Keywords: presupposizione pragmatica, common ground, asserzione, accomodamento, aggiornamento del contesto

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Keywords: presupposizione pragmatica, common ground, asserzione, accomodamento, aggiornamento del contesto"

Transcript

1 1 SEMANTICA 2009 LEZIONE 15 Keywords: presupposizione pragmatica, common ground, asserzione, accomodamento, aggiornamento del contesto 1. Introduzione Il contesto kaplaniano (lezione 14) è piuttosto ristretto; corrisponde alla concreta situazione di enunciazione. Poiché serve essenzialmente a risolvere il problema del riferimento diretto, questa concezione del contesto è semantica. Ma, intuitivamente, è possibile avere una concezione molto più ampia del contesto ad es., come contesto discorsivo, in cui il parlante e gli interlocutori entrano non soltanto come entità a cui ci si può riferire direttamente, ma come partecipanti alla conversazione, dotati di credenze, scopi comunicativi, ecc. La situazione comunicativa (conversazione) rientra pienamente nel dominio della pragmatica. A prima vista, questo livello di significato è tutt altra cosa rispetto al significato vero-condizionale che abbiamo cercato di analizzare fino a qui. Vedremo, invece, che è possibile collegare i due livelli di significato in un modo interessante. Il collegamento emerge nella teoria dell asserzione proposta in Stalnaker (1979), che combina la concezione della conversazione come attività cooperativa e razionale con la semantica standard degli stati di credenza (analizzati come insiemi di mondi possibili). 2. Digressione (troppo breve) su Grice La concezione della conversazione (comunicazione linguistica) come attività razionale e cooperativa è centrale nei lavori di P. Grice (a partire dal 1967): Cooperative Principle (CP): Make your conversational contribution such as is required, at the stage at which it occurs, by the accepted purpose or direction of the talk exchange in which you are engaged. (Grice 1967a/1989, 26.) Il principio viene articolato nelle seguenti massime conversazionali: Quantity Make your contribution as informative as is required (for the current purposes of the exchange). Do not make your contribution more informative than is required. Quality (Supermaxim): Try to make your contribution one that is true. (Submaxims): Do not say what you believe to be false. Do not say that for which you lack adequate evidence. Relation Be relevant. Manner (Supermaxim): Be perspicuous. (Submaxims): Avoid obscurity of expression. Avoid ambiguity. Be brief (avoid unnecessary prolixity).

2 2 Be orderly. Gli effetti delle massime si esplicano in particolare nel fenomeno dell implicatura, di cui qui accenneremo soltanto un esempio. Supponiamo che un parlante asserisca: (1) Obama visiterà la Francia o la Germania. Le condizioni di verità della disgiunzione logica sono inclusive: la disgiunzione è vera quando almeno uno dei due disgiunti è vero, oppure entrambi sono veri. Ma se un parlante asserisce (1), gli ascoltatori normalmente ne inferiscono che Obama non visiterà sia la Francia che la Germania. Queste perché, se il parlante avesse avuto informazioni che lo autorizzavano ad asserire la congiunzione, per la massima della quantità avrebbe dovuto farlo (= Obama visiterà la Francia e la Germania). Gli ascoltatori fanno la seguente inferenza: se il parlante avesse potuto asserire la congiunzione, per la massima della quantità lo avrebbe fatto; se non ha asserito la congiunzione, è perché non poteva asserirla, poiché la congiunzione sarebbe stata altrettanto pertinente rispetto agli scopi della conversazione (sapere quali paesi europei saranno visitati da Obama); se non poteva asserirla, è perché le condizioni di verità della congiunzione non potevano essere soddisfatte. In questo modo, le situazioni «inclusive» (che verificano la congiunzione) vengono escluse per una implicatura, benché siano compatibili con la semantica della disgiunzione (che, in termini strettamente semantici, è inclusiva). Vediamo, infatti, che se la frase è negata l implicatura non sorge, e la disgiunzione ha una interpretazione inclusiva: (2) Obama non visiterà la Francia o la Germania risulta falsa se Obama visiterà entrambi i paesi: qui le situazioni «inclusive» soddisfano le condizioni di verità della disgiunzione. Un ragionamento analogo si applica nell interpretazione dei numerali: (3) Gianni ha due figli. La frase (3) viene considerata falsa se Gianni ha tre figli. Ma sul piano strettamente logico, se Gianni ha tre figli, è anche vero che ne ha due. Tuttavia, in questo caso per la massima di quantità il parlante avrebbe dovuto utilizzare: (4) Gianni ha tre figli che è più informativa in quanto implica logicamente la (3). Se il parlante non ha utilizzato (4), gli ascoltatori ne inferiscono che non poteva utilizzare (4), perché le condizioni di verità di (4) non erano soddisfatte; dunque l interpretazione di (3) è: Gianni ha due figli e non più di due. Questo tipo di implicatura viene detta IMPLICATURA SCALARE. 1 Questa brevissima esposizione è sufficiente per renderci conto che il calcolo delle implicature presuppone che la conversazione sia una attività cooperativa, e che tutti i partecipanti la riconoscano come tale; gli ascoltatori possono così assumere che il parlante si conformi, per quanto gli è possibile, alle massime conversazionali. 1 Cfr invece: - A: Hai cinque euro (da prestarmi)? - B: Sì, li ho. Qui il parlante B non comunica che ha esattamente cinque euro, perché il fatto che ne abbia di più non è pertinente. La massima della quantità richiede di essere masimamente informativi rispetto agli scopi dello scambio comunicativo che è in corso.

3 3 NB: Con questo misero paragrafetto non intendo assolutamente sminuire l importanza della pragmatica. Questa disciplina, purtoppo, non può essere discussa adeguatamente all interno del nostro percorso. La discuto in modo così limitato soltanto per mostrare che questa concezione generale è un ingrediente indispensabile della teoria dell asserzione sviluppata da Stalnaker. 2. Il contesto stalnakeriano Le idee fondamentali: 1. Un atto di asserzione è l espressione di una proposizione (qualcosa che rappresenta il mondo come fatto in un certo modo). 2. Le asserzioni vengono fatte in un contesto una situazione che include un parlante (colle proprie credenze e intenzioni) e degli interlocutori (colle proprie credenze e intenzioni). 3. Gli atti di asserzione hanno lo scopo di modificare il contesto, e in particolare le attitudini dei partecipanti; come l asserzione modifica il contesto dipende dal contenuto dell asserzione stessa. Assumiamo i mondi possibili come primitivi, senza che questo implichi un impegno ontologico; è solo una decisione di teorizzare ad un certo livello di astrazione. Una proposizione è una rappresentazione del mondo come fatto in un certo modo. Per ogni tale rappresentazione, ci sarà un insieme di mondi possibili che si accordano con quella rappresentazione (= che sono fatti in quel modo). Perciò una proposizione determina un insieme di mondi possibili (ovvero una funzione da mondi a valori di verità: <s,t>). Un ulteriore gradi di complessità: ciò che una asserzione esprime ovvero la proposizione può cambiare a seconda dei mondi possibili (es. ci sono mondi in cui ciò che il parlante dice viene frainteso dagli interlocutori). Perciò Stalnaker definisce il concetto proposizionale come funzione da mondi possibili a proposizioni (<s, <s,t>>) Le PRESUPPOSIZIONI DEL PARLANTE sono le proposizioni la cui verità egli dà per scontata come parte del background della conversazione. Una proposizione è presupposta se il parlante è disposto ad agire come se assumesse o credesse che la proposizione sia vera, e che anche i suoi interlocutori credano o assumano che sia vera (p. 321) : ovvero, le presupposizioni sono ciò che il parlante tratta come COMMON GROUND, conoscenza condivisa dai partecipanti alla conversazione per gli scopi della conversazione stessa. (NB: il parlante può assumere una proposizione per gli scopi di una conversazione, anche se non la crede affatto vera.) Il contesto rappresenta così uno stato di informazione parziale. L INSIEME CONTESTO è l insieme dei mondi possibili che sono compatibili con tutte le proposizioni del common ground; ovvero vedendo le proposizioni come insiemi di mondi possibili è l intersezione di tutte le proposizioni del common ground. Questo è l insieme dei mondi che sono ALTERNATIVE VIVE per la conversazione, cioè quelli che potrebbero essere il mondo reale. Lo scopo comune delle attività comunicative è che i partecipanti cercano di distinguere tra modi alternativi in cui le cose potrebbero essere o essere state. Il processo conversazionale consiste nel distinguere tra modi alternativi in cui le cose potrebbero essere: a) le presupposizioni definiscono i limiti dell insieme di alternative vive; b) l esprimere una proposizione ha lo scopo di distinguere tra queste alternative. Un contesto è non difettivo quando tutti i partecipanti hanno effettivamente le stesse presupposizioni; questo è il caso normale. Altrimenti si ha un CONTESTO DIFETTIVO, che sarà instabile: qualsiasi discrepanza nelle presupposizioni può, in linea di principio, portare ad un

4 4 fallimento della comunicazione; ma i partecipanti possono notare le discrepanze e cercare di superarle, rinegoziando il common ground. Inoltre, il contesto della conversazione cambia continuamente. (Es: una capra entra all improvviso nella stanza e il parlante dice: Come ha fatto quella ad arrivare qui? ) Come è che una asserzione cambia il contesto? a) effetto non essenziale: una asserzione è un evento fisico a cui tutti i partecipanti sono esposti; essi sono in grado di identificare chi è il parlante, la lingua che parla, il modo in cui parla, ecc. b) effetto essenziale: L asserzione modifica il contesto riducendo l insieme contesto, cioè eliminando da esso i mondi possibili che sono incompatibili con la proposizione che viene asserita. Ovvero, il contenuto dell asserzione viene aggiunto al common ground, cambiando le presupposizioni dei partecipanti alla conversazione (se l asserzione viene accettata dagli interlocutori. Se invece l asserzione viene rifiutata, l insieme contesto non viene aggiornato dalla proposizione asserita, ma rimangono comunque gli effetti non essenziali dell asserzione.) Lo scopo principale dell asserzione è questo, anche se può accadere che un parlante faccia un asserzione pur sapendo già che verrà rifiutata. (Ci possono essere effetti secondari rilevanti, che dipendono dal fatto che l asserzione avrebbe avuto un certo effetto essenziale se non fosse stata rifiutata.) Regole sull interazione tra contesto e contenuto dell asserzione: condizioni essenziali della comunicazione razionale. Qui considereremo solo le prime due: a) Una proposizione asserita è sempre vera in alcuni ma non tutti i mondi possibili dell insieme contesto. Infatti, se la proposizione fosse falsa in tutti i mondi, vorrebbe dire che è incompatibile con il common ground (si presuppone già che sia falsa), e dunque non avrebbe alcun effetto di aggiornamento. Se invece la proposizione fosse vera in tutti i mondi, sarebbe già presupposta, e dunque l asserzione non avrebbe alcun effetto di aggiornamento. Se il parlante sembra non conformarsi a questa regola, gli interlocutori possono dedurne che il contesto è difettivo, oppure che hanno frainteso ciò che il parlante intendeva asserire. b) Ogni asserzione dovrebbe esprimere una proposizione (relativa a ciascun mondo dell insieme contesto) e tale proposizione dovrebbe avere un valore di verità in ciascun mondo dell insieme contesto. Ovvero, non possono esserci truth-value gaps (casi in cui la proposizione non dà alcun valore di verità). Questo collega la presupposizione pragmatica alla presupposizione semantica: se una frase A asserita dal parlante presuppone semanticamente una proposizione φ, allora φ è anche presupposta pragmaticamente dal parlante, cioè fa parte del common ground. Il motivo è che se la proposizione espressa non avesse valore di verità in alcuni mondi dell insieme contesto, non si potrebbe decidere se tali mondi debbano rimanere inclusi o essere scartati. Si noti che in questo modo, le presupposizioni di un enunciato sono delle precondizioni che il contesto deve soddisfare perché l enunciato possa essere asserito in quel contesto. Se le presupposizioni pragmatiche di una asserzione non sono soddisfatte nel contesto, e il contesto è quindi difettivo, un rimedio possibile è l ACCOMODAMENTO DELLE PRESUPPOSIZIONI (accommodation: Lewis 1979, Stalnaker 1998, von Fintel 2000). Supponiamo che un parlante asserisca: (5) Non posso venire alla riunione: devo portare mia figlia dal dottore. La proposizione espressa da (5) può essere aggiunta al CG solo se il CG implica che il parlante ha una (unica) figlia. Assumendo che il parlante intenda sinceramente asserire (5), inferiamo che egli assume che il CG a cui verrà aggiunta la proposizione espressa da (5) soddisfa questa condizione.

5 5 Supponiamo che il CG precedente l asserzione di (5) non soddisfasse invece questa condizione, perché gli ascoltatori non assumevano che il parlante avesse una figlia; e il parlante era consapevole della loro ignoranza in proposito. Gli ascoltatori inferiscono che il parlante assume che il CG a cui la proposizione deve essere aggiunta implica che egli abbia una figlia. L unico ostacolo a questo è che i parlanti non assumevano ancora, fino a quel punto, che il parlante avesse una figlia; ma se gli ascoltatori sono accomodanti, aggiungeranno questa assunzione al CG, affinché la conversazione possa procedere e la proposizione espressa da (5) possa essere aggiunta al CG. Come sottolinea von Fintel (2000), è cruciale che il CG deve soddisfare le presupposizioni non prima che avvenga l atto di asserzione, ma prima che avvenga l inserzione nel CG della proposizione espressa. L accomodamento è dunque un passaggio intermedio che «aggiusta» un contesto difettivo; questo passaggio è possibile proprio perché il CG è un oggetto pubblico sotto il controllo condiviso di tutti gli interlocutori. Il parlante sa che la presupposizione non era soddisfatta prima del suo atto di asserire (5), ma conta sul fatto che gli interlocutori cambieranno le proprie assunzioni, aggiustando il CG prima di aggiungervi la proposizione al CG; crucialmente, gli interlocutori sanno che il parlante assume questa possibilità di aggiustamento e quindi si comportano di conseguenza (purché la «presupposizione informativa» che deve essere accomodata non sia per qualche motivo problematica o controversa). 4. Heim (1983): Il potenziale di aggiornamento del contesto A partire dall analisi dell asserzione di Stalnaker, Heim (1983) ha sviluppato una semantica dinamica in cui il significato di un enunciato non è più visto, staticamente, come le condizioni di verità che esso esprime (=come devono essere le circostanze in cui l enunciato risulta vero), ma piuttosto come il suo POTENZIALE DI AGGIORNAMENTO DEL CONTESTO (CCP, context change potential), che è una funzione da contesti a contesti. Un contesto è identificato con uno STATO DI INFORMAZIONE, e viene rappresentato come un insieme di mondi possibili (cfr. l insieme contesto di Stalnaker). Il contesto vuoto, corrispondente ad una assoluta mancanza di informazioni (cioè ad un insieme vuoto di proposizioni), è identificato con l intero insieme di mondi possibili W. In ogni conversazione realistica, però, il contesto sarà piuttosto un sottoinsieme proprio di W. Un enunciato che viene asserito in un contesto ha l effetto di aggiornare l informazione, producendo un nuovo contesto. Consideriamo ad esempio che un parlante asserisca l enunciato sta piovendo in un contesto c. Se l atto di asserzione ha successo, viene prodotto un nuovo contesto c che comprende soltanto mondi possibili in cui sta piovendo. La proposizione espressa dall enunciato (ignorando il livello del carattere kaplaniano) viene congiunta, cioè intersecata, con il contesto c, producendo un nuovo contesto c che è un sottoinsieme di c. L effetto di aggiornamento di un contesto c da parte di un enunciato φ che viene asserito in c è rappresentato come c + φ. Per qualsiasi contesto c, c + sta piovendo = {w c: sta piovendo in w} (= c ) Qualsiasi enunciato ψ che viene asserito immediatamente dopo l asserzione/aggiornamento di ϕ andrà ad aggiornare il nuovo contesto c. Una conseguenza immediata di questa ipotesi è che la nozione di «contesto discorsivo» cioè l insieme degli enunciati asseriti precedentemente ad un dato enunciato ϕ viene riassorbito come parte del contesto c. Questo è un modo di modellizzare l incremento di informazione nel corso della conversazione. Si noti che c è una proporzionalità inversa tra il numero di proposizioni contenute nel common ground e il numero di mondi inclusi nell insieme contesto: tanto più ampio è il common ground, tanto più ristretto è l insieme di mondi che esso caratterizza.

6 6 3. La proiezione delle presupposizioni Le presupposizioni di un enunciato sono, come per Stalnaker, dei requisiti sui contesti ai quali il potenziale di aggiornamento dell enunciato potrà applicarsi. Per Heim, come per Stalnaker, questi requisiti NON POSSONO ESSERE CANCELLATI, ma possono essere soddisfatti tramite accommodation (vedi sopra Le proposizioni presupposte da un enunciato φ devono essere vere in tutti i mondi di un qualsiasi contesto c affinché il potenziale di aggiornamento di φ possa aggiornare c. Ad esempio, un enunciato come il gatto di John è affamato può aggiornare soltanto i contesti in cui John ha un unico gatto (cioè i contesti che soddisfano la condizione di unicità della descrizione definita, cfr. lezione 4). Tecnicamente, questi contesti sono un SOTTOINSIEME della proposizione espressa dall enunciato (che è l insieme di tutti i mondi in cui è vero che John ha un unico gatto, e che per il resto possono differire arbitrariamente tra loro). In simboli: c + il gatto di John è affamato è definito sse c {w: John possiede un unico gatto in w} laddove è definito, c + il gatto di John è affamato = {w c: John ha un gatto affamato in w} (ovvero: c {w: il gatto di John è affamato in w}) Un problema fondamentale per la teoria delle presupposizioni è quello della PROIEZIONE: come vengono «ereditate» da un enunciato complesso le presupposizioni degli enunciati atomici che le compongono? L idea di Heim è che i fenomeni di proiezione delle presupposizioni dovrebbero essere determinate dal meccanismo di composizione del potenziale di aggiornamento di un enunciato complesso a partire dal potenziale di aggiornamento degli enunciati atomici. Il problema è estremamente vasto, e ne discuteremo qui soltanto due casi in forma semplificata. 1) Ricordiamo che la negazione può essere concepita come la complementazione di un insieme di mondi (lezione 1). Possiamo quindi definire ricorsivamente il CCP di un enunciato negato a partire dal CCP del corrispondente enunciato non negato: Per qualsiasi contesto c, c + non φ = c (c+φ) (dove è la complementazione insiemistica) In altri termini, aggiorniamo il contesto iniziale c con il CCP dell enunciato positivo, ottenendo un contesto derivato c, quindi sottraiamo c dal contesto iniziale c. In tal modo, sottraiamo dal contesto iniziale tutti i mondi in cui la proposizione espressa da φ è vera. Domanda: perché non possiamo fare direttamente la complementazione insiemistica c φ? Risposta: perché la proposizione espressa da φ è un insieme di mondi molto vasto, presumibilmente un sovrainsieme di c, a meno che c non sia il contesto vuoto. Ciò che più conta, non φ può aggiornare soltanto i contesti in cui le presupposizioni di φ sono soddisfatte: l anunciato negato eredita le presupposizioni del enunciato atomico non negato (è un hole, anziché un filter, nella terminologia tecnica inglese). La definizione ricorsiva del CCP di un enunciato negato produce direttamente questa conseguenza, perché l interpretazione richiede un passo di aggiornamento del contesto iniziale da parte dell enunciato atomico φ. 2) Si ha invece un comportamento diverso nel caso della congiunzione. Descrittivamente, la congiunzione eredita le presupposizioni del primo congiunto, ma non sempre quelle del secondo congiunto. Ad es., la frase (6): (6) Mio cugino ha un gatto.

7 7 presuppone che il parlante abbia un unico cugino. (7) [Mio cugino ha un gatto], e [io ho un cane]. In (7), la presupposizione del primo congiunto (atomico) viene ereditata dall enunciato complesso. (8) Il gatto di Gianni è grasso La frase (8) presuppone che Gianni possiede un unico gatto. Consideriamo ora: (9) [Gianni ha un gatto], e [il gatto di Gianni è grasso]. In questo caso, le presupposizione che il secondo congiunto ha in isolamento (come in (8)) viene «filtrata», cioè non viene ereditata dall intera congiunzione. Il motivo è intuitivamente chiaro: questa presupposizione viene soddisfatta dal contesto intermedio che risulta dall aggiornamento del contesto iniziale da parte del primo enunciato atomico: Per qualsiasi contesto c, c + φ e ψ = (c + φ) + ψ, L effetto di aggiornamento dei due congiunti è quindi asimmetrico: c + Gianni ha un gatto, e il gatto di Gianni è grasso = 1. = (c + [Gianni ha un gatto]) + [il gatto di Gianni è grasso]) = 2. = {w c: Gianni possiede un (unico) 2 gatto in w} + [il gatto di Gianni è grasso]) Il contesto intermedio ottenuto al passo 2 soddisfa la presupposizione del secondo enunciato congiunto. Ecco perché le presupposizioni del secondo congiunto non vengono imposte sul contesto iniziale: la congiunzione è un filtro delle presupposizioni. Grice, H.P Logic and conversation. In P. Cole & J. Morgan, eds., Syntax and Semantics 3: Speech actss, New York, Academic Press, Heim. I On the projection problem for presuppositions. In Portner & Partee (2002). Stalnaker, R Assertion. In P. Cole, ed., Syntax and Semantics 9: Pragmatics, New York, Academic Press,

Dall italiano alla logica proposizionale

Dall italiano alla logica proposizionale Rappresentare l italiano in LP Dall italiano alla logica proposizionale Sandro Zucchi 2009-10 In questa lezione, vediamo come fare uso del linguaggio LP per rappresentare frasi dell italiano. Questo ci

Dettagli

Presupposizioni. Presupposizioni. Presupposizioni. Presupposizioni. impliciti e filosofia del linguaggio ordinario. impliciti.

Presupposizioni. Presupposizioni. Presupposizioni. Presupposizioni. impliciti e filosofia del linguaggio ordinario. impliciti. impliciti e filosofia del linguaggio ordinario impliciti presupposizioni, implicature Austin: ci sono più modi di essere assurdi che la sola contraddizione affermazioni che esitiamo a definire semplicemente

Dettagli

La competenza semantica La semantica frasale

La competenza semantica La semantica frasale La competenza semantica La semantica frasale (1) Gianni è arrivato ieri mattina! (2) Gianni è arrivato ieri (implicazione) Linguistica generale, Parte a.a. 2007-2008 (1 ') Nessuno studente è arrivato ieri

Dettagli

Ascrizioni di credenza

Ascrizioni di credenza Ascrizioni di credenza Ascrizioni di credenza Introduzione Sandro Zucchi 2014-15 Le ascrizioni di credenza sono asserzioni del tipo in (1): Da un punto di vista filosofico, i problemi che pongono asserzioni

Dettagli

SIGNIFICATO DELL ENUNCIATO E INTENZIONE DEL PARLANTE

SIGNIFICATO DELL ENUNCIATO E INTENZIONE DEL PARLANTE SIGNIFICATO DELL ENUNCIATO E INTENZIONE DEL PARLANTE SCOPO Capire come analizzare la singola frase non solo considerando gli elementi che compongono la frase e i rapporti tra essi, ma interpretando l enunciato

Dettagli

SEMIOTICA DEI NUOVI MEDIA L IMPLICITO

SEMIOTICA DEI NUOVI MEDIA L IMPLICITO SEMIOTICA DEI NUOVI MEDIA L IMPLICITO Per definizione implicito è ciò che viene comunicato, senza venir asserito esplicitamente. La maggior parte della nostra comunicazione si basa su processi e contenuti

Dettagli

Dall italiano al linguaggio della logica proposizionale

Dall italiano al linguaggio della logica proposizionale Dall italiano al linguaggio della logica proposizionale Dall italiano al linguaggio della logica proposizionale Enunciati atomici e congiunzione In questa lezione e nelle successive, vedremo come fare

Dettagli

La Presupposizione (versione provvisoria della voce pubblicata su Linguipedia)

La Presupposizione (versione provvisoria della voce pubblicata su Linguipedia) Jacopo Torregrossa Scuola Normale Superiore La Presupposizione (versione provvisoria della voce pubblicata su Linguipedia) Per presupposizione si intende un tipo di relazione semantica che si instaura

Dettagli

2. Semantica proposizionale classica

2. Semantica proposizionale classica 20 1. LINGUAGGIO E SEMANTICA 2. Semantica proposizionale classica Ritorniamo un passo indietro all insieme dei connettivi proposizionali che abbiamo utilizzato nella definizione degli enunciati di L. L

Dettagli

J.L. Austin. J.L. Austin. Come fare cose con le parole. performativi vs constativi. performativi vs constativi. performativi vs constativi

J.L. Austin. J.L. Austin. Come fare cose con le parole. performativi vs constativi. performativi vs constativi. performativi vs constativi J.L. Austin J.L. Austin, Come fare cose con le parole cap. VII, VIII, IX, XI J.L. Austin e la teoria degli atti linguistici Le lezioni di Austin intitolate How to do things with words sono state tenute

Dettagli

Percorsi di matematica per il ripasso e il recupero

Percorsi di matematica per il ripasso e il recupero Giacomo Pagina Giovanna Patri Percorsi di matematica per il ripasso e il recupero 1 per la Scuola secondaria di secondo grado UNITÀ CAMPIONE Edizioni del Quadrifoglio à t i n U 2 Logica delle proposizioni

Dettagli

6.1 La metafisica della Credenza e del Pensiero: il Resoconto Positivo

6.1 La metafisica della Credenza e del Pensiero: il Resoconto Positivo EpiLog 16 XII 2013 Marco Volpe Sainsbury &Tye, Seven Puzzles of Thought Cap. VI The Methaphysics of Thought La concezione ortodossa riguardo il pensiero è che pensare che p significa essere in un appropriato

Dettagli

Frege. I fondamenti dell aritmetica (1884) Senso e significato (1892) Funzione e concetto (1892) Il pensiero Una ricerca logica (1918)

Frege. I fondamenti dell aritmetica (1884) Senso e significato (1892) Funzione e concetto (1892) Il pensiero Una ricerca logica (1918) Frege I fondamenti dell aritmetica (1884) Senso e significato (1892) Funzione e concetto (1892) Il pensiero Una ricerca logica (1918) Frege 1892 (A) Aristotele è il maestro di Alessandro Magno (B) Aristotele

Dettagli

Dispense del corso di Logica a.a. 2015/16: Problemi di primo livello. V. M. Abrusci

Dispense del corso di Logica a.a. 2015/16: Problemi di primo livello. V. M. Abrusci Dispense del corso di Logica a.a. 2015/16: Problemi di primo livello V. M. Abrusci 12 ottobre 2015 0.1 Problemi logici basilari sulle classi Le classi sono uno dei temi della logica. Esponiamo in questa

Dettagli

Predicati e Quantificatori

Predicati e Quantificatori Predicati e Quantificatori Limitazioni della logica proposizionale! Logica proposizionale: il mondo è descritto attraverso proposizioni elementari e loro combinazioni logiche! I singoli oggetti cui si

Dettagli

Dispense di Filosofia del Linguaggio

Dispense di Filosofia del Linguaggio Dispense di Filosofia del Linguaggio Vittorio Morato II settimana Gottlob Frege (1848 1925), un matematico e filosofo tedesco, è unanimemente considerato come il padre della filosofia del linguaggio contemporanea.

Dettagli

Lezione 4. Modello EER

Lezione 4. Modello EER Lezione 4 Modello EER 1 Concetti del modello EER Include tutti i concetti di modellazione del modello ER Concetti addizionali: sottoclassi/superclassi, specializzazione, categorie, propagazione (inheritance)

Dettagli

Esercitazione. Proposizioni. April 16, 2015. Esercizi presi dal libro di Rosen (useremo 0 per False e 1 per True). Problema 15, sezione 1.1.

Esercitazione. Proposizioni. April 16, 2015. Esercizi presi dal libro di Rosen (useremo 0 per False e 1 per True). Problema 15, sezione 1.1. Esercitazione Proposizioni April 16, 2015 Esercizi presi dal libro di Rosen (useremo 0 per False e 1 per True). Problema 15, sezione 1.1. 1. Consideriamo le proposizioni: - p : Gli orsi grizzly sono stati

Dettagli

CONSIDERAZIONI SUL RAGIONAMENTO

CONSIDERAZIONI SUL RAGIONAMENTO CONSIDERAZIONI SUL RAGIONAMENTO Luca Cilibrasi Matteo Pascucci Mariana Colucci Mirian Frances Garcia Lavoro per il corso di psicologia cognitiva di Scienze della Comunicazione Siena 2009 - con i docenti

Dettagli

LE IMPLICATURE SCALARI

LE IMPLICATURE SCALARI APhEx 11, 2015 (ed. Vera Tripodi) Ricevuto il: 28/06/2014 Accettato il: 05/03/2015 Redattore: Vera Tripodi T E M I LE IMPLICATURE SCALARI N 11 GENNAIO 2015 di Salvatore Pistoia-Reda e Jacopo Romoli ABSTRACT

Dettagli

Appunti di Logica Matematica

Appunti di Logica Matematica Appunti di Logica Matematica Francesco Bottacin 1 Logica Proposizionale Una proposizione è un affermazione che esprime un valore di verità, cioè una affermazione che è VERA oppure FALSA. Ad esempio: 5

Dettagli

Ipotesi scientifiche ed evidenze osservative

Ipotesi scientifiche ed evidenze osservative Temi filosofici dell ingegneria e della scienza /Informatica B[1] Politecnico di Milano, II Facoltà di ingegneria, a.a. 2009-10 Ipotesi scientifiche ed evidenze osservative Viola Schiaffonati Dipartimento

Dettagli

Università degli Studi di Napoli Federico II. Facoltà di Scienze MM.FF.NN. Corso di Laurea in Informatica

Università degli Studi di Napoli Federico II. Facoltà di Scienze MM.FF.NN. Corso di Laurea in Informatica Università degli Studi di Napoli Federico II Facoltà di Scienze MM.FF.NN. Corso di Laurea in Informatica Anno Accademico 2009/2010 Appunti di Calcolabilità e Complessità Lezione 9: Introduzione alle logiche

Dettagli

T E M I DESCRIZIONI DEFINITE

T E M I DESCRIZIONI DEFINITE APhEx 8, 2013 (ed. Vera Tripodi) Ricevuto il: 05/03/2013 Accettato il: 31/05/2013 Redattore: Vera Tripodi N 8 GIUGNO 2013 T E M I DESCRIZIONI DEFINITE di Massimiliano Vignolo ABSTRACT - Questo tema è una

Dettagli

Austin propone di chiamare: Gli enunciati descrittivi enunciati constativi Gli enunciati che servono per compiere un atto enunciati performativi

Austin propone di chiamare: Gli enunciati descrittivi enunciati constativi Gli enunciati che servono per compiere un atto enunciati performativi Atti linguistici Per i filosofi del linguaggio ideale: la funzione principale del linguaggio è quella di descrivere stati di cose (descrivere come sarebbe il mondo se l enunciato proferito fosse vero)

Dettagli

Conclusioni. Conclusioni

Conclusioni. Conclusioni Conclusioni Chi a cogliere i tuoi frutti ama l ombre calanti, i luoghi oscuri, lento cammina, va rasente i muri, non vede quello che vedono tutti, e quello che nessuno vede adora. Umberto Saba, La malinconia

Dettagli

Algebra Booleana 1 ALGEBRA BOOLEANA: VARIABILI E FUNZIONI LOGICHE

Algebra Booleana 1 ALGEBRA BOOLEANA: VARIABILI E FUNZIONI LOGICHE Algebra Booleana 1 ALGEBRA BOOLEANA: VARIABILI E FUNZIONI LOGICHE Andrea Bobbio Anno Accademico 2000-2001 Algebra Booleana 2 Calcolatore come rete logica Il calcolatore può essere visto come una rete logica

Dettagli

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Fondamenti di calcolo booleano

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Fondamenti di calcolo booleano Breve introduzione storica Nel 1854, il prof. Boole pubblica un trattato ormai famosissimo: Le leggi del pensiero. Obiettivo finale del trattato è di far nascere la matematica dell intelletto umano, un

Dettagli

Cristian Randieri. www.intellisystem.it

Cristian Randieri. www.intellisystem.it Cristian Randieri www.intellisystem.it La possibilità di modellizzare e controllare sistemi complessi ed incerti della Fuzzy Logic. La capacità di apprendere da esempi delle reti neurali. La capacità

Dettagli

Domanda e offerta di lavoro

Domanda e offerta di lavoro Domanda e offerta di lavoro 1. Assumere (e licenziare) lavoratori Anche la decisione di assumere o licenziare lavoratori dipende dai costi che si devono sostenere e dai ricavi che si possono ottenere.

Dettagli

Algebra booleana. Si dice enunciato una proposizione che può essere soltanto vera o falsa.

Algebra booleana. Si dice enunciato una proposizione che può essere soltanto vera o falsa. Algebra booleana Nel lavoro di programmazione capita spesso di dover ricorrere ai principi della logica degli enunciati e occorre conoscere i concetti di base dell algebra delle proposizioni. L algebra

Dettagli

Richiami di microeconomia

Richiami di microeconomia Capitolo 5 Richiami di microeconomia 5. Le preferenze e l utilità Nell analisi microeconomica si può decidere di descrivere ogni soggetto attraverso una funzione di utilità oppure attraverso le sue preferenze.

Dettagli

Si basano sul seguente Teorema: S = A sse S { A} è insoddisfacibile.

Si basano sul seguente Teorema: S = A sse S { A} è insoddisfacibile. Deduzione automatica La maggior parte dei metodi di deduzione automatica sono metodi di refutazione: anziché dimostrare direttamente che S A, si dimostra che S { A} è un insieme insoddisfacibile (cioè

Dettagli

Proprietà che distinguono i nomi-massa dai nomi numerabili (Chierchia 1998, 55-57):

Proprietà che distinguono i nomi-massa dai nomi numerabili (Chierchia 1998, 55-57): LEZIONE 6 KEYWORDS: nomi plurali, nomi massa, semireticolo, cumulatività, nomi collettivi 1. Nomi plurali e nomi massa Abbiamo assunto che un nome comune denota la funzione caratteristica di un insieme

Dettagli

Logica del primo ordine

Logica del primo ordine Università di Bergamo Facoltà di Ingegneria Intelligenza Artificiale Paolo Salvaneschi A7_4 V1.3 Logica del primo ordine Il contenuto del documento è liberamente utilizzabile dagli studenti, per studio

Dettagli

Sintassi 1. (1) Sintassi: si occupa della combinazione di parole in frasi e della struttura delle frasi stesse.

Sintassi 1. (1) Sintassi: si occupa della combinazione di parole in frasi e della struttura delle frasi stesse. LINGUISTICA GENERALE, Linguistica di base D, a.a 2010/11, Ada alentini Mat. 8 Sintassi 1 (1) Sintassi: si occupa della combinazione di parole in frasi e della struttura delle frasi stesse. A. Il livello

Dettagli

Anno 1. Definizione di Logica e operazioni logiche

Anno 1. Definizione di Logica e operazioni logiche Anno 1 Definizione di Logica e operazioni logiche 1 Introduzione In questa lezione ci occuperemo di descrivere la definizione di logica matematica e di operazioni logiche. Che cos è la logica matematica?

Dettagli

LA COMUNICAZIONE UMANA: PRINCIPALI MODELLI TEORICI E DEFINIZIONI

LA COMUNICAZIONE UMANA: PRINCIPALI MODELLI TEORICI E DEFINIZIONI Punti della sezione : LA COMUNICAZIONE UMANA: PRINCIPALI MODELLI TEORICI E DEFINIZIONI Intro: complessità e multidimensionalità della comunicazione umana Principali approcci teorici allo studio della comunicazione

Dettagli

Algebra e Geometria. Ingegneria Meccanica e dei Materiali Sez (2) Ingegneria dell Automazione Industriale Sez (2)

Algebra e Geometria. Ingegneria Meccanica e dei Materiali Sez (2) Ingegneria dell Automazione Industriale Sez (2) Algebra e Geometria Ingegneria Meccanica e dei Materiali Sez (2) Ingegneria dell Automazione Industriale Sez (2) Traccia delle lezioni che saranno svolte nell anno accademico 2012/13 I seguenti appunti

Dettagli

Elementi di Algebra Relazionale

Elementi di Algebra Relazionale Note dalle lezioni di INFORMATICA (per gli allievi della classe quinta - indirizzo MERCURIO) Elementi di Algebra Relazionale prof. Stefano D.L.Campanozzi I.T.C. Giulio Cesare Bari - a.s. 2008-2009 1 Introduzione

Dettagli

Teoria dei Giochi. In generale è possibile distinguere i giochi in due classi principali:

Teoria dei Giochi. In generale è possibile distinguere i giochi in due classi principali: Teoria dei Giochi Dr. Giuseppe Rose (Ph.D., M.Sc., London) Università degli Studi della Calabria Corso di Laurea Magistrale in Economia Applicata a.a 2011/2012 Handout 1 1 Nozioni introduttive La teoria

Dettagli

LOGICA PER LA PROGRAMMAZIONE. Franco Turini turini@di.unipi.it

LOGICA PER LA PROGRAMMAZIONE. Franco Turini turini@di.unipi.it LOGICA PER LA PROGRAMMAZIONE Franco Turini turini@di.unipi.it IPSE DIXIT Si consideri la frase: in un dato campione di pazienti, chi ha fatto uso di droghe pesanti ha utilizzato anche droghe leggere. Quali

Dettagli

I Modelli della Ricerca Operativa

I Modelli della Ricerca Operativa Capitolo 1 I Modelli della Ricerca Operativa 1.1 L approccio modellistico Il termine modello è di solito usato per indicare una costruzione artificiale realizzata per evidenziare proprietà specifiche di

Dettagli

Indice. 1 Il settore reale --------------------------------------------------------------------------------------------- 3

Indice. 1 Il settore reale --------------------------------------------------------------------------------------------- 3 INSEGNAMENTO DI ECONOMIA POLITICA LEZIONE VI IL MERCATO REALE PROF. ALDO VASTOLA Indice 1 Il settore reale ---------------------------------------------------------------------------------------------

Dettagli

Calcolatori: Algebra Booleana e Reti Logiche

Calcolatori: Algebra Booleana e Reti Logiche Calcolatori: Algebra Booleana e Reti Logiche 1 Algebra Booleana e Variabili Logiche I fondamenti dell Algebra Booleana (o Algebra di Boole) furono delineati dal matematico George Boole, in un lavoro pubblicato

Dettagli

Tecniche di DM: Link analysis e Association discovery

Tecniche di DM: Link analysis e Association discovery Tecniche di DM: Link analysis e Association discovery Vincenzo Antonio Manganaro vincenzomang@virgilio.it, www.statistica.too.it Indice 1 Architettura di un generico algoritmo di DM. 2 2 Regole di associazione:

Dettagli

Proof. Dimostrazione per assurdo. Consideriamo l insieme complementare di P nell insieme

Proof. Dimostrazione per assurdo. Consideriamo l insieme complementare di P nell insieme G Pareschi Principio di induzione Il Principio di Induzione (che dovreste anche avere incontrato nel Corso di Analisi I) consente di dimostrare Proposizioni il cui enunciato è in funzione di un numero

Dettagli

Capitolo 7: Domanda con il reddito in forma di moneta

Capitolo 7: Domanda con il reddito in forma di moneta Capitolo 7: Domanda con il reddito in forma di moneta 7.1: Introduzione L unica differenza tra questo capitolo e il precedente consiste nella definizione del reddito individuale. Assumiamo, infatti, che

Dettagli

Selezione avversa, screening e segnalazione

Selezione avversa, screening e segnalazione Selezione avversa, screening e segnalazione Il modello principale agente è uno strumento fondamentale per analizzare le relazioni economiche caratterizzate da problemi di asimmetrie informative un primo

Dettagli

Cardinali e implicature scalari Aldo Frigerio Esercizi Filosofici 6, 2011, pp. 178-194 ISSN 1970-0164 Link:

Cardinali e implicature scalari Aldo Frigerio Esercizi Filosofici 6, 2011, pp. 178-194 ISSN 1970-0164 Link: Cardinali e implicature scalari Aldo Frigerio Esercizi Filosofici 6, 2011, pp. 178-194 ISSN 1970-0164 Link: http://www2.units.it/eserfilo/art611/frigerio611.pdf CARDINALI E IMPLICATURE SCALARI Aldo Frigerio

Dettagli

Elisa Paganini. LA PROSPETTIVA DEL PARLANTE Dispense per il corso di Filosofia del linguaggio A. A. 2014-15 Aggiornate il 29.5.

Elisa Paganini. LA PROSPETTIVA DEL PARLANTE Dispense per il corso di Filosofia del linguaggio A. A. 2014-15 Aggiornate il 29.5. Elisa Paganini LA PROSPETTIVA DEL PARLANTE Dispense per il corso di Filosofia del linguaggio A. A. 2014-15 Aggiornate il 29.5.2015 INDICALI E DIMOSTRATIVI: LA TEORIA DI KAPLAN 1. David Kaplan Demonstratives

Dettagli

Dispense per il laboratorio di rappresentazione e algoritmi

Dispense per il laboratorio di rappresentazione e algoritmi Dispense per il laboratorio di rappresentazione e algoritmi 1. Introduzione All interno di un elaboratore esistono diversi livelli di descrizione delle informazioni. Il livello più basso è rappresentato

Dettagli

(L-LIN/01-Glottologia e Linguistica) Linguistica generale 1a Strutture del linguaggio. a.a.2009-2010 (M-Z) Anna Pompei

(L-LIN/01-Glottologia e Linguistica) Linguistica generale 1a Strutture del linguaggio. a.a.2009-2010 (M-Z) Anna Pompei (L-LIN/01-Glottologia e Linguistica) Linguistica generale 1a Strutture del linguaggio a.a.2009-2010 (M-Z) Anna Pompei PRAGMATICA Livello di analisi piuttosto recente, con un forte legame con la filosofia

Dettagli

(anno accademico 2008-09)

(anno accademico 2008-09) Calcolo relazionale Prof Alberto Belussi Prof. Alberto Belussi (anno accademico 2008-09) Calcolo relazionale E un linguaggio di interrogazione o e dichiarativo: at specifica le proprietà del risultato

Dettagli

Quadro di Riferimento PISA per la Literacy Scientifica

Quadro di Riferimento PISA per la Literacy Scientifica Quadro di Riferimento PISA per la Literacy Scientifica Il testo che segue è una sintesi della prima parte dello Science Framework di PISA 2006. Il testo definitivo sarà pubblicato dall OCSE entro il mese

Dettagli

La scelta di portafoglio

La scelta di portafoglio La scelta di portafoglio 1 La scelta di portafoglio La scelta di portafoglio: il modo in cui un individuo decide di allocare la propria ricchezza tra più titoli Il mercato dei titoli è un istituzione che

Dettagli

Corso di Laurea in INFORMATICA

Corso di Laurea in INFORMATICA Corso di Laurea in INFORMATICA Algoritmi e Strutture Dati MODULO 2. Algebre di dati Dati e rappresentazioni, requisiti delle astrazioni di dati, costrutti. Astrazioni di dati e dati primitivi. Specifica

Dettagli

Corso di LOGICA II: indagini semantiche su modalità e quantificazione. Uno studio di logica della necessità e della possibilità

Corso di LOGICA II: indagini semantiche su modalità e quantificazione. Uno studio di logica della necessità e della possibilità Corso di LOGICA II: indagini semantiche su modalità e quantificazione. Uno studio di logica della necessità e della possibilità Luisa Bortolotti Trento, 30.04.04 Lezione 26 : IL SISTEMA K-G (3) 2. MODALITA

Dettagli

Giochi ripetuti. Gianmaria Martini

Giochi ripetuti. Gianmaria Martini Giochi ripetuti Gianmaria Martini INTRODUZIONE In molte situazioni strategiche l elemento temporale ha un ruolo rilevante, nel senso che le scelte vengono ripetute nel tempo. I giochi ripetuti studiano

Dettagli

ALGEBRA DELLE PROPOSIZIONI

ALGEBRA DELLE PROPOSIZIONI Università di Salerno Fondamenti di Informatica Corso di Laurea Ingegneria Corso B Docente: Ing. Giovanni Secondulfo Anno Accademico 2010-2011 ALGEBRA DELLE PROPOSIZIONI Fondamenti di Informatica Algebra

Dettagli

Il cervello è un computer?

Il cervello è un computer? Corso di Intelligenza Artificiale a.a. 2012/13 Viola Schiaffonati Il cervello è un computer? Definire l obiettivo L obiettivo di queste due lezioni è di analizzare la domanda, apparentemente semplice,

Dettagli

Rappresentazione della conoscenza. Lezione 11. Rappresentazione della Conoscenza Daniele Nardi, 2008Lezione 11 0

Rappresentazione della conoscenza. Lezione 11. Rappresentazione della Conoscenza Daniele Nardi, 2008Lezione 11 0 Rappresentazione della conoscenza Lezione 11 Rappresentazione della Conoscenza Daniele Nardi, 2008Lezione 11 0 Sommario Pianificazione Deduttiva nel calcolo delle situazioni (Reiter 3.3) Teoria del calcolo

Dettagli

Capitolo 20: Scelta Intertemporale

Capitolo 20: Scelta Intertemporale Capitolo 20: Scelta Intertemporale 20.1: Introduzione Gli elementi di teoria economica trattati finora possono essere applicati a vari contesti. Tra questi, due rivestono particolare importanza: la scelta

Dettagli

pragmatica del linguaggio matematica e linguaggio Pragmatica Pragmatica deissi atti linguistici

pragmatica del linguaggio matematica e linguaggio Pragmatica Pragmatica deissi atti linguistici matematica e linguaggio pragmatica del linguaggio Marina Sbisà SSISS 2008-09, area FIM Università di Trieste Pragmatica sintassi: relazioni fra segni semantica: relazione segno-significato pragmatica:

Dettagli

Elementi di calcolo delle probabilità

Elementi di calcolo delle probabilità Elementi di calcolo delle probabilità Definizione di probabilità A) Qui davanti a me ho un urna contenente 2 palline bianche e 998 nere. Mi metto una benda sugli occhi, scuoto ripetutamente l urna ed estraggo

Dettagli

Implicazione logica. p q p q falsa falsa vera falsa vera vera vera falsa falsa vera vera vera

Implicazione logica. p q p q falsa falsa vera falsa vera vera vera falsa falsa vera vera vera Implicazione logica L implicazione logica è un connettivo logico attraverso il quale, a partire da due proposizioni p e q, si forma una nuova proposizione,chiamata p implica q e si scrive p q, la quale

Dettagli

LOGICA DEI PREDICATI. Introduzione. Predicati e termini individuali. Termini individuali semplici e composti

LOGICA DEI PREDICATI. Introduzione. Predicati e termini individuali. Termini individuali semplici e composti Introduzione LOGICA DEI PREDICATI Corso di Intelligenza Artificiale A.A. 2009/2010 Prof. Ing. Fabio Roli La logica dei predicati, o logica del primo ordine (LPO) considera schemi proposizionali composti

Dettagli

Introduzione alla pragmatica del linguaggio La svolta linguistica

Introduzione alla pragmatica del linguaggio La svolta linguistica Argomenti trattati nel primo modulo Introduzione alla pragmatica del linguaggio del corso di Filosofia del Linguaggio (laurea triennale) 2007-08 - prof. Marina Sbisà NB. Schemi riguardanti Austin, Come

Dettagli

Principi per la vigilanza sugli stabilimenti esteri delle banche

Principi per la vigilanza sugli stabilimenti esteri delle banche Principi per la vigilanza sugli stabilimenti esteri delle banche (Maggio 1983) I. Introduzione Il presente documento 1 delinea alcuni principi ai quali il Comitato ritiene dovrebbe essere informata la

Dettagli

CORSI PER ADULTI 2012-13

CORSI PER ADULTI 2012-13 CORSI PER ADULTI 2012-13 I CORSI COLLETTIVI Nei corsi British lo studente impara l inglese in maniera naturale e progressiva acquisendo gli strumenti necessari per affrontare agevolmente situazioni quotidiane

Dettagli

1. I limiti delle funzioni.

1. I limiti delle funzioni. 1. I iti delle funzioni. 1.1. Considerazioni introduttive. La nozione di ite di una funzione reale di variabile reale costituisce una naturale generalizzazione della nozione di ite di una successione.

Dettagli

Corso: Multimedialità e modelli di argomentazione (3 cr.)

Corso: Multimedialità e modelli di argomentazione (3 cr.) Corso: Multimedialità e modelli di argomentazione (3 cr.) Sesta lezione Docente: Giuseppe Spolaore. Ricevimento: Martedì, ore 11.50-13.25, presso il Dipartimento di Filosofia. Libro di testo: A. Iacona,

Dettagli

Indecidibilità, indefinibilità e incompletezza. 1

Indecidibilità, indefinibilità e incompletezza. 1 Indecidibilità, indefinibilità e incompletezza. 1 Possiamo ora trattare unitariamente alcuni dei principali risultati negativi della logica: il teorema di Church sull'indecidibilità della logica, il teorema

Dettagli

Appunti di LOGICA MATEMATICA (a.a.2009-2010; A.Ursini) Algebre di Boole. 1. Definizione e proprietá

Appunti di LOGICA MATEMATICA (a.a.2009-2010; A.Ursini) Algebre di Boole. 1. Definizione e proprietá Appunti di LOGICA MATEMATICA (a.a.2009-2010; A.Ursini) [# Aii [10 pagine]] Algebre di Boole Un algebra di Boole è una struttura 1. Definizione e proprietá B =< B,,, ν, 0, 1 > in cui B è un insieme non

Dettagli

CAPITOLO 27 SCAMBIO DI MESSAGGI

CAPITOLO 27 SCAMBIO DI MESSAGGI CAPITOLO 27 SCAMBIO DI MESSAGGI SCAMBIO DI MESSAGGI Sia che si guardi al microkernel, sia a SMP, sia ai sistemi distribuiti, Quando i processi interagiscono fra loro, devono soddisfare due requisiti fondamentali:

Dettagli

Logica. Veronica Gavagna

Logica. Veronica Gavagna Logica Veronica Gavagna Il linguaggio comune Ambiguità Nel mio giardino ci sono gigli e garofani bianchi. Direttore, Luca se la spassa con sua moglie Gli uomini e le donne che hanno compiuto il 25 anno

Dettagli

PRINCIPIO DI REVISIONE INTERNAZIONALE (ISA Italia) 300 PIANIFICAZIONE DELLA REVISIONE CONTABILE DEL BILANCIO

PRINCIPIO DI REVISIONE INTERNAZIONALE (ISA Italia) 300 PIANIFICAZIONE DELLA REVISIONE CONTABILE DEL BILANCIO PRINCIPIO DI REVISIONE INTERNAZIONALE (ISA Italia) 300 PIANIFICAZIONE DELLA REVISIONE CONTABILE DEL BILANCIO (In vigore per le revisioni contabili dei bilanci relativi ai periodi amministrativi che iniziano

Dettagli

Non sono necessarie Supponiamo che io dica Oggi piove Senza sapere che giorno è oggi (questo non mi impedisce di riferirmi al 11.1.

Non sono necessarie Supponiamo che io dica Oggi piove Senza sapere che giorno è oggi (questo non mi impedisce di riferirmi al 11.1. Indicali 1. Il metodo delle coordinate multiple il significato di un enunciato (indicale o non indicale) è una funzione da coordinate multiple a valori di verità 2. La distinzione fra carattere e contenuto

Dettagli

Haute Ecole de Gestion de Genève. Sintesi del quaderno: N HES-SO/HEG-GE/C--06/12/1--CH. CRAG Scuola superiore di gestione di Ginevra

Haute Ecole de Gestion de Genève. Sintesi del quaderno: N HES-SO/HEG-GE/C--06/12/1--CH. CRAG Scuola superiore di gestione di Ginevra Haute Ecole de Gestion de Genève CRAG Centro di Ricerca Applicata nella Gestione Quaderno di ricerca (sintesi) Sintesi dello studio del comportamento delle PME/PMI svizzere in materia d adozione di un

Dettagli

Il primo teorema di incompletezza di Gödel

Il primo teorema di incompletezza di Gödel Il primo teorema di incompletezza di Gödel Stefano Nasini Dept. of Statistics and Operations Research Universitat Politécnica de Catalunya 1. Introduzione Questo documento vuole essere una spiegazione

Dettagli

Il format narrativo: Puck s stories

Il format narrativo: Puck s stories EDUCARE I BAMBINI ALLA LINGUA INGLESE ROVIGO 17 MAGGIO 2013 Il format narrativo: Puck s stories flora.sisti@uniurb.it L APPROCCIO FORMAT Modello pedagogico Principi fondamentali Materiali Master online:

Dettagli

Teoria dei Giochi. Anna Torre

Teoria dei Giochi. Anna Torre Teoria dei Giochi Anna Torre Almo Collegio Borromeo 26 marzo 2015 email: anna.torre@unipv.it sito web del corso:www-dimat.unipv.it/atorre/borromeo2015.html COOPERAZIONE Esempio: strategie correlate e problema

Dettagli

PRINCIPIO DI REVISIONE INTERNAZIONALE (ISA) 570 CONTINUITA AZIENDALE INDICE

PRINCIPIO DI REVISIONE INTERNAZIONALE (ISA) 570 CONTINUITA AZIENDALE INDICE PRINCIPIO DI REVISIONE INTERNAZIONALE (ISA) 570 CONTINUITA AZIENDALE (In vigore per le revisioni contabili dei bilanci relativi ai periodi amministrativi che iniziano dal 15 dicembre 2009 o da data successiva)

Dettagli

PRINCIPIO DI REVISIONE INTERNAZIONALE (ISA) 220 CONTROLLO DELLA QUALITÀ DELL INCARICO DI REVISIONE CONTABILE DEL BILANCIO

PRINCIPIO DI REVISIONE INTERNAZIONALE (ISA) 220 CONTROLLO DELLA QUALITÀ DELL INCARICO DI REVISIONE CONTABILE DEL BILANCIO PRINCIPIO DI REVISIONE INTERNAZIONALE (ISA) 220 CONTROLLO DELLA QUALITÀ DELL INCARICO DI REVISIONE CONTABILE (In vigore per le revisioni contabili dei bilanci relativi ai periodi amministrativi che iniziano

Dettagli

PRINCIPIO DI REVISIONE INTERNAZIONALE (ISA Italia) 220 CONTROLLO DELLA QUALITÀ DELL INCARICO DI REVISIONE CONTABILE DEL BILANCIO

PRINCIPIO DI REVISIONE INTERNAZIONALE (ISA Italia) 220 CONTROLLO DELLA QUALITÀ DELL INCARICO DI REVISIONE CONTABILE DEL BILANCIO PRINCIPIO DI REVISIONE INTERNAZIONALE (ISA Italia) 220 CONTROLLO DELLA QUALITÀ DELL INCARICO DI REVISIONE CONTABILE DEL BILANCIO (In vigore per le revisioni contabili dei bilanci relativi ai periodi amministrativi

Dettagli

Indice. Oggetto del presente principio di revisione internazionale (ISA Italia) 1-6 Data di entrata in vigore... 7 Obiettivi... 8. Definizioni...

Indice. Oggetto del presente principio di revisione internazionale (ISA Italia) 1-6 Data di entrata in vigore... 7 Obiettivi... 8. Definizioni... PRINCIPIO DI REVISIONE INTERNAZIONALE (ISA Italia) 600 LA REVISIONE DEL BILANCIO DEL GRUPPO CONSIDERAZIONI SPECIFICHE (INCLUSO IL LAVORO DEI REVISORI DELLE COMPONENTI) (In vigore per le revisioni contabili

Dettagli

Problem solving e Logica Valentina Ciriani

Problem solving e Logica Valentina Ciriani Problem solving e Logica Valentina Ciriani Problemi logici? Successioni numeriche 1, 3, 5, 7, 9, 11, 13, Relazioni tra valori semantici caldo : X = Y : orribile X = freddo, Y = bello X = assetato, Y =

Dettagli

Dispensa del corso di Informatica

Dispensa del corso di Informatica Dispensa 6-Boolean 1 Algebra Booleana Dispensa del corso di Informatica La logica George Boole (1815 1864) è stato un matematico e logico britannico, ed è considerato il padre fondatore della logica matematica.

Dettagli

PILLOLE DI LOGICA. Piccolo manuale per affrontare gli esercizi di logica delle Olimpiadi di Matematica. Liceo Scientifico A.

PILLOLE DI LOGICA. Piccolo manuale per affrontare gli esercizi di logica delle Olimpiadi di Matematica. Liceo Scientifico A. PILLOLE DI LOGICA Piccolo manuale per affrontare gli esercizi di logica delle Olimpiadi di Matematica Liceo Scientifico A.Righi Cesena Le basi della logica formale La logica formale è un indagine sul ragionare

Dettagli

Calcolo Relazionale Basi di dati e sistemi informativi 1. Calcolo Relazionale. Angelo Montanari

Calcolo Relazionale Basi di dati e sistemi informativi 1. Calcolo Relazionale. Angelo Montanari Calcolo Relazionale Basi di dati e sistemi informativi 1 Calcolo Relazionale Angelo Montanari Dipartimento di Matematica e Informatica Università di Udine Calcolo Relazionale Basi di dati e sistemi informativi

Dettagli

CERTIFICAZIONE DELLE ASSERZIONI AMBIENTALI DI PRODOTTO

CERTIFICAZIONE DELLE ASSERZIONI AMBIENTALI DI PRODOTTO CERTIFICAZIONE DELLE ASSERZIONI AMBIENTALI DI PRODOTTO L obiettivo della certificazione L obiettivo della certificazione è quello di promuovere l utilizzo di dichiarazioni e messaggi chiari, rilevanti

Dettagli

LOGICA E LINGUAGGIO. Caserta, 21 febbraio 2011. Dott. Michele Bovenzi

LOGICA E LINGUAGGIO. Caserta, 21 febbraio 2011. Dott. Michele Bovenzi LOGICA E LINGUAGGIO Caserta, 2 febbraio 2 Dott. Michele Bovenzi Una breve introduzione La logica nasce nell antichità come disciplina che studia i principi e le regole del ragionamento, ne valuta la correttezza

Dettagli

Sui concetti di definizione, teorema e dimostrazione in didattica della matematica

Sui concetti di definizione, teorema e dimostrazione in didattica della matematica Liceo Scientifico Statale P. Paleocapa, Rovigo XX Settimana della Cultura Scientifica e Tecnologica 19 marzo 2010 Sui concetti di definizione, teorema e dimostrazione in didattica della matematica Prof.

Dettagli

Algebra Booleana ed Espressioni Booleane

Algebra Booleana ed Espressioni Booleane Algebra Booleana ed Espressioni Booleane Che cosa è un Algebra? Dato un insieme E di elementi (qualsiasi, non necessariamente numerico) ed una o più operazioni definite sugli elementi appartenenti a tale

Dettagli

Calcolo delle Probabilità

Calcolo delle Probabilità à 1. Introduzione Calcolo delle Probabilità Il Calcolo delle Probabilità nasce dagli studi matematici sui giochi d azzardo. Il Calcolo delle Probabilità è lo strumento che permette all uomo di assumere

Dettagli

Errori più comuni. nelle prove scritte

Errori più comuni. nelle prove scritte Errori più comuni nelle prove scritte Gli errori più frequenti, e reiterati da chi sostiene diverse prove, sono innanzi tutto meta-errori, cioè errori che non riguardano tanto l applicazione delle tecniche,

Dettagli

I.I.S. Primo Levi Badia Polesine A.S. 2012-2013

I.I.S. Primo Levi Badia Polesine A.S. 2012-2013 LGEBR DI BOOLE I.I.S. Primo Levi Badia Polesine.S. 2012-2013 Nel secolo scorso il matematico e filosofo irlandese Gorge Boole (1815-1864), allo scopo di procurarsi un simbolismo che gli consentisse di

Dettagli

Spinoza e il Male. Saitta Francesco

Spinoza e il Male. Saitta Francesco Spinoza e il Male di Saitta Francesco La genealogia del male è sempre stato uno dei problemi più discussi nella storia della filosofia. Trovare le origini del male è sempre stato l oggetto principale di

Dettagli

I Insiemi e funzioni

I Insiemi e funzioni I Insiemi e funzioni 1. INSIEMI ED OPERAZIONI SU DI ESSI 1.1. Insiemi Dal punto di vista intuitivo, il concetto di insieme può essere fatto corrispondere all atto mentale mediante il quale associamo alcuni

Dettagli

Capitolo Quinto: L interesse

Capitolo Quinto: L interesse Capitolo Quinto: L interesse 95 Capitolo Quinto L interesse L interesse può essere definito come il prezzo che si paga per l uso del risparmio altrui: esso viene corrisposto a chi dispone di capitale finanziario

Dettagli