IL PENSIERO. Katiuscia Sacco

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "IL PENSIERO. Katiuscia Sacco"

Transcript

1 IL PENSIERO Katiuscia Sacco Il pensiero è l attività mentale che ci consente di elaborare le informazioni provenienti dal mondo esterno, metterle in relazione tra loro e con le conoscenze che già possediamo, al fine di risolvere problemi, inferire nuove informazioni, prendere decisioni. E dunque il ponte tra percezione e azione, ciò che media il rapporto tra l uomo e l ambiente naturale e sociale consentendo risposte non automatiche ma pensate ; in una parola, il pensiero è ciò che guida l agire intenzionale. Le ricerche in psicologia si sono concentrate sulle tre principali funzioni a cui assolve il pensiero: la risoluzione di problemi (problem solving), il ragionamento (reasoning), la presa di decisioni (decision making). 1. La risoluzione di proble mi Data una situazione-problema, come arriviamo alla sua soluzione? Tutti i giorni ci troviamo a dover risolvere problemi più o meno complessi. In generale, abbiamo un problema quando dobbiamo raggiungere un certo obiettivo e non sappiamo esattamente come fare, cioè non è immediato come passare dalla situazione in cui ci troviamo alla situazione desiderata. La risoluzione di problemi richiede creatività: oltre a rappresentare appropriatamente i dati del compito e a compiere una serie di inferenze, bisogna saper trovare i legami rilevanti tra gli elementi del problema. Pensiamo per esempio alla scoperta della penicillina. Fleming, un microbiologo che stava lavorando sull influenza, aveva lasciato una coltura di batteri su una piastra ed era andato in vacanza. Al suo ritorno, notò che sulla piastra c era una zona in cui i batteri non erano cresciuti: in quella zona era finita una muffa, in seguito identificata come appartenente al genere Penicillium. Probabilmente, altri ricercatori prima di lui avevano osservato in una coltura gli stessi cambiamenti, ma quelle colture andate a male erano state immediatamente gettate via. La creatività di Fleming è consistita nel cogliere il legame tra la presenza della muffa e la mancata crescita dei batteri: egli ipotizzò che quella muffa avesse causato la morte dei batteri e pensò dunque che si potesse utilizzare per combattere quel tipo Questo capitolo è stato realizzato grazie al contributo MURST, cofinanziamento 1999 ( , Processi di ragionamento e modelli Mentali). Ringrazio Francesca M. Bosco, Monica Bucciarelli e Marco Duretti per la lettura di una precedente versione.

2 di batteri. Questa, come la maggior parte delle scoperte scientifiche, è avvenuta grazie ad un intuizione circa un legame causale fino a quel momento sconosciuto. In questo paragrafo, per prima cosa ripercorreremo le principali correnti teoriche che, a partire dal secolo scorso, hanno studiato in che modo le persone giungano a risolvere problemi; vedremo inoltre cosa delle teorie presentate è ancora valido e come può essere utilizzato negli attuali studi sulla risoluzione di problemi. In seguito, definiremo alcuni concetti fondamentali e vedremo quali sono le questioni ancora aperte, che costituiscono gli attuali ambiti di ricerca in questo campo. 1.1 Teorie sulla risoluzione di problemi La teoria comportamentista (anni Venti) Secondo la teoria comportamentista, i problemi vengono risolti per tentativi ed errori. Consideriamo l esperimento di Thorndike sui gatti (1905). Thorndike mise dei gatti affamati in una gabbia chiusa, da cui essi potevano vedere una ciotola di cibo collocata all esterno. La porta della gabbia poteva essere aperta quando un paletto collocato al suo interno veniva colpito. All inizio i gatti si lanciavano contro le sbarre della gabbia mordendole. Inevitabilmente, ad un certo punto i gatti nella gabbia colpivano anche il paletto interno ed aprivano lo sportello. Dopo ripetute sedute sperimentali i gatti sembravano imparare che colpire il paletto faceva aprire lo sportello della gabbia. Così, quando i gatti venivano chiusi nella gabbia andavano direttamente verso il paletto, lo colpivano, aprivano lo sportello e fuggivano. Si concluse così che i nuovi problemi vengono affrontati con una strategia per tentativi ed errori e che le soluzioni corrette, attuate per caso, vengono riprodotte quando viene presentato lo stimolo appropriato. La teoria della Gestalt (anni Trenta) Secondo la teoria della Gestalt, il processo di soluzione di un problema è più che una semplice riproduzione di risposte apprese: esso implica un processo di riorganizzazione degli elementi del problema. Tale riorganizzazione non avviene per caso, né per tentativi ciechi, né per associazioni, bensì grazie all insight cioè un intuizione che si verifica all improvviso (vedi per esempio Wertheimer, 1945). Per risolvere un problema si deve avere un insight circa 2

3 la struttura del problema e ristrutturare il problema in modo diverso. Non sempre l uso diretto dell esperienza passata facilita il raggiungimento della soluzione di un problema; a volte può portare a commettere errori. Quando si affronta un problema che è simile ad altri già incontrati in passato, si tende a risolverlo con lo stesso meccanismo che si era applicato in precedenza. Quando l apprendimento antecedente è applicabile efficacemente al nuovo problema, il trasferimento della strategia utilizzata in precedenza facilita la risoluzione del nuovo problema. Tuttavia, a volte gli apprendimenti precedenti possono impedire di riorganizzare gli elementi del nuovo problema in modo utile alla sua risoluzione. Un esempio ne è la fissità funzionale: il soggetto rimane fissato sulla funzione abituale di un oggetto e non riesce a riconcettualizzarlo in modo diverso. Consideriamo il problema della candela: [Problema della candela] Avete a vostra disposizione una candela, una scatola di puntine da disegno e una bustina di fiammiferi. Il vostro compito è attaccare la candela al muro al di sopra di un tavolo, in modo tale che la cera sciolta non goccioli sopra il tavolo. La risoluzione del problema della candela è il seguente: [Soluzione del problema della candela] Usare la scatola che contiene le puntine come portacandele e attaccarla al muro. I soggetti sottoposti all esperimento inizialmente non riuscivano a risolvere il problema perché erano fissati sulla funzione normale della scatola, quella di contenere le puntine, e questo impediva loro di riconcettualizzarla in modo diverso. Quando lo sperimentatore toglieva le puntine dalla scatola e le disponeva sparse sul tavolo accanto alla scatola vuota, i soggetti avevano un intuizione improvvisa: i soggetti riconcettualizzano la funzione della scatola (non solo è un contenitore, ma può anche essere usata come sostegno per la candela). Quindi, il raggiungimento di una soluzione creativa avviene attraverso quattro fasi: (a) il problema viene formulato e vengono fatti i primi tentativi per risolverlo (b) il problema viene messo da parte per dedicarsi ad altre attività (c) la soluzione del problema viene in mente come un illuminazione improvvisa (d) il solutore si accerta che la soluzione trovata funzioni effettivamente. La teoria cognitivista (anni Sessanta) 3

4 Consideriamo il problema della Torre di Hanoi: [Problema della Torre di Hanoi] Disegnate una tavoletta in cui sono infissi tre pioli. Nel primo piolo sono infilati, in ordine decrescente di diametro, un numero variabile di dischi forati al centro, così che il disco più grande sta sotto tutti gli altri ed il più piccolo sta in cima alla pila. Meta: trasportare tutti i dischi dal primo al terzo piolo, nello stesso ordine. Regole: si può spostare solo un disco alla volta; un disco più grande non può essere collocato sopra un disco più piccolo. Newell e Simon (1972) hanno sviluppato la teoria dello spazio problemico, che presentiamo ora con riferimento al problema della Torre di Hanoi. Quando le persone risolvono un problema si rappresentano mentalmente lo stato iniziale del problema (tutti i dischi sono collocati sul primo piolo) e lo stato finale del problema (tutti i dischi sono infilati sull ultimo piolo nello stesso ordine). Per passare dallo stato iniziale a quello finale, passano attraverso una serie di stati intermedi grazie all applicazione di operatori mentali (es. sposta il disco più piccolo dal primo al terzo piolo, sposta il disco intermedio dal primo al secondo piolo, ecc.). Gli operatori mentali specificano le mosse consentite e quelle non consentite (collocare un disco più grande sopra uno più piccolo). Nel passaggio da ciascuno stato al successivo sono possibili numerosi percorsi alternativi, ovvero un grande numero di mosse diverse. Per spostarsi in modo efficiente da uno stato all altro, cioè per scegliere la mossa che, ad ogni stato, consente di avvicinarsi il più possibile allo stato finale, le persone usano delle strategie o euristiche. Le euristiche sono procedure approssimate, che non specificano ogni azione, ma guidano la ricerca e la sequenza delle azioni da fare. A differenza degli algoritmi, che sono serie di regole esplicite che, seguite in modo sistematico, portano definitivamente alla soluzione del problema, le euristiche non garantiscono di arrivare alla soluzione, ma se hanno successo implicano un risparmio di tempo e fatica. Uno dei metodi euristici più utilizzati è l analisi mezzi- fini, che consiste nei passi seguenti. (a) Notare le differenze tra stato attuale e stato finale. Ad es. se il solutore del problema della torre di Hanoi si trova al seguente stato: INSERIRE FIGURA 1 rileva che il disco piccolo è sul primo piolo invece di essere sul terzo. 4

5 (b) Creare una sotto-meta, per ridurre la differenza tra i due stati. In questo caso, spostare il disco piccolo dal primo al terzo piolo. (c) Selezionare un operatore che risolverà questa sotto-meta. In questo caso, prendere il disco piccolo e metterlo sul terzo piolo. L applicazione di un algoritmo a questo stato del problema comporterebbe di analizzare sistematicamente tutte le mosse consentite: spostare il disco piccolo sul secondo piolo, spostare il disco intermedio sul secondo piolo, spostare il disco piccolo sul terzo piolo. Solo dopo averle analizzate tutte, verrebbe scelta l ultima di queste mosse perché consente la soluzione. La risoluzione del problema della Torre di Hanoi, richiede un minimo di sette spostamenti o mosse. Essi sono illustrati in figura 2. INSERIRE FIGURA 2 Valutazione delle teorie sulla risoluzione di problemi Rispetto alle teorie illustrate, non possiamo dire che ce ne siano di giuste e di sbagliate. Nel risolvere problemi procediamo talvolta per tentativi ed errori, talvolta grazie ad un insight che ci consente di vedere una soluzione non considerata prima, talvolta attraverso l uso di strategie euristiche. Il merito della teoria della Gestalt è stato quello di mostrare che nel pensiero umano vi sono aspetti che vanno oltre la riproduzione di soluzioni già note. Anche se il tempo migliore per la scuola della Gestalt è ormai passato, i concetti di fissità funzionale, insight e ristrutturazione continuano a rivestire un ruolo importante nelle moderne teorie cognitiviste sull elaborazione di informazioni. Queste ultime si sono affermate per la loro capacità di predire in modo adeguato ciò che le persone fanno quando cercano la soluzione di un problema. Esse sono state applicate con successo a problemi ben definiti (vedi il paragrafo seguente) come quello della Torre di Hanoi, ma è necessario ancora molto lavoro per estenderle a problemi mal definiti quali quelli che normalmente si incontrano nel mondo reale. 1.2 Fattori rilevanti nella risoluzione di problemi 5

6 Nella risoluzione di un problema entrano in gioco numerosi fattori; in particolare risultano rilevanti le caratteristiche del problema, le caratteristiche del solutore e la loro interazione. Consideriamo separatamente questi fattori. Caratteristiche del problema Una prima distinzione riguarda problemi ben definiti e problemi mal definiti. Un problema è ben definito quando la situazione da cui si parte, la situazione a cui si deve arrivare e le mosse che sono consentite per raggiungere la soluzione sono specificate in modo chiaro. Problemi ben definiti sono i rompicapi: si pensi ai giochi delle riviste di enigmistica, a molti dei problemi usati nei test di ammissione all università e nella selezione del personale, o più specificamente al problema della Torre di Hanoi presentato nel paragrafo precedente. Al contrario, un problema è mal definito quando le situazioni iniziali e finali sono incerte o non chiare, e le mosse possibili devono essere scoperte. I problemi che incontriamo nella vita di tutti i giorni sono di solito mal definiti. Supponiamo di aver dimenticato le chiavi del nostro appartamento al suo interno. La situazione iniziale comprenderà senz altro le chiavi e l appartamento, ma può comprendere anche il pompiere, il falegname, l amico muscoloso in grado di sfondare la porta e così via. La situazione finale sarà identificata col riuscire ad entrare nell appartamento, ma questa situazione andrà ulteriormente definita sulla base delle nostre esigenze e possibilità, per esempio possiamo scegliere di entrare senza fare troppi danni, ma ancora si tratta di una definizione che richiede ulteriori specificazioni. Le mosse possibili sono anch esse numerose e sta a noi decidere quali riteniamo adeguate e quali no; per esempio possiamo decidere che sfondare la porta non è una mossa adeguata per le spese che questo comporta. Una seconda distinzione riguarda problemi che richiedono conoscenza dominio generale, cioè conoscenza delle strategie e dei metodi che si applicano a molti tipi di problemi, e problemi che richiedono conoscenza dominio specifica, cioè conoscenza relativa al dominio entro cui il problema si applica. I rompicapi di cui sopra richiedono di solito conoscenza dominio generale: per esempio, nel problema della Torre di Hanoi non ci è richiesta alcuna conoscenza specifica rispetto alle torri o a i pioli, ciò che ci serve è ipotizzare spostamenti, prevedere mentalmente le loro conseguenze, trovare la strategia che ci consente di raggiungere la situazione finale il più rapidamente possibile. Si tratta dunque di abilità 6

7 richieste dalla maggior parte dei problemi, che non hanno a che vedere col contenuto del problema in questione. Al contrario, il gioco degli scacchi o un problema di fisica richiedono conoscenza relativa a quello specifico dominio: per giocare a scacchi bisogna conoscere le possibili configurazioni delle pedine sulla scacchiera e, se si è bravi, ricordare quali sono le mosse migliori a partire da una certa configurazione; per risolvere un problema di fisica occorre avere nozioni circa la massa, la forza, la gravità e le loro relazioni. Caratteristiche del solutore Di fronte a problemi che richiedono solo conoscenza dominio generale, i solutori possono rivelarsi più o meno abili nel raggiungere la conclusione in base alla loro abilità intellettiva. Di fronte a problemi che richiedono conoscenza dominio specifica, invece, la differenza tra un buon solutore e un cattivo solutore dipende dalla quantità di conoscenza che questi possiede rispetto all area o dominio del problema. Sulla base della conoscenza specifica posseduta, definita expertise, possiamo distinguere solutori novizi, che hanno poca conoscenza specifica, e solutori esperti, che, grazie all esperienza maturata nel dominio in questione, possiedono una notevole conoscenza specifica. Pensiamo per esempio alla differente abilità di un giocatore di scacchi alle prime armi, rispetto ad un giocatore esperto (vedi L acquisizione di competenze specifiche nel paragrafo seguente). Un altra variabile relativa al solutore riguarda la sua esperienza precedente con problemi analoghi a quello che si trova ad affrontare. Se il solutore ha incontrato in passato problemi che avevano la stessa struttura di quello che si trova ad affrontare, può utilizzare le strategie impiegate in passato per risolvere il problema in corso (vedi La risoluzione di problemi per analogia nel paragrafo seguente). 1.3 Ambiti di ricerca L acquisizione di competenze specifiche Una domanda che gli studiosi della risoluzione di problemi si sono posti è: come si diventa esperti? Diventare esperti significa acquisire molta conoscenza specifica per il dominio in cui si intende operare. Anderson (1982) ha sviluppato una teoria sullo sviluppo di abilità specifiche, secondo cui l acquisizione di abilità consiste nel passare dall uso di 7

8 conoscenza dichiarativa all uso di conoscenza procedurale. Supponiamo di esserci appena iscritti alla scuola guida. Nelle prime lezioni l insegnante di guida ci darà una serie di istruzioni: per accelerare o frenare devi usare il piede destro, per cambiare marcia devi prima premere la frizione col piede sinistro e poi inserire la marcia col cambio manuale, e così via. Durante queste prime esperienze di guida, procederemo pensando a queste istruzioni, e ci capiterà di ripetercele mentalmente prima di applicarle; per esempio, quando dobbiamo cambiare marcia penseremo <<se devo cambiare marcia, allora devo prima premere la frizione e questo si fa col piede sinistro>>. Applicare le istruzioni che ci sono state fornite significa usare conoscenza dichiarativa. Tuttavia, con il ripetersi delle esperienze alla guida, impareremo a procedere senza dover più ricordare a noi stessi le istruzioni: per esempio, di fronte alla necessità di cambiare marcia, premeremo la frizione senza dover pensare di farlo e a come farlo. Ciò significa che è avvenuta una proceduralizzazione: l applicazione ripetuta della conoscenza dichiarativa relativa, in questo caso, al cambiare marcia è stata trasformata in una procedura tale che, ogni volta che ci troviamo nella condizione <<devi cambiare marcia>>, l azione necessaria a questo scopo verrà eseguita velocemente e in modo automatico, senza più richiedere un pensiero cosciente. Siamo passati ad usare conoscenza procedurale. La risoluzione di problemi per analogia Abbiamo detto che se il solutore ha incontrato in precedenza problemi analoghi a quello che si trova ad affrontare, potrebbe far ricorso alle medesime strategie. Due problemi si dicono analoghi quando sono strutturalmente simili, anche se hanno caratteristiche superficiali diverse e appartengono a domini diversi. Un esempio chiarirà la questione. Supponiamo che il nostro ipotetico solutore si sia trovato di fronte al problema seguente: [Problema della fortezza] Al centro di un territorio si trova una fortezza; dalla fortezza si dipartono molte strade. Un generale vuole distruggere la fortezza con il suo esercito. Il problema del generale è questo: per distruggere la fortezza deve usare l intero esercito, ma poiché tutte le strade di accesso alla fortezza sono minate esse esploderebbero nel momento in cui un intero esercito passasse sopra le mine, e distruggerebbero quindi anche l esercito e i villaggi vicini; un piccolo gruppo dell esercito non farebbe esplodere le mine, ma non sarebbe efficace per distruggere la fortezza. Cosa può fare il generale? 8

9 e poniamo che il solutore abbia raggiunto, o gli sia stata illustrata, una valida conclusione, come la seguente: [Soluzione del problema della fortezza] Il generale divide l esercito in piccoli gruppi. Dispone ciascun gruppo su una strada diversa. I piccoli gruppi convergono simultaneamente alla fortezza. In tal modo l esercito distrugge la fortezza. Supponiamo ora che gli venga presentato il problema seguente: [Problema della radiazione] Un paziente ha un tumore inoperabile allo stomaco. Il medico decide di distruggere il tumore usando un fascio di radiazioni. Il problema del medico è questo: per distruggere il tessuto malato deve usare raggi ad alta intensità, ma questi distruggerebbero anche i tessuti sani che circondano il tumore; raggi a bassa intensità non danneggerebbero i tessuti sani, ma il tumore non verrebbe eliminato. Cosa può fare il medico? Il problema della fortezza e quello della radiazione sono superficialmente diversi e appartengono uno al dominio della medicina, l altro al domino militare; tuttavia, la struttura dei due problemi è la medesima. Infatti, in entrambi i casi si tratta di usare una forza per distruggere un obiettivo centrale, tale forza deve essere sufficientemente intensa, ma non la si può applicare lungo un unico percorso. Pertanto, dato che la meta, le risorse e vincoli dei due problemi sono simili, il solutore che ha già affrontato il problema della fortezza può astrarre il piano di soluzione là adottato (soluzione della <<convergenza>>: applicare forze deboli simultaneamente lungo molti percorsi che convergano sull obiettivo) e raggiungere così la soluzione del problema della radiazione: [Soluzione del problema della radiazione] Il medico divide i raggi in fasci a bassa intensità. Dispone l emissione di raggi a bassa intensità lungo varie direzioni intorno al corpo del paziente. I raggi a bassa intensità convergono simultaneamente sul tumore. In tal modo i raggi distruggono il tumore. Ma le persone, normalmente, tendono a risolvere problemi attraverso l analogia? Tendono, in altre parole, a trasferire l apprendimento da un dominio ad un altro? Per rispondere a questa domanda sono stati condotti alcuni esperimenti. In uno di questi, i soggetti sperimentali venivano divisi in tre gruppi. Al gruppo 1 veniva presentato il racconto della fortezza (cioè il problema della fortezza e la sua soluzione), e poi il problema della radiazione, 9

10 e veniva detto che per risolvere il problema della radiazione avrebbero potuto utilizzare il racconto della fortezza. Al gruppo 2 veniva presentato il racconto della fortezza, e poi il problema della radiazione, ma non veniva detto alcunché su un possibile legame tra l uno e l altro. Al gruppo 3 veniva presentato solo il problema della radiazione. A tutti i gruppi era richiesto di risolvere il problema della radiazione. I soggetti che hanno raggiunto la soluzione della <<convergenza>> sono stati: il 60% nel gruppo 1; il 20% nel gruppo 2; il 10% nel gruppo 3. Questi risultati mostrano che le persone sono in grado di usare un racconto in modo analogico per risolvere un problema, cioè riescono a confrontare gli aspetti della situazione iniziale del problema con quelli del racconto, e a trasferire la conoscenza da un dominio all altro (infatti, il 60% dei soggetti a cui era stato suggerito di usare l analogia per raggiungere la conclusione è riuscito a farlo). E l uso dell analogia li aiuta notevolmente nella soluzione di problemi (infatti, il 60% dei soggetti a cui era stato suggerito di usare l analogia ha raggiunto la soluzione, mentre solo il 10% dei soggetti che non avevano la possibilità di usare l analogia ha raggiunto la conclusione). Tuttavia, le persone non sembrano usare l analogia in modo spontaneo, cioè quando non venga loro esplicitamente suggerito; sembrano, cioè, avere difficoltà a riconoscere spontaneamente le somiglianze tra problemi (infatti, solo il 20% dei soggetti a cui non era stata suggerita un analogia tra i due problemi è riuscito a coglierla). 2. Il ragionamento Dato un insieme di osservazioni o descrizioni del mondo (premesse), in che modo riusciamo a inferire informazioni nuove (conclusioni)? Considereremo prima i due fondamentali tipi di ragionamento, deduttivo e induttivo, e i principali tipi di compito a cui si applicano; vedremo poi le principali correnti teoriche che cercano di spiegare come avvengono i processi di ragionamento. 2.1 Il ragionamento deduttivo 10

11 Nel ragionamento deduttivo si parte da affermazioni generali ritenute vere per giungere ad una conclusione necessariamente vera. Per esempio: Premessa 1 (affermazione generale): I pesci fuori dall acqua muoiono Premessa 2 (asserzione categorica): Fishy è un pesce Conclusione (su caso particolare): Fishy fuori dall acqua muore. Il ragionamento deduttivo fornisce certezze. Dato che la conclusione si limita ad esplicitare informazioni già contenute in modo implicito nelle premesse, se le premesse sono vere ne segue una conclusione necessariamente vera. Nello studio del ragionamento, molte ricerche si sono concentrate sul ragionamento deduttivo: infatti, per la sua caratteristica di fornire conclusioni valide, consente di valutare le conclusioni tratte dai soggetti sottoposti all'esperimento come giuste o sbagliate. L analisi degli errori compiuti dai soggetti dà utili indicazioni sul loro modo di ragionare. In particolare, gli esperimenti sul ragionamento consistono per la maggior parte nel presentare ai soggetti sperimentali: compiti con sillogismi lineari, compiti con sillogismi categoriali, compiti con proposizioni, il compito di selezione di Wason. Il ragionamento con sillogismi lineari (o ragionamento relazionale) I sillogismi sono argomentazioni che consistono di due premesse e di una conclusione. Nei compiti con sillogismi lineari (o compiti relazionali) le premesse esprimono relazioni lineari tra elementi. Tali relazioni possono essere di tipo spaziale (alla destra/sinistra di; sopra/sotto a ), relative a ordini di altezza (più alto/basso di), relativi a ordini di specifiche qualità (più ricco/povero di; più giovane/vecchio di ), e così via. Per esempio: Premessa 1: Premessa 2: Gabriella è alla destra di Francesca Francesca è alla destra di Rita La conclusione dovrà esplicitare le relazioni contenute solo in modo implicito nelle premesse. In questo caso, la relazione implicita è quella tra Rita e Gabriella: le premesse non dicono nulla di esplicito su tale relazione, ma collegando la prima alla seconda premessa attraverso l uso del termine medio, cioè quello che ricorre in entrambe le premesse (Francesca), è possibile trarre la conclusione: 11

12 Conclusione: Rita è alla sinistra di Gabriella. Il ragionamento con sillogismi categoriali Nei compiti con sillogismi categoriali le premesse esprimono l appartenenza dei termini (persone/oggetti) a categorie. Ad esempio, date le premesse seguenti: Prima premessa: Seconda premessa: Tutte le Bibite sono Analcoliche Tutte le Coca-cola sono Bibite si può derivare la conclusione: Conclusione: Tutte le Coca-cola sono Analcoliche Anche qui, la conclusione indica la relazione non esplicitata nelle premesse, in questo caso la relazione tra le Coca-cola e la proprietà di essere Analcoliche; tale conclusione è raggiunta collegando le due premesse attraverso l uso del termine medio (quello che, ricorrendo due volte, connette le due premesse), in questo caso Bibite. I sillogismi hanno due caratteristiche fondamentali: il modo e la figura. Il modo di ogni premessa è indicato dal tipo di quantificatore utilizzato. Al posto di usare il quantificatore universale affermativo tutti, si può usare il quantificatore universale negativo nessuno, il quantificatore particolare affermativo alcuni, il quantificatore particolare negativo alcuni non. La figura riguarda invece la posizione dei tre termini all interno delle premesse. Il termine medio (B) può trovarsi in quattro posizioni diverse, che danno origine alle quattro possibili figure del sillogismo: A B B A A B B A B C C B C B B C Quindi, le due premesse possono dare origine a 64 sillogismi (4 modi della prima premessa x 4 modi della seconda premessa x 4 figure). Di questi, solo 27 hanno una conclusione valida; 12

13 gli altri si definiscono NVC (no valid conclusion) in quanto non si può dire alcunché sulla relazione tra gli elementi non esplicitamente collegati. Il ragionamento proposizionale Le premesse esprimono relazioni tra proposizioni. Tali relazioni sono espresse attraverso l uso di connettivi, quali la congiunzione e, la disgiunzione o, il bicondizionale solo se allora, il condizionale se allora. Prendiamo ad esempio il condizionale se allora: Premessa 1 (affermazione condizionale): Premessa 2 (affermazione categorica): Conclusione: Se piove, allora Mauro si bagna Piove Mauro si bagna Questa inferenza è molto semplice e la maggior parte delle persone riesce a trarla senza difficoltà. Ma prendiamo la stessa premessa condizionale Se piove, allora Mauro si bagna seguita da Non piove. Quale conclusione è possibile trarre? Perché? La conclusione Mauro non si bagna non è valida perché la premessa dice se piove e non solo se piove, cioè la pioggia non è posta come l unica causa possibile perché Mauro si bagni. Ci possono essere altri eventi, ad esempio la signora che innaffia i fiori distrattamente, a poter bagnare Mauro. Per il condizionale se allora, come per tutti i connettivi, è possibile costruire una tavola di verità, rappresentazione logica che descrive i casi in cui la proposizione è vera e i casi in cui è falsa. La tavola di verità del condizionale è la seguente: INSERIRE TABELLA 1 Il compito di selezione di Wason Si tratta di un compito ipotetico-deduttivo, dove cioè è necessario non solo fare inferenze deduttive ma anche generare ipotesi e valutarne le conseguenze. Il compito di selezione di Wason (1966) è stato realizzato sia in una versione astratta che in una versione concreta. Presenterò le due versioni del compito (modificate nel contenuto rispetto all originale): provate a trovare la conclusione corretta; troverete di seguito le risposte corrette e il perché. Nella versione astratta ai soggetti vengono mostrate le seguenti quattro carte: 13

14 E B 4 7 Si dice al soggetto: Ciascuna carta porta stampata una lettera su di una lato e un numero sull altro lato.volta le carte che ritieni necessarie e sufficienti per controllare la regola: <<Se da un lato c è una vocale, dall altro lato c è un numero pari>>. Nella versione concreta ai soggetti vengono mostrate le seguenti quattro buste: Si dice al soggetto: Ogni busta può essere chiusa o aperta, ed avere un francobollo da 800 lire o da 500 lire. Immagina di lavorare in un ufficio postale e dover scoprire se qualcuna delle buste viola la regola seguente: <<Se una busta è chiusa, deve avere un francobollo da 800 lire>>. Volta le buste che ritieni necessarie e sufficienti per controllare la regola. Nella versione astratta, la risposta corretta è di girare solo due carte: la carta E e la carta 7. Infatti se dietro la carta E c è un numero dispari, la regola è falsa; così, se dietro la carta 7 c è una vocale, la regola è falsa: qualunque carta che abbia una vocale su lato e un numero dispari sull altro viola la regola. Invece, scegliere la carta 4 e la carta B non serve perché la regola dice se c è una vocale, allora c è un numero pari e non solo se c è una vocale, per cui dietro la carta 4 potrebbe esserci sia una vocale che una consonante, così come dietro la carta B potrebbe esserci sia un numero dispari che un numero pari (vedi tavola di verità del condizionale). Per gli stessi motivi, nella versione concreta, le buste da controllare sono: la busta chiusa e la busta con francobollo da 500 lire. 2.2 Il ragionamento induttivo 14

15 Nel ragionamento induttivo si parte da osservazioni particolari per trarne un principio generale. Per esempio: Premessa (basata su osservazioni particolari): Conclusione (principio generale): Tutti gli universitari che ho conosciuto hanno conseguito la laurea Tutti gli universitari conseguono la laurea. Il ragionamento induttivo non fornisce certezze. Dato che le premesse si basano su casi specifici, in certe circostanze la conclusione può rivelarsi falsa (infatti, alcuni universitari non si laureano). Le conclusioni quindi non sono necessariamente vere; esse possono essere solo plausibili o implausibili. La plausibilità dipende, da una parte, dalla veridicità, rappresentatività e generalizzabilità delle premesse; dall altra, dalle conoscenze che chi compie l inferenza ha relativamente alla situazione su cui sta ragionando. Dire una conclusione è plausibile equivale a dire che è probabilmente vera. Riprendendo la conclusione circa gli universitari, essa dovrebbe quindi essere enunciata non come certa ma come probabile: Conclusione (principio generale): E probabile che tutti gli universitari conseguano la laurea. In questo senso, il ragionamento induttivo ha natura probabilistica (per una trattazione del ragionamento probabilistico 1 vedi La stima di probabilità nel paragrafo 3). Nonostante l incertezza insita nel ragionamento induttivo, esso è il tipo di ragionamento più usato nella vita di tutti i giorni. Infatti, consente di fare generalizzazioni sia rispetto a fenomeni naturali che a comportamenti sociali. In particolare, consente di creare descrizioni di stati di cose e, sulla base di queste, di formulare spiegazioni (perché succede una certa cosa? qual è la sua causa?), giudizi (soprattutto nel valutare comportamenti sociali), 1 Una precisazione sul ragionamento probabilistico. Abbiamo detto che le inferenze induttive sono, o dovrebbero essere, sempre formulate in termini probabilistici. D altra parte, però, le inferenze probabilistiche possono essere sia deduttive che induttive. In generale, i compiti solitamente utilizzati nello studio del ragionamento probabilistico, come per esempio le stime di probabilità, si possono dire a metà strada tra induzione e deduzione. Sono induttivi nel senso che i dati del compito sono costituiti da una serie di eventi specifici che il soggetto deve valutare al fine di estrarre una condizione più generale; tuttavia, i processi attraverso cui il soggetto giunge alla risoluzione del compito possono essere deduttivi, cioè se il soggetto applica le correte strategie di inferenza giunge ad una stima di probabilità necessariamente corretta. 15

16 previsioni. E inoltre alla base della formazione di categorie. Consideriamo più nel dettaglio le generalizzazioni a partire da asserzioni particolari e la formazione di categorie. Il ragionamento su asserzioni particolari Nei compiti sullo studio del ragionamento induttivo, spesso viene richiesto ai soggetti di valutare la plausibilità o implausibilità di generalizzazioni come: 1. Premesse: Thomas è un gatto Thomas ha la coda Conclusione: Tutti i gatti hanno la coda 2. Premesse: Thomas è un gatto Thomas ha un dente rotto Conclusione: Tutti i gatti hanno un dente rotto Tali compiti evidenziano il ruolo della conoscenza generale nel ragionamento induttivo. Infatti, è la nostra conoscenza generale sui gatti che ci permette di valutare la conclusione in (1) come plausibile e la conclusione in (2) come implausibile. La categorizzazione Al fine di organizzare le informazioni che ci provengono dal mondo esterno, tendiamo a formare delle categorie. Una categoria è un insieme di oggetti distinti che vengono raggruppati per somiglianza di struttura o di funzioni; si pensi per esempio a categorie naturali come <<animali>>, a categorie di artefatti come <<mobili>>, o a categorie sociali come <<il gruppo di volontariato>>. La categorizzazione è un processo induttivo: a partire da una serie di esempi o casi che condividono certe proprietà, formiamo una categoria più generale. Ma quali sono le proprietà che questi elementi devono condividere affinché li si raggruppi nella medesima categoria? Secondo la teoria degli attributi comuni proposta da Bruner e colleghi (1956), gli esseri umani costruiscono le categorie del mondo definendo una serie di attributi necessari e sufficienti per ciascuna di esse. Per esempio, si immagini un bambino alle prese con un librogioco relativo all apprendimento di forme geometriche. Prima vengono presentate una serie di figure geometriche con i relativi nomi; per esempio: 16

17 INSERIRE FIGURA 3 Poi vengono presentate altre figure geometriche, come per esempio: INSERIRE FIGURA 4 A questo punto, si chiede al bambino di indicare i triangoli nella fig. 4. Ecco cosa succede nella mente del bambino secondo la teoria degli attributi comuni. Nella fig. 3 il bambino incontra una serie di esemplari diversi di triangolo e da questi estrae le caratteristiche che sono proprie dei triangoli, ovvero che sono formati da tre linee, che queste linee sono rette e che insieme formano una figura chiusa. Egli si crea così la categoria <<triangolo>>, definendola attraverso quelle caratteristiche che sono comuni a tutti i triangoli che ha incontrato e, nel loro insieme, diverse rispetto a quelle delle altre figure. Passando alla figura 4 il bambino valuta le figure geometriche presentate: per ogni figura, decide di farla rientrare nella categoria dei triangoli se essa possiede tutte le caratteristiche specifiche di quella categoria. Secondo la teoria dei prototipi proposta da Rosh (1977), invece, le categorie vengono definite sulla base di una somiglianza di famiglia: i membri di una categoria hanno qualcosa in comune, tale che certe caratteristiche sono presenti in alcuni membri ma possono mancare in altri, che non sono per questo esclusi dalla categoria. Ogni categoria possiede un prototipo, cioè un esemplare tipico che costituisce il migliore esempio della categoria. La probabilità di categorizzare un oggetto come appartenente ad una categoria o ad un altra dipende dal grado di somiglianza con il prototipo della categoria. Per esempio, se si pensa alla categoria <<uccelli>> vengono immediatamente alla mente il pettirosso, il piccione o l aquila, in quanto esemplari prototipici della categoria; tuttavia, se ci viene chiesto se il pinguino o lo struzzo siano uccelli siamo in grado di rispondere di sì, anche se non condividono con gli altri uccelli caratteristiche importanti quali la capacità di volare. (Per le teorie sulla categorizzazione confronta il capitolo sulla percezione e quello su linguaggio e comunicazione nel presente libro). I compiti usati nello studio del ragionamento induttivo relativamente alla formazione di categorie spesso consistono nel presentare ai soggetti un insieme di stimoli (di solito figure 17

18 geometriche o oggetti inesistenti) e nel chiedere loro quale sia la regola che consente di raggruppare tali stimoli. 2.3 Teorie sul ragionamento Nel panorama contemporaneo è possibile individuare alcune principali correnti teoriche che propongono spiegazioni diverse circa il modo in cui le persone passano da un insieme di premesse ad una conclusione: teorie delle regole astratte (o della logica mentale), teorie delle regole concrete, teoria dei modelli mentali. Le teorie delle regole astratte I principali sostenitori sono Braine (1978) e Rips (1983). Secondo questi studiosi, la mente umana è dotata di un set di regole logiche. Quando ci troviamo di fronte alle premesse di un argomentazione, la regola pertinente si attiva, viene applicata alle premesse in questione così che possiamo trarne una conclusione valida. Le regole della nostra mente sono astratte nel senso che non tengono conto del contenuto delle premesse bensì si limitano a manipolare le premesse in modo sintattico. Ad esempio, supponiamo che ad un soggetto vengano presentate le premesse disgiuntive: Prima premessa: Seconda premessa: O Roma è la capitale d Italia, o Torino è la capitale d Italia Torino non è la capitale d Italia che possiamo rappresentare con la notazione seguente: O Roma è la capitale d Italia, o Torino è la capitale d Italia Torino non è la capitale d Italia x dove la linea orizzontale è la linea di inferenza: al di sopra sono riportate le premesse; al di sotto si riporterà la conclusione, per il momento rappresentata da un incognita. Vediamo la sequenza di passi necessari a trarre la conclusione. 18

19 (1) Traduzione dal linguaggio naturale al linguaggio logico: le premesse vengono tradotte in uno schema logico sulla base della loro forma p o q non q x Ciò che è rilevante è il modo in cui le proposizioni sono correlate (forma o sintassi), determinato dal simbolo che le lega (disgiunzione o). Infatti, nello schema non rimane alcuna traccia del contenuto delle proposizioni. (2) Attivazione della regola di inferenza pertinente: lo schema logico della disgiunzione, contenuto nella nostra mente, si attiva p o q non q p (3) Raggiungimento della conclusione: la proposizione decodificata come q viene inserita nello schema e così si può stabilire la conclusione Conclusione: Roma è la capitale d Italia. Secondo le teorie delle regole astratte, per ogni set di premesse esiste una regola logica che consente di compiere inferenze. Vediamo quali sono i problemi di queste teorie. Se nella mente delle persone fossero contenute regole logiche, allora le persone dovrebbero sempre compiere inferenze valide. Ma ciò non avviene: spesso le persone traggono conclusioni sbagliate. Come si spiegano tali deviazioni dalla logica? La risposta dei sostenitori delle teorie delle regole formali è: i soggetti compiono un interpretazione errata delle premesse. Nel ragionamento quotidiano intervengono fattori estranei alla logica che si configurano come possibili fonti di interferenza: nel processo di comprensione, vengono fatte delle assunzioni ragionevoli ma in contraddizione con la logica che modificano le premesse. 19

20 Quindi, i vari schemi di ragionamento vengono correttamente attivati ed applicati ma, dato che l informazione in entrata è sbagliata, anche informazione in uscita sarà sbagliata. Tuttavia, il problema rimane: le teorie delle regole astratte non spiegano come questa incongruenza interpretativa agisca sulla produzione dei risultati. In altre parole, non spiegano come avvenga la comprensione delle premesse. C è un altro problema con queste teorie: se le persone usassero regole logiche che agiscono sulla forma delle premesse indipendentemente dal contenuto, allora dovrebbero avere le medesime prestazioni quando uno stesso compito viene presentato con contenuti diversi. Ma si è visto, per esempio, nel compito di selezione di Wason che le prestazioni dei soggetti sono influenzate dal contenuto: mentre quasi tutti sbagliano nella versione astratta del compito (lettere alfabetiche e numeri), la maggior parte fornisce le carte corrette nella versione concreta (buste chiuse e aperte con diversa affrancatura). Ciò mette in crisi le teorie delle regole astratte. Infine, queste teorie possono applicarsi solo al ragionamento deduttivo; nel ragionamento induttivo, come abbiamo visto, non bastano regole preconfezionate, bensì è fondamentale anche l uso della conoscenza generale. Le teorie delle regole concrete I principali sostenitori sono Cheng e Holyoak (1985). Anche secondo questi autori, la mente umana è dotata di un set di regole logiche. Ma queste regole non sono astratte né applicabili a qualsiasi premessa. Esse sono concrete e specifiche per classi di situazioni. Ad esempio, la mente umana è dotata di regole concrete per le situazioni di permesso e di obbligo. Tali regole sono dette schemi pragmatici di ragionamento in quanto vengono attivate dagli aspetti pragmatici delle situazioni, cioè da necessità concrete della vita reale. Per esempio, la regola per le situazioni di permesso ha la forma Se un individuo esegue l azione X, allora deve soddisfare la precondizione Y ; essa viene attivata ed applicata ogni volta che la persona deve compiere o valutare un azione la cui esecuzione richiede il soddisfacimento di una data precondizione. Per portare prove a favore delle teorie delle regole concrete sono stati condotti diversi esperimenti, utilizzando il compito di selezione di Wason e sue varianti. Secondo i sostenitori delle teorie delle regole concrete, il fatto che i soggetti sbaglino nella versione astratta e facciano bene in quella concreta si spiega così. La versione concreta attiva lo schema di 20

Dall italiano alla logica proposizionale

Dall italiano alla logica proposizionale Rappresentare l italiano in LP Dall italiano alla logica proposizionale Sandro Zucchi 2009-10 In questa lezione, vediamo come fare uso del linguaggio LP per rappresentare frasi dell italiano. Questo ci

Dettagli

Didattica della matematica a.a. 2009-2010 IL LINGUAGGIO DEL PROBLEM SOLVING

Didattica della matematica a.a. 2009-2010 IL LINGUAGGIO DEL PROBLEM SOLVING Didattica della matematica a.a. 2009-2010 IL LINGUAGGIO DEL PROBLEM SOLVING IL PROBLEM SOLVING nella pratica didattica attività di soluzione di problemi Che cos è un problema? 3 Che cos è un problema?

Dettagli

MODULO 3 LEZIONE 23 FORMAZIONE DEL MOVIMENTO (SECONDA PARTE)

MODULO 3 LEZIONE 23 FORMAZIONE DEL MOVIMENTO (SECONDA PARTE) MODULO 3 LEZIONE 23 FORMAZIONE DEL MOVIMENTO (SECONDA PARTE) Contenuti Michelene Chi Livello ottimale di sviluppo L. S. Vygotskij Jerome Bruner Human Information Processing Teorie della Mente Contrapposizione

Dettagli

Appunti di Logica Matematica

Appunti di Logica Matematica Appunti di Logica Matematica Francesco Bottacin 1 Logica Proposizionale Una proposizione è un affermazione che esprime un valore di verità, cioè una affermazione che è VERA oppure FALSA. Ad esempio: 5

Dettagli

I n d i c e. 163 Appendice B Questionari su utilità e uso delle Strategie di Studio (QS1 e QS2)

I n d i c e. 163 Appendice B Questionari su utilità e uso delle Strategie di Studio (QS1 e QS2) I n d i c e 9 Introduzione 11 CAP. 1 I test di intelligenza potenziale 17 CAP. 2 La misura dell intelligenza potenziale nella scuola dell infanzia 31 CAP. 3 La misura dell intelligenza potenziale nella

Dettagli

CAMPO DI ESPERIENZA: IL SE E L ALTRO

CAMPO DI ESPERIENZA: IL SE E L ALTRO CAMPO DI ESPERIENZA: IL SE E L ALTRO I. Il bambino gioca in modo costruttivo e creativo con gli altri, sa argomentare, confrontarsi, sostenere le proprie ragioni con adulti e bambini. I I. Sviluppa il

Dettagli

Il mondo in cui viviamo

Il mondo in cui viviamo Il mondo in cui viviamo Il modo in cui lo vediamo/ conosciamo Dalle esperienze alle idee Dalle idee alla comunicazione delle idee Quando sono curioso di una cosa, matematica o no, io le faccio delle domande.

Dettagli

Definizione e struttura della comunicazione

Definizione e struttura della comunicazione Definizione e struttura della comunicazione Sono state date molteplici definizioni della comunicazione; la più semplice e comprensiva è forse questa: passaggio di un'informazione da un emittente ad un

Dettagli

Percorsi di matematica per il ripasso e il recupero

Percorsi di matematica per il ripasso e il recupero Giacomo Pagina Giovanna Patri Percorsi di matematica per il ripasso e il recupero 1 per la Scuola secondaria di secondo grado UNITÀ CMPIONE Edizioni del Quadrifoglio à t i n U 1 Insiemi La teoria degli

Dettagli

VALUTAZIONE AUTENTICA E APPRENDERE PER COMPETENZE

VALUTAZIONE AUTENTICA E APPRENDERE PER COMPETENZE E APPRENDERE PER COMPETENZE VALUTAZIONE INSEGNAMENTO APPRENDIMENTO E APPRENDERE PER COMPETENZE VALUTAZIONE VALUTARE GLI APPRENDIMENTI: UN PERCORSO A TRE STADI SIS Torino a.a. 2006/07 1 STADIO: LA VALUTAZIONE

Dettagli

E come può un corpo avere un anima? Wittgenstein e il gioco linguistico del mind-body problem

E come può un corpo avere un anima? Wittgenstein e il gioco linguistico del mind-body problem Comunicazione E come può un corpo avere un anima? Wittgenstein e il gioco linguistico del mind-body problem Lucia Bacci * lucia.bacci@unifi.it Come sostiene Rosaria Egidi in Wittgenstein e il problema

Dettagli

Dall italiano al linguaggio della logica proposizionale

Dall italiano al linguaggio della logica proposizionale Dall italiano al linguaggio della logica proposizionale Dall italiano al linguaggio della logica proposizionale Enunciati atomici e congiunzione In questa lezione e nelle successive, vedremo come fare

Dettagli

CAMPO DI ESPERIENZA: IL SE E L ALTRO

CAMPO DI ESPERIENZA: IL SE E L ALTRO CAMPO DI ESPERIENZA: IL SE E L ALTRO I. Il bambino gioca in modo costruttivo e creativo con gli altri, sa argomentare, confrontarsi, sostenere le proprie ragioni con adulti e bambini. I I. Sviluppa il

Dettagli

LA RICERCA DI DIO. Il vero aspirante cerca la conoscenza diretta delle realtà spirituali

LA RICERCA DI DIO. Il vero aspirante cerca la conoscenza diretta delle realtà spirituali LA RICERCA DI DIO Gradi della fede in Dio La maggior parte delle persone non sospetta nemmeno la reale esistenza di Dio, e naturalmente non s interessa molto a Dio. Ce ne sono altre che, sotto l influsso

Dettagli

Compiti di prestazione e prove di competenza

Compiti di prestazione e prove di competenza SPF www.successoformativo.it Compiti di prestazione e prove di competenza Maurizio Gentile www.successoformativo.it www.iprase.tn.it www.erickson.it Definizione 2 I compiti di prestazione possono essere

Dettagli

GRIGLIA DI OSSERVAZIONE E DI RILEVAZIONE DELLE ABILITA IN INGRESSO PER I TRE ANNI

GRIGLIA DI OSSERVAZIONE E DI RILEVAZIONE DELLE ABILITA IN INGRESSO PER I TRE ANNI GRIGLIA DI OSSERVAZIONE E DI RILEVAZIONE DELLE ABILITA IN INGRESSO PER I TRE ANNI INGRESSO Si mostra sereno Ricerca gli altri bambini Porta gli oggetti a scuola SERVIZI IGIENICI Ha il controllo sfinterico

Dettagli

La natura del linguaggio e il processo di acquisizione

La natura del linguaggio e il processo di acquisizione La natura del linguaggio e il processo di acquisizione Il bambino nasce con un patrimonio genetico e con una predisposizione innata per il linguaggio. Affinché ciò avvenga normalmente è necessario che

Dettagli

CAMPO DI ESPERIENZA IL SE E L ALTRO SCUOLA DELL INFANZIA ANNI 3

CAMPO DI ESPERIENZA IL SE E L ALTRO SCUOLA DELL INFANZIA ANNI 3 IL SE E L ALTRO ANNI 3 Si separa facilmente dalla famiglia. Vive serenamente tutti i momenti della giornata scolastica. E autonomo. Stabilisce una relazione con gli adulti e i compagni. Conosce il nome

Dettagli

1. Intorni di un punto. Punti di accumulazione.

1. Intorni di un punto. Punti di accumulazione. 1. Intorni di un punto. Punti di accumulazione. 1.1. Intorni circolari. Assumiamo come distanza di due numeri reali x e y il numero non negativo x y (che, come sappiamo, esprime la distanza tra i punti

Dettagli

SCUOLA PRIMARIA DI MONTE VIDON COMBATTE CLASSE V INS. VIRGILI MARIA LETIZIA

SCUOLA PRIMARIA DI MONTE VIDON COMBATTE CLASSE V INS. VIRGILI MARIA LETIZIA SCUOLA PRIMARIA DI MONTE VIDON COMBATTE CLASSE V INS. VIRGILI MARIA LETIZIA Regoli di Nepero Moltiplicazioni In tabella Moltiplicazione a gelosia Moltiplicazioni Con i numeri arabi Regoli di Genaille Moltiplicazione

Dettagli

John Dewey. Le fonti di una scienza dell educazione. educazione

John Dewey. Le fonti di una scienza dell educazione. educazione John Dewey Le fonti di una scienza dell educazione educazione 1929 L educazione come scienza indipendente Esiste una scienza dell educazione? Può esistere una scienza dell educazione? Ṫali questioni ineriscono

Dettagli

Lezione 10. La Statistica Inferenziale

Lezione 10. La Statistica Inferenziale Lezione 10 La Statistica Inferenziale Filosofia della scienza Secondo Aristotele, vi sono due vie attraverso le quali riusciamo a formare le nostre conoscenze: (1) la deduzione (2) l induzione. Lezione

Dettagli

Allegato A. Il profilo culturale, educativo e professionale dei Licei

Allegato A. Il profilo culturale, educativo e professionale dei Licei Allegato A Il profilo culturale, educativo e professionale dei Licei I percorsi liceali forniscono allo studente gli strumenti culturali e metodologici per una comprensione approfondita della realtà, affinché

Dettagli

la rilevazione degli apprendimenti INVALSI

la rilevazione degli apprendimenti INVALSI I quadri di riferimento: Matematica Il Quadro di Riferimento (QdR) per le prove di valutazione dell'invalsi di matematica presenta le idee chiave che guidano la progettazione delle prove, per quanto riguarda:

Dettagli

QUESTIONARIO SUGLI STILI DI APPRENDIMENTO

QUESTIONARIO SUGLI STILI DI APPRENDIMENTO QUESTIONARIO SUGLI STILI DI APPRENDIMENTO Le seguenti affermazioni descrivono alcune abitudini di studio e modi di imparare. Decidi in quale misura ogni affermazione si applica nel tuo caso: metti una

Dettagli

Supervisori che imparano dagli studenti

Supervisori che imparano dagli studenti Supervisori che imparano dagli studenti di Angela Rosignoli Questa relazione tratta il tema della supervisione, la supervisione offerta dagli assistenti sociali agli studenti che frequentano i corsi di

Dettagli

STRUMENTI DI ANALISI E DI INTERPRETAZIONE DEI PROBLEMI: LE TECNICHE DI PROBLEM SOLVING

STRUMENTI DI ANALISI E DI INTERPRETAZIONE DEI PROBLEMI: LE TECNICHE DI PROBLEM SOLVING STRUMENTI DI ANALISI E DI INTERPRETAZIONE DEI PROBLEMI: LE TECNICHE DI PROBLEM SOLVING Gianna Maria Agnelli Psicologa Clinica e Psicoterapeuta Clinica del Lavoro "Luigi Devoto Fondazione IRCCS Ospedale

Dettagli

Dai giochi del far finta ai giochi di ruolo e di simulazione

Dai giochi del far finta ai giochi di ruolo e di simulazione Università degli Studi di Udine Dai giochi del far finta ai giochi di ruolo e di simulazione Dott. Davide Zoletto Facoltà di Scienze della Formazione Il gioco del far finta Rappresentazione della realtà:

Dettagli

ISTITUTO COMPRENSIVO STATALE di BORGORICCO SUGGERIMENTI PER LA COMPILAZIONE DEL P.D.P. PER ALUNNI CON DISTURBI SPECIFICI DI APPRENDIMENTO

ISTITUTO COMPRENSIVO STATALE di BORGORICCO SUGGERIMENTI PER LA COMPILAZIONE DEL P.D.P. PER ALUNNI CON DISTURBI SPECIFICI DI APPRENDIMENTO SUGGERIMENTI PER LA COMPILAZIONE DEL P.D.P. PER ALUNNI CON DISTURBI SPECIFICI DI APPRENDIMENTO Il documento va compilato in forma digitale per poter ampliare gli spazi dello schema (ove necessario) e togliere

Dettagli

La fattoria delle quattro operazioni

La fattoria delle quattro operazioni IMPULSIVITÀ E AUTOCONTROLLO La fattoria delle quattro operazioni Introduzione La formazione dei bambini nella scuola di base si serve di numerosi apprendimenti curricolari che vengono proposti allo scopo

Dettagli

ALGEBRA I: CARDINALITÀ DI INSIEMI

ALGEBRA I: CARDINALITÀ DI INSIEMI ALGEBRA I: CARDINALITÀ DI INSIEMI 1. CONFRONTO DI CARDINALITÀ E chiaro a tutti che esistono insiemi finiti cioè con un numero finito di elementi) ed insiemi infiniti. E anche chiaro che ogni insieme infinito

Dettagli

Proof. Dimostrazione per assurdo. Consideriamo l insieme complementare di P nell insieme

Proof. Dimostrazione per assurdo. Consideriamo l insieme complementare di P nell insieme G Pareschi Principio di induzione Il Principio di Induzione (che dovreste anche avere incontrato nel Corso di Analisi I) consente di dimostrare Proposizioni il cui enunciato è in funzione di un numero

Dettagli

Lo sviluppo del linguaggio l idea di lettura e scrittura e il numero nella scuola dell infanzia Marialuisa Antoniotti Claudio Turello

Lo sviluppo del linguaggio l idea di lettura e scrittura e il numero nella scuola dell infanzia Marialuisa Antoniotti Claudio Turello Lo sviluppo del linguaggio l idea di lettura e scrittura e il numero nella scuola dell infanzia Marialuisa Antoniotti Claudio Lo sviluppo delle abilità numeriche La psicologia genetica (Piaget 1896-1980)

Dettagli

Ascrizioni di credenza

Ascrizioni di credenza Ascrizioni di credenza Ascrizioni di credenza Introduzione Sandro Zucchi 2014-15 Le ascrizioni di credenza sono asserzioni del tipo in (1): Da un punto di vista filosofico, i problemi che pongono asserzioni

Dettagli

al via 1 Percorsi guidati per le vacanze di matematica e scienze UNITÀ CAMPIONE Edizioni del Quadrifoglio Evelina De Gregori Alessandra Rotondi

al via 1 Percorsi guidati per le vacanze di matematica e scienze UNITÀ CAMPIONE Edizioni del Quadrifoglio Evelina De Gregori Alessandra Rotondi Evelina De Gregori Alessandra Rotondi al via 1 Percorsi guidati per le vacanze di matematica e scienze per la Scuola secondaria di primo grado UNITÀ CAMPIONE Edizioni del Quadrifoglio Test d'ingresso NUMERI

Dettagli

(accuratezza) ovvero (esattezza)

(accuratezza) ovvero (esattezza) Capitolo n 2 2.1 - Misure ed errori In un analisi chimica si misurano dei valori chimico-fisici di svariate grandezze; tuttavia ogni misura comporta sempre una incertezza, dovuta alla presenza non eliminabile

Dettagli

La prova di matematica nelle indagini IEA TIMSS e

La prova di matematica nelle indagini IEA TIMSS e PIANO DI INFORMAZIONE E FORMAZIONE SULL INDAGINE OCSE-PISA E ALTRE RICERCHE NAZIONALI E INTERNAZIONALI Seminario provinciale rivolto ai docenti del Primo Ciclo La prova di matematica nelle indagini IEA

Dettagli

Scuola primaria: obiettivi al termine della classe 5

Scuola primaria: obiettivi al termine della classe 5 Competenza: partecipare e interagire con gli altri in diverse situazioni comunicative Scuola Infanzia : 3 anni Obiettivi di *Esprime e comunica agli altri emozioni, sentimenti, pensieri attraverso il linguaggio

Dettagli

MATEMATICA. { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un numero x ed un numero y che risolvano entrambe le equazioni.

MATEMATICA. { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un numero x ed un numero y che risolvano entrambe le equazioni. MATEMATICA. Sistemi lineari in due equazioni due incognite. Date due equazioni lineari nelle due incognite x, y come ad esempio { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un

Dettagli

QUALE MATEMATICA NELLA SCUOLA DELL INFANZIA. Scuola dell Infanzia Don Milani Anni 2006/2007/2008 Ins. Barbara Scarpelli

QUALE MATEMATICA NELLA SCUOLA DELL INFANZIA. Scuola dell Infanzia Don Milani Anni 2006/2007/2008 Ins. Barbara Scarpelli QUALE MATEMATICA NELLA SCUOLA DELL INFANZIA Scuola dell Infanzia Don Milani Anni 2006/2007/2008 Ins. Barbara Scarpelli ESPERIENZE MATEMATICHE A PARTIRE DA TRE ANNI QUALI COMPETENZE? L avventura della matematica

Dettagli

Può la descrizione quantomeccanica della realtà fisica considerarsi completa?

Può la descrizione quantomeccanica della realtà fisica considerarsi completa? Può la descrizione quantomeccanica della realtà fisica considerarsi completa? A. Einstein, B. Podolsky, N. Rosen 25/03/1935 Abstract In una teoria completa c è un elemento corrispondente ad ogni elemento

Dettagli

VALUTAZIONE DINAMICA DEL POTENZIALE DI APPRENDIMENTO IN UN BAMBINO CON DISTURBO DELLO SPETTRO AUTISTICO

VALUTAZIONE DINAMICA DEL POTENZIALE DI APPRENDIMENTO IN UN BAMBINO CON DISTURBO DELLO SPETTRO AUTISTICO Fondamenti teorici Vygotskji Zona di Sviluppo Prossimale Feuerstein VALUTAZIONE DINAMICA DEL POTENZIALE DI APPRENDIMENTO IN UN BAMBINO CON DISTURBO DELLO SPETTRO AUTISTICO Esperienza di Apprendimento Mediato

Dettagli

SCHEDA DI PROGRAMMAZIONE DELLE ATTIVITA EDUCATIVE DIDATTICHE. Disciplina: Matematica Classe: 5A sia A.S. 2014/15 Docente: Rosito Franco

SCHEDA DI PROGRAMMAZIONE DELLE ATTIVITA EDUCATIVE DIDATTICHE. Disciplina: Matematica Classe: 5A sia A.S. 2014/15 Docente: Rosito Franco Disciplina: Matematica Classe: 5A sia A.S. 2014/15 Docente: Rosito Franco ANALISI DI SITUAZIONE - LIVELLO COGNITIVO La classe ha dimostrato fin dal primo momento grande attenzione e interesse verso gli

Dettagli

APPRENDIMENTO, LINGUAGGIO E PROBLEM SOLVING

APPRENDIMENTO, LINGUAGGIO E PROBLEM SOLVING Acta Medica Mediterranea, 2005, 21: 73 APPRENDIMENTO, LINGUAGGIO E PROBLEM SOLVING TATIANACANZIANI Università di Palermo - Professore a contratto di lingua Inglese- C.d.L. in Infermieristica- (Presidente:

Dettagli

Il principio di induzione e i numeri naturali.

Il principio di induzione e i numeri naturali. Il principio di induzione e i numeri naturali. Il principio di induzione è un potente strumento di dimostrazione, al quale si ricorre ogni volta che si debba dimostrare una proprietà in un numero infinito

Dettagli

Accuratezza di uno strumento

Accuratezza di uno strumento Accuratezza di uno strumento Come abbiamo già accennato la volta scora, il risultato della misurazione di una grandezza fisica, qualsiasi sia lo strumento utilizzato, non è mai un valore numerico X univocamente

Dettagli

Dalle scatole alle figure piane. Percorso di geometria Classe prima Scuola Primaria Rispescia a.s. 2014-2015

Dalle scatole alle figure piane. Percorso di geometria Classe prima Scuola Primaria Rispescia a.s. 2014-2015 Dalle scatole alle figure piane Percorso di geometria Classe prima Scuola Primaria Rispescia a.s. 2014-2015 Dalle Indicazioni nazionali per il curricolo Le conoscenze matematiche contribuiscono alla formazione

Dettagli

Logica del primo ordine

Logica del primo ordine Università di Bergamo Facoltà di Ingegneria Intelligenza Artificiale Paolo Salvaneschi A7_4 V1.3 Logica del primo ordine Il contenuto del documento è liberamente utilizzabile dagli studenti, per studio

Dettagli

Amministrazione, finanza e marketing - Turismo Ministero dell Istruzione, dell Università e della Ricerca PROGRAMMAZIONE DISCIPLINARE PER U. di A.

Amministrazione, finanza e marketing - Turismo Ministero dell Istruzione, dell Università e della Ricerca PROGRAMMAZIONE DISCIPLINARE PER U. di A. UdA n. 1 Titolo: Disequazioni algebriche Saper esprimere in linguaggio matematico disuguaglianze e disequazioni Risolvere problemi mediante l uso di disequazioni algebriche Le disequazioni I principi delle

Dettagli

RICERCA-AZIONE. l insegnamento riflessivo. Caterina Bortolani-2009

RICERCA-AZIONE. l insegnamento riflessivo. Caterina Bortolani-2009 RICERCA-AZIONE ovvero l insegnamento riflessivo Gli insegnanti sono progettisti.. riflettono sul contesto nel quale devono lavorare sugli obiettivi che vogliono raggiungere decidono quali contenuti trattare

Dettagli

Stadio della socializzazione, identità e immaginazione (3-6 anni) Dott.ssa Maria Cristina Theis

Stadio della socializzazione, identità e immaginazione (3-6 anni) Dott.ssa Maria Cristina Theis Stadio della socializzazione, identità e immaginazione (3-6 anni) Dott.ssa Maria Cristina Theis Obiettivo dell incontro - Descrivere la fase evolutiva del bambino (fase 3-6 anni). - Attivare un confronto

Dettagli

Programmazione educativo-didattica didattica anno scolastico 2014-2015 TECNOLOGIA CLASSE PRIMA PRIMARIA

Programmazione educativo-didattica didattica anno scolastico 2014-2015 TECNOLOGIA CLASSE PRIMA PRIMARIA Istituto Maddalena di Canossa Corso Garibaldi 60-27100 Pavia Scuola dell Infanzia Scuola Primaria Scuola Secondaria di 1 grado Programmazione educativo-didattica didattica anno scolastico 2014-2015 TECNOLOGIA

Dettagli

EQUAZIONI non LINEARI

EQUAZIONI non LINEARI EQUAZIONI non LINEARI Francesca Pelosi Dipartimento di Matematica, Università di Roma Tor Vergata CALCOLO NUMERICO e PROGRAMMAZIONE http://www.mat.uniroma2.it/ pelosi/ EQUAZIONI non LINEARI p.1/44 EQUAZIONI

Dettagli

Mario Polito IARE: Press - ROMA

Mario Polito IARE: Press - ROMA Mario Polito info@mariopolito.it www.mariopolito.it IMPARARE A STUD IARE: LE TECNICHE DI STUDIO Come sottolineare, prendere appunti, creare schemi e mappe, archiviare Pubblicato dagli Editori Riuniti University

Dettagli

TITOLO VALORE DI RIFERIMENTO.

TITOLO VALORE DI RIFERIMENTO. Istituto Comprensivo di Iseo a.s. 2012/2013 Progetto Di Casa nel Mondo - Competenze chiave per una cittadinanza sostenibile Gruppo lavoro Dott. Massetti Scuola Primaria Classi Terze TITOLO: I prodotti

Dettagli

Algebra di Boole ed Elementi di Logica

Algebra di Boole ed Elementi di Logica Algebra di Boole ed Elementi di Logica 53 Cenni all algebra di Boole L algebra di Boole (inventata da G. Boole, britannico, seconda metà 8), o algebra della logica, si basa su operazioni logiche Le operazioni

Dettagli

LA COMUNICAZIONE VERBALE E NON VERBALE. MODALITÀ DI COMUNICAZIONE EFFICACE ED INEFFICACE

LA COMUNICAZIONE VERBALE E NON VERBALE. MODALITÀ DI COMUNICAZIONE EFFICACE ED INEFFICACE LA COMUNICAZIONE VERBALE E NON VERBALE. MODALITÀ DI COMUNICAZIONE EFFICACE ED INEFFICACE LA COMUNICAZIONE La comunicazione è una condizione essenziale della vita umana e dell ordinamento sociale, poiché

Dettagli

I numeri relativi. Il calcolo letterale

I numeri relativi. Il calcolo letterale Indice Il numero unità I numeri relativi VIII Indice L insieme R Gli insiemi Z e Q Confronto di numeri relativi Le operazioni fondamentali in Z e Q 0 L addizione 0 La sottrazione La somma algebrica La

Dettagli

I. C. LENTINI LAURIA PROGETTO SPORTELLO D ASCOLTO PSICOLOGICO UNO SPAZIO PER PENSARE, PER ESSERE, PER DIVENTARE

I. C. LENTINI LAURIA PROGETTO SPORTELLO D ASCOLTO PSICOLOGICO UNO SPAZIO PER PENSARE, PER ESSERE, PER DIVENTARE ISTITUTO COMPRENSIVO STATALE di Sc. Materna Elementare e Media LENTINI 85045 LAURIA (PZ) Cod. Scuola: PZIC848008 Codice Fisc.: 91002150760 Via Roma, 102 - e FAX: 0973823292 I. C. LENTINI LAURIA PROGETTO

Dettagli

LICEO CLASSICO C. CAVOUR DISCIPLINA : FISICA PROGRAMMAZIONE DIDATTICA ED EDUCATIVA

LICEO CLASSICO C. CAVOUR DISCIPLINA : FISICA PROGRAMMAZIONE DIDATTICA ED EDUCATIVA PROGRAMMAZIONE DIDATTICA ED EDUCATIVA 1. OBIETTIVI SPECIFICI DELLA DISCIPLINA PROGRAMMAZIONE PER COMPETENZE Le prime due/tre settimane sono state dedicate allo sviluppo di un modulo di allineamento per

Dettagli

La ricerca non sperimentale

La ricerca non sperimentale La ricerca non sperimentale Definizione Ricerca osservazionale: : 1. naturalistica Ricerca osservazionale: : 2. osservatori partecipanti Ricerca d archiviod Casi singoli Sviluppo di teorie e verifica empirica

Dettagli

Lo sviluppo cognitivo e le teorie di riferimento di Jean Piaget Lev Semenovic Vygotskij Jerome Seymour Bruner

Lo sviluppo cognitivo e le teorie di riferimento di Jean Piaget Lev Semenovic Vygotskij Jerome Seymour Bruner Lo sviluppo cognitivo e le teorie di riferimento di Jean Piaget Lev Semenovic Vygotskij Jerome Seymour Bruner 1. Il concetto di sviluppo cognitivo. In Psicologia, per sviluppo cognitivo si intende lo sviluppo

Dettagli

QUARTA E QUINTA ISTITUTO TECNICO INDUSTRIALE

QUARTA E QUINTA ISTITUTO TECNICO INDUSTRIALE QUARTA E QUINTA ISTITUTO TECNICO INDUSTRIALE - Matematica - Griglie di valutazione Materia: Matematica Obiettivi disciplinari Gli obiettivi indicati si riferiscono all intero percorso della classe quarta

Dettagli

SETTE MOSSE PER LIBERARSI DALL ANSIA

SETTE MOSSE PER LIBERARSI DALL ANSIA LIBRO IN ASSAGGIO SETTE MOSSE PER LIBERARSI DALL ANSIA DI ROBERT L. LEAHY INTRODUZIONE Le sette regole delle persone molto inquiete Arrovellarvi in continuazione, pensando e ripensando al peggio, è la

Dettagli

ISTITUTO COMPRENSIVO N 1 LANCIANO - SCUOLA SECONDARIA DI PRIMO GRADO CURRICOLO VERTICALE - Classe Prima MATEMATICA a.s. 2014/2015

ISTITUTO COMPRENSIVO N 1 LANCIANO - SCUOLA SECONDARIA DI PRIMO GRADO CURRICOLO VERTICALE - Classe Prima MATEMATICA a.s. 2014/2015 NUMERI. SPAZIO E FIGURE. RELAZIONI, FUNZIONI, MISURE, DATI E PREVISIONI Le sociali e ISTITUTO COMPRENSIVO N 1 LANCIANO - SCUOLA SECONDARIA DI PRIMO GRADO CURRICOLO VERTICALE - Classe Prima MATEMATICA procedure

Dettagli

TEORIA DEL SÉ E CICLO DEL CONTATTO

TEORIA DEL SÉ E CICLO DEL CONTATTO TEORIA DEL SÉ E CICLO DEL CONTATTO di Sergio Mazzei Direttore dell Istituto Gestalt e Body Work TEORIA DEL SÉ Per organismo nella psicoterapia della Gestalt si intende l individuo che è in relazione con

Dettagli

Parte 2. Determinante e matrice inversa

Parte 2. Determinante e matrice inversa Parte. Determinante e matrice inversa A. Savo Appunti del Corso di Geometria 013-14 Indice delle sezioni 1 Determinante di una matrice, 1 Teorema di Cramer (caso particolare), 3 3 Determinante di una matrice

Dettagli

Oggetto: INSEGNAMENTO/ APPRENDIMENTO DELLE LINGUE STRANIERE E DSA

Oggetto: INSEGNAMENTO/ APPRENDIMENTO DELLE LINGUE STRANIERE E DSA Oggetto: INSEGNAMENTO/ APPRENDIMENTO DELLE LINGUE STRANIERE E DSA PREMESSA A tutt oggi i documenti ufficiali a cui ogni docente di lingue straniere è chiamato a far riferimento nel suo lavoro quotidiano,

Dettagli

Spinoza e il Male. Saitta Francesco

Spinoza e il Male. Saitta Francesco Spinoza e il Male di Saitta Francesco La genealogia del male è sempre stato uno dei problemi più discussi nella storia della filosofia. Trovare le origini del male è sempre stato l oggetto principale di

Dettagli

E possibile costruire una mentalità matematica?

E possibile costruire una mentalità matematica? E possibile costruire una mentalità matematica? Prof. F. A. Costabile 1. Introduzione La matematica è più di una tecnica. Apprendere la matematica significa conquistare l attitudine ad un comportamento

Dettagli

capitolo 6 IL QUESTIONARIO PER LA VALUTV ALUTAZIONEAZIONE DEI CONTENUTI

capitolo 6 IL QUESTIONARIO PER LA VALUTV ALUTAZIONEAZIONE DEI CONTENUTI capitolo 6 IL QUESTIONARIO PER LA VALUTV ALUTAZIONEAZIONE DEI CONTENUTI 6.1 ISTRUZIONI PER IL VALUTATORE Il processo di valutazione si articola in quattro fasi. Il Valutatore deve: 1 leggere il questionario;

Dettagli

LEGAMBIENTE NEI CAMPI, I CAMPI PER LEGAMBIENTE

LEGAMBIENTE NEI CAMPI, I CAMPI PER LEGAMBIENTE LEGAMBIENTE NEI CAMPI, I CAMPI PER LEGAMBIENTE Volume VIII manuali campi volontariato Il fare e il dire di Legambiente nei campi Dal 1991 ad oggi sono stati oltre 3.000 i campi di volontariato che Legambiente

Dettagli

GLI ASSI CULTURALI. Allegato 1 - Gli assi culturali. Nota. rimessa all autonomia didattica del docente e alla programmazione collegiale del

GLI ASSI CULTURALI. Allegato 1 - Gli assi culturali. Nota. rimessa all autonomia didattica del docente e alla programmazione collegiale del GLI ASSI CULTURALI Nota rimessa all autonomia didattica del docente e alla programmazione collegiale del La normativa italiana dal 2007 13 L Asse dei linguaggi un adeguato utilizzo delle tecnologie dell

Dettagli

ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE

ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE 1 DIPENDENZA E INDIPENDENZA LINEARE Se ho alcuni vettori v 1, v 2,, v n in uno spazio vettoriale V, il sottospazio 1 W = v 1,, v n di V da loro generato è

Dettagli

Programmazione Generale. Matematica e Complementi. Classi: 2 Biennio Quarta. Istituto Tecnico Tecnologico Basilio Focaccia Salerno

Programmazione Generale. Matematica e Complementi. Classi: 2 Biennio Quarta. Istituto Tecnico Tecnologico Basilio Focaccia Salerno Istituto Tecnico Tecnologico Basilio Focaccia Salerno Programmazione Generale Matematica e Complementi Classi: 2 Biennio Quarta I Docenti della Disciplina Salerno, lì 12 settembre 2014 Finalità della Disciplina

Dettagli

LAVORO, ENERGIA E POTENZA

LAVORO, ENERGIA E POTENZA LAVORO, ENERGIA E POTENZA Nel linguaggio comune, la parola lavoro è applicata a qualsiasi forma di attività, fisica o mentale, che sia in grado di produrre un risultato. In fisica la parola lavoro ha un

Dettagli

TIMSS 2007 Quadro di riferimento di matematica. dal volume: "TIMSS 2007 Assessment Frameworks"

TIMSS 2007 Quadro di riferimento di matematica. dal volume: TIMSS 2007 Assessment Frameworks Capitolo Uno TIMSS 2007 Quadro di riferimento di matematica dal volume: "TIMSS 2007 Assessment Frameworks" a cura di Anna Maria Caputo, Cristiano Zicchi Copyright 2005 IEA International Association for

Dettagli

Rapporto dai Questionari Studenti Insegnanti - Genitori. per la Primaria ISTITUTO COMPRENSIVO IST.COMPR. BATTIPAGLIA "GATTO" SAIC83800T

Rapporto dai Questionari Studenti Insegnanti - Genitori. per la Primaria ISTITUTO COMPRENSIVO IST.COMPR. BATTIPAGLIA GATTO SAIC83800T Rapporto dai Questionari Studenti Insegnanti - Genitori per la ISTITUTO COMPRENSIVO IST.COMPR. BATTIPAGLIA "GATTO" SAIC83800T Progetto VALES a.s. 2012/13 Rapporto Questionari Studenti Insegnanti Genitori

Dettagli

METODO DEI MINIMI QUADRATI. Quest articolo discende soprattutto dai lavori di Deming, Press et al. (Numerical Recipes) e Jefferys.

METODO DEI MINIMI QUADRATI. Quest articolo discende soprattutto dai lavori di Deming, Press et al. (Numerical Recipes) e Jefferys. METODO DEI MINIMI QUADRATI GIUSEPPE GIUDICE Sommario Il metodo dei minimi quadrati è trattato in tutti i testi di statistica e di elaborazione dei dati sperimentali, ma non sempre col rigore necessario

Dettagli

APPUNTI DI MATEMATICA LE DISEQUAZIONI NON LINEARI

APPUNTI DI MATEMATICA LE DISEQUAZIONI NON LINEARI APPUNTI DI MATEMATICA LE DISEQUAZIONI NON LINEARI Le disequazioni fratte Le disequazioni di secondo grado I sistemi di disequazioni Alessandro Bocconi Indice 1 Le disequazioni non lineari 2 1.1 Introduzione.........................................

Dettagli

Elementi di Statistica

Elementi di Statistica Elementi di Statistica Contenuti Contenuti di Statistica nel corso di Data Base Elementi di statistica descrittiva: media, moda, mediana, indici di dispersione Introduzione alle variabili casuali e alle

Dettagli

Q84 A1073 K92 J65 VALENTINO DOMINI

Q84 A1073 K92 J65 VALENTINO DOMINI VALENTINO DOMINI L attacco iniziale, prima azione di affrancamento della coppia controgiocante, è un privilegio e una responsabilità: molti contratti vengono battuti o realizzati proprio in rapporto a

Dettagli

SCUOLA DELL INFANZIA ANDERSEN SPINEA I CIRCOLO ANNO SCOLASTICO 2006/07. Documentazione a cura di Quaglietta Marica

SCUOLA DELL INFANZIA ANDERSEN SPINEA I CIRCOLO ANNO SCOLASTICO 2006/07. Documentazione a cura di Quaglietta Marica SCUOLA DELL INFANZIA ANDERSEN SPINEA I CIRCOLO ANNO SCOLASTICO 2006/07 GRUPPO ANNI 3 Novembre- maggio Documentazione a cura di Quaglietta Marica Per sviluppare Pensiero creativo e divergente Per divenire

Dettagli

Algoritmo euclideo, massimo comun divisore ed equazioni diofantee

Algoritmo euclideo, massimo comun divisore ed equazioni diofantee Algoritmo euclideo, massimo comun divisore ed equazioni diofantee Se a e b sono numeri interi, si dice che a divide b, in simboli: a b, se e solo se esiste c Z tale che b = ac. Si può subito notare che:

Dettagli

La teoria storico culturale di Vygotskij

La teoria storico culturale di Vygotskij La teoria storico culturale di Vygotskij IN ACCORDO CON LA TEORIA MARXISTA VEDEVA LA NATURA UMANA COME UN PRODOTTO SOCIOCULTURALE. SAGGEZZA ACCUMULATA DALLE GENERAZIONI Mappa Notizie bibliografiche Concetto

Dettagli

3) Heidegger: dall esistenza all ontologia

3) Heidegger: dall esistenza all ontologia 3) Heidegger: dall esistenza all ontologia Vita e opere Martin Heidegger (1889-1976) frequentò la facoltà di teologia dell Università di Friburgo. Nel 1919 divenne assistente e in seguito successore di

Dettagli

Università degli Studi di Palermo Facoltà di Scienze della Formazione Corso di laurea in Scienze della Formazione Primaria.

Università degli Studi di Palermo Facoltà di Scienze della Formazione Corso di laurea in Scienze della Formazione Primaria. Università degli Studi di Palermo Facoltà di Scienze della Formazione Corso di laurea in Scienze della Formazione Primaria. PROBLEM SOLVING: analisi comparativa di diversi registri linguistici. Tesi di:

Dettagli

Lo sviluppo delle abilità logico-matematiche. nei bambini in età prescolare

Lo sviluppo delle abilità logico-matematiche. nei bambini in età prescolare Istituto di Riabilitazione ANGELO CUSTODE PARLARE E CONTARE ALLA SCUOLA DELL INFANZIA Lo sviluppo delle abilità logico-matematiche nei bambini in età prescolare Dott.ssa Liana Belloni Dott.ssa Claudia

Dettagli

CSI Varese Corso Allenatori di Calcio

CSI Varese Corso Allenatori di Calcio Lo sport è caratterizzato dalla RICERCA DEL CONTINUO MIGLIORAMENTO dei risultati, e per realizzare questo obiettivo è necessaria una PROGRAMMAZIONE (o piano di lavoro) che comprenda non solo l insieme

Dettagli

((e ita e itb )h(t)/it)dt. z k p(dz) + r n (t),

((e ita e itb )h(t)/it)dt. z k p(dz) + r n (t), SINTESI. Una classe importante di problemi probabilistici e statistici é quella della stima di caratteristiche relative ad un certo processo aleatorio. Esistono svariate tecniche di stima dei parametri

Dettagli

Il paracadute di Leonardo

Il paracadute di Leonardo Davide Russo Il paracadute di Leonardo Il sogno del volo dell'uomo si perde nella notte dei tempi. La storia è piena di miti e leggende di uomini che hanno sognato di librarsi nel cielo imitando il volo

Dettagli

Che cos è un emozione?

Che cos è un emozione? Che cos è un emozione? Definizione Emozione: Stato psichico affettivo e momentaneo che consiste nella reazione opposta all organismo a percezioni o rappresentazioni che ne turbano l equilibrio (Devoto

Dettagli

Un differente punto di vista

Un differente punto di vista A Different Point of View Un differente punto di vista by Serge Kahili King Traduzione a cura di Josaya http://www.josaya.com/ Come sappiamo dal primo principio Huna, (IL MONDO E' COME TU PENSI CHE SIA

Dettagli

O r a r e, e s s e r e a m i c i di c h i d a v v e r o c i a m a

O r a r e, e s s e r e a m i c i di c h i d a v v e r o c i a m a O r a r e, e s s e r e a m i c i di c h i d a v v e r o c i a m a Ci situiamo Probabilmente alla tua età inizi ad avere chiaro chi sono i tuoi amici, non sempre è facile da discernere. Però una volta chiaro,

Dettagli

CAPITOLO PRIMO IL CONCETTO DI ALGORITMO 1

CAPITOLO PRIMO IL CONCETTO DI ALGORITMO 1 1.1 Che cos è un algoritmo CAPITOLO PRIMO IL CONCETTO DI ALGORITMO 1 Gli algoritmi sono metodi per la soluzione di problemi. Possiamo caratterizzare un problema mediante i dati di cui si dispone all inizio

Dettagli

Indice. Giuseppe Galli Presentazione... 1

Indice. Giuseppe Galli Presentazione... 1 Indice Presentazione... 1 Livelli di realtà... 5 1. Realtà fisica e realtà fenomenica... 5 2. Annullamento dell identità numerica tra oggetto fisico e oggetto fenomenico... 8 3. Individualità degli oggetti

Dettagli

+ P a n n=1 + X. a n = a m 3. n=1. m=4. Per poter dare un significato alla somma (formale) di infiniti termini, ricorriamo al seguente procedimento:

+ P a n n=1 + X. a n = a m 3. n=1. m=4. Per poter dare un significato alla somma (formale) di infiniti termini, ricorriamo al seguente procedimento: Capitolo 3 Serie 3. Definizione Sia { } una successione di numeri reali. Ci proponiamo di dare significato, quando possibile, alla somma a + a 2 +... + +... di tutti i termini della successione. Questa

Dettagli

L educazione non formale e l apprendimento interculturale. Info days

L educazione non formale e l apprendimento interculturale. Info days L educazione non formale e l apprendimento interculturale Info days Roma, 16 novembre 2009 Una donna portò suo figlio a vedere Gandhi, il quale le chiese il motivo della sua presenza. Vorrei che mio figlio

Dettagli

Guida alle attività. Tutto sulle cellule staminali

Guida alle attività. Tutto sulle cellule staminali Guida alle attività è un attività da usare con studenti dagli 11 ai 14 anni o con più di 16 anni. Consiste in un set di carte riguardanti le conoscenze basilari sulle cellule staminali e sulle loro applicazioni

Dettagli

Introduzione alla Teoria degli Errori

Introduzione alla Teoria degli Errori Introduzione alla Teoria degli Errori 1 Gli errori di misura sono inevitabili Una misura non ha significato se non viene accompagnata da una ragionevole stima dell errore ( Una scienza si dice esatta non

Dettagli