Siamo interessati a studiare la convergenza della serie e porremo come al solito:

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Siamo interessati a studiare la convergenza della serie e porremo come al solito:"

Transcript

1 SERIE DI POTENZE Soo particolari serie di fuzioi, i cui termii soo moomi, evetualmete traslati: f (x) co f (x) =a (x x 0 ), a R, x 0 R, ossia dove a (x x 0 ) = a 0 + a 1 (x x 0 )+a 2 (x x 0 ) x 0 èdettocetro della serie, (a )èdettasuccessioe dei coefficieti della serie. Le ridotte soo poliomi: S N (x) = N a (x x 0 ) = a 0 +a 1 (x x 0 )+a 2 (x x 0 ) a N (x x 0 ) N. Si vede subito che S N (x 0 ) vale costatemete a 0,percui ogi serie di poteze coverge (ad a 0 ) el proprio cetro. Siamo iteressati a studiare la covergeza della serie e porremo come al solito: Λ={x R : a (x x 0 ) coverge}. Sappiamo già chex 0 Λ e vedremo che Λ èsempreuitervallo, cetrato i x 0 (aperto, semiaperto o chiuso, che può ache essere tutto R o degeerare el solo x 0 ).

2 Esempi. 1 x coverge solo i x =0 (cetro)... Λ={0} Fissato x 0,siha lim x = lim ( x ) = lim e log( x ) =+ = o coverge perché il termie geerale o tede a 0. 2 x coverge i ogi x R... Λ=R È la serie espoeziale di parametro x: coverge assolutamete i R, per il criterio del rapporto. 3 x coverge x < 1... Λ=( 1, 1) È la serie geometrica di ragioe x. D ora i avati, cosidereremo solo serie cetrate i x 0 =0: a x = a 0 + a 1 x + a 2 x (1) a cui ci si può sempre ricodurre co il cambio t = x x 0. Defiizioe. Si dice raggio di covergeza della (1) il valore { } R := sup Λ = sup x 0: a x coverge i x. Per defiizioe si ha 0 R +. Gli esempi precedeti mostrao che può effettivamete essere: 1 R =0, 2 R =+, 3 0 <R<+.

3 Teorema (del raggio di covergeza). 1 Se R =0, allora Λ={0} (e o c è covergeza per x 0). 2 Se R =+, alloraλ=r ec è covergeza assoluta su R e totale su ogi [a, b] R. 3 Se 0 <R<, allora ( R, R) Λ [ R, R] ec è covergeza assoluta su ( R, R) e totale su ogi [a, b] ( R, R). Duque Λ è sempre u itervallo, cetrato ell origie. Relativamete al caso 3, osserviamo esplicitamete che: o c è covergeza (emmeo putuale) per x >R, l itervallo di covergeza putuale Λ può differire da ( R, R) per i puti x = ±R, i quali vao studiati caso per caso. Il prossimo teorema garatisce che gli itervalli di covergeza uiforme raggiugoo gli estremi dell itervallo di covergeza Λ, ogiqualvolta vi fossero iclusi. Teorema (di Abel). Suppoiamo 0 <R<+. (i) Se c è covergeza putuale i x = R (cioè R Λ), allora c è covergeza uiforme su ogi [a, R] ( R, R]. (ii) Se c è covergeza putuale i x = R (cioè R Λ), allora c è covergeza uiforme su ogi [ R, b] [ R, R). (iii) Se c è covergeza putuale i x = ±R (cioè Λ=[ R, R]), allora c è covergeza uiforme su tutto Λ=[ R, R].

4 È ovvio che fao comodo criteri per determiare R. Teorema (criterio della radice per le serie di poteze). Se esiste il limite lim a = λ (fiito o ifiito), allora R = 1 + se λ =0 λ = 0 se λ =+ 1/λ altrimeti. Teorema (criterio del rapporto per le serie di poteze). a Se esiste il limite lim +1 = λ (fiito o ifiito), allora R = 1 a λ. Se i limiti o esistoo, devo determiare R tramite la defiizioe, vededo la serie come serie di fuzioi qualsiasi (ma ricordado che i teoremi del raggio e di Abel cotiuao a valere). Esempi.

5 Combiazioe lieare di serie di poteze 1 λ 0,leserie a x e λa x hao lo stesso itervallo di covergeza Λ e risulta λa x = λ a x, x Λ. 2 Se a x e b x hao raggi R 1 R 2, allora (a + b )x ha raggio R =mi(r 1,R 2 ) e iterv. di covergeza Λ = Λ 1 Λ 2. Se a x e b x hao raggi R 1 = R 2, allora (a + b )x ha raggio R R 1 (= R 2 ), il quale va determiato caso per caso. I ogi caso risulta (a +b )x = a x + b x, x i cui covergoo etrambe. Esempio otevole (sviluppi di sih x e cosh x su R). Abbiamo già aticipato che x = ex, x R. Leggedo al cotrario, diciamo che e x è sviluppabile (= scrivibile come somma di termii più semplici ) i serie di poteze su R (l uguagliaza vale x R). Segue che ache sih x è sviluppabile i serie di poteze su R. Ifatti x R: sih x = ex e x = 2 = ( 1) x Aalogamete: x R, cosh x = 2 ( x) = 1 2 x = x1 1! + x3 3! + x5 5! +... = x 2 (2)!. ( x ( 1) x x 2+1 (2 +1)!. )

6 Cotiuità dellasommasututtoλ Sia a x co raggio R>0, itervallo Λ e somma S, cioè S(x) = a x, x Λ {0}. Teorema. S C (Λ), ossia S è cotiua i tutti i puti di Λ (ache egli estremi, se iclusi) Dimostrazioe. Itermiia x soo fuzioi di classe C (R). Fissiamo u qualsiasi x Λ. Per i teoremi del raggio e di Abel, x staiuitervallo[a, b] Λ su cui c è covergeza uiforme e quidi S risulta cotiua i x per il teorema di cotiuità della fuzioe somma. Itegrazioe termie a termie Sia a x co raggio R>0, itervallo Λ e somma S. Siao a, b Λ. Siccome c è covergeza uiforme su [a, b] (teoremi del raggio e di Abel), risulta b b S(t)dt = a t b dt = a t dt = a a a [ ] t +1 b a. +1 a I particolare, per a =0( Λ) e b = x, si ottiee che x Λ x x S(t)dt = a t x dt = a t dt = a x = =1 dove la serie di itegrali ha acora raggio R (ci toreremo) ed il suo itervallo di covergeza può guadagare estremi di Λ. a 1 x

7 L ultimo risultato è spesso utile per: sviluppare i serie di poteze fuzioi itegrali o esprimibili elemetarmete; ricavare lo sviluppo i serie di poteze di ua fuzioe itegrado lo sviluppo della sua derivata; calcolare somme di serie (di fuzioi o umeriche). Esempio. Cosideriamo la fuzioe degli errori: erf (x) := 2 x π 0 e t2 dt (o calcolabile elemetarmete). Poiché e t2 = x erf (x)= 2 π = 2 π ( t 2 ), risulta che x R si ha 0 ( 1) t 2 dt = 2 π ( 1) x ( 1) x 0 t2 dt Esempio otevole (sviluppo di log(1 + x) su ( 1, 1]). Si vuole sviluppare log (1+x) i serie di poteze (su u qualche itervallo). Sappiamo che d dx log(1 + x) = 1 1+x = ( x), x ( 1, 1). Allora x ( 1, 1) si ha x 1 x log(1 + x)= 0 1+t dt = ( t) x dt = 0 0 ( 1) t dt = ( 1) x 0 t dt = ( 1) x+1 +1 ( 1) 1 = x. =1

8 L uguagliaza log(1 + x) = ( 1) 1x =1 vale i effetti x ( 1, 1] (cioè ache i x = 1). Ifatti l ultima serie coverge alla propria somma, diciamo S(x), ache i x = 1, per il criterio di Leibiz (o coverge ivece i x = 1 perché( 1) 1 ( 1) = 1 ) S(x) coicide co log(1 + x) per x ( 1, 1) (dove vale il coto fatto prima) ed è cotiua i x = 1 per cotiuità della somma su tutto l itervallo di covergeza, per cui risulta ( 1) 11 =1 = S (1) = lim S (x) = x 1 lim log (1+x) = log 2. x 1 L esempio precedete forisce ache due cotroesempi: itegrado termie a termie, l itervallo di covergeza può effettivamete aumetare; la covergeza totale è più forte di etrambe quelle assoluta e uiforme; ifatti, essedoci covergeza putuale su ( 1, 1], per i teoremi del raggio e di Abel risulta log (1+x) = ( 1) 1x =1 metre sup x [0,1) ( 1) 1x = sup x x [0,1) = 1 assolutamete e uiformemete su [0, 1) (ad esempio) co =1 1 =+.

9 Esempio (e sviluppo di arcta x su [ 1, 1]). Si vuole calcolare la somma delle serie ( 1) ( 1) 2 +1 x2+1 e (2 +1) Si vede piuttosto facilmete che la prima è ua serie di itegrali: ( 1) x = = x 0 ( 1) x 0 t2 dt = x ( t 2 ) dt ( t 2 ) x 1 dt = 0 1+t2dt =arctax dove tutto fuzioa per x ( 1, 1) perché la serie 0 ( t 2 ) (geometrica di ragioe t 2 ) ha itervallo di covergeza ( 1, 1) ( t 2 < 1 t ( 1, 1)). Per cotiuità della somma, lo sviluppo di arcta x appea trovato vale i effetti x [ 1, 1], i quato per x = ±1 si hao le serie ( 1) (±1) = ( 1) (±1)2 (±1) = ± 2 +1 che covergoo per il criterio di Leibiz. ( 1) 2 +1, Circa la serie umerica, essa può essere riscritta come e duque si trova ( 1) (2 +1) = ( 1) 2 +1 ( 1 3 ( 1) 2 +1 ( ) ) 2+1 =arcta 1 3.

10 Derivazioe termie a termie Per derivare termie a termie la somma di ua serie, occorre la covergeza uiforme della serie derivata (= serie delle derivate dei termii), cioè a x 1 = =1 a x 1 = a +1 ( +1)x. Lemma. Ua serie di poteze e la sua serie derivata hao lo stesso raggio di covergeza (ache se ullo). Cosegueza: a x elasuaserie itegrale a +1 x+1 hao lo stesso raggio (soo ua la derivata dell altra). Nota: poichè ogi serie si recupera itegrado la sua serie derivata, gli esempi visti provao che l itervallo di covergeza della serie derivata o aumeta e può perdere gli estremi. Suppoiamo ora che Etrambe a x e =1 a x abbia raggio R>0 e somma S. a x 1 covergoo uiformemete ell itoro di ogi x ( R, R), per cui risulta S C 1 ( R, R) e x ( R, R), S (x) = d dx a x = =1 a x 1 (per il teorema di derivazioe termie a termie). Il ragioameto può essere iterato tate volte quate si vuole, otteedo quidi il seguete: Teorema. S C ( R, R) e k >0, x ( R, R), S (k) (x) è la somma della serie otteuta derivado a x termie a termie k volte.

11 Il risultato precedete è spesso utile per: ricavare lo sviluppo i serie di poteze di ua fuzioe derivado lo sviluppo di ua sua primitiva; calcolare somme di serie (di fuzioi o umeriche). Esempio. Si vuole sviluppare (1 x) 2 i serie di poteze (su u qualche itervallo). Sappiamo che dx (1 x) 2 = 1 1 x + c e 1 1 x = x, x ( 1, 1). Allora x ( 1, 1) si ha 1 (1 x) 2 = d 1 dx1 x = d dx x = d dx x = x 1 = (+1)x =1 (poiché derivado termie a termie l itervallo o aumeta, il problema della covergeza i x = ±1 o si poe). Esempio. Si vuole calcolare la somma delle serie ( +1)x +1 e e 3 1. Si vede subito che la prima è ua serie di derivate: ( +1)x d = dx x+1 = d dx = d ( ) 1 dx 1 x 1 = x +1 = d dx 1 (1 x) 2 x =1 dove tutto fuzioa per x ( 1, 1) perché la serie geometrica ha raggio R = 1. Il problema della covergeza i x = ±1 o si poe, perché derivado l itervallo o aumeta. Di cosegueza, circa la serie umerica, si ottiee +1 e 3 1 = e ( +1) ( 1 e 3 ) = e 1 (1 1/e 3 ) 2 = e 7 (e 3 1) 2.

12 Corollario (sui coefficieti di ua serie di poteze) Cosideriamo ua serie a (x x 0 ) co Λ {x 0 } e somma S. Sappiamo che S C (Λ ) e le sue derivate si ottegoo derivado la serie termie a termie ifiite volte: x Λ si ha S (x) = S (x) = =1 =k a (x x 0 ) 1 = =1 a ( 1)(x x 0 ) 2 = a (x x 0 ) 1 =2 a ( 1)(x x 0 ) 2. S (k) (x) = a ( 1)( 2) ( k +1)(x x 0 ) k. Isolado il termie co = k si ottiee S (k) (x) = a k k!+ a ( 1)( 2) ( k +1)(x x 0 ) k =k+1 e calcolado i x = x 0 risulta S (k) (x 0 ) = a k k! per ogi k 1. Duque a = S() (x 0 ) per ogi 0 e quidi x Λ, S(x) = S () (x 0 ) (x x 0 ). I altri termii, abbiamo scoperto che: i coefficieti di ua serie di poteze soo i coefficieti di Taylor della sua somma, calcolati el cetro della serie; le ridotte di ua serie di poteze soo i poliomi di Taylor della sua somma, cetrati el cetro della serie.

Serie di potenze / Esercizi svolti

Serie di potenze / Esercizi svolti MGuida, SRolado, 204 Serie di poteze / Esercizi svolti Si cosideri la serie di poteze (a) Determiare il raggio di covergeza 2 + x (b) Determiare l itervallo I di covergeza putuale (c) Dire se la serie

Dettagli

Esercizi di Analisi II

Esercizi di Analisi II Esercizi di Aalisi II Ao Accademico 008-009 Successioi e serie di fuzioi. Serie di poteze. Studiare la covergeza della successioe di fuzioi (f ) N, dove f : [, ] R è defiita poedo f (x) := x +.. Studiare

Dettagli

Def. R si dice raggio di convergenza; nel caso i) R = 0, nel caso ii)

Def. R si dice raggio di convergenza; nel caso i) R = 0, nel caso ii) Apputi sul corso di Aalisi Matematica complemeti (a) - prof. B.Bacchelli Apputi : Riferimeti: R.Adams, Calcolo Differeziale. -Si cosiglia vivamate di fare gli esercizi del testo. Cap. 9.5 - Serie di poteze,

Dettagli

SOLUZIONE DI ESERCIZI DI ANALISI MATEMATICA IV ANNO 2015/16, FOGLIO 2. se x [n, 3n]

SOLUZIONE DI ESERCIZI DI ANALISI MATEMATICA IV ANNO 2015/16, FOGLIO 2. se x [n, 3n] SOLUZIONE DI ESERCIZI DI ANALISI MATEMATICA IV ANNO 05/6, FOGLIO Sia f : R R defiita da f x { se x [, 3] 0 altrimeti Studiare la covergeza putuale, uiforme e uiforme sui compatti della successioe f e della

Dettagli

Esercitazione n 3. 1 Successioni di funzioni. Esercizio 1: Studiare la convergenza in (0, 1) della successione {f n } dove f n (x) =

Esercitazione n 3. 1 Successioni di funzioni. Esercizio 1: Studiare la convergenza in (0, 1) della successione {f n } dove f n (x) = Esercitazioe 3 Successioi di fuzioi Esercizio : Studiare la covergeza i (0, ) della successioe {f } dove f (x) = metre Sol.: Si verifica facilmete che lim f (x) = 0 x (0, ) lim sup f (x) = lim = + (0,)

Dettagli

x n (1.1) n=0 1 x La serie geometrica è un esempio di serie di potenze. Definizione 1 Chiamiamo serie di potenze ogni serie della forma

x n (1.1) n=0 1 x La serie geometrica è un esempio di serie di potenze. Definizione 1 Chiamiamo serie di potenze ogni serie della forma 1 Serie di poteze È stato dimostrato che la serie geometrica x (1.1) coverge se e solo se la ragioe x soddisfa la disuguagliaza 1 < x < 1. I realtà c è covergeza assoluta i ] 1, 1[. Per x 1 la serie diverge

Dettagli

Serie di funzioni. Convergenza puntuale. f n converge: Date f n : D R, diciamo che la serie

Serie di funzioni. Convergenza puntuale. f n converge: Date f n : D R, diciamo che la serie Serie di fuzioi Serie di fuzioi = addizioe dei termii di ua successioe di fuzioi (f ) 0, dove f : D R R. Scrittura formale: f = f 0 + f 1 + f 2 +... oppure f (x) =f 0 (x)+f 1 (x)+f 2 (x)+.... f 0, f 1,

Dettagli

SUCCESSIONI DI FUNZIONI

SUCCESSIONI DI FUNZIONI SUCCESSIONI DI FUNZIONI LUCIA GASTALDI 1. Defiizioi ed esempi Sia I u itervallo coteuto i R, per ogi N si cosideri ua fuzioe f : I R. Il simbolo f } =1 idica ua successioe di fuzioi, cioè l applicazioe

Dettagli

Esercizi svolti su successioni e serie di funzioni

Esercizi svolti su successioni e serie di funzioni Esercizi svolti su successioi e serie di fuzioi Esercizio. Calcolare il limite putuale di f ) = 2 +, [0, + ). Dimostrare che o si ha covergeza uiforme su 0, + ), metre si ha covergeza uiforme su [a, +

Dettagli

Successioni di funzioni

Successioni di funzioni Successioi di fuzioi Successioi di fuzioi: covergeza putuale Defiizioe Sia I u isieme di umeri reali e sia ua successioe di fuzioi reali defiite i I : I R, I R. Si dice che Cioè f : I R, risulta coverge

Dettagli

ANALISI VETTORIALE COMPITO IN CLASSE DEL 22/11/2013. = a 24 24! log(1 + x) = ( 1) = (24!) 1 24 = 23!. e x2 dx. x 2n

ANALISI VETTORIALE COMPITO IN CLASSE DEL 22/11/2013. = a 24 24! log(1 + x) = ( 1) = (24!) 1 24 = 23!. e x2 dx. x 2n ANALISI VETTORIALE COMPITO IN CLASSE DEL 22//23 Esercizio Calcolare la 2esima derivata del logaritmo el puto. Risposta Si tratta di calcolare d 2 dx 2 log( + x) x= = a 2 2! dove a 2 è il termie di idice

Dettagli

Analisi Matematica II

Analisi Matematica II Corso di Laurea i Matematica Aalisi Matematica II Esercizi sulla covergeza uiforme e sulle serie di fuzioi/poteze Versioe del 28//206 Esercizi tratti dal Giusti Esercizio Giusti 3. e 3.3) Calcolare il

Dettagli

Esecitazione AM2 n.1-a.a /10/06. Studiare la convergenza puntuale ed uniforme delle seguenti successioni di funzioni: 1.

Esecitazione AM2 n.1-a.a /10/06. Studiare la convergenza puntuale ed uniforme delle seguenti successioni di funzioni: 1. Esecitazioe AM.-A.A. 006-007- 0/0/06 Successioi di fuzioi Studiare la covergeza putuale ed uiforme delle segueti successioi di fuzioi:. f (x) = x +, x A R.. f (x) = si(x) +, x R. 3. f (x) = xe x, x [0,

Dettagli

k=0 f k(x). Un altro tipo di convergenza per le serie è la convergenza totale e si dice che la serie (0.1) converge totalmente in J I se

k=0 f k(x). Un altro tipo di convergenza per le serie è la convergenza totale e si dice che la serie (0.1) converge totalmente in J I se Serie di fuzioi Sia I R, per ogi k N, data la successioe di fuzioi (f k ) k co f k : I R, cosideriamo la serie di fuzioi (0.) f k () k=0 e defiiamo la successioe delle somme parziali s () = k=0 f k().

Dettagli

1.6 Serie di potenze - Esercizi risolti

1.6 Serie di potenze - Esercizi risolti 6 Serie di poteze - Esercizi risolti Esercizio 6 Determiare il raggio di covergeza e l isieme di covergeza della serie Soluzioe calcolado x ( + ) () Per la determiazioe del raggio di covergeza utilizziamo

Dettagli

SERIE DI POTENZE Esercizi risolti. Esercizio 1 Determinare il raggio di convergenza e l insieme di convergenza della serie di potenze. x n.

SERIE DI POTENZE Esercizi risolti. Esercizio 1 Determinare il raggio di convergenza e l insieme di convergenza della serie di potenze. x n. SERIE DI POTENZE Esercizi risolti Esercizio x 2 + 2)2. Esercizio 2 + x 3 + 2 3. Esercizio 3 dove a è u umero reale positivo. Esercizio 4 x a, 2x ) 3 +. Esercizio 5 x! = x + x 2 + x 6 + x 24 + x 20 +....

Dettagli

a n (x x 0 ) n. (1.1) n=0

a n (x x 0 ) n. (1.1) n=0 Serie di poteze. Defiizioi Assegati ua successioe {a } di umeri reali e u puto x dell asse reale si dice serie di poteze u espressioe del tipo a (x x ). (.) Il puto x viee detto cetro della serie e i umeri

Dettagli

Serie numeriche e di funzioni - Esercizi svolti

Serie numeriche e di funzioni - Esercizi svolti Serie umeriche e di fuzioi - Esercizi svolti Serie umeriche Esercizio. Discutere la covergeza delle serie segueti a) 3, b) 5, c) 4! (4), d) ( ) e. Esercizio. Calcolare la somma delle serie segueti a) (

Dettagli

[È ben noto che la serie geometrica converge se e solo se x <1 e che ha per somma la funzione S(x)= 1

[È ben noto che la serie geometrica converge se e solo se x <1 e che ha per somma la funzione S(x)= 1 Sapieza Uiversità di Roma - Corso di Laurea i Igegeria Eergetica Aalisi Matematica II - A.A. 06-07 prof. Cigliola Foglio. Serie di fuzioi Esercizio. Calcolare, se possibile, la somma delle segueti serie

Dettagli

SERIE NUMERICHE Esercizi risolti. (log α) n, α > 0 c)

SERIE NUMERICHE Esercizi risolti. (log α) n, α > 0 c) SERIE NUMERICHE Esercizi risolti. Calcolare la somma delle segueti serie telescopiche: a) b). Verificare utilizzado la codizioe ecessaria per la covergeza) che le segueti serie o covergoo: a) c) ) log

Dettagli

Serie di Fourier / Esercizi svolti

Serie di Fourier / Esercizi svolti Serie di Fourier / Esercizi svolti ESERCIZIO. da Si cosideri la fuzioe f : R R, periodica di periodo e data ell itervallo (, ] se

Dettagli

ANALISI MATEMATICA 1. Funzioni elementari

ANALISI MATEMATICA 1. Funzioni elementari ANALISI MATEMATICA Fuzioi elemetari Trovare le soluzioi delle segueti disequazioi ) x + 4 5 > 8 + 5x 0 ) 5x + 0 > 0, x 4 < 0 3) x x 3 4) x + x + > 3 x + 4 5) 5x 4x x + )x ) 6) x x + > 0, x + 5x + 6 0,

Dettagli

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione. Appello del

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione. Appello del ANALISI MATEMATICA Area dell Igegeria dell Iformazioe Appello del 7.9.8 Esercizio Si cosideri la fuzioe f() := TEMA {e 3 per per =. i) Determiare il domiio D, le evetuali simmetrie e studiare il sego di

Dettagli

1. Converge. La serie è a segno alterno. Non possiamo usare il criterio di assoluta convergenza, perché

1. Converge. La serie è a segno alterno. Non possiamo usare il criterio di assoluta convergenza, perché Soluzioi.. Coverge. La serie è a sego altero. No possiamo usare il criterio di assoluta covergeza, perché log log a = > + e il fatto che la serie i valore assoluto diverge o permette di trarre coclusioi

Dettagli

SERIE DI POTENZE. n=0 a n z n.

SERIE DI POTENZE. n=0 a n z n. SERIE DI POTENZE 1. Covergeza putuale Data ua successioe di coefficieti (a ) N, a C, e dato u cetro w 0, la relativa serie di poteze è la serie di fuzioi a (z w 0 ) a 0 + a 1 (z w 0 ) + + a (z w 0 ) +.

Dettagli

Esponenziale complesso

Esponenziale complesso Espoeziale complesso P.Rubbioi 1 Serie el campo complesso Per forire il cocetto di serie el campo complesso abbiamo bisogo di itrodurre la defiizioe di limite per successioi di umeri complessi. Defiizioe

Dettagli

SOLUZIONI COMPITO del 04/02/2016 ANALISI MATEMATICA I - 9 CFU MECCANICA TEMA A

SOLUZIONI COMPITO del 04/02/2016 ANALISI MATEMATICA I - 9 CFU MECCANICA TEMA A SOLUZIONI COMPITO del 0/0/06 ANALISI MATEMATICA I - 9 CFU MECCANICA TEMA A Esercizio Osserviamo, iazitutto, che la serie proposta è ua serie a termii o egativi. Applicado il criterio della radice, dopo

Dettagli

Università di Trieste Facoltà d Ingegneria. Esercizi sulle serie numeriche e sulle successioni e serie di funzioni Dott.

Università di Trieste Facoltà d Ingegneria. Esercizi sulle serie numeriche e sulle successioni e serie di funzioni Dott. e Uiversità di Trieste Facoltà d Igegeria. Esercizi sulle serie umeriche e sulle successioi e serie di fuzioi Dott. Fraco Obersel Esercizio Rispodere alle segueti questioi: a) Siao a 0 + a + a +... b 0

Dettagli

Esercizi di Calcolo delle Probabilità Foglio 7

Esercizi di Calcolo delle Probabilità Foglio 7 Esercizi di Calcolo delle Probabilità Foglio 7 David Barbato Esercizio. Siao Y e X } N variabili aleatorie idipedeti e co distribuzioe espoeziale di parametro λ =. Siao ioltre: W := maxy, X } N T := miw

Dettagli

( 1) k+1 x k + R N+1 (x), k. 1 + x 10 2, 5 R N+1 ( 1 3 ) ) )

( 1) k+1 x k + R N+1 (x), k. 1 + x 10 2, 5 R N+1 ( 1 3 ) ) ) Esercizi di Aalisi - Alberto Valli - AA 05/06 - Foglio 8. Fatevi veire u idea per calcolare log48 alla secoda cifra decimale. Lo sviluppo di Taylor di log( + ) è covergete per solo per (,]. Duque bisoga

Dettagli

1. Serie numeriche. Esercizio 1. Studiare il carattere delle seguenti serie: n2 n 3 n ; n n. n n. n n (n!) 2 ; (2n)! ;

1. Serie numeriche. Esercizio 1. Studiare il carattere delle seguenti serie: n2 n 3 n ; n n. n n. n n (n!) 2 ; (2n)! ; . Serie umeriche Esercizio. Studiare il carattere delle segueti serie: ;! ;! ;!. Soluzioe.. Serie a termii positivi; cofrotiamola co la serie +, che è covergete: + + + 0. Pertato, per il criterio del cofroto

Dettagli

f n = f 0 + f 1 + f 2 + f (3.25)

f n = f 0 + f 1 + f 2 + f (3.25) Serie di fuzioi Così come le serie umeriche estedoo l addizioe tra due umeri ad u ifiità umerabile di addedi, allo stesso modo le serie di fuzioi rappresetao l addizioe di u ifiità umerabile di fuzioi.

Dettagli

Corsi di laurea in fisica ed astronomia Prova scritta di Analisi Matematica 2. Padova,

Corsi di laurea in fisica ed astronomia Prova scritta di Analisi Matematica 2. Padova, Corsi di laurea i fisica ed astroomia Prova scritta di Aalisi Matematica 2 Padova, 28.8.29 Si svolgao i segueti esercizi facedo attezioe a giustificare le risposte. Delle affermazioi o motivate e giustificate

Dettagli

Calcolo I - Corso di Laurea in Fisica - 31 Gennaio 2018 Soluzioni Scritto

Calcolo I - Corso di Laurea in Fisica - 31 Gennaio 2018 Soluzioni Scritto Calcolo I - Corso di Laurea i Fisica - Geaio 08 Soluzioi Scritto Data la fuzioe f = 8 + / a Calcolare il domiio, puti di o derivabilità ed asitoti; b Calcolare, se esistoo, estremi relativi ed assoluti.

Dettagli

Soluzioni. 2 2n+1 3 2n. n=1. 3 2n 9. n=1. Il numero 2 può essere raccolto fuori dal segno di sommatoria: = 2. n=1 = = 8 5.

Soluzioni. 2 2n+1 3 2n. n=1. 3 2n 9. n=1. Il numero 2 può essere raccolto fuori dal segno di sommatoria: = 2. n=1 = = 8 5. 60 Roberto Tauraso - Aalisi Calcolare la somma della serie Soluzioi + 3 R La serie può essere riscritta el modo seguete: + 4 3 9 Il umero può essere raccolto fuori dal sego di sommatoria: + 4 3 9 Si tratta

Dettagli

Facoltà di Scienze MM.FF.NN. Corso di Laurea in Matematica - A.A Prova scritta di Analisi Matematica I del c.1.

Facoltà di Scienze MM.FF.NN. Corso di Laurea in Matematica - A.A Prova scritta di Analisi Matematica I del c.1. Prova scritta di Aalisi Matematica I del 25-5-1998 - c.1 1) Per ogi umero N, 2, siao dati 2 umeri reali positivi a 1, a 2,...a, b 1, b 2,...b. Provare, usado il Pricipio di Iduzioe, che a 1 + a 2 +...

Dettagli

Corso di Analisi Matematica 1 - professore Alberto Valli

Corso di Analisi Matematica 1 - professore Alberto Valli Uiversità di Treto - Corso di Laurea i Igegeria Civile e Igegeria per l Ambiete e il Territorio - 07/8 Corso di Aalisi Matematica - professore Alberto Valli 8 foglio di esercizi - 5 ovembre 07 Taylor,

Dettagli

SUCCESSIONI SERIE NUMERICHE pag. 1

SUCCESSIONI SERIE NUMERICHE pag. 1 SUCCESSIONI SERIE NUMERICHE pag. Successioi RICHIAMI Ua successioe di elemeti di u isieme X è ua fuzioe f: N X. E covezioe scrivere f( ) = x, e idicare le successioi mediate la ifiitupla ordiata delle

Dettagli

ANALISI MATEMATICA L-B, SERIE. n k=1. n=1

ANALISI MATEMATICA L-B, SERIE. n k=1. n=1 ANALISI MATEMATICA L-B, 2005-06. SERIE. Serie umeriche reali Defiizioe Cosideriamo ua successioe a,, di umeri reali. Che seso dare alla somma di tutti gli a? Si defiisce ua uova successioe S, ella maiera

Dettagli

ESERCIZI SULLE SERIE

ESERCIZI SULLE SERIE ESERCIZI SULLE SERIE. Dimostrare che la serie seguete è covergete: =0 + + A questa serie applichiamo il criterio del cofroto. Dovedo quidi dimostrare che la serie è covergete si tratterà di maggiorare

Dettagli

Esercizi sulle Serie numeriche

Esercizi sulle Serie numeriche AM0 - A.A. 03/4 ALFONSO SORRENTINO Esercizi sulle Serie umeriche Esercizio svolto. Discutere il comportameto delle segueti serie umeriche: a +! b [ ] log c log+ d log + e arcta f g h i l log log! 3! 4

Dettagli

Esercitazione n 4. 1 Serie di Taylor. Esercizio 1: Verificare che la funzione. f(x) = 0 se x = 0

Esercitazione n 4. 1 Serie di Taylor. Esercizio 1: Verificare che la funzione. f(x) = 0 se x = 0 Esercitazioe 4 1 Serie di Taylor Esercizio 1: Verificare che la fuzioe f(x) { e 1/x se x 0 0 se x 0 pur essedo C o è sviluppabile i serie di Taylor i x 0. Sol.: Determiiamo le derivate di f: 0 f (0) lim

Dettagli

Analisi Matematica Soluzioni prova scritta parziale n. 1

Analisi Matematica Soluzioni prova scritta parziale n. 1 Aalisi Matematica Soluzioi prova scritta parziale. 1 Corso di laurea i Fisica, 018-019 3 dicembre 018 1. Dire per quali valori dei parametri α R, β R, α > 0, β > 0 coverge la serie + (!) α β. ( )! =1 Soluzioe.

Dettagli

2.5 Convergenza assoluta e non

2.5 Convergenza assoluta e non .5 Covergeza assoluta e o Per le serie a termii complessi, o a termii reali di sego o costate, i criteri di covergeza si qui visti o soo applicabili. L uico criterio geerale, rozzo ma efficace, è quello

Dettagli

n=0 a n(z z 0 ) n converge} è chiamato insieme di convergenza della serie; si ha sempre z 0 I e quindi I non è mai vuoto. Nasce quindi una funzione

n=0 a n(z z 0 ) n converge} è chiamato insieme di convergenza della serie; si ha sempre z 0 I e quindi I non è mai vuoto. Nasce quindi una funzione Serie di poteze I queste ote esporremo la teoria elemetare delle serie di poteze. No useremo le ozioi di covergeza uiforme e totale, ma dimostreremo ugualmete i modo rigoroso i teoremi di derivazioe ed

Dettagli

Analisi Matematica A e B Soluzioni prova scritta n. 4

Analisi Matematica A e B Soluzioni prova scritta n. 4 Aalisi Matematica A e B Soluzioi prova scritta. 4 Corso di laurea i Fisica, 17-18 3 settembre 18 1. Scrivere le soluzioi dell equazioe differeziale ( u u + u = e x si x + 1 ). 1 + x Soluzioe. Si tratta

Dettagli

ISTITUZIONI DI ANALISI SUPERIORE Esercizi di metà corso

ISTITUZIONI DI ANALISI SUPERIORE Esercizi di metà corso ISTITUZIONI DI ANALISI SUPEIOE 2-2 Esercizi di metà corso Silvia Ghiassi 22 ovembre 2 Esercizio Diamo u esempio di fuzioe u: tale che u 6, u 6, u 6. se x

Dettagli

SUCCESSIONI E SERIE DI FUNZIONI (Dal CAPITOLO 5 del testo di riferimento n. 2)

SUCCESSIONI E SERIE DI FUNZIONI (Dal CAPITOLO 5 del testo di riferimento n. 2) SUCCESSIONI E SERIE DI FUNZIONI (Dal CAPITOLO 5 del testo di riferimeto. 2) Nel presete capitolo verrao cosiderate successioi e serie di fuzioi reali aveti u domiio comue D. 5.1. Successioi di fuzioi Si

Dettagli

Università degli Studi della Calabria Facoltà di Ingegneria. 26 giugno 2012

Università degli Studi della Calabria Facoltà di Ingegneria. 26 giugno 2012 Uiversità degli Studi della Calabria Facoltà di Igegeria Correzioe della Secoda Prova Scritta di alisi Matematica 2 giugo 202 cura dei Prof. B. Sciuzi e L. Motoro. Secoda Prova Scritta di alisi Matematica

Dettagli

Politecnico di Milano Ingegneria Industriale Analisi 2/II

Politecnico di Milano Ingegneria Industriale Analisi 2/II Politecico di Milao Igegeria Idustriale Aalisi /II Test di autovalutazioe. Sia S = ( artg +. (a Stabilire se la serie data coverge assolutamete. (b Stabilire se la serie data coverge.. Sia L lo spazio

Dettagli

ANALISI MATEMATICA 1 Commissione L. Caravenna, V. Casarino, S. Zoccante Ingegneria Gestionale, Meccanica e Meccatronica, Vicenza

ANALISI MATEMATICA 1 Commissione L. Caravenna, V. Casarino, S. Zoccante Ingegneria Gestionale, Meccanica e Meccatronica, Vicenza ANALISI MATEMATICA Commissioe L. Caravea, V. Casario, S. occate Igegeria Gestioale, Meccaica e Meccatroica, Viceza Nome, Cogome, umero di matricola: Viceza, 6 Settembre 25 TEMA - parte B Esercizio ( puti).

Dettagli

Esercizi 2 Pietro Caputo 14 dicembre se ξ n > log n

Esercizi 2 Pietro Caputo 14 dicembre se ξ n > log n Esercizi 2 Pietro Caputo 4 dicembre 2006 Esercizio. Siao Y, per =, 2,..., variabili aleatorie co distribuzioe biomiale di parametri e p := λ, per qualche λ > 0. Dimostrare che Y coverge i distribuzioe

Dettagli

Def. Se f(x) è una funzione derivabile infinite volte in un intorno di un punto c, ed esiste R > 0 o R = + tale che f(x) = f (n) (c)

Def. Se f(x) è una funzione derivabile infinite volte in un intorno di un punto c, ed esiste R > 0 o R = + tale che f(x) = f (n) (c) Apputi sul corso i Aalisi Matematica complemeti (a) - prof. B.Bacchelli Apputi 5: Riferimeti: R.Aams, Calcolo Differeziale. -Si cosiglia vivamate i fare gli esercizi el testo. Cap. 9.5 - Serie i Taylor,

Dettagli

Risoluzione del compito n. 3 (Febbraio 2018/2)

Risoluzione del compito n. 3 (Febbraio 2018/2) Risoluzioe del compito. 3 (Febbraio 08/ PROBLEMA a Determiate le soluzioi τ C dell equazioe τ iτ +=0. { αβ =4 b Determiate le soluzioi (α, β, co α, β C,delsistema α + β =i. c Determiate tutte le soluzioi

Dettagli

1 + 1 ) n ] n. < e nα 1 n

1 + 1 ) n ] n. < e nα 1 n Esercizi preparati e i parte svolti martedì 0.. Calcolare al variare di α > 0 Soluzioe: + ) α Per α il ite è e; se α osserviamo che da + /) < e segue che α + ) α [ + ) ] α < e α Per α > le successioi e

Dettagli

Analisi Matematica I modulo Soluzioni prova scritta preliminare n. 1

Analisi Matematica I modulo Soluzioni prova scritta preliminare n. 1 Aalisi Matematica I modulo Soluzioi prova scritta prelimiare 1 Corso di laurea i Matematica, aa 004-005 9 ovembre 004 1 (a) Calcolare il seguete limite: **A***** Soluzioe Si ha ( + log ) ( + log ) lim

Dettagli

Il caso di coefficienti decrescenti e infinitesimi

Il caso di coefficienti decrescenti e infinitesimi Il caso di coefficieti decresceti e ifiitesimi Quado ua serie trigoometrica ha coefficieti reali, decresceti e ifiitesimi, le sue proprietà di covergeza soo particolarmete iteressati. Iiziamo questa descrizioe

Dettagli

Tutoraggio AM1 17/12/2015. sin(x) arctan(x) 2) lim sup / inf x 0 + cos(x) sin( 1 x ) e x2 cos 2 (x 3 ) x 2 + ln(3x + 2) δ(x) δ(x) =

Tutoraggio AM1 17/12/2015. sin(x) arctan(x) 2) lim sup / inf x 0 + cos(x) sin( 1 x ) e x2 cos 2 (x 3 ) x 2 + ln(3x + 2) δ(x) δ(x) = Tutoraggio AM1 17/12/2015 Per la parte teorica sui if e sup vedi le ote su iti iferiori e superiori di fuzioi. A) Date due successioi a },b }, mostrare le segueti proprietà (escludere i casi i cui si abbia

Dettagli

Successioni e serie di funzioni

Successioni e serie di funzioni Capitolo Successioi e serie di fuzioi Covergeza putuale ed uiforme Ultimo aggiorameto: 8 febbraio 27 Differeza tra covergeza putuale ed uiforme: Si suppoga di avere ua successioe di fuzioi f : D R tali

Dettagli

SUCCESSIONI E SERIE DI FUNZIONI

SUCCESSIONI E SERIE DI FUNZIONI SUCCESSIONI E SERIE DI FUNZIONI ANTONIO IANNIZZOTTO Sommario. Sucessioi di fuzioi. Covergeza putuale e uiforme. Teoremi di scambio dei limiti, cotiuità, derivabilità, itegrabilità del limite di ua successioe.

Dettagli

4 - Le serie. a k = a k. S = k=1

4 - Le serie. a k = a k. S = k=1 4 - Le serie E veiamo ad uo degli argometi più ostici (ma ache più iteressati) dell aalisi: le serie. Ricordiamo brevemete cos è ua serie e cosa vuol dire covergeza per ua serie. Defiizioe 1. Data ua successioe

Dettagli

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione. Appello del

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione. Appello del ANALISI MATEMATICA 1 Area dell Igegeria dell Iformazioe Appello del 18.9.17 TEMA 1 Esercizio 1 Si cosideri la fuzioe fx) := 3x log x. i) Determiare il domiio D e studiare le evetuali simmetrie ed il sego

Dettagli

e 6x = 2(t + 1) 1 + c tan x (funzione razionale) si scompone come: t (log t 1 log t + 1 ) t=9

e 6x = 2(t + 1) 1 + c tan x (funzione razionale) si scompone come: t (log t 1 log t + 1 ) t=9 Esercizi di Aalisi - Alberto Valli - AA 5/6 - Foglio. Calcolate tramite cambiameto di variabile ciascuo dei segueti itegrali : i / six + dx ii log log e 6x e x dx iii / π/ cos 5 xsix cos x dx. Soluzioe.

Dettagli

Tracce di soluzioni di alcuni esercizi di matematica 1 - gruppo 42-57

Tracce di soluzioni di alcuni esercizi di matematica 1 - gruppo 42-57 Tracce di soluzioi di alcui esercizi di matematica - gruppo 42-57 4. Limiti di successioi Soluzioe dell Esercizio 42.. Osserviamo che a = a +6 e duque la successioe prede valori i {a,..., a 6 } e ciascu

Dettagli

Analisi Matematica II

Analisi Matematica II Uiversità degli Studi di Udie Ao Accademico 016/017 Dipartimeto di Scieze Matematiche, Iformatiche e Fisiche Corso di Laurea i Matematica Aalisi Matematica II Prova parziale del 6 febbraio 017 NB: scrivere

Dettagli

Successioni e serie di funzioni

Successioni e serie di funzioni Capitolo Successioi e serie di fuzioi Ultimo aggiorameto: 23 aprile 28 Cosiderazioi geerali: o esiste u metodo geerale (cioè u modo meccaico che valga i ogi situazioe) per studiare la covergeza uiforme.

Dettagli

SERIE NUMERICHE FAUSTO FERRARI

SERIE NUMERICHE FAUSTO FERRARI SERIE NUMERICHE FAUSTO FERRARI Materiale propedeutico alle lezioi di Aalisi Matematica per i corsi di Laurea i Igegeria Chimica e Igegeria per l Ambiete e il Territorio dell Uiversità di Bologa. Ao Accademico

Dettagli

Lezioni di Matematica 1 - I modulo

Lezioni di Matematica 1 - I modulo Lezioi di Matematica 1 - I modulo Luciao Battaia 4 dicembre 2008 L. Battaia - http://www.batmath.it Mat. 1 - I mod. Lez. del 04/12/2008 1 / 28 -2 Sottosuccessioi Grafici Ricorreza Proprietà defiitive Limiti

Dettagli

SOLUZIONI COMPITO del 12/01/2017 ANALISI MATEMATICA I - 9 CFU ENERGETICA TEMA A. ; 9 + 4α = 1

SOLUZIONI COMPITO del 12/01/2017 ANALISI MATEMATICA I - 9 CFU ENERGETICA TEMA A. ; 9 + 4α = 1 SOLUZIONI COMPITO del /0/07 ANALISI MATEMATICA I - 9 CFU ENERGETICA TEMA A Esercizio i Osserviamo che effettuado la divisioe si ottiee w = 9+4α iα +iα +iα = i α Poiché 9+4α 9+4α w = 9+4α + α 9+4α =, si

Dettagli

4 - Le serie Soluzioni. n + 3. n + 3. n + 2

4 - Le serie Soluzioni. n + 3. n + 3. n + 2 4 - Le serie Soluzioi Esercizio. Studiare la covergeza delle serie: + + 2 + cos!) 2 cosπ). Per la prima serie si ha 0 + + 2 + = 2. Dal mometo che la serie di termie geerico 2 è covergete serie armoica

Dettagli

Matematica I, Limiti di successioni (II).

Matematica I, Limiti di successioni (II). Matematica I, 05102012 Limiti di successioi II) 1 Le successioi elemetari, cioe α, = 0, 1, 2, α R), b, = 0, 1, 2, b R), log b, = 1, 2, b > 0, b 1), si, = 0, 1, 2,, cos, = 0, 1, 2,, per + hao il seguete

Dettagli

Matematica 5. Dipartimento di Matematica. ITIS V.Volterra San Donà di Piave. Versione [12/13][S-All]

Matematica 5. Dipartimento di Matematica. ITIS V.Volterra San Donà di Piave. Versione [12/13][S-All] Matematica 5 Dipartimeto di Matematica ITIS V.Volterra Sa Doà di Piave Versioe [/3][S-All] Idice I Itegrazioe Itegrazioe impropria. Geeralità............................................. Criteri di itegrabilità......................................

Dettagli

Analisi Matematica 1 Matematica

Analisi Matematica 1 Matematica Aalisi Matematica 1 Matematica Secodo Compitio Luedì 30 Geaio 01 VERSIONE A Esercizio 1 (8 puti) Sia α R u parametro e si cosideri la serie di poteze complessa z. i) Calcolare il raggio di covergeza R

Dettagli

Corsi di laurea in fisica ed astronomia Prova scritta di Analisi Matematica 2. Padova,

Corsi di laurea in fisica ed astronomia Prova scritta di Analisi Matematica 2. Padova, Corsi di laurea i fisica ed astroomia Prova scritta di Aalisi Matematica Padova, 8.8.08 Si svolgao i segueti esercizi facedo attezioe a giustificare le risposte. Delle affermazioi o motivate e giustificate

Dettagli

I appello - 11 Dicembre 2006

I appello - 11 Dicembre 2006 Facoltà di Igegeria - Corso di Laurea i Igegeria Civile A.A. 006/007 I appello - Dicembre 006 ) Calcolare il seguete ite: [ ( )] + cos. + ) Data la fuzioe f() = e +, < 0, 0, =, =,,..., log( + ), 0,, =,,...,

Dettagli

SUCCESSIONI E SERIE DI FUNZIONI

SUCCESSIONI E SERIE DI FUNZIONI SUCCESSIONI E SERIE DI FUNZIONI ANTONIO IANNIZZOTTO Sommario. Sucessioi di fuzioi. Covergeza putuale e uiforme. Teoremi di scambio dei iti, cotiuità, derivabilità, itegrabilità del ite di ua successioe.

Dettagli

Il discriminante Maurizio Cornalba 23/3/2013

Il discriminante Maurizio Cornalba 23/3/2013 Il discrimiate Maurizio Coralba 3/3/013 Siao X 1,..., X idetermiate. Cosideriamo i poliomi V (X 1,..., X ) = i>j(x i X j ) (X 1,..., X ) = V (X 1,..., X ) Il poliomio V (X 1,..., X ) è chiaramete atisimmetrico.

Dettagli

Definizione 1. Data una successione (a n ) alla scrittura formale. 1) a 1 + a a n +, si dà il nome di serie.

Definizione 1. Data una successione (a n ) alla scrittura formale. 1) a 1 + a a n +, si dà il nome di serie. SERIE NUMERICHE Defiizioe. Data ua successioe (a ) alla scrittura formale ) a + a 2 + + a +, si dà il ome di serie. I umeri a, a 2,, a, rappresetao i termii della serie, i particolare a è il termie geerale

Dettagli

Equazioni differenziali

Equazioni differenziali Equazioi differeziali Defiizioe 1 Si chiama equazioe differeziale u tipo particolare di equazioe fuzioale, ella quale la fuzioe icogita compare isieme ad alcue sue derivate, ossia u equazioe ella quale,

Dettagli

Calcolo differenziale e integrale

Calcolo differenziale e integrale Calcolo differeziale e itegrale fuzioi di ua variabile reale Gabriele H. Greco Dipartimeto di Matematica Uiversità di Treto 385 POVO Treto Italia www.sciece.uit.it/ greco a.a. 5-6: Apputi del corso di

Dettagli

Analisi Matematica I Soluzioni del tutorato 2

Analisi Matematica I Soluzioni del tutorato 2 Corso di laurea i Fisica - Ao Accademico 07/08 Aalisi Matematica I Soluzioi del tutorato A cura di Davide Macera Esercizio Abbiamo che x 3 + si(log(x)) + cosh(x) x3 + si(log(x)) + e x ( + x 6 ) / + log(e

Dettagli

PROVA SCRITTA DI ANALISI MATEMATICA 2 Corso di laurea in Matematica 6 Settembre Risoluzione a cura di N. Fusco & G. Floridia

PROVA SCRITTA DI ANALISI MATEMATICA 2 Corso di laurea in Matematica 6 Settembre Risoluzione a cura di N. Fusco & G. Floridia PROVA SCRIA DI ANALISI MAMAICA Corso di laurea i Matematica 6 Settembre 6 Risoluzioe a cura di N. Fusco & G. Floridia ) Discutere la covergeza putuale e uiforme della serie π arctg )). ) Svolgimeto ):

Dettagli

1. a n = n 1 a 1 = 0, a 2 = 1, a 3 = 2, a 4 = 3,... Questa successione cresce sempre piú al crescere di n e vedremo che {a n } diverge.

1. a n = n 1 a 1 = 0, a 2 = 1, a 3 = 2, a 4 = 3,... Questa successione cresce sempre piú al crescere di n e vedremo che {a n } diverge. Le successioi A parole ua successioe é u isieme ifiito di umeri disposti i u particolare ordie. Piú rigorosamete, ua successioe é ua legge che associa ad ogi umero aturale u altro umero (ache o aturale):

Dettagli

TEOREMA DELLA PROIEZIONE, DISUGUAGLIANZA DI BESSEL E COMPLEMENTI SULLE SERIE DI FOURIER

TEOREMA DELLA PROIEZIONE, DISUGUAGLIANZA DI BESSEL E COMPLEMENTI SULLE SERIE DI FOURIER TEOREMA DELLA PROIEZIONE, DISUGUAGLIANZA DI BESSEL E COMPLEMENTI SULLE SERIE DI FOURIER I uo spazio euclideo di dimesioe fiita, ad esempio R 3, cosideriamo u sottospazio, ad esempio u piao passate per

Dettagli

Serie numeriche. Esercizi

Serie numeriche. Esercizi Serie umeriche. Esercizi Mauro Saita, aprile 204. Idice Serie umeriche.. Serie a termii defiitivamete positivi..............................2 Serie a termii di sego altero.................................

Dettagli

Esercitazione di AM310

Esercitazione di AM310 Uiversità degli Studi Roma Tre - Corso di Laurea i Matematica Esercitazioe di AM3 A.A. 8-9 - Esercitatore: Luca Battaglia Soluzioi dell esercitazioe 6 del Dicembre 8 Argometo: Misure prodotto, operatori

Dettagli

2.4 Criteri di convergenza per le serie

2.4 Criteri di convergenza per le serie 2.4 Criteri di covergeza per le serie Come si è già acceato i precedeza, spesso è facile accertare la covergeza di ua serie seza cooscere la somma. Ciò è reso possibile da alcui comodi criteri che foriscoo

Dettagli

Scritto di Analisi Matematica IV per Matematica Anno Accademico 2016/17 15/02/2018

Scritto di Analisi Matematica IV per Matematica Anno Accademico 2016/17 15/02/2018 o ccademico 2016/17 15/02/2018 COG 1) a) Sia f (x) = x + si(x), e sia g a, (x) = f (x), a > 0. Dire, al variare di a > 0 se a la successioe g,a coverge putualmete per +, e se il limite è uiforme. b) Dire

Dettagli

Non presenta difficoltà concettuali il passaggio dalle equazioni lineari a coefficienti costanti del secondo ordine a quelle di ordine maggiore.

Non presenta difficoltà concettuali il passaggio dalle equazioni lineari a coefficienti costanti del secondo ordine a quelle di ordine maggiore. Le equazioi differeziali lieari di ordie > a coefficieti costati. No preseta difficoltà cocettuali il passaggio dalle equazioi lieari a coefficieti costati del secodo ordie a quelle di ordie maggiore.

Dettagli

Corsi di laurea in fisica ed astronomia Prova scritta di Analisi Matematica 2. Padova,

Corsi di laurea in fisica ed astronomia Prova scritta di Analisi Matematica 2. Padova, Corsi di laurea i fisica ed astroomia Prova scritta di Aalisi Matematica Padova, 5.7.08 Si svolgao i segueti esercizi facedo attezioe a giustificare le risposte. Delle affermazioi o motivate e giustificate

Dettagli

SERIE NUMERICHE. Test di autovalutazione. 1+a 2

SERIE NUMERICHE. Test di autovalutazione. 1+a 2 SERIE NUMERICHE Test di autovalutazioe. E data la serie: dove a R. Allora: ( ) 3a +a (a) se a = la serie coverge a (b) se a = 3 la somma della serie vale 5 (c) se a = 5 la serie diverge a (d) se a 0 la

Dettagli

ESAME DI MATEMATICA I Modulo di Analisi Matematica Corso 3 Anno Accademico 2008/2009 Docente: R. Argiolas

ESAME DI MATEMATICA I Modulo di Analisi Matematica Corso 3 Anno Accademico 2008/2009 Docente: R. Argiolas ESAME DI MATEMATICA I Modulo di Aalisi Matematica Corso Ao Accademico 8/9 Docete: R Argiolas Cogome Matricola Febbraio 9 ore 9 Aula C Nome Corso voto Esercizio Assegata la fuzioe f ( arcta a Si determii

Dettagli

SOLUZIONI COMPITO del 10/01/2014 ANALISI MATEMATICA I - 9 CFU ENERGETICA TEMA A

SOLUZIONI COMPITO del 10/01/2014 ANALISI MATEMATICA I - 9 CFU ENERGETICA TEMA A SOLUZIONI COMPITO del //4 ANALISI MATEMATICA I - 9 CFU ENERGETICA TEMA A Esercizio Poedo z = x + iy, otteiamo iz + z = ix y + x xy y, da cui si ricava e iz +z = 3 e xy y = 3 xy y = log 3 Pertato, avremo

Dettagli

0.1 Il teorema limite centrale

0.1 Il teorema limite centrale 0. Il teorema limite cetrale 0. Il teorema limite cetrale Teorema 0.. Teorema limite cetrale). Sia X i ) i N ua successioe di variabili aleatorie i.i.d. che ammettoo mometo secodo fiito, co media µ e co

Dettagli

Esercitazione due: soluzioni

Esercitazione due: soluzioni Esercitazioe due: soluzioi. Sia il ricavo r i pk i ti, p, k, t i > applicado la defiizioe di media di Chisii il tempo medio t che lascia ivariato il ricavo totale é quel valore tale che pk i ti pk i t

Dettagli

Prova d esame di Calcolo delle Probabilità 02/07/2011

Prova d esame di Calcolo delle Probabilità 02/07/2011 Prova d esame di Calcolo delle Probabilità 0/07/0 N. MATRICOLA... COGNOME e NOME... Esercizio Cosideriamo due ure ed ua moeta truccata. La prima ura (ura A) cotiee pallie rosse e 4 biache, la secoda ura

Dettagli

Esercizi su serie numeriche - svolgimenti

Esercizi su serie numeriche - svolgimenti Esercizi su serie umeriche - svolgimeti Osserviamo che vale la doppia diseguagliaza + si, e quidi la serie è a termii positivi Duque la somma della serie esiste fiita o uguale a + Ioltre valgoo le diseguagliaze

Dettagli

Elementi della teoria delle serie numeriche

Elementi della teoria delle serie numeriche Elemeti della teoria delle serie umeriche Geeralita Lo studio delle serie costituisce ua sistemazioe rigorosa del cocetto di somma di ua successioe (ifiita) di addedi : sia (a ) N ua successioe i R. Vogliamo

Dettagli

. Motivando la risposta, dire qual è l ordine di infinitesimo di sinx Dati i numeri complessi z. e x lim x

. Motivando la risposta, dire qual è l ordine di infinitesimo di sinx Dati i numeri complessi z. e x lim x Prova scritta di Aalisi Matematica I () //5 Euciare e dimostrare il teorema della permaeza del sego Fare u esempio Defiizioe di fuzioe ifiitesima per Motivado la risposta, dire qual è l ordie di ifiitesimo

Dettagli

Paolo Perfetti, Dipartimento di matematica, II Università degli Studi di Roma, facoltà di Ingegneria

Paolo Perfetti, Dipartimento di matematica, II Università degli Studi di Roma, facoltà di Ingegneria Esercizi svolti a lezioe e o proveieti dal Marcellii Sbordoe La preseza della lettera C idica u esercizio da fare a casa. La capacità di svolgere tali esercizi è parte del bagaglio ecessario i sede di

Dettagli