7. Infatti se dietro la carta E c è un numero dispari, la regola è falsa; così, se dietro la carta 7 c è una vocale, la regola è falsa: qualunque carta che abbia una vocale su lato e un numero dispari sull altro viola la regola. Invece, scegliere la carta 4 e la carta B non serve perché la regola dice se c è una vocale, allora c è un numero pari e non solo se c è una vocale, per cui dietro la carta 4 potrebbe esserci sia una vocale che una consonante, così come dietro la carta B potrebbe esserci sia un numero dispari che un numero pari (vedi tavola di verità del condizionale). Per gli stessi motivi, nella versione concreta, le buste da controllare sono: la busta chiusa e la busta con francobollo da 500 lire. 2.2 Il ragionamento induttivo 14

15 Nel ragionamento induttivo si parte da osservazioni particolari per trarne un principio generale. Per esempio: Premessa (basata su osservazioni particolari): Conclusione (principio generale): Tutti gli universitari che ho conosciuto hanno conseguito la laurea Tutti gli universitari conseguono la laurea. Il ragionamento induttivo non fornisce certezze. Dato che le premesse si basano su casi specifici, in certe circostanze la conclusione può rivelarsi falsa (infatti, alcuni universitari non si laureano). Le conclusioni quindi non sono necessariamente vere; esse possono essere solo plausibili o implausibili. La plausibilità dipende, da una parte, dalla veridicità, rappresentatività e generalizzabilità delle premesse; dall altra, dalle conoscenze che chi compie l inferenza ha relativamente alla situazione su cui sta ragionando. Dire una conclusione è plausibile equivale a dire che è probabilmente vera. Riprendendo la conclusione circa gli universitari, essa dovrebbe quindi essere enunciata non come certa ma come probabile: Conclusione (principio generale): E probabile che tutti gli universitari conseguano la laurea. In questo senso, il ragionamento induttivo ha natura probabilistica (per una trattazione del ragionamento probabilistico 1 vedi La stima di probabilità nel paragrafo 3). Nonostante l incertezza insita nel ragionamento induttivo, esso è il tipo di ragionamento più usato nella vita di tutti i giorni. Infatti, consente di fare generalizzazioni sia rispetto a fenomeni naturali che a comportamenti sociali. In particolare, consente di creare descrizioni di stati di cose e, sulla base di queste, di formulare spiegazioni (perché succede una certa cosa? qual è la sua causa?), giudizi (soprattutto nel valutare comportamenti sociali), 1 Una precisazione sul ragionamento probabilistico. Abbiamo detto che le inferenze induttive sono, o dovrebbero essere, sempre formulate in termini probabilistici. D altra parte, però, le inferenze probabilistiche possono essere sia deduttive che induttive. In generale, i compiti solitamente utilizzati nello studio del ragionamento probabilistico, come per esempio le stime di probabilità, si possono dire a metà strada tra induzione e deduzione. Sono induttivi nel senso che i dati del compito sono costituiti da una serie di eventi specifici che il soggetto deve valutare al fine di estrarre una condizione più generale; tuttavia, i processi attraverso cui il soggetto giunge alla risoluzione del compito possono essere deduttivi, cioè se il soggetto applica le correte strategie di inferenza giunge ad una stima di probabilità necessariamente corretta. 15

16 previsioni. E inoltre alla base della formazione di categorie. Consideriamo più nel dettaglio le generalizzazioni a partire da asserzioni particolari e la formazione di categorie. Il ragionamento su asserzioni particolari Nei compiti sullo studio del ragionamento induttivo, spesso viene richiesto ai soggetti di valutare la plausibilità o implausibilità di generalizzazioni come: 1. Premesse: Thomas è un gatto Thomas ha la coda Conclusione: Tutti i gatti hanno la coda 2. Premesse: Thomas è un gatto Thomas ha un dente rotto Conclusione: Tutti i gatti hanno un dente rotto Tali compiti evidenziano il ruolo della conoscenza generale nel ragionamento induttivo. Infatti, è la nostra conoscenza generale sui gatti che ci permette di valutare la conclusione in (1) come plausibile e la conclusione in (2) come implausibile. La categorizzazione Al fine di organizzare le informazioni che ci provengono dal mondo esterno, tendiamo a formare delle categorie. Una categoria è un insieme di oggetti distinti che vengono raggruppati per somiglianza di struttura o di funzioni; si pensi per esempio a categorie naturali come <<animali>>, a categorie di artefatti come <<mobili>>, o a categorie sociali come <<il gruppo di volontariato>>. La categorizzazione è un processo induttivo: a partire da una serie di esempi o casi che condividono certe proprietà, formiamo una categoria più generale. Ma quali sono le proprietà che questi elementi devono condividere affinché li si raggruppi nella medesima categoria? Secondo la teoria degli attributi comuni proposta da Bruner e colleghi (1956), gli esseri umani costruiscono le categorie del mondo definendo una serie di attributi necessari e sufficienti per ciascuna di esse. Per esempio, si immagini un bambino alle prese con un librogioco relativo all apprendimento di forme geometriche. Prima vengono presentate una serie di figure geometriche con i relativi nomi; per esempio: 16

17 INSERIRE FIGURA 3 Poi vengono presentate altre figure geometriche, come per esempio: INSERIRE FIGURA 4 A questo punto, si chiede al bambino di indicare i triangoli nella fig. 4. Ecco cosa succede nella mente del bambino secondo la teoria degli attributi comuni. Nella fig. 3 il bambino incontra una serie di esemplari diversi di triangolo e da questi estrae le caratteristiche che sono proprie dei triangoli, ovvero che sono formati da tre linee, che queste linee sono rette e che insieme formano una figura chiusa. Egli si crea così la categoria <<triangolo>>, definendola attraverso quelle caratteristiche che sono comuni a tutti i triangoli che ha incontrato e, nel loro insieme, diverse rispetto a quelle delle altre figure. Passando alla figura 4 il bambino valuta le figure geometriche presentate: per ogni figura, decide di farla rientrare nella categoria dei triangoli se essa possiede tutte le caratteristiche specifiche di quella categoria. Secondo la teoria dei prototipi proposta da Rosh (1977), invece, le categorie vengono definite sulla base di una somiglianza di famiglia: i membri di una categoria hanno qualcosa in comune, tale che certe caratteristiche sono presenti in alcuni membri ma possono mancare in altri, che non sono per questo esclusi dalla categoria. Ogni categoria possiede un prototipo, cioè un esemplare tipico che costituisce il migliore esempio della categoria. La probabilità di categorizzare un oggetto come appartenente ad una categoria o ad un altra dipende dal grado di somiglianza con il prototipo della categoria. Per esempio, se si pensa alla categoria <<uccelli>> vengono immediatamente alla mente il pettirosso, il piccione o l aquila, in quanto esemplari prototipici della categoria; tuttavia, se ci viene chiesto se il pinguino o lo struzzo siano uccelli siamo in grado di rispondere di sì, anche se non condividono con gli altri uccelli caratteristiche importanti quali la capacità di volare. (Per le teorie sulla categorizzazione confronta il capitolo sulla percezione e quello su linguaggio e comunicazione nel presente libro). I compiti usati nello studio del ragionamento induttivo relativamente alla formazione di categorie spesso consistono nel presentare ai soggetti un insieme di stimoli (di solito figure 17

18 geometriche o oggetti inesistenti) e nel chiedere loro quale sia la regola che consente di raggruppare tali stimoli. 2.3 Teorie sul ragionamento Nel panorama contemporaneo è possibile individuare alcune principali correnti teoriche che propongono spiegazioni diverse circa il modo in cui le persone passano da un insieme di premesse ad una conclusione: teorie delle regole astratte (o della logica mentale), teorie delle regole concrete, teoria dei modelli mentali. Le teorie delle regole astratte I principali sostenitori sono Braine (1978) e Rips (1983). Secondo questi studiosi, la mente umana è dotata di un set di regole logiche. Quando ci troviamo di fronte alle premesse di un argomentazione, la regola pertinente si attiva, viene applicata alle premesse in questione così che possiamo trarne una conclusione valida. Le regole della nostra mente sono astratte nel senso che non tengono conto del contenuto delle premesse bensì si limitano a manipolare le premesse in modo sintattico. Ad esempio, supponiamo che ad un soggetto vengano presentate le premesse disgiuntive: Prima premessa: Seconda premessa: O Roma è la capitale d Italia, o Torino è la capitale d Italia Torino non è la capitale d Italia che possiamo rappresentare con la notazione seguente: O Roma è la capitale d Italia, o Torino è la capitale d Italia Torino non è la capitale d Italia x dove la linea orizzontale è la linea di inferenza: al di sopra sono riportate le premesse; al di sotto si riporterà la conclusione, per il momento rappresentata da un incognita. Vediamo la sequenza di passi necessari a trarre la conclusione. 18

19 (1) Traduzione dal linguaggio naturale al linguaggio logico: le premesse vengono tradotte in uno schema logico sulla base della loro forma p o q non q x Ciò che è rilevante è il modo in cui le proposizioni sono correlate (forma o sintassi), determinato dal simbolo che le lega (disgiunzione o). Infatti, nello schema non rimane alcuna traccia del contenuto delle proposizioni. (2) Attivazione della regola di inferenza pertinente: lo schema logico della disgiunzione, contenuto nella nostra mente, si attiva p o q non q p (3) Raggiungimento della conclusione: la proposizione decodificata come q viene inserita nello schema e così si può stabilire la conclusione Conclusione: Roma è la capitale d Italia. Secondo le teorie delle regole astratte, per ogni set di premesse esiste una regola logica che consente di compiere inferenze. Vediamo quali sono i problemi di queste teorie. Se nella mente delle persone fossero contenute regole logiche, allora le persone dovrebbero sempre compiere inferenze valide. Ma ciò non avviene: spesso le persone traggono conclusioni sbagliate. Come si spiegano tali deviazioni dalla logica? La risposta dei sostenitori delle teorie delle regole formali è: i soggetti compiono un interpretazione errata delle premesse. Nel ragionamento quotidiano intervengono fattori estranei alla logica che si configurano come possibili fonti di interferenza: nel processo di comprensione, vengono fatte delle assunzioni ragionevoli ma in contraddizione con la logica che modificano le premesse. 19

20 Quindi, i vari schemi di ragionamento vengono correttamente attivati ed applicati ma, dato che l informazione in entrata è sbagliata, anche informazione in uscita sarà sbagliata. Tuttavia, il problema rimane: le teorie delle regole astratte non spiegano come questa incongruenza interpretativa agisca sulla produzione dei risultati. In altre parole, non spiegano come avvenga la comprensione delle premesse. C è un altro problema con queste teorie: se le persone usassero regole logiche che agiscono sulla forma delle premesse indipendentemente dal contenuto, allora dovrebbero avere le medesime prestazioni quando uno stesso compito viene presentato con contenuti diversi. Ma si è visto, per esempio, nel compito di selezione di Wason che le prestazioni dei soggetti sono influenzate dal contenuto: mentre quasi tutti sbagliano nella versione astratta del compito (lettere alfabetiche e numeri), la maggior parte fornisce le carte corrette nella versione concreta (buste chiuse e aperte con diversa affrancatura). Ciò mette in crisi le teorie delle regole astratte. Infine, queste teorie possono applicarsi solo al ragionamento deduttivo; nel ragionamento induttivo, come abbiamo visto, non bastano regole preconfezionate, bensì è fondamentale anche l uso della conoscenza generale. Le teorie delle regole concrete I principali sostenitori sono Cheng e Holyoak (1985). Anche secondo questi autori, la mente umana è dotata di un set di regole logiche. Ma queste regole non sono astratte né applicabili a qualsiasi premessa. Esse sono concrete e specifiche per classi di situazioni. Ad esempio, la mente umana è dotata di regole concrete per le situazioni di permesso e di obbligo. Tali regole sono dette schemi pragmatici di ragionamento in quanto vengono attivate dagli aspetti pragmatici delle situazioni, cioè da necessità concrete della vita reale. Per esempio, la regola per le situazioni di permesso ha la forma Se un individuo esegue l azione X, allora deve soddisfare la precondizione Y ; essa viene attivata ed applicata ogni volta che la persona deve compiere o valutare un azione la cui esecuzione richiede il soddisfacimento di una data precondizione. Per portare prove a favore delle teorie delle regole concrete sono stati condotti diversi esperimenti, utilizzando il compito di selezione di Wason e sue varianti. Secondo i sostenitori delle teorie delle regole concrete, il fatto che i soggetti sbaglino nella versione astratta e facciano bene in quella concreta si spiega così. La versione concreta attiva lo schema di 20

Dall italiano alla logica proposizionale

Dall italiano alla logica proposizionale Rappresentare l italiano in LP Dall italiano alla logica proposizionale Sandro Zucchi 2009-10 In questa lezione, vediamo come fare uso del linguaggio LP per rappresentare frasi dell italiano. Questo ci

Dettagli

Intelligenza Artificiale (lucidi lezione introduttiva)

Intelligenza Artificiale (lucidi lezione introduttiva) Intelligenza Artificiale (lucidi lezione introduttiva) Prof. Alfonso Gerevini Dipartimento di Elettronica per l Automazione Facoltà di Ingegneria Università degli Studi di Brescia 1 Che cosa è l Intelligenza

Dettagli

La validità. La validità

La validità. La validità 1. Validità interna 2. Validità di costrutto 3. Validità esterna 4. Validità statistica La validità La validità La validità di una ricerca ci permette di valutare se quello che è stato trovato nella ricerca

Dettagli

DIPARTIMENTO SCIENTIFICO

DIPARTIMENTO SCIENTIFICO DIPARTIMENTO SCIENTIFICO PROGRAMMAZIONE PER COMPETENZE DI MATEMATICA CLASSI QUINTE Anno scolastico 2015/2016 Ore di lezione previste nell anno: 165 (n. 5 ore sett. x 33 settimane) 1. FINALITÀ DELL INSEGNAMENTO

Dettagli

Didattica della matematica a.a. 2009-2010 IL LINGUAGGIO DEL PROBLEM SOLVING

Didattica della matematica a.a. 2009-2010 IL LINGUAGGIO DEL PROBLEM SOLVING Didattica della matematica a.a. 2009-2010 IL LINGUAGGIO DEL PROBLEM SOLVING IL PROBLEM SOLVING nella pratica didattica attività di soluzione di problemi Che cos è un problema? 3 Che cos è un problema?

Dettagli

Prof. G. Gozzi classe 1 linguistico sez. F - matematica ordinamento 1. Liceo Classico, Scientifico e Linguistico A.Aprosio

Prof. G. Gozzi classe 1 linguistico sez. F - matematica ordinamento 1. Liceo Classico, Scientifico e Linguistico A.Aprosio Prof. G. Gozzi classe 1 linguistico sez. F - matematica ordinamento 1 Liceo Classico, Scientifico e Linguistico A.Aprosio PROGRAMMAZIONE INIZIALE DI MATEMATICA Classe 1 sez. F - anno scolastico 2013-2014

Dettagli

Matematica SECONDO BIENNIO NUOVO ORDINAMENTO I.T.Ag Noverasco PIANO DI LAVORO ANNUALE 2014/2015

Matematica SECONDO BIENNIO NUOVO ORDINAMENTO I.T.Ag Noverasco PIANO DI LAVORO ANNUALE 2014/2015 Istituto di Istruzione Superiore ITALO CALVINO telefono: 0257500115 via Guido Rossa 20089 ROZZANO MI fax: 0257500163 Sezione Associata: telefono: 025300901 via Karl Marx 4 - Noverasco - 20090 OPERA MI

Dettagli

UNIT 2 I modelli matematici ricchi di informazione Corso di Controlli Automatici Prof. Tommaso Leo Corso di Controlli Automatici Prof.

UNIT 2 I modelli matematici ricchi di informazione Corso di Controlli Automatici Prof. Tommaso Leo Corso di Controlli Automatici Prof. UNIT 2 I modelli matematici ricchi di informazione Corso di Controlli Automatici Prof. Tommaso Leo Corso di Controlli Automatici Prof. Tommaso Leo 1 Indice UNIT 2 I modelli matematici ricchi di informazione

Dettagli

SCUOLA DELL INFANZIA IL SÉ E L ALTRO L ambiente sociale, il vivere insieme, le domande dei bambini

SCUOLA DELL INFANZIA IL SÉ E L ALTRO L ambiente sociale, il vivere insieme, le domande dei bambini Nella scuola dell'infanzia non si può parlare di vere e proprie "discipline", bensì di CAMPI DI ESPERIENZA educativa. Con questo termine si indicano i diversi ambiti del fare e dell'agire e quindi i settori

Dettagli

CONSIDERAZIONI SUL RAGIONAMENTO

CONSIDERAZIONI SUL RAGIONAMENTO CONSIDERAZIONI SUL RAGIONAMENTO Luca Cilibrasi Matteo Pascucci Mariana Colucci Mirian Frances Garcia Lavoro per il corso di psicologia cognitiva di Scienze della Comunicazione Siena 2009 - con i docenti

Dettagli

Piano di lavoro annuale a.s. 2013/2014

Piano di lavoro annuale a.s. 2013/2014 Piano di lavoro annuale a.s. 2013/2014 Docente: Frank Ilde Materia: Matematica Classe: 1^ASA 1. Nel primo consiglio di classe sono stati definiti gli obiettivi educativo-cognitivi generali che sono stati

Dettagli

Il cervello è un computer?

Il cervello è un computer? Corso di Intelligenza Artificiale a.a. 2012/13 Viola Schiaffonati Il cervello è un computer? Definire l obiettivo L obiettivo di queste due lezioni è di analizzare la domanda, apparentemente semplice,

Dettagli

Il curricolo di matematica e scienze nella scuola dell infanzia. A cura di Mirella Pezzin Brà, 3-4 settembre 2014

Il curricolo di matematica e scienze nella scuola dell infanzia. A cura di Mirella Pezzin Brà, 3-4 settembre 2014 Il curricolo di matematica e scienze nella scuola dell infanzia A cura di Brà, 3-4 settembre 2014 MATEMATICHOS SIGNIFICA: DESIDEROSO DI SAPERE FARE SCIENZE PER I BAMBINI SIGNIFICA : CERCARE DI CAPIRE COME

Dettagli

SCUOLA DELL INFANZIA CURRICOLO D ISTITUTO

SCUOLA DELL INFANZIA CURRICOLO D ISTITUTO SCUOLA DELL INFANZIA CURRICOLO D ISTITUTO Secondo i campi d esperienza PREMESSA Come si ritroverà nei successivi ordini di Scuola del nostro Istituto Comprensivo, abbiamo tratto dal Sito dell Indire le

Dettagli

Acquistandoli entrambi risparmi il 25% (clicca qui)

Acquistandoli entrambi risparmi il 25% (clicca qui) Prenditi un istante per conoscere i nostri ebook: chiari, rigorosi, economici, studiati con cura per migliorare le tue abilità e superare ogni prova d'ammissione: Logica, guida completa per università

Dettagli

LICEO SCIENTIFICO STATALE G. D. CASSINI

LICEO SCIENTIFICO STATALE G. D. CASSINI PROGRAMMAZIONE DI MATEMATICA CLASSI PRIME NUCLEI TEMATICI E METODOLOGIA. Nucleo 1 Nucleo 2 Nucleo 3 Nucleo 4 Nucleo 5 Ambiente di lavoro (in generale) e linguaggio della matematica Ambiente e linguaggio

Dettagli

CURRICOLI SCUOLE INFANZIA

CURRICOLI SCUOLE INFANZIA ISTITUTO COMPRENSIVO di PORTO MANTOVANO (MN) Via Monteverdi 46047 PORTO MANTOVANO (MN) tel. 0376 398 781 e-mail: mnic813002@istruzione.it e-mail certificata: mnic813002@pec.istruzione.it sito internet:

Dettagli

ISTITUTO COMPRENSIVO DI CISANO BERGAMASCO CURRICOLO VERTICALE SCUOLA DELL'INFANZIA

ISTITUTO COMPRENSIVO DI CISANO BERGAMASCO CURRICOLO VERTICALE SCUOLA DELL'INFANZIA ISTITUTO COMPRENSIVO DI CISANO BERGAMASCO CURRICOLO VERTICALE SCUOLA DELL'INFANZIA AMPI DI ESPERIENZA TRAGUARDI PER LO SVILUPPO DELLA COMPETENZA OBIETTIVI DI APPRENDIMENTO PER I BAMBINI DI 5 ANNI ESPERIENZE

Dettagli

Cos è secondo voi una strategia? Ci sono strategie che si usano in più contesti? E strategie legate alle singole discipline?

Cos è secondo voi una strategia? Ci sono strategie che si usano in più contesti? E strategie legate alle singole discipline? Cos è secondo voi una strategia? Ci sono strategie che si usano in più contesti? E strategie legate alle singole discipline? Ricordate qualche strategia che vi è stata particolarmente utile nel corso delle

Dettagli

Teoria dei Giochi non Cooperativi

Teoria dei Giochi non Cooperativi Politecnico di Milano Descrizione del gioco Egoismo Razionalità 1 L insieme dei giocatori 2 La situazione iniziale 3 Le sue possibili evoluzioni 4 I suoi esiti finali I Giochi della teoria Perché studiare

Dettagli

Pubblicato sul n 36 di Rassegna, periodico dell Istituto Pedagogico, agosto 2008

Pubblicato sul n 36 di Rassegna, periodico dell Istituto Pedagogico, agosto 2008 LA PROBABILITÀ Margherita D Onofrio Pubblicato sul n 36 di Rassegna, periodico dell Istituto Pedagogico, agosto 2008 Perché Le ragioni per introdurre la matematica dell incerto nella scuola di base possono

Dettagli

MODULO 3 LEZIONE 23 FORMAZIONE DEL MOVIMENTO (SECONDA PARTE)

MODULO 3 LEZIONE 23 FORMAZIONE DEL MOVIMENTO (SECONDA PARTE) MODULO 3 LEZIONE 23 FORMAZIONE DEL MOVIMENTO (SECONDA PARTE) Contenuti Michelene Chi Livello ottimale di sviluppo L. S. Vygotskij Jerome Bruner Human Information Processing Teorie della Mente Contrapposizione

Dettagli

I n d i c e. 163 Appendice B Questionari su utilità e uso delle Strategie di Studio (QS1 e QS2)

I n d i c e. 163 Appendice B Questionari su utilità e uso delle Strategie di Studio (QS1 e QS2) I n d i c e 9 Introduzione 11 CAP. 1 I test di intelligenza potenziale 17 CAP. 2 La misura dell intelligenza potenziale nella scuola dell infanzia 31 CAP. 3 La misura dell intelligenza potenziale nella

Dettagli

LICEO CLASSICO C. CAVOUR DISCIPLINA : MATEMATICA PROGRAMMAZIONE DIDATTICA ED EDUCATIVA

LICEO CLASSICO C. CAVOUR DISCIPLINA : MATEMATICA PROGRAMMAZIONE DIDATTICA ED EDUCATIVA PROGRAMMAZIONE DIDATTICA ED EDUCATIVA 1. OBIETTIVI SPECIFICI DELLA DISCIPLINA PROGRAMMAZIONE PER COMPETENZE Le prime due/tre settimane sono state dedicate allo sviluppo di un modulo di allineamento per

Dettagli

D R (S) = ϱ 1 D R (S), e ovviamente per quella passiva

D R (S) = ϱ 1 D R (S), e ovviamente per quella passiva CAPITOLO 1 Introduzione Nella fisica moderna i metodi algebrici e in particolare la teoria dei gruppi hanno acquistato un interesse sconosciuto alla fisica del secolo scorso. Si può vedere la cosa in una

Dettagli

ANALISI DELLA SITUAZIONE DI PARTENZA

ANALISI DELLA SITUAZIONE DI PARTENZA ISTITUTO TECNICO STATALE AD INDIRIZZO COMMERCIALE IGEA - MARKETING GEOMETRI - PROGRAMMATORI TURISTICO G FILANGIERI PROGRAMMAZIONE DISCIPLINARE PER COMPETENZE ANNO SCOLASTICO 2010/2011 INDIRIZZO DI STUDI

Dettagli

DI APPRENDIMENTO: GLI STILI E LE MODALITA DI

DI APPRENDIMENTO: GLI STILI E LE MODALITA DI La progettazione formativa e didattica GLI STILI E LE MODALITA DI DI APPRENDIMENTO: dalle dalle conoscenze alla alla interiorizzazione dei dei comportamenti organizzativi 1 IL IL PERCORSO DELL APPRENDIMENTO

Dettagli

Liceo Linguistico I.F.R.S. Marcelline. Curriculum di Matematica

Liceo Linguistico I.F.R.S. Marcelline. Curriculum di Matematica Liceo Linguistico I.F.R.S. Marcelline Curriculum di Matematica Introduzione La matematica nel nostro Liceo Linguistico ha come obiettivo quello di far acquisire allo studente saperi e competenze che lo

Dettagli

2. Semantica proposizionale classica

2. Semantica proposizionale classica 20 1. LINGUAGGIO E SEMANTICA 2. Semantica proposizionale classica Ritorniamo un passo indietro all insieme dei connettivi proposizionali che abbiamo utilizzato nella definizione degli enunciati di L. L

Dettagli

MATEMATICA CLASSE SECONDA OBIETTIVI OPERATIVI. OBIETTIVI DI APPRENDIMENTO Conoscere il numero nei suoi vari aspetti.

MATEMATICA CLASSE SECONDA OBIETTIVI OPERATIVI. OBIETTIVI DI APPRENDIMENTO Conoscere il numero nei suoi vari aspetti. MATEMATICA Traguardi per lo sviluppo delle competenze al termine della scuola primaria L alunno si muove con sicurezza nel calcolo scritto e mentale con i numeri naturali e sa valutare l opportunità di

Dettagli

Lezione 10. La classificazione dell Intelligenza Artificiale

Lezione 10. La classificazione dell Intelligenza Artificiale Lezione 10 Intelligenza Artificiale Cosa è l Intelligenza Artificiale Elaborazione del linguaggio naturale La visione artificiale L apprendimento nelle macchine La classificazione dell Intelligenza Artificiale

Dettagli

I Modelli della Ricerca Operativa

I Modelli della Ricerca Operativa Capitolo 1 I Modelli della Ricerca Operativa 1.1 L approccio modellistico Il termine modello è di solito usato per indicare una costruzione artificiale realizzata per evidenziare proprietà specifiche di

Dettagli

1. Competenze trasversali

1. Competenze trasversali 1 ISTITUTO D ISTRUZIONE SUPERIORE G. CENA SEZIONE TECNICA ANNO SCOLASTICO 2015/2016 PROGRAMMAZIONE DIDATTICA DI MATEMATICA DOCENTI: PROF. ANGERA GIANFRANCO CLASSE V U TUR Secondo le linee guida, il corso

Dettagli

FINALITA DELLA SCUOLA DELL INFANZIA

FINALITA DELLA SCUOLA DELL INFANZIA I.C.S. MAREDOLCE FINALITA DELLA SCUOLA DELL INFANZIA La nostra scuola dell Infanzia con la sua identità specifica sotto il profilo pedagogico e metodologico-organizzativo persegue: l acquisizione di capacità

Dettagli

LOGICA E LINGUAGGIO. Caserta, 21 febbraio 2011. Dott. Michele Bovenzi

LOGICA E LINGUAGGIO. Caserta, 21 febbraio 2011. Dott. Michele Bovenzi LOGICA E LINGUAGGIO Caserta, 2 febbraio 2 Dott. Michele Bovenzi Una breve introduzione La logica nasce nell antichità come disciplina che studia i principi e le regole del ragionamento, ne valuta la correttezza

Dettagli

Liceo Marie Curie (Meda) Scientifico Classico Linguistico PROGRAMMAZIONE DISCIPLINARE PER COMPETENZE

Liceo Marie Curie (Meda) Scientifico Classico Linguistico PROGRAMMAZIONE DISCIPLINARE PER COMPETENZE Liceo Marie Curie (Meda) Scientifico Classico Linguistico PROGRAMMAZIONE DISCIPLINARE PER COMPETENZE a.s. 2015/16 CLASSE 1DS Indirizzo di studio Liceo scientifico Docente Paola Carcano Disciplina Monte

Dettagli

LICEO SCIENTIFICO opzione delle scienze applicate MATEMATICA LICEO SCIENTIFICO MATEMATICA

LICEO SCIENTIFICO opzione delle scienze applicate MATEMATICA LICEO SCIENTIFICO MATEMATICA LICEO SCIENTIFICO MATEMATICA PROFILO GENERALE E COMPETENZE Al termine del percorso liceale lo studente dovrà padroneggiare i principali concetti e metodi di base della matematica, sia aventi valore intrinseco

Dettagli

EURISTICA E LOGICA PROPOSIZIONALE

EURISTICA E LOGICA PROPOSIZIONALE EURISTICA E LOGICA PROPOSIZIONALE Riccardo Capozzi 1 1. PREMESSA L'intento di questo lavoro è quello di mostrare, attraverso modesti esempi, le possibili applicazioni della logica ad un ambito apparentemente

Dettagli

Come si valuta per competenze? Competenza situata. Definizione dei profili di competenza. Situazioni problema per la valutazione di competenze.

Come si valuta per competenze? Competenza situata. Definizione dei profili di competenza. Situazioni problema per la valutazione di competenze. Come si valuta per competenze? Competenza situata. Definizione dei profili di competenza. Situazioni problema per la valutazione di competenze. Criterio 1. Competenza situata Descrizione Per valutare per

Dettagli

CAMPO DI ESPERIENZA: IL SE E L ALTRO

CAMPO DI ESPERIENZA: IL SE E L ALTRO CAMPO DI ESPERIENZA: IL SE E L ALTRO I. Il bambino gioca in modo costruttivo e creativo con gli altri, sa argomentare, confrontarsi, sostenere le proprie ragioni con adulti e bambini. I I. Sviluppa il

Dettagli

COMPETENZE E INSEGNAMENTO. Dott.ssa Franca Da Re

COMPETENZE E INSEGNAMENTO. Dott.ssa Franca Da Re COMPETENZE E INSEGNAMENTO Dott.ssa Franca Da Re UN TENTATIVO DI DEFINIZIONE INTEGRATO INTEGRAZIONE DI CONOSCENZE E ABILITA DI TIPO COGNITIVO, PERSONALE, SOCIALE, RELAZIONALE PER SVOLGERE UN ATTIVITA E

Dettagli

0 ) = lim. derivata destra di f in x 0. Analogamente, diremo che la funzione f è derivabile da sinistra in x 0 se esiste finito il limite

0 ) = lim. derivata destra di f in x 0. Analogamente, diremo che la funzione f è derivabile da sinistra in x 0 se esiste finito il limite Questo breve file è dedicato alle questioni di derivabilità di funzioni reali di variabile reale. Particolare attenzione viene posta alla classificazione dei punti di non derivabilità delle funzioni definite

Dettagli

CAPITOLO 3 Previsione

CAPITOLO 3 Previsione CAPITOLO 3 Previsione 3.1 La previsione I sistemi evoluti, che apprendono le regole di funzionamento attraverso l interazione con l ambiente, si rivelano una risorsa essenziale nella rappresentazione di

Dettagli

Teoria del Prospetto: avversione alle perdita, framing e status quo

Teoria del Prospetto: avversione alle perdita, framing e status quo - DPSS - Università degli Studi di Padova http://decision.psy.unipd.it/ Teoria del Prospetto: avversione alle perdita, framing e status quo Corso di Psicologia del Rischio e della Decisione Facoltà di

Dettagli

Definizione e struttura della comunicazione

Definizione e struttura della comunicazione Definizione e struttura della comunicazione Sono state date molteplici definizioni della comunicazione; la più semplice e comprensiva è forse questa: passaggio di un'informazione da un emittente ad un

Dettagli

PROFILO PROFESSIONALE DI RIFERIMENTO PER I DOCENTI DELLE SCUOLE COMUNALI

PROFILO PROFESSIONALE DI RIFERIMENTO PER I DOCENTI DELLE SCUOLE COMUNALI CISCo Ufficio delle scuole comunali PROFILO PROFESSIONALE DI RIFERIMENTO PER I DOCENTI DELLE SCUOLE COMUNALI Per profilo professionale è intesa la descrizione accurata delle competenze e dei comportamenti

Dettagli

La comprensione del testo per la scuola secondaria di I grado

La comprensione del testo per la scuola secondaria di I grado La comprensione del testo per la scuola Analisi delle risposte date dagli studenti ad alcuni quesiti della PN Invalsi 2014: ipotesi sulle cause della mancata comprensione e possibili ricadute didattiche

Dettagli

Metodi e tecniche di analisi dei dati nella ricerca psico-educativa Parte I

Metodi e tecniche di analisi dei dati nella ricerca psico-educativa Parte I Laboratorio Metodi e tecniche di analisi dei dati nella ricerca psico-educativa Parte I Laura Palmerio Università Tor Vergata A.A. 2005/2006 Testi di riferimento F. Celi, D. Fontana, Fare ricerca sperimentale

Dettagli

LE BASI DELLA STATISTICA E LA RACCOLTA DEI DATI

LE BASI DELLA STATISTICA E LA RACCOLTA DEI DATI LE BASI DELLA STATISTICA E LA RACCOLTA DEI DATI Tre punti importanti o Dati e ipotesi In tutte le discipline scientifiche che studiano gli organismi viventi, molto raramente i dati ottenuti attraverso

Dettagli

Presupposizioni. Presupposizioni. Presupposizioni. Presupposizioni. impliciti e filosofia del linguaggio ordinario. impliciti.

Presupposizioni. Presupposizioni. Presupposizioni. Presupposizioni. impliciti e filosofia del linguaggio ordinario. impliciti. impliciti e filosofia del linguaggio ordinario impliciti presupposizioni, implicature Austin: ci sono più modi di essere assurdi che la sola contraddizione affermazioni che esitiamo a definire semplicemente

Dettagli

I S T I T U T O S T A T A L E D I I S T R U Z I O N E S E CO N D A R I A S U P E R I O R E G. O B E R D A N T R E V I G L I O (B G)

I S T I T U T O S T A T A L E D I I S T R U Z I O N E S E CO N D A R I A S U P E R I O R E G. O B E R D A N T R E V I G L I O (B G) GLI INDIRIZZI DI STUDIO E I PROFILI PROFESSIONALI L Istituto, sempre attento alle esigenze formative del territorio nel quale opera, ha diversificato, nel corrente anno scolastico, la propria offerta formativa

Dettagli

LICEO SCIENTIFICO opzione delle scienze applicate MATEMATICA

LICEO SCIENTIFICO opzione delle scienze applicate MATEMATICA LICEO SCIENTIFICO opzione delle scienze applicate MATEMATICA PROFILO GENERALE E COMPETENZE Al termine del percorso liceale lo studente dovrà padroneggiare i principali concetti e metodi di base della matematica,

Dettagli

I.S.I.S. Zenale e Butinone - Dipartimento di Matematica P.A.L. CLASSE 5^ TECNICO TUR. a.s. 14/15 pag.1

I.S.I.S. Zenale e Butinone - Dipartimento di Matematica P.A.L. CLASSE 5^ TECNICO TUR. a.s. 14/15 pag.1 I.S.I.S. Zenale e Butinone - Dipartimento di Matematica P.A.L. CLASSE 5^ TECNICO TUR. a.s. 14/15 pag.1 ISTITUTO STATALE ISTRUZIONE SUPERIORE ZENALE E BUTINONE Vale la pena di insegnare un argomento solo

Dettagli

Appunti di Logica Matematica

Appunti di Logica Matematica Appunti di Logica Matematica Francesco Bottacin 1 Logica Proposizionale Una proposizione è un affermazione che esprime un valore di verità, cioè una affermazione che è VERA oppure FALSA. Ad esempio: 5

Dettagli

Il questionario. Claudio Pizzi Dipartimento di Economia Università Ca Foscari Venezia

Il questionario. Claudio Pizzi Dipartimento di Economia Università Ca Foscari Venezia Il questionario Claudio Pizzi Dipartimento di Economia Università Ca Foscari Venezia 1 Il questionario Il questionario è uno strumento per la rilevazione delle informazioni attraverso un piano strutturato

Dettagli

UN CURRICOLO CENTRATO SUL SIGNIFICATO di Lucio Guasti *

UN CURRICOLO CENTRATO SUL SIGNIFICATO di Lucio Guasti * UN CURRICOLO CENTRATO SUL SIGNIFICATO di Lucio Guasti * PREMESSA La breve riflessione che segue si colloca nell ambito degli attuali orientamenti di riforma, di conseguenza considera suo principale punto

Dettagli

Inferenza statistica

Inferenza statistica Inferenza statistica L inferenza statistica è un insieme di metodi con cui si cerca di trarre una conclusione sulla popolazione in base ad informazioni ricavate da un campione. Inferenza statistica: indurre

Dettagli

LE BOTTEGHE DELL INSEGNARE MATEMATICA

LE BOTTEGHE DELL INSEGNARE MATEMATICA LE BOTTEGHE DELL INSEGNARE Report dei lavori svolti durante la Convention Protagonisti nella scuola per la crescita della società Bologna 13-14 ottobre 2012 MATEMATICA Matematici, mettiamoci in gioco Responsabile

Dettagli

CAMPO DI ESPERIENZA: I DISCORSI E LE PAROLE

CAMPO DI ESPERIENZA: I DISCORSI E LE PAROLE CAMPO DI ESPERIENZA: I DISCORSI E LE PAROLE I. Il bambino usa la lingua italiana, arricchisce e precisa il proprio lessico, comprende parole e discorsi, fa ipotesi sui significati. II. Sa esprimere e comunicare

Dettagli

Rappresentazione della conoscenza. ha poco potere espressivo in quanto ha un ontologia limitata: il mondo consiste di fatti, es.

Rappresentazione della conoscenza. ha poco potere espressivo in quanto ha un ontologia limitata: il mondo consiste di fatti, es. Scaletta argomenti: Rappresentazione della conoscenza Logica del primo ordine Logiche non-monotone Reti semantiche Frame e script Regole di produzione Logica del Primo Ordine - Logica proposizionale ha

Dettagli

Che cos è la psicologia?

Che cos è la psicologia? 1 Che cos è la psicologia? La psicologia può essere definita come lo studio scientifico del comportamento e dei processi mentali 2 Che cos è la psicologia? Comportamento Azioni fisiche osservabili compiute

Dettagli

UNIVERSITÀ LUIGI BOCCONI. Valutazione all ingresso. ai Master universitari

UNIVERSITÀ LUIGI BOCCONI. Valutazione all ingresso. ai Master universitari UNIVERSITÀ LUIGI BOCCONI Guida alla prova di Valutazione all ingresso ai Master universitari Pagina Domande di RAGIONAMENTO VERBALE Il questionario per la valutazione all ingresso dei Master universitari,

Dettagli

PROPOSTA DI PROGRAMMAZIONE DI ITALIANO L2 PER BAMBINI STRANIERI

PROPOSTA DI PROGRAMMAZIONE DI ITALIANO L2 PER BAMBINI STRANIERI PROPOSTA DI PROGRAMMAZIONE DI ITALIANO L2 PER BAMBINI STRANIERI Silvana Cantù Graziella Favaro Arcangela Mastromarco Centro COME Cooperativa Farsi Prossimo Via Porpora, 26 20131 Milano tel 02.29.53.74.62

Dettagli

Istituto comprensivo Arbe Zara

Istituto comprensivo Arbe Zara Istituto comprensivo Arbe Zara Viale Zara,96 Milano Tel. 02/6080097 Scuola Secondaria di primo grado Falcone Borsellino Viale Sarca, 24 Milano Tel- 02/88448270 A.s 2015 /2016 Progettazione didattica della

Dettagli

PROFESSIONI NELL AMBITO DELLA PSICOLOGIA, PSICHIATRIA E ASSISTENZA SOCIALE

PROFESSIONI NELL AMBITO DELLA PSICOLOGIA, PSICHIATRIA E ASSISTENZA SOCIALE PROFESSIONI NELL AMBITO DELLA PSICOLOGIA, PSICHIATRIA E ASSISTENZA SOCIALE L incontro si è tenuto Martedì 22 Aprile alle ore 14:00 presso il Liceo Galvani I relatori erano i seguenti: Andrea Biancardi,

Dettagli

Sanna Marina 05 giugno 2009. per. CollinRete

Sanna Marina 05 giugno 2009. per. CollinRete Curriculum scolastico, standard di apprendimento al termine dell obbligo di istruzione e riflessione didattica: approfondimenti a partire dall analisi degli esiti rilevati in Friuli Venezia Giulia dall

Dettagli

ROBOT COME PSICOLOGIA

ROBOT COME PSICOLOGIA FORZA, VELOCITÀ E ACCELERAZIONE: UNO SGUARDO CONTEMPORANEO AI PRINCIPI DELLA DINAMICA 301 ROBOT COME PSICOLOGIA DOMENICO PARISI Istituto di Scienze e Tecnologie della Cognizione, Consiglio Nazionale delle

Dettagli

1. Fondamenti teorici della psicologia clinica

1. Fondamenti teorici della psicologia clinica 1. Fondamenti teorici della psicologia clinica 1.1. Verso una definizione della psicologia clinica Definire che cosa si intenda per psicologia clinica non è compito facile in quanto essa è una materia

Dettagli

IL CURRICOLO DELLA SCUOLA DELL INFANZIA

IL CURRICOLO DELLA SCUOLA DELL INFANZIA IL CURRICOLO DELLA SCUOLA DELL INFANZIA I CAMPI DI ESPERIENZA Gli insegnanti accolgono, valorizzano ed estendono le curiosità, le esplorazioni, le proposte dei bambini e creano occasioni di apprendimento

Dettagli

Scuola Primaria. LABORATORIO DI MUSICA Classe prima e seconda

Scuola Primaria. LABORATORIO DI MUSICA Classe prima e seconda Circolo Didattico Collodi-Gebbione Scuola Primaria Anno Scolastico 2010/2011 LABORATORIO DI MUSICA Classe prima e seconda Premessa Il bambino quotidianamente vive in un mondo caratterizzato dalla presenza

Dettagli

Apprendere al volo con il metodo analogico!

Apprendere al volo con il metodo analogico! Chiavari, 16 novembre 2013 Apprendere al volo con il metodo analogico! dott.ssa Zara Mehrnoosh pedagogista e vicepresidente O.S.Dislessia ONLUS Il 20% circa degli studenti incontrano difficoltà nella matematica

Dettagli

Il mondo in cui viviamo

Il mondo in cui viviamo Il mondo in cui viviamo Il modo in cui lo vediamo/ conosciamo Dalle esperienze alle idee Dalle idee alla comunicazione delle idee Quando sono curioso di una cosa, matematica o no, io le faccio delle domande.

Dettagli

Quesiti a Scelta Multipla

Quesiti a Scelta Multipla Quesiti a Scelta Multipla I Quesiti a Scelta Multipla (QSM), conosciuti per la valutazione del merito e delle capacità in ambito civile e militare, a partire dal 1915 vennero utilizzati ufficialmente nelle

Dettagli

Programmazione didattica per Matematica. Primo Biennio. a.s. 2014-2015

Programmazione didattica per Matematica. Primo Biennio. a.s. 2014-2015 Programmazione didattica per Matematica Primo Biennio a.s. 2014-2015 Obiettivi educativi e didattici. Lo studio della matematica, secondo le indicazioni nazionali, concorre con le altre discipline, alla

Dettagli

M i n i s t e r o d e l l a P u b b l i c a I s t r u z i o n e ISTITUTO STATALE DI ISTRUZIONE SUPERIORE

M i n i s t e r o d e l l a P u b b l i c a I s t r u z i o n e ISTITUTO STATALE DI ISTRUZIONE SUPERIORE PROGRAMMAZIONE ANNUALE MATEMATICA-INFORMATICA CLASSI QUINTE TECNICO DEI SERVIZI SOCIO SANITARI ANNO SCOLASTICO 2014/2015 1 FINALITÀ OBIETTIVI E COMPETENZE DELLA DISCIPLINA Il docente di Matematica concorre

Dettagli

PROGRAMMAZIONE CLASSE PRIMA: LINGUA ITALIANA, MATEMATICA, INGLESE

PROGRAMMAZIONE CLASSE PRIMA: LINGUA ITALIANA, MATEMATICA, INGLESE PROGRAMMAZIONE CLASSE PRIMA: LINGUA ITALIANA, MATEMATICA, INGLESE OBIETTIVI DI APPRENDIMENTO ASCOLTARE E PARLARE Ascoltare e comprendere un messaggio e un testo Conoscere le regole comportamentali della

Dettagli

CURRICOLO VERTICALE SCUOLA DELL'INFANZIA. IC Borgaro Torinese

CURRICOLO VERTICALE SCUOLA DELL'INFANZIA. IC Borgaro Torinese via Ciriè 52 10071 BORGARO (TO) Tel. 0114702428-0114703011 Fax 0114510084 Cod. Fiscale 92045820013 TOIC89100P@istruzione.it http://www.icborgaro.it Marchio SAPERI certificato n. 14 CURRICOLO VERTICALE

Dettagli

Polli e conigli. problemi Piano cartesiano. Numeri e algoritmi Sistemi e loro. geometrica. Relazioni e funzioni Linguaggio naturale e

Polli e conigli. problemi Piano cartesiano. Numeri e algoritmi Sistemi e loro. geometrica. Relazioni e funzioni Linguaggio naturale e Polli e conigli Livello scolare: primo biennio Abilità Interessate Calcolo di base - sistemi Risolvere per via grafica e algebrica problemi che si formalizzano con equazioni. Analizzare semplici testi

Dettagli

Curricolo di Istituto Scuola Infanzia Piano formativo: costruzione del sé Competenze di scuola Traguardi Campi di esperienza

Curricolo di Istituto Scuola Infanzia Piano formativo: costruzione del sé Competenze di scuola Traguardi Campi di esperienza Competenze chiave di cittadinanza europee Imparare ad imparare Spirito di iniziativa ed imprenditorialità Curricolo di Istituto Scuola Infanzia Piano formativo: costruzione del sé Competenze di scuola

Dettagli

PILLOLE DI LOGICA. Piccolo manuale per affrontare gli esercizi di logica delle Olimpiadi di Matematica. Liceo Scientifico A.

PILLOLE DI LOGICA. Piccolo manuale per affrontare gli esercizi di logica delle Olimpiadi di Matematica. Liceo Scientifico A. PILLOLE DI LOGICA Piccolo manuale per affrontare gli esercizi di logica delle Olimpiadi di Matematica Liceo Scientifico A.Righi Cesena Le basi della logica formale La logica formale è un indagine sul ragionare

Dettagli

Indice 1 IL FUNZIONAMENTO INTELLETTIVO LIMITE ------------------------------------------------------------------- 3

Indice 1 IL FUNZIONAMENTO INTELLETTIVO LIMITE ------------------------------------------------------------------- 3 LEZIONE: IL FUNZIONAMENTO INTELLETTIVO LIMITE (PRIMA PARTE) PROF. RENZO VIANELLO Indice 1 IL FUNZIONAMENTO INTELLETTIVO LIMITE ------------------------------------------------------------------- 3 2 di

Dettagli

Studenti di madrelingua non italiana SCHEDA PER IL PERCORSO DIDATTICO PERSONALIZZATO 1

Studenti di madrelingua non italiana SCHEDA PER IL PERCORSO DIDATTICO PERSONALIZZATO 1 Studenti di madrelingua non italiana SCHEDA PER IL PERCORSO DIDATTICO PERSONALIZZATO 1 COGNOME E NOME DATA DI NASCITA E PROVENIENZA MESE E ANNO DI ARRIVO IN ITALIA DATA DI ISCRIZIONE ALLA SCUOLA ISTITUTO

Dettagli

AREA LINGUISTICO - ARTISTICO ESPRESSIVA ITALIANO

AREA LINGUISTICO - ARTISTICO ESPRESSIVA ITALIANO AREA LINGUISTICO - ARTISTICO ESPRESSIVA ITALIANO TRAGUARDI PER LO SVILUPPO DELLE COMPETENZE AL TERMINE DELLA SCUOLA SECONDARIA DI PRIMO GRADO L alunno è capace di interagire in modo efficace in diverse

Dettagli

Scuola dell infanzia G. Siani - Marano

Scuola dell infanzia G. Siani - Marano Scuola dell infanzia G. Siani - Marano a.s. 2015/16..Gli insegnanti accolgono, valorizzano ed estendono la curiosità, le esplorazioni, le proposte dei bambini e creano occasioni di apprendimento per favorire

Dettagli

Percezione Memoria Linguaggio Categorie Schemi Attribuzioni Euristiche Semplificare il mondo mettendo insieme cose simili

Percezione Memoria Linguaggio Categorie Schemi Attribuzioni Euristiche Semplificare il mondo mettendo insieme cose simili Problemi e soluzioni Troppe informazioni Semplificare Percezione Memoria Linguaggio Poche informazioni Completare Selezione Organizzazione Categorie Schemi Attribuzioni Euristiche Inferenza Armonizzazione

Dettagli

PROGRAMMAZIONE ANNUALE

PROGRAMMAZIONE ANNUALE PROGRAMMAZIONE ANNUALE ANNO SCOLASTICO 2010/11 Docente: Antonio Gottardo Materia: Matematica Classe: 5BSo Liceo delle Scienze Sociali 1. Nel primo consiglio di classe sono stati definiti gli obiettivi

Dettagli

Trovare il lavorochepiace

Trovare il lavorochepiace Trovare il lavorochepiace Perché a molti sembra così difficile? Perché solo pochi ci riescono? Quali sono i pezzi che perdiamo per strada, gli elementi mancanti che ci impediscono di trovare il lavorochepiace?

Dettagli

Allegato 2 COMPETENZE DI CITTADINANZA PROGRESSIONE DELLE COMPETENZE

Allegato 2 COMPETENZE DI CITTADINANZA PROGRESSIONE DELLE COMPETENZE Allegato 2 COMPETENZE DI CITTADINANZA CONTINUITA PROGRESSIONE DELLE COMPETENZE IMPARARE AD IMPARARE Acquisire un proprio metodo di studio e di lavoro. Scoperta e riconoscimento di regole generali per:

Dettagli

Logica dei predicati

Logica dei predicati IV Logica dei predicati 14. FORMULE PREDICATIVE E QUANTIFICATORI 14.1. Dalla segnatura alle formule predicative Il simbolo (x).ϕ(x) [per ogni x, ϕ(x) è vera] denota una proposizione definita, e non c è

Dettagli

PRINCIPI DI TERAPIA COGNITIVA

PRINCIPI DI TERAPIA COGNITIVA PRINCIPI DI TERAPIA COGNITIVA Secondo la terapia cognitiva, l uomo possiede la chiave della comprensione e soluzione del suo disturbo psicologico entro il campo della sua coscienza. I problemi dell individuo

Dettagli

VALUTAZIONE AUTENTICA E APPRENDERE PER COMPETENZE

VALUTAZIONE AUTENTICA E APPRENDERE PER COMPETENZE E APPRENDERE PER COMPETENZE VALUTAZIONE INSEGNAMENTO APPRENDIMENTO E APPRENDERE PER COMPETENZE VALUTAZIONE VALUTARE GLI APPRENDIMENTI: UN PERCORSO A TRE STADI SIS Torino a.a. 2006/07 1 STADIO: LA VALUTAZIONE

Dettagli

METODOLOGIA Scuola dell infanzia La progettazione, l organizzazione e la valorizzazione degli spazi e dei materiali

METODOLOGIA Scuola dell infanzia La progettazione, l organizzazione e la valorizzazione degli spazi e dei materiali METODOLOGIA Scuola dell infanzia La scuola dell infanzia è un luogo ricco di esperienze, scoperte, rapporti, che segnano profondamente la vita di tutti coloro che ogni giorno vi sono coinvolti, infatti

Dettagli

Gruppo Scuola Secondaria di Secondo Grado Ipotesi di protocollo

Gruppo Scuola Secondaria di Secondo Grado Ipotesi di protocollo Gruppo Scuola Secondaria di Secondo Grado Ipotesi di protocollo Premessa: 1. Il seguente protocollo innesta il sistema della codificazione ICF nelle Aree PDF 2. Potrebbe essere significativa l apertura

Dettagli

Serie numeriche e serie di potenze

Serie numeriche e serie di potenze Serie numeriche e serie di potenze Sommare un numero finito di numeri reali è senza dubbio un operazione che non può riservare molte sorprese Cosa succede però se ne sommiamo un numero infinito? Prima

Dettagli

Psicologia Sociale A.A. 2011/12. Le Euristiche. Dr.ssa Francesca Riccardi Dr.ssa Francesca G. Naselli

Psicologia Sociale A.A. 2011/12. Le Euristiche. Dr.ssa Francesca Riccardi Dr.ssa Francesca G. Naselli Psicologia Sociale A.A. 2011/12 Le Euristiche Dr.ssa Francesca Riccardi Dr.ssa Francesca G. Naselli Decisione & Incertezza A 3 gruppi di studenti venne chiesto di immaginare di dover sostenere un esame

Dettagli

Dipartimento di Scienze della Formazione, Psicologia, Comunicazione. CdL in Sienze dell Educazione e della Formazione. Psicologia Generale

Dipartimento di Scienze della Formazione, Psicologia, Comunicazione. CdL in Sienze dell Educazione e della Formazione. Psicologia Generale Dipartimento di Scienze della Formazione, Psicologia, Comunicazione CdL in Sienze dell Educazione e della Formazione Psicologia Generale A.A. 2013-2014 Docente: prof.ssa Tiziana Lanciano t.lanciano@psico.uniba.it

Dettagli

Attività PQM matematica 2012/13: Diario di bordo del tutor

Attività PQM matematica 2012/13: Diario di bordo del tutor Attività PQM matematica 2012/13: Diario di bordo del tutor Scheda n 1 iniziale Tutor di istituto:prof.ssa Mezzina Lucia Data 4.04.2013 Classe 12 alunni della classe III^ B Ambito: Relazioni e funzioni

Dettagli

Richiami di microeconomia

Richiami di microeconomia Capitolo 5 Richiami di microeconomia 5. Le preferenze e l utilità Nell analisi microeconomica si può decidere di descrivere ogni soggetto attraverso una funzione di utilità oppure attraverso le sue preferenze.

Dettagli

AREA MATEMATICO-SCIENTIFICO-TECNOLOGICA MATEMATICA

AREA MATEMATICO-SCIENTIFICO-TECNOLOGICA MATEMATICA AREA MATEMATICO-SCIENTIFICO-TECNOLOGICA MATEMATICA TRAGUARDI PER LO SVILUPPO DELLE COMPETENZE AL TERMINE DELLA SCUOLA SECONDARIA DI PRIMO GRADO. L alunno ha rafforzato un atteggiamento positivo rispetto

Dettagli

Percorsi di matematica per il ripasso e il recupero

Percorsi di matematica per il ripasso e il recupero Giacomo Pagina Giovanna Patri Percorsi di matematica per il ripasso e il recupero 1 per la Scuola secondaria di secondo grado UNITÀ CAMPIONE Edizioni del Quadrifoglio à t i n U 2 Logica delle proposizioni

Dettagli