Ingegneria Elettrica Politecnico di Torino. Luca Carlone. ControlliAutomaticiI LEZIONE III

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Ingegneria Elettrica Politecnico di Torino. Luca Carlone. ControlliAutomaticiI LEZIONE III"

Transcript

1 Ingegnera Elettrca Poltecnco d Torno Luca Carlone ControllAutomatcI LEZIONE III

2 Sommaro LEZIONE III Trasformata d Laplace Propretà e trasformate notevol Funzon d trasfermento Scomposzone n fratt semplc Calcolo della rsposta forzata Calcolo della rsposta lbera Calcolo della rsposta d un sstema LTI Esemp ed esercz numerc

3 Trasformata d Laplace Assoca la funzone d partenza d varable reale (soltamente l tempo) ad una funzone d varable complessa È uno strumento per la rsoluzone e lo studo d equazon dfferenzal lnear Esempo: ɺx ( t) = Ax( t) + Bu( t) Permette d trasformare operazon d dervazone e ntegrazone n operazon algebrche semplfcando la trattazone matematca

4 Trasformata d Laplace DEFINIZIONE: Trasformata d Laplace Sa f una funzone della varable reale t. La trasformata d Laplace d f è una funzone complessa d varable complessa s=α+jω, defnta come: [ ] nell potes che tale ntegrale converga per qualche valore d s. NOTAZIONE: soltamente s ndca con la lettera mnuscola la funzone d varable reale e con la mauscola corrspondente la funzone nel domno d Laplace + st F( s) f ( t) f ( t) e dt = L = 0

5 Trasformata d Laplace DEFINIZIONE: Anttrasformata d Laplace La funzone f(t) d orgne s può ottenere dalla funzone F(s) attraverso l anttrasformata d Laplace, defnta come: α+ j st f ( t) = L - [ F( s) ] = F ( s ) e ds π 2 j α j OSSERVAZIONE: la trasformata d Laplace è una trasformazone bunvoca, ovvero ad ogn funzone d varable reale corrsponde una e una sola trasformata d Laplace

6 Trasformata d Laplace Motvazon Per rsolvere le equazon dfferenzal che descrvono un sstema lneare tempo-nvarante:. S applca la trasformata d Laplace trasformando l problema dfferenzale n problema algebrco 2. S rcava una soluzone nel domno d Laplace 3. Per ottenere la soluzone s applca la trasformazone nversa, nota come anttrasformata d Laplace

7 Propretà e trasformate notevol PROPRIETA : Lneartà [ α f ( t) + α f ( t) ] = α [ f ( t) ] + α [ f ( t) ] L L L Conugazone F( s*) = F *( s) Traslazone n t Traslazone n s Dervazone n t L L L 0 [ f ( t t )] = F( s) e st 0 s0t = e f ( t) F( s s0 ) fɺ ( t) = sf( s) f (0)

8 Propretà e trasformate notevol PROPRIETA : Dervazone n s Integrazone n t Convoluzone L L L [ t f ( t) ] t df( s) = ds f ( ξ) dξ = F( s) s 0 s [ ] f ( t) f ( t) = F ( s) F ( s) 2 2 Teorema valore nzale f (0) = lm sf( s) s + Teorema valore fnale lm f ( t) = lm sf( s) t + s 0

9 f ( t ) F( s) δ( t) g( t) m t g ( t ) ( m )! sn( ωt) g( t) cos( ωt) g( t) s s m s ω + ω 2 2 s s + ω 2 2 e e e αt t e αt α t t e αt f ( t) m t g( t) ( m )! αt sn( ωt) g( t) cos( ωt) g( t) sn( ωt) g( t) F( s) s α m ( ) ω ( s α ) + ω 2 2 s α ( s α ) + ω ω( s α) (( s α ) + ω ) ( s α) ω cos( ωt) g( t) (( s α ) + ω ) NOTA: g(t) è l gradno untaro e serve a lmtare lo studo a t 0

10 Funzon d trasfermento RAPPRESENTAZIONE INGRESSO-USCITA E FUNZIONI DI TRASFERIMENTO ɺx ( t) = Ax( t) + Bu( t) y( t) = Cx( t) + Du( t) L Y s C si A x C si A B D U s ( ) ( ) = (0) + [ ( ) + ] ( ) Rsposta lbera Rsposta forzata

11 Funzon d trasfermento RAPPRESENTAZIONE INGRESSO-USCITA E FUNZIONI DI TRASFERIMENTO Y ( s) b s + b s b s + b = [ C( si A) B + D] = n m U ( s) s a s... a s a m m m m 0 n n + n FUNZIONE DI TRASFERIMENTO (fdt) W(s)

12 Funzon d trasfermento FORME DI RAPPRESENTAZIONE Forma polnomale: m bm s + b s b s + b W ( s) = n m n s + a s + + a s + a m m 0 n n... 0 Forma guadagno-zer-pol: W ( s) = k m = n = ( s z ) ( s p )

13 Funzon d trasfermento FORME DI RAPPRESENTAZIONE Forma coeffcent e pol: W ( s) = n n c j ( s p ) = j = j Forma costant d tempo: W ( s) = k s h ( τ' s) 2 ζ ' 2 ( + s + s ) 2 ω' ω' 2ζ 2 ( τ s) ( + s + s ) 2 ω ω

14 Scomposzone n fratt semplc Per ottenere la rsposta nel tempo, anttrasformando la corrspondente trasformata d Laplace, è convenente utlzzare la rappresentazone coeffcent e pol Negl esercz numerc s parte soltamente da una rappresentazone polnomale In partcolare, è possble esprmere la F(s) come una combnazone lneare d termn, dett fratt semplc: ( s p) j

15 Scomposzone n fratt semplc POLI REALI DI MOLTEPLICITA UNITARIA: F( s) = m b s + b s b s + b m m m 0 n n... 0 n s + a s + + a s + a Calcolo de resdu F( s) = n = s r p. r = [( s p ) F( s)] = s= p 2. Prncpo d denttà de polnom n = p t f ( t) re g( t) = OSSERVAZIONE: resdu assocat a pol real sono real

16 Scomposzone n fratt semplc POLI REALI MULTIPLI F( s) = m m n n bm s + bm s b s + b0, ( ) = r j F s n n s + an s as + a 0 = j = ( s p ) n n = j t p t ( ) = f t r, j e g ( t ) ( j )! = j= Calcolo de resdu. n j d ( n ) r, j = ( s p ) ( ) F s n j ( n j)! ds s= p 2. Prncpo d denttà de polnom j

17 Scomposzone n fratt semplc POLI COMPLESSI CONIUGATI Generano una rsposta oscllatora l cu nvluppo è determnato dalla parte reale de pol OSSERVAZIONE: resdu assocat a pol compless conugat sono a loro volta compless conugat F( s) ms + n r r * = = + 2 s + as + b s + p jq s + p + jq S possono calcolare utlzzando la procedura vsta per I pol real d molteplctà untara oppure utlzzando SCILAB

18 Scomposzone n fratt semplc POLI COMPLESSI CONIUGATI La rsposta nel tempo corrspondente ad una coppa d pol compless conugat è data dall espressone: F( s) = r r * s + p jq + s + p + jq ( ) f ( t) = r e pt cos qt + r g( t) p = parte reale del polo q = parte mmagnara del polo r = modulo del resduo assocato al polo r = fase del resduo assocaton al polo

19 Calcolo della rsposta forzata PROBLEMA: dato l sstema ɺx ( t) = Ax( t) + Bu( t) y( t) = Cx( t) + Du( t) con A, B, C e D note e tempo-nvarant, DETERMINARE L espressone analtca della rsposta del sstema y(t) a fronte d un ngresso u(t) polnomale OSSERVAZIONE: la rsposta per ngress snusodal sarà trattata nella prossma lezone (LEZIONE IV)

20 Calcolo della rsposta forzata SOLUZIONE:. Trasformare la rappresentazone ngresso-stato-uscta n funzone d trasfermento 2. Applcare la trasformata d Laplace alla funzone u(t) 3. Ottenere l uscta del sstema nel domno d Laplace 4. Scomporre n fratt semplc e anttrasformare, ottenendo la rsposta forzata y f (t)

21 Calcolo della rsposta forzata. Trasformare la rappresentazone ngresso-stato-uscta n funzone d trasfermento ɺx ( t) = Ax( t) + Bu( t) y( t) = Cx( t) + Du( t) b s + b s b s + b W ( s) = [ C( si A) B + D] = n m m m m m 0 n n s + an s as + a0 OSSERVAZIONE: In sede d esame questo passaggo s può svolgere utlzzando l calcolatore (ved [SCILAB])

22 Calcolo della rsposta forzata 2. Applcare la trasformata d Laplace alla funzone u(t) m t u( t) = g( t) t 0 ( m )! L U ( s) = s m OSSERVAZIONE: Questo passaggo s può svolgere utlzzando le tavole con le trasformate e anttrasformate d Laplace

23 Calcolo della rsposta forzata 3. Ottenere l uscta del sstema nel domno d Laplace W ( s ) U ( s) Ottenuta al passo Ottenuta al passo 2 Y ( s) = W ( s) U ( s) f

24 Calcolo della rsposta forzata 4. Scomporre n fratt semplc e anttrasformare, ottenendo la rsposta forzata y(t) Forma polnomale Forma coeffcent e pol (fratt semplc) y f ( t) L - Yf ( s) OSSERVAZIONE: Questo passaggo s può svolgere utlzzando l calcolatore (ved [SCILAB]) o seguendo le ndcazon contenute nelle slde precedent (SCOMPOSIZIONE IN FRATTI SEMPLICI)

25 Calcolo della rsposta lbera La rsposta lbera s ottene dal prmo addendo della relazone: Y s C si A x C si A B D U s ( ) ( ) = (0) + [ ( ) + ] ( ) Rsposta lbera Rsposta forzata C si A x ( ) (0) Dopo aver ottenuto è necessaro anttrasformare per ottenere la rsposta lbera nel tempo che rappresenta l evoluzone naturale d un sstema senza ngress a partre dalla condzone nzale x(0)

26 Calcolo della rsposta lbera SOLUZIONE: Y s C si A x ( ) = ( ) (0). Calcolare a partre da A, l C e le condzon nzal x(0) 2. Scomporre n fratt semplc e anttrasformare, ottenendo la rsposta lbera y l (t)

27 Calcolo della rsposta d un sstema LTI Il calcolo dell espressone analtca della rsposta d un sstema lneare tempo-nvarante (LTI) a fronte d un ngresso u(t) a partre dalle condzon nzal x(0) s ottene, per lneartà, sommando l contrbuto della rsposta lbera a quello dovuto alla rsposta forzata SOLUZIONE:. Calcolare la rsposta forzata yf(t) all ngresso u(t) trascurando l evoluzone lbera 2. Calcolare la rsposta lbera yl(t) trascurando l evoluzone forzata 3. La rsposta del sstema s ottene sommando I due contrbut: y( t) = y ( t) + y ( t) f l

28 Esemp ed esercz numerc

Controlli Automatici I

Controlli Automatici I Ingegneria Elettrica Politecnico di Torino Luca Carlone Controlli Automatici I LEZIONE II Sommario LEZIONE II Trasformata di Laplace Proprietà e trasformate notevoli Funzioni di trasferimento Scomposizione

Dettagli

Quinto test di autovalutazione di ANALISI DEI SISTEMI

Quinto test di autovalutazione di ANALISI DEI SISTEMI Qunto test d autovalutazone d ANALISI DEI SISTEMI A.A. 9/. S determn, per t R +, operando nel domno del tempo, l evoluzone lbera d stato ed uscta del modello d stato a tempo contnuo ẋ(t) Fx(t) y(t) Hx(t)

Dettagli

Integrazione numerica dell equazione del moto per un sistema lineare viscoso a un grado di libertà. Prof. Adolfo Santini - Dinamica delle Strutture 1

Integrazione numerica dell equazione del moto per un sistema lineare viscoso a un grado di libertà. Prof. Adolfo Santini - Dinamica delle Strutture 1 Integrazone numerca dell equazone del moto per un sstema lneare vscoso a un grado d lbertà Prof. Adolfo Santn - Dnamca delle Strutture 1 Introduzone 1/2 L equazone del moto d un sstema vscoso a un grado

Dettagli

Appunti: Scomposizione in fratti semplici ed antitrasformazione

Appunti: Scomposizione in fratti semplici ed antitrasformazione Appunt: Scomposzone n fratt semplc ed anttrasformazone Gulo Cazzol v0. (AA. 017-018) 1 Fratt semplc 1.1 Funzone ntera.............................................. 1. Funzone razonale fratta strettamente

Dettagli

La soluzione delle equazioni differenziali con il metodo di Galerkin

La soluzione delle equazioni differenziali con il metodo di Galerkin Il metodo de resdu pesat per gl element fnt a soluzone delle equazon dfferenzal con l metodo d Galerkn Tra le procedure generalmente adottate per formulare e rsolvere le equazon dfferenzal con un metodo

Dettagli

Esercitazioni di Analisi Matematica Prof. A. Bonfiglioli

Esercitazioni di Analisi Matematica Prof. A. Bonfiglioli Eserctazon d Anals Matematca Prof. A. Bonfglol Numer compless Eserczo. Per cascuno de seguent numer compless z, nel pano complesso C, dsegnare z e l suo conugato z; portare z n forma algebrca, se è scrtto

Dettagli

Corso di Elettrotecnica

Corso di Elettrotecnica Unerstà degl Stud d Paa Facoltà d Ingegnera orso d orso d Elettrotecnca Teora de rcut rcut elettrc n funzonamento perturbato rcut elettrc n funzonamento perturbato I IRUITI OMPRENONO: Sorgent nterne d

Dettagli

Risposta in frequenza

Risposta in frequenza Rsposta n frequenza www.de.ng.unbo.t/pers/mastr/ddattca.htm (versone del 6--6 Dagramm d Bode Le funzon d trasfermento (f.d.t de crcut lnear tempo nvarant sono funzon razonal (coè rapport tra due polnom

Dettagli

Analisi Modale. Le evoluzioni libere dei due sistemi a partire dalla condizione iniziale x(0) = x 0 sono

Analisi Modale. Le evoluzioni libere dei due sistemi a partire dalla condizione iniziale x(0) = x 0 sono Captolo 1 INTRODUZIONE 21 Anals Modale S facca rfermento al sstema tempo-dscreto e al sstema tempo-contnuo x(k +1)=Ax(k) ẋ(t) =Ax(t) Le evoluzon lbere de due sstem a partre dalla condzone nzale x() = x

Dettagli

Corso di laurea in Ingegneria Meccatronica. DINAMICI CA - 04 ModiStabilita

Corso di laurea in Ingegneria Meccatronica. DINAMICI CA - 04 ModiStabilita Automaton Robotcs and System CONTROL Unverstà degl Stud d Modena e Reggo Emla Corso d laurea n Ingegnera Meccatronca MODI E STABILITA DEI SISTEMI DINAMICI CA - 04 ModStablta Cesare Fantuzz (cesare.fantuzz@unmore.t)

Dettagli

Teoremi dei circuiti

Teoremi dei circuiti Teorem de crcut www.de.ng.unbo.t/pers/mastr/ddattca.htm (ersone del --04) Teorema d Tellegen potes: Crcuto con n nod e l lat ers d rfermento scelt per tutt lat secondo la conenzone dell utlzzatore {,...,

Dettagli

Circuiti dinamici. Circuiti del secondo ordine. (versione del ) Circuiti del secondo ordine

Circuiti dinamici. Circuiti del secondo ordine.  (versione del ) Circuiti del secondo ordine rcut dnamc rcut del secondo ordne www.de.ng.unbo.t/pers/mastr/ddattca.htm (versone del 9-6- rcut del secondo ordne rcut del secondo ordne: crcut l cu stato è defnto da due varabl x ( e x ( Per un crcuto

Dettagli

Metodi variazionali. ed agiscono sulla FORMA DEBOLE DEL PROBLEMA

Metodi variazionali. ed agiscono sulla FORMA DEBOLE DEL PROBLEMA Metod varazonal OBIETTIVO: determnare funzon ncognte, chamate varabl dpendent, che soddsfano un certo nseme d equazon dfferenzal n un determnato domno e condzon al contorno STRUMETO: Metod varazonal: servono

Dettagli

Equilibrio e stabilità di sistemi dinamici. Stabilità dell equilibrio di sistemi dinamici non lineari per linearizzazione

Equilibrio e stabilità di sistemi dinamici. Stabilità dell equilibrio di sistemi dinamici non lineari per linearizzazione Equlbro e stabltà d sstem dnamc Stabltà dell equlbro d sstem dnamc non lnear per lnearzzazone Stabltà dell equlbro d sstem dnamc non lnear per lnearzzazone Stabltà dell equlbro d sstem NL TC Crter d stabltà

Dettagli

Metodi variazionali. ed agiscono sulla FORMA DEBOLE DEL PROBLEMA

Metodi variazionali. ed agiscono sulla FORMA DEBOLE DEL PROBLEMA Metod varazonal OBIETTIVO: determnare funzon ncognte, chamate varabl dpendent, che soddsfano un certo nseme d equazon dfferenzal n un determnato domno e condzon al contorno STRUMETO: Metod varazonal: servono

Dettagli

Funzione di matrice. c i λ i. i=0. i=0. m 1. γ i A i. i=0. Moltiplicando entrambi i membri di questa equazione per A si ottiene. α i 1 A i α m 1 A m

Funzione di matrice. c i λ i. i=0. i=0. m 1. γ i A i. i=0. Moltiplicando entrambi i membri di questa equazione per A si ottiene. α i 1 A i α m 1 A m Captolo INTRODUZIONE Funzone d matrce Sa f(λ) una generca funzone del parametro λ svluppable n sere d potenze f(λ) Sa A una matrce quadrata d ordne n La funzone d matrce f(a) èdefnta nel modo seguente

Dettagli

Esercizi sulle reti elettriche in corrente continua (parte 2)

Esercizi sulle reti elettriche in corrente continua (parte 2) Esercz sulle ret elettrche n corrente contnua (parte ) Eserczo 3: etermnare gl equvalent d Thevenn e d Norton del bpolo complementare al resstore R 5 nel crcuto n fgura e calcolare la corrente che crcola

Dettagli

ω 0 =, abbiamo L = 1 H. LC 8.1 Per t il condensatore si comporta come un circuito aperto pertanto la corrente tende a zero: la R

ω 0 =, abbiamo L = 1 H. LC 8.1 Per t il condensatore si comporta come un circuito aperto pertanto la corrente tende a zero: la R 8. Per t l condensatore s comporta come un crcuto aperto pertanto la corrente tende a zero: la funzone non può essere la (c). caando α e ω 0 s ottengono seguent alor: α 5 0 e ω 0 0. Essendo α > ω 0 l crcuto

Dettagli

Introduzione e modellistica dei sistemi

Introduzione e modellistica dei sistemi Introduzone e modellstca de sstem Element fondamental Rappresentazone n arabl d stato Esemp d rappresentazone n arabl d stato 007 Poltecnco d Torno Resstore deale Resstore deale d resstenza R R R equazone

Dettagli

Corso di. Gasdinamica II Tommaso Astarita

Corso di. Gasdinamica II Tommaso Astarita Corso d Gasdnamca II Tommaso Astarta astarta@unna.t www.docent.unna.t Gasdnamca II Tommaso Astarta 5.0.008 Metodo d Eulero S supponga d avere una equazone dfferenzale del prmo ordne: f ( x, ) x xo o Defnendo

Dettagli

Risposta in frequenza e filtri

Risposta in frequenza e filtri Rsposta n frequenza e fltr www.de.ng.unbo.t/pers/mastr/ddattca.htm (versone del 3-3-9) Funzon d rete S consdera un crcuto con un solo ngresso (coè un solo generatore) operante n condzon d regme snusodale

Dettagli

Intorduzione alla teoria delle Catene di Markov

Intorduzione alla teoria delle Catene di Markov Intorduzone alla teora delle Catene d Markov Mchele Ganfelce a.a. 2014/2015 Defnzone 1 Sa ( Ω, F, {F n } n 0, P uno spazo d probabltà fltrato. Una successone d v.a. {ξ n } n 0 defnta su ( Ω, F, {F n }

Dettagli

Risposta in frequenza e filtri

Risposta in frequenza e filtri Rsposta n frequenza e fltr www.de.ng.unbo.t/pers/mastr/ddattca.htm (versone del 5-4-7) Funzon d rete S consdera un crcuto con un solo ngresso (coè un solo generatore) operante n condzon d regme snusodale

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 2: 21 febbraio 2013

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 2: 21 febbraio 2013 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2012-2013 lezone 2: 21 febbrao 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/25? Defnzone. f : R R s dce addtva se per ogn

Dettagli

Teoremi dei circuiti

Teoremi dei circuiti Teorem de crcut www.de.ng.unbo.t/pers/mastr/ddattca.htm (ersone del 0-0-03) Teorema d Tellegen Ipotes: Crcuto con n nod e l lat ers d rfermento scelt per tutt lat secondo la conenzone dell utlzzatore {,...,

Dettagli

5.1 Controllo di un sistema non lineare

5.1 Controllo di un sistema non lineare 5.1 Controllo d un sstema non lneare Sa dato l sstema non lneare rappresentato n fgura 5.1, con h g θ Θ,m,r Fgura 5.1: Sstema non lneare F m (,d) = k m la forza che esercta l elettromagnete percorso da

Dettagli

Lezione 12. RL in evoluzione libera. = Ri. = L di dt v R. di dt + R L i = 0. Ri + L di. i( 0) = I 0. Es. I-4

Lezione 12. RL in evoluzione libera. = Ri. = L di dt v R. di dt + R L i = 0. Ri + L di. i( 0) = I 0. Es. I-4 Lezone 1 RL n evoluzone lbera R L (0) = I 0 Esamnamo ora un caso smle al precedente n cu al posto del condensatore sa presente un nduttore L; la stora è la stessa, cambano solo protagonst. lmteremo ad

Dettagli

Calcolo del movimento di sistemi dinamici LTI. Esempi di soluzione per sistemi dinamici LTI TC

Calcolo del movimento di sistemi dinamici LTI. Esempi di soluzione per sistemi dinamici LTI TC Calcolo del movimento di sistemi dinamici LTI Esempi di soluzione per sistemi dinamici LTI TC Esempi di soluzione per sistemi LTI TC Scomposizione in fratti semplici (parte I) Esempio di soluzione 1 Scomposizione

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 3:

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 3: Dpartmento d Statstca Unverstà d Bologna Matematca Fnanzara aa 2011-2012 lezone 3: 21022012 professor Danele Rtell www.unbo.t/docdent/danele.rtell 1/31? Captalzzazone msta S usa l regme composto per l

Dettagli

Trasformata di Fourier

Trasformata di Fourier Trasformata d Fourer Sstem lnear Operator local P Gl operator local assocano ad ogn pel della mmagne d output Q un valore calcolato n un ntorno o fnestra w centrata nel pel P QfPw Operator local P La funzone

Dettagli

6. Catene di Markov a tempo continuo (CMTC)

6. Catene di Markov a tempo continuo (CMTC) 6. Catene d Markov a tempo contnuo (CMTC) Carla Seatzu, 8 Marzo 28 Defnzone Una CMTC è un processo stocastco defnto come segue: lo spazo d stato è dscreto: X{x,x 2, }. L nseme X può essere sa fnto sa nfnto

Dettagli

4.6 Dualità in Programmazione Lineare

4.6 Dualità in Programmazione Lineare 4.6 Dualtà n Programmazone Lneare Ad ogn PL n forma d mn (max) s assoca un PL n forma d max (mn) Spaz e funzon obettvo dvers ma n genere stesso valore ottmo! Esempo: l valore massmo d un flusso ammssble

Dettagli

Equilibrio e stabilità di sistemi dinamici. Stabilità interna di sistemi dinamici LTI

Equilibrio e stabilità di sistemi dinamici. Stabilità interna di sistemi dinamici LTI Equlbro e stabltà d sstem dnamc Stabltà nterna d sstem dnamc LTI Stabltà nterna d sstem dnamc LTI Stabltà nterna d sstem dnamc LTI TC Crter d stabltà per sstem dnamc LTI TC Stabltà nterna d sstem dnamc

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 4: 28 febbraio 2013

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 4: 28 febbraio 2013 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2012-2013 lezone 4: 28 febbrao 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/25? Usando le equazon dfferenzal a varabl separabl,

Dettagli

Compito di SISTEMI E MODELLI 25 Gennaio 2016

Compito di SISTEMI E MODELLI 25 Gennaio 2016 Compto d SISTEMI E MODELLI 5 Gennao 06 È vetato l uso d lbr o quadern. Le rsposte vanno gustfcate. Saranno rlevant per la valutazone anche l ordne e la charezza espostva. Consegnare SOLO la bella copa,

Dettagli

Calcolo Scientifico e Matematica Applicata Secondo Parziale, Ingegneria Ambientale

Calcolo Scientifico e Matematica Applicata Secondo Parziale, Ingegneria Ambientale Calcolo Scentfco e Matematca Applcata Secondo Parzale, 7.2.28 Ingegnera Ambentale Rsolvere gl esercz, 2, 4 oppure, n alternatva, gl esercz, 3, 4. Valutazone degl esercz: 4, 2 8, 3 8, 4 8.. Illustrare,

Dettagli

ESERCITAZIONE 8. Esercitazioni del corso FONDAMENTI DI PROCESSI CHIMICI Prof. Luca Lietti

ESERCITAZIONE 8. Esercitazioni del corso FONDAMENTI DI PROCESSI CHIMICI Prof. Luca Lietti arametr RKS Dpartmento d Energa oltecnco d Mlano a a Masa 4-0156 MINO Eserctazon del corso FONDMENI DI ROESSI HIMII rof. uca ett ESERIZIONE 8 alcolo della temperatura d bolla e d rugada d una mscela n-butano/n-esano

Dettagli

Amplificatori operazionali

Amplificatori operazionali Amplfcator operazonal Parte 3 www.de.ng.unbo.t/pers/mastr/ddattca.htm (versone del 9-5-) Confgurazone nvertente generalzzata Se nella confgurazone nvertente s sosttuscono le resstenze R e R con due mpedenze

Dettagli

Determinarelatranscaratteristicav out (v in ) del seguente circuito R. V out. V in V ٧ = 0.7V D Z D V R = 5V. R o V R V Z = -8V

Determinarelatranscaratteristicav out (v in ) del seguente circuito R. V out. V in V ٧ = 0.7V D Z D V R = 5V. R o V R V Z = -8V ESECZO SU DOD (Metodo degl Scatt) Determnarelatranscaratterstcav out (v n ) del seguente crcuto Dat del problema 5 o kω Ω 0 Ω Z -8 n ٧ 0.7 r D 0 Ω r Z 0 Ω r Ω D Z D o out Metodo degl scatt S determnano

Dettagli

CARATTERISTICHE DEI SEGNALI RANDOM

CARATTERISTICHE DEI SEGNALI RANDOM CARATTERISTICHE DEI SEGNALI RANDOM I segnal random o stocastc rvestono una notevole mportanza poché sono present, pù che segnal determnstc, nella maggor parte de process fsc real. Esempo d segnale random:

Dettagli

6. Catene di Markov a tempo continuo (CMTC)

6. Catene di Markov a tempo continuo (CMTC) 6. Catene d Markov a tempo contnuo (CMTC) Defnzone Una CMTC è un processo stocastco defnto come segue: lo spazo d stato è dscreto: X{x,x 2, }. L nseme X può essere sa fnto sa nfnto numerable. L nseme de

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 17: 8 maggio 2012

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 17: 8 maggio 2012 Dpartmento d Statstca Unverstà d Bologna Matematca Fnanzara aa 2011-2012 lezone 17: 8 maggo 2012 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/20? Costture n regme semplce al tasso = 0, 025 l

Dettagli

CORSO DI CONTROLLI AUTOMATICI QUADERNO DELLE ESERCITAZIONI

CORSO DI CONTROLLI AUTOMATICI QUADERNO DELLE ESERCITAZIONI UNIVERSITÁ DEGLI STUDI DI PALERMO FACOLTÁ DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA ELETTRONICA CORSO DI CONTROLLI AUTOMATICI QUADERNO DELLE ESERCITAZIONI ANNO ACCADEMICO 996-97 Eserctazone n - La Trasformata

Dettagli

Elettrotecnica - Modulo 1 - Ing. Biomedica, Ing. Elettronica per l Energia e l Informazione A.A. 2017/18 - Prova n luglio 2018.

Elettrotecnica - Modulo 1 - Ing. Biomedica, Ing. Elettronica per l Energia e l Informazione A.A. 2017/18 - Prova n luglio 2018. ognome Nome Matrcola Frma 1 Part svolte: E1 E E3 D Eserczo 1 A G7 6 B V G6 T V 1 D V 5 g11 0 G g1 g Supponendo not parametr de component e della matrce d conduttanza del trpolo T, llustrare l procedmento

Dettagli

Stabilità dei Sistemi Dinamici. Stabilità Semplice. Stabilità Asintotica. Stabilità: concetto intuitivo che può essere formalizzato in molti modi

Stabilità dei Sistemi Dinamici. Stabilità Semplice. Stabilità Asintotica. Stabilità: concetto intuitivo che può essere formalizzato in molti modi Gustavo Belforte Stabltà de Sstem Dnamc Gustavo Belforte Stabltà de Sstem Dnamc Stabltà de Sstem Dnamc Il Pendolo Stabltà: concetto ntutvo che può essere formalzzato n molt mod Intutvamente: Un oggetto

Dettagli

ELETTROTECNICA ED ELETTRONICA (C.I.) Modulo di Elettronica. Lezione 4. a.a

ELETTROTECNICA ED ELETTRONICA (C.I.) Modulo di Elettronica. Lezione 4. a.a 586 ELETTOTECNICA ED ELETTONICA (C.I. Modulo d Elettronca Lezone 4 a.a. 000 Amplfcatore Invertente I o I Av* o Z ; Zo 0; I Z f Avo Z Amplfcatore non Invertente o o (f/ f o f ; Avo o f ; Zn ; Zout 0; Amplfcator

Dettagli

il diodo a giunzione transistori ad effetto di campo (FETs) il transistore bipolare (BJT)

il diodo a giunzione transistori ad effetto di campo (FETs) il transistore bipolare (BJT) Contenut del corso Parte I: Introduzone e concett ondamental rcham d teora de crcut la smulazone crcutale con PICE element d Elettronca dello stato soldo Parte II: Dspost Elettronc l dodo a gunzone transstor

Dettagli

26/08/2010. segnali deterministici. segnali casuali o random. stazionario. periodico. Non stazionario. transitorio

26/08/2010. segnali deterministici. segnali casuali o random. stazionario. periodico. Non stazionario. transitorio Cap 5: ANALISI DEI SEGNALI E ARAURA DINAMICA Un segnale è defnto come una qualsas varable fsca che camba nel tempo, nello spazo, o rspetto a altre varabl e che trasporta nformazon segnal determnstc segnal

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 5: 24 febbraio 2014

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 5: 24 febbraio 2014 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2013-2014 lezone 5: 24 febbrao 2014 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/24? Eserczo Trovare quale legge d captalzzazone

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa Lezione 4: Martedì 24/2/2015

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa Lezione 4: Martedì 24/2/2015 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2014-2015 Lezone 4: Martedì 24/2/2015 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/31? Attualzzazone I fattor d attualzzazone conugat

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 16: 2 maggio 2012

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 16: 2 maggio 2012 Dpartmento d Statstca Unverstà d Bologna Matematca Fnanzara aa 2011-2012 lezone 16: 2 maggo 2012 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/19? CCT/CCTEu S tratta d un ttolo a cedola varable:

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 3: 27 febbraio 2013

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 3: 27 febbraio 2013 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2012-2013 lezone 3: 27 febbrao 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/26? S può dmostrare che 1. se 0 < t < 1 allora

Dettagli

REGRESSIONE LINEARE. È caratterizzata da semplicità: i modelli utilizzati sono basati essenzialmente su funzioni lineari

REGRESSIONE LINEARE. È caratterizzata da semplicità: i modelli utilizzati sono basati essenzialmente su funzioni lineari REGRESSIONE LINEARE Ha un obettvo mportante: nvestgare sulle relazon emprche tra varabl allo scopo d analzzare le cause che possono spegare un determnato fenomeno È caratterzzata da semplctà: modell utlzzat

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 2: 18 febbraio 2014

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 2: 18 febbraio 2014 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2013-2014 lezone 2: 18 febbrao 2014 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/19? Defnzone. f : R R s dce moltplcatva se per

Dettagli

Prova scritta di Elettronica I 26 giugno 2001

Prova scritta di Elettronica I 26 giugno 2001 Prova scrtta d Elettronca I 26 gugno 2001 Soluzone 1. Dato l seguente crcuto, determnare: Q3 BC179 BC179 Q4 RL 100k Q2 RE 2.3k I. l punto d rposo e parametr per pccol segnal. (S consgla d trovare la relazone

Dettagli

La corrente vale metà del valore finale quando 0,2(1 e ) = 0, 1; risolvendo l equazione si

La corrente vale metà del valore finale quando 0,2(1 e ) = 0, 1; risolvendo l equazione si 7.6 La corrente nzale è edentemente nulla. on l nterruttore chuso la costante d tempo è τ = L/ = 1/200 s. Il alore fnale è ( ) = 20/100 = 0,2 A. on l espressone (7.13b) a pag. 235 del lbro s ottene 200t

Dettagli

* PROBABILITÀ - SCHEDA N. 2 LE VARIABILI ALEATORIE *

* PROBABILITÀ - SCHEDA N. 2 LE VARIABILI ALEATORIE * * PROBABILITÀ - SCHEDA N. LE VARIABILI ALEATORIE *. Le varabl aleatore Nella scheda precedente abbamo defnto lo spazo camponaro come la totaltà degl est possbl d un espermento casuale; abbamo vsto che

Dettagli

Calcolo della temperatura di uscita dal primo stadio del reattore di conversione del CO per abbattere il tenore di CO fino ad un valore fissato.

Calcolo della temperatura di uscita dal primo stadio del reattore di conversione del CO per abbattere il tenore di CO fino ad un valore fissato. Dpartmento d Energa Poltecnco d Mlano Pazza Leonardo da Vnc - MILAN Eserctazon del corso FNDAMENI DI PCESSI CHIMICI Prof. Ganpero Gropp ESECIAZINE Calcolo della temperatura d uscta dal prmo stado del reattore

Dettagli

Soluzioni 3.1. n(n 1) (n k + 1) z n k! k + 1 n k. lim k

Soluzioni 3.1. n(n 1) (n k + 1) z n k! k + 1 n k. lim k (1) La sere bnomale è B n (z) = k=0 Con l metodo del rapporto s ottene R = lm k Soluzon 3.1 n(n 1) (n k + 1) z n k! c k c k+1 = lm k k + 1 n k lm k c k z k. k=0 1 + 1 k 1 n k = 1 (2) La multfunzone f(z)

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 9: 20 marzo 2013

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 9: 20 marzo 2013 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2012-2013 lezone 9: 20 marzo 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/31? an d ammortamento La rata α k scadente al tempo

Dettagli

Matematica Computazionale(6cfu) Ottimizzazione(8cfu)

Matematica Computazionale(6cfu) Ottimizzazione(8cfu) Docente: Marco Gavano (e-mal:gavano@unca.t) Corso d Laurea n Infomatca Corso d Laurea n Matematca Matematca Computazonale(6cfu) Ottmzzazone(8cfu) (a.a. 205-6, lez.8) Matematca Computazonale, Ottmzzazone,

Dettagli

Analisi dei Segnali. Sergio Frasca. Appunti delle lezioni di. Dipartimento di Fisica Università di Roma La Sapienza

Analisi dei Segnali. Sergio Frasca. Appunti delle lezioni di. Dipartimento di Fisica Università di Roma La Sapienza Sergo Frasca Appunt delle lezon d Anals de Segnal Dpartmento d Fsca Unverstà d Roma La Sapenza Versone 4 luglo 006 Versone aggornata n http://grwavsf.roma.nfn.t/sp/sp.pdf Sommaro Introduzone: segnal e

Dettagli

Sistemi e Funzione di Trasferimento

Sistemi e Funzione di Trasferimento Sste e FdT - Corso d Laurea n Ingegnera Meccanca Sste e Funzone d Trasferento DEIS-Unverstà d Bologna Tel. 5 2932 Eal: cross@des.unbo.t URL: www-lar.des.unbo.t/~cross Sste e FdT - 2 Sste orentat Modell

Dettagli

Ingegneria Elettrica Politecnico di Torino. Luca Carlone. ControlliAutomaticiI LEZIONE IV

Ingegneria Elettrica Politecnico di Torino. Luca Carlone. ControlliAutomaticiI LEZIONE IV Ingegneria Elettrica Politecnico di Torino Luca Carlone ControlliAutomaticiI LEZIONE IV Sommario LEZIONE IV Importanza dello studio di segnali sinusoidali nell ingegneria Sistemi lineari con ingressi sinusoidali

Dettagli

Risposta temporale: esempi

Risposta temporale: esempi ...4 Risposta temporale: esempi Esempio. Calcolare la risposta al gradino unitario del seguente sistema: x(t) = u(t) s + 5 (s + )(s + ) y(t) Il calcolo della trasformata del segnale di uscita è immediato:

Dettagli

Analisi agli elementi finiti di campi vettoriali

Analisi agli elementi finiti di campi vettoriali Anals agl element fnt d camp vettoral Carlo Forestere December, 04 Formulazone n forma debole d equazon d campo vettorale Sa R un domno bdmensonale Fg. rempto da un materale lneare, sotropo, tempo nvarante,

Dettagli

= b ns n + + b 0. (s p i ), l r, A(p i) 0, i = 1,..., r. Y f (s) = G(s)U(s) = H(s) + n i=1. Parte dipendente dai poli di G(s) ( transitorio ).

= b ns n + + b 0. (s p i ), l r, A(p i) 0, i = 1,..., r. Y f (s) = G(s)U(s) = H(s) + n i=1. Parte dipendente dai poli di G(s) ( transitorio ). RISPOSTA FORZATA SISTEMI LINEARI STAZIONARI u(t) G(s) = B(s) A(s) = b ns n + + b 0 s n + + a 0 y f (t) Classe di funzioni di ingresso. U := l Q(s) u( ) : U(s) = P (s) = i= (s z i ) ri= (s p i ), l r, A(p

Dettagli

Il logaritmo discreto in Z p Il gruppo moltiplicativo Z p delle classi resto modulo un primo p è un gruppo ciclico.

Il logaritmo discreto in Z p Il gruppo moltiplicativo Z p delle classi resto modulo un primo p è un gruppo ciclico. Il logartmo dscreto n Z p Il gruppo moltplcatvo Z p delle class resto modulo un prmo p è un gruppo cclco. Defnzone (Logartmo dscreto). Sa p un numero prmo e sa ā una radce prmtva n Z p. Sa ȳ Z p. Il logartmo

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa Lezione 1: Martedì 17/2/2015

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa Lezione 1: Martedì 17/2/2015 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2014-2015 Lezone 1: Martedì 17/2/2015 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/40? Codce docente 030508 Codce corso 00675 Matematca

Dettagli

Dipartimento di Scienze Statistiche Università di Bologna. Matematica finanziaria aa lezione 15: 12 marzo 2014

Dipartimento di Scienze Statistiche Università di Bologna. Matematica finanziaria aa lezione 15: 12 marzo 2014 Dpartmento d Scenze Statstche Unverstà d Bologna Matematca fnanzara aa 2013-2014 lezone 15: 12 marzo 2014 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/15? Calendaro prossme lezon 13 marzo 14

Dettagli

La Stabilita. La stabilità alla Lyapunov dei sistemi Semplice Asintotica Esponenziale Locale Globale. La stabilità dei sistemi linearizzati

La Stabilita. La stabilità alla Lyapunov dei sistemi Semplice Asintotica Esponenziale Locale Globale. La stabilità dei sistemi linearizzati La Stablta La stabltà alla Lyapunov de sstem Semplce Asntotca Esponenzale Locale Globale La stabltà de sstem lnearzzat Stabltà nput-output (BIBO) Rsposta mpulsva (ved Marro par..3, ved Vtell-Petternella

Dettagli

2.1 Parabola nella forma canonica

2.1 Parabola nella forma canonica 5 Clc per tutt gl appunt (AUTOMAZIONE TRATTAMENTI TERMICI ACCIAIO SCIENZA delle COSTRUZIONI ) e-mal per suggerment. Paraola nella forma canonca Studamo con metod general la conca nella espressone canonca

Dettagli

Richiami sui sistemi lineari

Richiami sui sistemi lineari Rcham u tem lnear Ingegnera dell'automazone Coro d Stem d Controllo Multvarable - Prof. F. Amato Verone. Ottobre 0 Rappreentazone ISU Rcordamo che la rappreentazone ISU d un tema LI a tempo-contnuo è del

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 7: 6 marzo 2012

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 7: 6 marzo 2012 Dpartmento d Statstca Unverstà d Bologna Matematca Fnanzara aa 2011-2012 lezone 7: 6 marzo 2012 professor Danele Rtell www.unbo.t/docdent/danele.rtell 1/29? Defnzone Se è un prestto se m {1, 2,..., n}

Dettagli

Laboratorio 2B A.A. 2012/2013. Elaborazione Dati. Lab 2B CdL Fisica

Laboratorio 2B A.A. 2012/2013. Elaborazione Dati. Lab 2B CdL Fisica Laboratoro B A.A. 01/013 Elaborazone Dat Lab B CdL Fsca Lab B CdL Fsca Elaborazone dat spermental Prncpo della massma verosmglanza Quando eseguamo una sere d msure relatve ad una data grandezza fsca, quanto

Dettagli

Propagazione delle incertezze

Propagazione delle incertezze Propagazone delle ncertezze In questa Sezone vene trattato l problema della propagazone delle ncertezze quando s msurano pù grandezze dfferent,,,z soggette a error d tpo casuale e po s utlzzano tal grandezze

Dettagli

Modellistica. Cos è un modello Caratteristiche dei modelli Metodi formali Esempi per sistemi semplici

Modellistica. Cos è un modello Caratteristiche dei modelli Metodi formali Esempi per sistemi semplici Modellstca Cos è un modello Caratterstche de modell Metod formal Esemp per sstem semplc (ved Marro par. 1.1, 1.4) (ved Vtell-Petternella par. I.1, I.1.1, I.1.2, I.2, I.2.1 ) Automatca ROMA TRE Stefano

Dettagli

Reti nel dominio delle frequenze. Lezione 10 2

Reti nel dominio delle frequenze. Lezione 10 2 Lezione 10 1 Reti nel dominio delle frequenze Lezione 10 2 Introduzione Lezione 10 3 Cosa c è nell Unità 3 In questa sezione si affronteranno Introduzione all Unità Trasformate di Laplace Reti nel dominio

Dettagli

IL RUMORE NEGLI AMPLIFICATORI

IL RUMORE NEGLI AMPLIFICATORI IL RUMORE EGLI AMPLIICATORI Defnzon S defnsce rumore elettrco (electrcal nose) l'effetto delle fluttuazon d corrente e/o d tensone sempre present a termnal degl element crcutal e de dspostv elettronc.

Dettagli

PICCOLE OSCILLAZIONI ATTORNO ALLA POSIZIONE DI EQUILIBRIO

PICCOLE OSCILLAZIONI ATTORNO ALLA POSIZIONE DI EQUILIBRIO PICCOLE OSCILLAZIONI ATTORNO ALLA POSIZIONE DI EQUILIBRIO Stabltà e Teorema d Drclet Defnzone S dce ce la confgurazone C 0 d un sstema è n una poszone d equlbro stable se, portando l sstema n una confgurazone

Dettagli

Segnali e trasformate

Segnali e trasformate Segnali e trasformate - Corso di Laurea in Ingegneria Meccanica Segnali e trasformate DEIS-Università di Bologna Tel. 5 2932 Email: crossi@deis.unibo.it URL: www-lar.deis.unibo.it/~crossi Segnali e trasformate

Dettagli

Lezione 6. Funzione di trasferimento. F. Previdi - Automatica - Lez.6 1

Lezione 6. Funzione di trasferimento. F. Previdi - Automatica - Lez.6 1 Lezone 6. Funzone d rafermeno F. Prevd - uomaca - Lez.6 Schema della lezone. Defnzone (operava). Inerpreazone della funzone d rafermeno 3. Funzone d rafermeno: pol e zer 4. Funzone d rafermeno: paramerzzazon.

Dettagli

ANALISI E SIMULAZIONE DI SISTEMI DINAMICI. Lezione X: Risposta in Frequenza

ANALISI E SIMULAZIONE DI SISTEMI DINAMICI. Lezione X: Risposta in Frequenza ANALISI E SIMULAZIONE DI SISTEMI DINAMICI Lezione X: Risposta in Frequenza Rappresentazioni della Funzione di Trasferimento Risposta di regime permanente nei sistemi LTI Risposta armonica Diagrammi di

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 8: 14 marzo 2013

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 8: 14 marzo 2013 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2012-2013 lezone 8: 14 marzo 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/21? Rendte nel contnuo Se s pensa alla rendta come

Dettagli

Circuiti elettrici in regime stazionario

Circuiti elettrici in regime stazionario rcut elettrc n regme stazonaro Metod d anals www.de.ng.unbo.t/pers/mastr/ddattca.htm ersone del -0-00 Premessa Nel caso pù generale è possble ottenere la soluzone d un crcuto rsolendo un sstema formato

Dettagli

Regime sinusoidale 1

Regime sinusoidale 1 egme snusodale egme snusodale Un crcuto elettrco è n regme snusodale quando cascun elemento presenta una tensone snusodale ed una corrente snusodale della stessa frequenza. Perché cò s verfch, la tensone

Dettagli

Geometria 1 a.a. 2011/12 Esonero del 23/01/12 Soluzioni (Compito A) sì determinarla, altrimenti dimostrare che ciò è impossibile.

Geometria 1 a.a. 2011/12 Esonero del 23/01/12 Soluzioni (Compito A) sì determinarla, altrimenti dimostrare che ciò è impossibile. Geometra 1 a.a. 2011/12 Esonero del 23/01/12 Soluzon (Compto A) (1) S consder su C 2 l prodotto Hermtano, H assocato alla matrce ( ) 2 H =. 2 (a) Dmostrare che, H è defnto postvo e determnare una base

Dettagli

Realizzazione di FSM sincrone. Sommario. Introduzione. Sommario. M. Favalli

Realizzazione di FSM sincrone. Sommario. Introduzione. Sommario. M. Favalli Realzzazone d FSM sncrone M. Favall Engneerng Department n Ferrara Realzzazone d FSM Anals e sntes de sstem dgtal / Introduzone Realzzazone d FSM Anals e sntes de sstem dgtal 2 / Una volta ottenuto l automa

Dettagli

VII esercitazione. Corso di Laurea in Informatica Calcolo Scientifico II a.a. 07/08

VII esercitazione. Corso di Laurea in Informatica Calcolo Scientifico II a.a. 07/08 VII eserctazone Una fattorzzazone che rvela propretà della matrce: La Sngular value decomposton (SVD) fattorzza una matrce rettangolare reale o complessa è utlzzata nelle applcazon: nella trasmssone d

Dettagli

Modelli Clamfim Equazioni differenziali esatte, cambio di variabili, equazioni del secondo ordine 28 settembre 2015

Modelli Clamfim Equazioni differenziali esatte, cambio di variabili, equazioni del secondo ordine 28 settembre 2015 CLAMFIM Bologna Modell 1 @ Clamfm Equazon dfferenzal esatte, cambo d varabl, equazon del secondo ordne 28 settembre 2015 professor Danele Rtell danele.rtell@unbo.t 1/21? Exact dfferental equatons If Q

Dettagli

3 = 3 Ω. quindi se v g = 24 V, i = 1,89 A Dobbiamo studiare tre circuiti; in tutti e tre i casi si ottiene un partitore di corrente.

3 = 3 Ω. quindi se v g = 24 V, i = 1,89 A Dobbiamo studiare tre circuiti; in tutti e tre i casi si ottiene un partitore di corrente. 5. Per la propretà d lneartà la tensone può essere espressa come = k g, doe g è la corrente del generatore. Utlzzando dat n Fgura a abbamo - = k 6, qund k = - ½. In Fgura b la corrente del generatore è

Dettagli

6 Prodotti scalari e prodotti Hermitiani

6 Prodotti scalari e prodotti Hermitiani 6 Prodott scalar e prodott Hermtan 6.1 Prodott scalar S fss K = R. Defnzone 6.1 Sa V un R-spazo vettorale. Un prodotto scalare su V è un applcazone che gode delle seguent propretà: ) (lneartà rspetto al

Dettagli

Scomposizione in fratti semplici

Scomposizione in fratti semplici 0.0.. Scomposizione in fratti semplici La determinazione dell evoluzione libera e dell evoluzione forzata di un sistema lineare stazionario richiedono l antitrasformazione di una funzione razionale fratta

Dettagli

Limitazioni di ampiezza negli amplificatori reali

Limitazioni di ampiezza negli amplificatori reali Lmtazon d ampezza negl amplfcator real G. Martnes 1 Lnearzzazone della trans-caratterstca G. Martnes Anals a pccolo segnale e concetto d punto d lavoro IL RUMORE EGLI AMPLIFICATORI Defnzon S defnsce rumore

Dettagli

Analisi dei Sistemi Lineari e Tempo Invarianti nel Dominio del Tempo

Analisi dei Sistemi Lineari e Tempo Invarianti nel Dominio del Tempo 1 Corso di Fondamenti di Automatica A.A. 2017/18 Analisi dei Sistemi Lineari e Tempo Invarianti nel Dominio del Tempo Prof. Carlo Cosentino Dipartimento di Medicina Sperimentale e Clinica Università degli

Dettagli

Generalità. Problema: soluzione di una equazione differenziale alle derivate ordinarie di ordine n: ( )

Generalità. Problema: soluzione di una equazione differenziale alle derivate ordinarie di ordine n: ( ) Generaltà Problema: soluzone d una equazone derenzale alle dervate ordnare d ordne n: n n K soggetta alle n condzon nzal: K n Ovvero rcercare la soluzone d un sstema d n equazon derenzal ordnare del prmo

Dettagli

di una delle versioni del compito di Geometria analitica e algebra lineare del 12 luglio 2013 distanza tra r ed r'. (punti 2 + 3)

di una delle versioni del compito di Geometria analitica e algebra lineare del 12 luglio 2013 distanza tra r ed r'. (punti 2 + 3) Esempo d soluzone d una delle verson del compto d Geometra analtca e algebra lneare del luglo 3 Stablre se la retta r, d equazon parametrche x =, y = + t, z = t (nel parametro reale t), è + y + z = sghemba

Dettagli

INFORMAZIONE IMPORTANTE. Per questioni organizzative, le iscrizioni per l esame scadranno una settimana prima del dell esame stesso!!!

INFORMAZIONE IMPORTANTE. Per questioni organizzative, le iscrizioni per l esame scadranno una settimana prima del dell esame stesso!!! INFOMAZIONE IMPOTANTE Per queston organzzatve, le scrzon per l esame scadranno una settmana prma del dell esame stesso!!! Eserczo Supponamo d avere un segnale snusodale d ampezza 0., ma con frequenza f=

Dettagli