24.1 Coniche e loro riduzione a forma canonica

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "24.1 Coniche e loro riduzione a forma canonica"

Transcript

1 Lezione Coniche e loro riduzione a forma canonica Fissiamo nel piano un sistema di riferimento Oxy e consideriamo un polinomio di grado 2 in x, y amenodicostantimoltiplicativenonnulle,diciamo ax 2 + bxy + cy 2 + dx + ey + f (a, b, c, d, e, f 2 R). Nella precedente lezione ci siamo posti il problema di descrivere il luogo geometrico (eventualmente vuoto) C = { P =(x, y) ax 2 + bxy + cy 2 + dx + ey + f =} ed abbiamo visto che tale luogo può essere un ellisse, un iperbole, una parabola (coniche classiche) o qualcos altro. Per tale motivo è opportuno introdurre la seguente definizione. Definizione 24. (Coniche). Una conica C nel piano (rispetto ad un fissato sistema di riferimento Oxy) èildato,amenodicostantimoltiplicativenonnulle,di un equazione della forma ax 2 + bxy + cy 2 + dx + ey + f =, con a, b, c, d, e, f 2 R e a, b, c non simultaneamente nulli. Se C èlaconicaax 2 + bxy + cy 2 + dx + ey + f =,moltospesso,nelseguito, utilizzeremo la locuzione la conica C di equazione ax 2 + bxy + cy 2 + dx + ey + f =. Nella lezione precedente abbiamo studiato come cambia l equazione di una conica (nel senso della definizione sopra) quando operiamo nel piano una rototraslazione: la nuova equazione si ottiene sostituendo alle vecchie variabili la loro espressione in funzione di nuove variabili. Vediamo cosa si può dire nel caso specifico delle coniche. Come prima cosa osserviamo che l equazione di cui sopra si può sempre scrivere nella forma a, x 2 +2a,2 xy + a 2,2 y 2 +2a,3 x +2a 2,3 y + a 3,3 = (24..) per opportuni a i,j 2 R (sarà chiara fra poco la maggiore convenienza di una tale notazione rispetto alla precedente). Vorremmo trovare un sistema di riferimento O x y nel piano con coordinate x,y in modo tale che l equazione (23..) divenga più semplice e, soprattutto, riconoscibile: per esempio potremmo desiderare d avere un equazione canonica nel senso della seguente definizione. 24

2 242 Definizione 24.2 (Forma canonica di una conica). Nel piano sia fissato un sistema di riferimento Oxy e sia C una conica. Diciamo che C è in forma canonica (o che Oxy èunsistema di riferimento canonico per C) sel equazionedic èdella forma x 2 + y 2 =, (24..2) oppure per qualche,, 2 R. y 2 =2 x (24..3) Cerchiamo, quindi, di capire come fare per passare dal vecchio riferimento Oxy ad un nuovo riferimento O x y rispetto a cui C sia in forma canonica. Per individuare l angolo di rotazione ' el origineo del nuovo sistema di riferimento faremo uso della teoria delle forme quadratiche vista in precedenza. Infatti all equazione (24..) si possono associare facilmente le due forme quadratiche a, x 2 +2a,2 xy + a 2,2 y 2, a, x 2 +2a,2 xy + a 2,2 y 2 +2a,3 xt +2a 2,3 yt + a 3,3 t 2 le cui matrici (simmetriche) sono, rispettivamente, a a, a, a,2 a,3 A =,2, B a a,2 a,2 a 2,2 a 2,3 A 2,2 a,3 a 2,3 a 3,3 dette rispettivamente matrice dei termini di secondo grado della conica e matrice (completa) della conica. Osserviamochesiha x x y ya = a, x 2 +2a,2 xy + a 2,2 y 2 +2a,3 x +2a 2,3 y + a 3,3. (24..4) Esempio Nel piano con fissato sistema di riferimento Oxy si consideri la conica C di equazione 3x 2 +2xy +3y 2 +2 p 2x =. La matrice dei termini di secondo grado di C elamatricecompletadic sono rispettivamente 3 p 2 3 A =, B 3 A 3 p. 2 Sia ora O x y un nuovo sistema di riferimento nel piano legato ad Oxy da una certa rototraslazione della forma x cos ' sin ' x u = y sin ' cos ' y + v (si veda la Proposizione 23.6) e supponiamo che C sia rappresentata rispetto a tale sistema dall equazione

3 x 243 x y y A =. (24..5) Qual è allora il legame tra le matrici B e B nelle equazioni (24..4) e (24..5)? La rototraslazione di cui sopra si può scrivere in forma compatta come x cos ' sin ' u ya sin ' cos ' y A. Sostituendo tale formula nelle (24..4) e (24..5) otteniamo il seguente risultato. Proposizione Nel piano siano fissati due sistemi di riferimento Oxy e O x y. Si assuma che il semiasse positivo delle x formi un angolo ' (misurato in senso antiorario) con il semiasse positivo delle x echelecoordinatedio rispetto al sistema di riferimento Oxy siano (u, v). Poniamo cos ' sin ' u Q sin ' cos ' va cos ' sin ', P =. sin ' cos ' Sia poi C una conica avente nei due sistemi di riferimento matrici complete B e B ematricideiterminidigrado2 A ed A rispettivamente. Allora esiste 2 R non nullo tale che B = t QBQ e A = t P AP. Data una conica C di equazione (24..), per determinare una sua equazione canonica si può dunque procedere come segue. Si determina prima una matrice ortogonale speciale che diagonalizzi la matrice A del complesso dei termini di secondo grado: in questo modo l equazione di C viene trasformata in una della forma ba, bx 2 + ba 2,2 by 2 +2ba,3 bx +2ba 2,3 by + ba 3,3 =. Ciò equivale a una rotazione che ci fa passare dal vecchio sistema di riferimento Oxy ad un sistema di riferimento ausiliare Obxby. Aquestopuntocontrasformazionideltipo(bx, by) 7! (x +a, y +b) (cioè formando iquadrati:èilmetodoconcuisirisolvonoleequazionidisecondogrado!)sifain modo che scompaiano il massimo numero di monomi di grado e, eventualmente, il termine noto. L equazione risultante diviene se det(a) 6=,oppure x 2 + y 2 =, y 2 =2 x, se det(a) =, dunque è in forma canonica. Ciò equivale a una traslazione che ci fa passare dal sistema di riferimento ausiliario Obxby al nuovo sistema di riferimento O x y. Illustriamo quanto visto con un esempio dettagliato.

4 244 Esempio Consideriamo la conica C dell Esempio 24.3 di equazione 3x 2 +2xy +3y 2 +2 p 2x =, (24..6) con matrici associate 3 p 2 3 A =, B 3 A 3 p. 2 Il polinomio caratteristico di A è p A (t) = 3 t 3 t = t2 6t +8=(t 2)(t 4), quindi gli autovalori di A sono 2 e 4. L autospazioe A (2) si determina risolvendo il sistema s = : t calcoliamo che E A (2) = L((, )). Poiché sappiamo che l autospazio relativo all altro autovalore 4 contiene autovettori non nulli (per definizione) ortogonali agli autovettori di E A (2) (perché A è simmetrica: si veda la Proposizione 22.), sappiamo che l autospazio E A (4) = L((, )). Quindi la matrice ortogonale speciale cercata è p p 2/2 2/2 P = p p 2/2 2/2 elarotazionecorrispondenteè x = y p p p 2/2 p 2/2 bx 2/2 2/2 by o, equivalentemente, ( x = p 2/2bx + p 2/2by y = p 2/2bx + p 2/2by. La conica C nel sistema di riferimento ausiliare Obxby ha matrice dei termini di secondo grado 2 ba =. 4 Per determinare i monomi di grado nella sua equazione relativa a Obxby basta sostituire nell equazione (24..6) le espressioni di x ed y in funzione di bx e by nei monomi di grado. Quindilasuaequazioneè Si noti che 2bx 2 +4by 2 +2bx +2by =. 2bx 2 +2bx =2(bx 2 + bx) =2((bx +/2) 2 /4) = 2(bx +/2) 2 /2,

5 245 4by 2 +2by =4(by 2 + by/2) = 4((by +/4) 2 /6) = 4(by +/4) 2 /4. Ponendo x = bx+/2 e y = by+/4,l equazionedic rispetto al sistema di riferimento O x y diviene 2x 2 +4y 2 3/4 =, che è un equazione canonica. Moltiplicando ambo i membri per 4/3 otteniamo infine l equazione 8 3 x y2 =. (24..7) Deduciamo che C èun ellissedisemiassi p 3/8 e p 3/6. Le equazioni della rototraslazione che trasforma l equazione (24..6) nell equazione (24..7) sono p p x 2/2 2/2 = p p x y 2/2 2/2 y + p p 3 2/8. (24..8) 2/8 Il centro di C èilpuntoche,delnuovosistemadiriferimento,èl origine. Quindiè il punto che ha coordinate (, ) rispetto a O x y.dalleequazioni(24..8)deduciamo allora che il centro di C ha coordinate ( 3 p 2/8, p 2/8) rispetto a Oxy. Gli assi di C sono le rette che, del nuovo sistema di riferimento, sono gli assi coordinati. Quindi sono le rette di equazioni x =e y =rispetto a O x y.dalle equazioni (24..8) deduciamo che x = y p p p 2/2 p 2/2 x + 2/2 2/2 y /2, /4 dunque gli assi della conica C sono le rette di equazione p p 2x 2y + = e 2 p 2x +2 p 2y +=rispetto a Oxy. In maniera simile il lettore determini le coordinate dei vertici di C rispetto a Oxy. Per disegnare C, oltrealleinformazionigiàdeterminate,puòessereutilecalcolare le intersezioni con gli assi x ed y. Per calcolare le intersezioni di C con l asse delle ordinate risolviamo il sistema ( 3x 2 +2xy +3y 2 +2 p 2x = x = la cui unica soluzione è (, ). Le intersezioni con l asse delle ascisse sono invece date dalle soluzioni del sistema ( 3x 2 +2xy +3y 2 +2 p 2x = cioè (, ) e ( 2 p 2/3, ). y =

6 246 y y' ŷ O' O=Ô x x' xˆ Figura 24. In Figura 24. abbiamo riportato il disegno della conica C Determinazione del tipo di una conica Abbiamo visto finora che ogni conica C ha una forma canonica ed abbiamo trattato in dettaglio come trovarla nell Esempio Viene spontaneo domandarsi se c è un metodo che, a priori, ci permetta di stabilire se C èunaconicaclassicaonoe, nel caso C sia classica se sia un ellisse, un iperbole o una parabola, senza dovere necessariamente operare il cambio di coordinate. Nel seguito indicheremo con A la matrice dei termini di secondo grado di C econ B la sua matrice completa. Definizione Una conica C si dice degenere se la sua equazione si decompone in un prodotto di due polinomi di grado (non necessariamente distinti), non degenere altrimenti. Èfacilerendersicontocheunaconicainformacanonicaèdegenereseesolose la sua matrice B ha determinante nullo. Poiché dalla Proposizione 24.4 segue che la matrice B di C èlegataaquellab della sua forma canonica da una relazione del tipo B = t QBQ per un qualche 2 R non nullo, calcolando i determinanti di ambo i membri possiamo dedurre il seguente risultato. Proposizione Una conica C èdegenereseesoloselasuamatricecompleta B ha determinante nullo. Supponiamo che C sia non degenere: allora o C èun ellisseimmaginaria,oppureè una conica classica. Supponiamo di essere in questo secondo caso. Se x 2 + y 2 =

7 èunasuaequazionecanonica,c èun ellisse,un iperboleounaparabolasecondoché e siano concordi, discordi, o uno di essi sia nullo. Indicata con A = 247 la matrice dei termini di secondo grado della forma canonica di C, dinuovodalla Proposizione 24.4 sappiamo che A = t P AP per un qualche 2 R non nullo. Deduciamo allora che C èun ellisse,un iperboleounaparabolasecondochéa,e dunque A, sia definita,indefinita,semidefinita. Queste considerazioni ci permettono anche di classificare una conica calcolandone la sua equazione canonica senza necessariamente determinare la rototraslazione che la riduce in tale forma canonica. Esempio Si consideri la conica C di equazione 4x 2 +4xy +4y + y 2 =. Le matrici associate a C sono A =, B 2 2A. 2 2 Poiché det(b) = 6 6=,laconicaC ènondegenere.poichédet(a) =,laconica C èunaparabola. Sevogliamodeterminarnel equazionecanonicaosserviamochele matrici Q e P definite nella Proposizione Proposizione 24.4 soddisfano le relazioni t QBQ = B A, t P AP = A = per un qualche 2 R non nullo. Poiché l equazione di una conica e, di conseguenza, la sua matrice completa, è individuata a meno di una costante moltiplicativa, possiamo sempre supporre che sia =. Quindi deve essere l autovalore non nullo di A, cioè =5. Confrontando i determinanti di B e B si ottiene 2 = 6, cioè =4/ p 5. Concludiamo che C èunaparabolalacuiequazionecanonicaè 5y 2 = 8 p 5 x., Il parametro di C èdunque8/5 p 5.

8 248 y' O' x' Figura 24.2 Nella Figura 24.2 riportiamo il disegno della conica C. Esempio Si consideri la conica C di equazione 7x 2 +8xy + y 2 +9x =. Le matrici associate a C sono 7 4 9/2 7 4 A =, B 4 A. 4 9/2 Poiché det(b) = 45/4 6=,laconicaC ènondegenere. Poichédet(A) = 9, la conica C èun iperbole.sevogliamocalcolarnel equazionecanonicaosserviamoche dobbiamo determinare le matrici Q e P definite nella Proposizione 24.4 tali che t QBQ = B A, t P AP = A =. Quindi e devono essere gli autovalori di A, cioè =9e =, econfrontando i determinanti di B e B, = 45/4, cioè = 5/4. Concludiamo che C èun iperbolelacuiequazionecanonicaè Moltiplicando ambo i membri per 9x 2 y 2 = 5/4. 4/5 otteniamo 36 5 x y2 =. IsemiassidiC sono dunque p 5/6 (quello corrispondente all asse immaginario) e p 5/2 (quello corrispondente all asse trasverso).

9 249 Nella Figura 24.3 riportiamo il disegno di C nel sistema di riferimento Ox y. y' O' x' Figura 24.3 Tale ultima equazione non è l equazione standard data nell Esempio 23.. Consideriamo la rotazione x = y, y = x di /2 radianti (si veda l Esempio 23.5) che trasforma l equazione di C nell equazione standard x2 5 y2 =. Nella Figura 24.4 riportiamo il disegno di C nel sistema di riferimento Ox y. x'' y'' O' Figura 24.4

LEZIONE 23. ax 2 + bxy + cy 2 + dx + ey + f

LEZIONE 23. ax 2 + bxy + cy 2 + dx + ey + f LEZIONE 23 23.1. Riduzione delle coniche a forma canonica. Fissiamo nel piano un sistema di riferimento Oxy e consideriamo un polinomio di grado 2 in x, y a meno di costanti moltiplicative non nulle, diciamo

Dettagli

25.1 Quadriche e loro riduzione a forma canonica

25.1 Quadriche e loro riduzione a forma canonica Lezione 25 25.1 Quadriche e loro riduzione a forma canonica Fissiamo nello spazio un sistema di riferimento Oxyz e consideriamo un polinomio q(x, y, z) di grado 2 nelle tre variabili x, y, z amenodicostantimoltiplicativenon

Dettagli

CONICHE. Esercizi Esercizio 1. Nel piano con riferimento cartesiano ortogonale Oxy sia data la conica C di equazione

CONICHE. Esercizi Esercizio 1. Nel piano con riferimento cartesiano ortogonale Oxy sia data la conica C di equazione CONICHE Esercizi Esercizio 1. Nel piano con riferimento cartesiano ortogonale Oy sia data la conica C di equazione 7 2 + 2 3y + 5y 2 + 32 3 = 0. Calcolare le equazioni di una rototraslazione che riduce

Dettagli

LEZIONE 24. a 1,1 x 2 + a 2,2 y 2 + a 3,3 z 2 + 2a 1,2 xy + 2a 1,3 xz+ + 2a 2,3 yz + 2a 1,4 x + 2a 2,4 y + 2a 3,4 z + a 4,4 = 0 (24.1.

LEZIONE 24. a 1,1 x 2 + a 2,2 y 2 + a 3,3 z 2 + 2a 1,2 xy + 2a 1,3 xz+ + 2a 2,3 yz + 2a 1,4 x + 2a 2,4 y + 2a 3,4 z + a 4,4 = 0 (24.1. LEZIONE 24 24.1. Riduione delle quadriche a forma canonica. Fissiamo nello spaio un sistema di riferimento Oxy e consideriamo un polinomio q(x, y, ) di grado 2 in x, y, a meno di costanti moltiplicative

Dettagli

LEZIONE 27. C = { P = (x, y) x 2 /a 2 y 2 /b 2 = 1 }. C si dice iperbole di semiassi a e b (in forma canonica). L equazione

LEZIONE 27. C = { P = (x, y) x 2 /a 2 y 2 /b 2 = 1 }. C si dice iperbole di semiassi a e b (in forma canonica). L equazione LEZIONE 27 27.1. Ellisse, iperbole, parabola. Nelle prossime lezioni illustreremo come la teoria delle forme quadratiche e della riduzione ortogonale si applichi allo studio di alcuni oggetti geometrici

Dettagli

a 2 b 2 x 2 y 2 =1 (23.1.1)

a 2 b 2 x 2 y 2 =1 (23.1.1) Lezione 23 23.1 Ellisse, iperbole, parabola La parte finale del corso riguarda l applicazione della teoria delle forme quadratiche edellariduzioneortogonaleallostudiodialcunioggettigeometricidetti coniche

Dettagli

X = x + 1. X = x + 1

X = x + 1. X = x + 1 CONICHE. Esercizi Esercizio. Classificare, ridurre a forma canonica (completando i quadrati), e disegnare le seguenti coniche: γ : x y + x = 0; γ : x + 4x y + = 0; γ 3 : x + y + y + 0 = 0; γ 4 : x + y

Dettagli

Fissiamo nel piano un sistema di riferimento cartesiano ortogonale O, x, y, u.

Fissiamo nel piano un sistema di riferimento cartesiano ortogonale O, x, y, u. Fissiamo nel piano un sistema di riferimento cartesiano ortogonale O, x, y, u. Definizione Una conica è il luogo dei punti, propri o impropri, reali o immaginari, che con le loro coordinate omogenee (x,

Dettagli

Fissiamo nel piano un sistema di riferimento cartesiano ortogonale O, x, y, u.

Fissiamo nel piano un sistema di riferimento cartesiano ortogonale O, x, y, u. Fissiamo nel piano un sistema di riferimento cartesiano ortogonale O, x, y, u. Definizione Una conica è il luogo dei punti, propri o impropri, reali o immaginari, che con le loro coordinate omogenee (x,

Dettagli

Coniche R. Notari 15 Aprile

Coniche R. Notari 15 Aprile Coniche R. Notari 15 Aprile 2006 1 1. Notazioni. Proposizione 1 Ogni conica si rappresenta tramita un equazione algebrica di secondo grado della forma a 11 x 2 +2a 12 xy + a 22 y 2 + +2a 13 x + 2a 23 y

Dettagli

Parte 12b. Riduzione a forma canonica

Parte 12b. Riduzione a forma canonica Parte 2b. Riduzione a forma canonica A. Savo Appunti del Corso di Geometria 202-3 Indice delle sezioni. Coniche, 2. Esempio di riduzione, 4 3. Teoremi fondamentali, 6 4. Come determinare l equazione canonica,

Dettagli

Geometria BAER Canale I Esercizi 12

Geometria BAER Canale I Esercizi 12 Geometria BAER Canale I Esercizi Alcuni di questi esercizi forse sono un po difficili visto che abbiamo fatto questa parte un po in fretta, ma si può sempre provare. Esercizio. Si scrivano le equazioni

Dettagli

2 2 2 A = Il Det(A) = 2 quindi la conica è non degenere, di rango 3.

2 2 2 A = Il Det(A) = 2 quindi la conica è non degenere, di rango 3. Studio delle coniche Ellisse Studiare la conica di equazione 2x 2 + 4xy + y 2 4x 2y + 2 = 0. Per prima cosa dobbiamo classificarla. La matrice associata alla conica è: 2 2 2 A = 2 2 2 Il DetA = 2 quindi

Dettagli

CAPITOLO 14. Quadriche. Alcuni esercizi di questo capitolo sono ripetuti in quanto risolti in maniera differente.

CAPITOLO 14. Quadriche. Alcuni esercizi di questo capitolo sono ripetuti in quanto risolti in maniera differente. CAPITOLO 4 Quadriche Alcuni esercizi di questo capitolo sono ripetuti in quanto risolti in maniera differente. Esercizio 4.. Stabilire il tipo di quadrica corrispondente alle seguenti equazioni. Se si

Dettagli

Esercizi sulle coniche (prof.ssa C. Carrara)

Esercizi sulle coniche (prof.ssa C. Carrara) Esercizi sulle coniche prof.ssa C. Carrara Alcune parti di un esercizio possono ritrovarsi in un altro esercizio, insieme a parti diverse. È un occasione per affrontarle da un altra angolazione.. Determinare

Dettagli

Coniche in forma generale

Coniche in forma generale LE CONICHE Fissiamo nel piano un sistema di riferimento cartesiano ortogonaleo, x, y, u. Coniche in forma generale Una conica è il luogo dei punti, propri o impropri, reali o immaginari, che con le loro

Dettagli

FORME QUADRATICHE, CONICHE, QUADRICHE

FORME QUADRATICHE, CONICHE, QUADRICHE FORME QUADRATICHE, CONICHE, QUADRICHE Esercizi Esercizio 1. Sia data la forma quadratica q( T (x, y, z))=3y 2 +8z 2 +4xy +6xz +12yz. (1) Scrivere la matrice di q: q è definita positiva?. (2) Classificare

Dettagli

2x 2 + 4x 2y + 1 = 2(x 2 + 2x + 1 1) 2y + 1 = 2(x + 1) 2 2(y ) = 0.

2x 2 + 4x 2y + 1 = 2(x 2 + 2x + 1 1) 2y + 1 = 2(x + 1) 2 2(y ) = 0. CONICHE E QUADRICHE. Esercizi Esercizio. Classificare, ridurre a forma canonica (completando i quadrati), e disegnare le seguenti coniche: γ : x y + x = 0; γ : x + 4x y + = 0; γ : x + y + y + 0 = 0; γ

Dettagli

II Università degli Studi di Roma

II Università degli Studi di Roma Versione preliminare gennaio TOR VERGATA II Università degli Studi di Roma Dispense di Geometria. Capitolo 3. 7. Coniche in R. Nel Capitolo I abbiamo visto che gli insiemi di punti P lineare di primo grado

Dettagli

Geometria analitica: curve e superfici

Geometria analitica: curve e superfici Geometria analitica: curve e superfici geometriche algebriche e matrici e isometrie Riduzione Invarianti Studio di coniche Intersezione con rette e tangenti in forma parametrica 006 Politecnico di Torino

Dettagli

Corso di Geometria Meccanica, Elettrotecnica Esercizi 11: soluzioni

Corso di Geometria Meccanica, Elettrotecnica Esercizi 11: soluzioni Corso di Geometria 0- Meccanica Elettrotecnica Esercizi : soluzioni Esercizio Scrivere la matrice canonica di ciascuna delle seguenti trasformazioni lineari del piano: a) Rotazione di angolo π b) Rotazione

Dettagli

Esercizi sulle coniche (prof.ssa C. Carrara)

Esercizi sulle coniche (prof.ssa C. Carrara) Esercizi sulle coniche prof.ssa C. Carrara Alcune parti di un esercizio possono ritrovarsi in un altro esercizio, insieme a parti diverse. È un occasione per affrontarle più volte.. Stabilire il tipo di

Dettagli

RIPASSO E APPROFONDIMENTO DI ARGOMENTI DEL TERZO ANNO

RIPASSO E APPROFONDIMENTO DI ARGOMENTI DEL TERZO ANNO RIPASSO E APPROFONDIMENTO DI ARGOMENTI DEL TERZO ANNO 1 La circonferenza. 2 La parabola. 3 L ellisse. L iperbole. 5 Le coniche. 6 Equazione generale di una conica. 7 Calcolo delle principali caratteristiche

Dettagli

Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria Edile ed Edile/Architettura. Geometria Proiettiva Docente F.

Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria Edile ed Edile/Architettura. Geometria Proiettiva Docente F. Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria Edile ed Edile/Architettura Geometria Proiettiva Docente F. Flamini CONICHE PROIETTIVE: Classificazione e forme canoniche proiettive Si

Dettagli

1 Ampliamento del piano e coordinate omogenee

1 Ampliamento del piano e coordinate omogenee 1 Ampliamento del piano e coordinate omogenee Vogliamo dare una idea, senza molte pretese, dei concetti che stanno alla base di alcuni calcoli svolti nella classificazione delle coniche. Supponiamo di

Dettagli

AUTOVALORI, AUTOVETTORI, AUTOSPAZI

AUTOVALORI, AUTOVETTORI, AUTOSPAZI AUTOVALORI, AUTOVETTORI, AUTOSPAZI. Esercizi Esercizio. Sia f : R 3 R 3 l endomorfismo definito da f(x, y, z) = (x+y, y +z, x+z). Calcolare gli autovalori ed una base per ogni autospazio di f. Dire se

Dettagli

1 Cambiamenti di coordinate nel piano.

1 Cambiamenti di coordinate nel piano. Cambiamenti di coordinate nel piano.. Coordinate cartesiane Coordinate cartesiane su una retta. Sia r una retta: dare un sistema di coordinate su r significa fissare un punto O di r e un vettore u = U

Dettagli

Classificazione delle coniche.

Classificazione delle coniche. Classificazione delle coniche Ora si vogliono studiare i luoghi geometrici rappresentati da equazioni di secondo grado In generale, non è facile riconoscere a prima vista di che cosa si tratta, soprattutto

Dettagli

L algebra lineare nello studio delle coniche

L algebra lineare nello studio delle coniche L algebra lineare nello studio delle coniche È possibile utilizzare le tecniche dell algebra lineare per studiare e classificare le coniche. Data l equazione generale di una conica, si considera la sua

Dettagli

CLASSIFICAZIONE DELLE CONICHE AFFINI

CLASSIFICAZIONE DELLE CONICHE AFFINI CLASSIFICAZIONE DELLE CONICHE AFFINI Pre-requisiti necessari. Elementi di geometria analitica punti e rette nel piano cartesiano, conoscenza delle coniche in forma canonica). Risoluzione di equazioni e

Dettagli

Corso di Laurea in Matematica GEOMETRIA A. Seconda prova intermedia aa. 2018/ k 1 (k + 1) 1 k 1 2 A :=

Corso di Laurea in Matematica GEOMETRIA A. Seconda prova intermedia aa. 2018/ k 1 (k + 1) 1 k 1 2 A := Corso di Laurea in Matematica GEOMETRIA A Seconda prova intermedia aa. 018/019 Esercizio 1. Si consideri il piano euclideo V = E munito del prodotto scalare standard e della base ortonormale e 1, e } e

Dettagli

Cenni sulle coniche 1.

Cenni sulle coniche 1. 1 Premessa Cenni sulle coniche 1. Corso di laurea in Ingegneria Civile ed Edile Università degli Studi di Palermo A.A. 2013/2014 prof.ssa Paola Staglianò (pstagliano@unime.it) Scopo della geometria analitica

Dettagli

Quadriche. R. Notari

Quadriche. R. Notari Quadriche R. Notari 1 1. Notazioni. Proposizione 1 Ogni quadrica si rappresenta tramite un equazione algebrica di secondo grado della forma a 11 x 2 + 2a 12 xy + a 22 y 2 + 2a 13 xz+ +2a 23 yz + a 33 z

Dettagli

Geometria 2, a.a. 2006/2007 Ingegneria Edile-Edile Architettura

Geometria 2, a.a. 2006/2007 Ingegneria Edile-Edile Architettura Geometria 2, a.a. 2006/2007 Ingegneria Edile-Edile Architettura Tutore: Eleonora Palmieri 14 febbraio 2007 Esercizio 1: Si consideri in R 2 la conica Γ : 2x 2 1 + 4x 2 2 + x 1 + 2x 2 = 0. 1. Ridurre Γ

Dettagli

ESAME DI GEOMETRIA. 6 febbraio 2002 CORREZIONE QUIZ

ESAME DI GEOMETRIA. 6 febbraio 2002 CORREZIONE QUIZ ESAME DI GEOMETRIA 6 febbraio CORREZIONE QUIZ. La parte reale di ( + i) 9 è positiva. QUIZ Si può procedere in due modi. Un primo modo è osservare che ( + i) =i, dunque ( + i) 9 =(+i)(i) 4 = 4 ( + i) :

Dettagli

ESAMI E ESERCITAZIONI A.A

ESAMI E ESERCITAZIONI A.A ESAMI E ESERCITAZIONI A.A. 2013-14 ANDREA RATTO Sommario. In questo file presentiamo prove d esame, esercitazioni ed esami relativi al Corso Integrato di Matematica, Modulo B, per Scienze dell Architettura

Dettagli

Esercitazioni di Geometria A: curve algebriche

Esercitazioni di Geometria A: curve algebriche Esercitazioni di Geometria A: curve algebriche 24-25 maggio 2016 Esercizio 1 Sia P 2 il piano proiettivo complesso munito delle coordinate proiettive (x 0 : x 1 : x 2 ). Sia r la retta proiettiva di equazione

Dettagli

Coniche - risposte 1.9

Coniche - risposte 1.9 Coniche - risposte. CAMBI DI COORDINATE ) ) cosπ/) sinπ/). a. Rotazione di π/, la matrice di rotazione è = sinπ/) cosπ/) ) ) ) X = Y X = Quindi le formule sono: cioè: Y = X e inversamente Y = = Y X = b.

Dettagli

Prova scritta di Geometria 1 Docente: Giovanni Cerulli Irelli 20 Gennaio 2017

Prova scritta di Geometria 1 Docente: Giovanni Cerulli Irelli 20 Gennaio 2017 Prova scritta di Geometria Docente: Giovanni Cerulli Irelli Gennaio 7 Esercizio. Si considerino i seguenti tre punti dello spazio euclideo: P :=, Q :=, R :=.. Dimostrare che P, Q ed R non sono collineari.

Dettagli

Esame di Geometria e Algebra Lineare Politecnico di Milano Ingegneria informatica Appello 10 Febbraio 2015 Cognome: Nome: Matricola:

Esame di Geometria e Algebra Lineare Politecnico di Milano Ingegneria informatica Appello 10 Febbraio 2015 Cognome: Nome: Matricola: Esame di Geometria e Algebra Lineare Politecnico di Milano Ingegneria informatica Appello Febbraio 25 Cognome: Nome: Matricola: Tutte le risposte devono essere motivate Gli esercizi vanno svolti su questi

Dettagli

Geometria BAER Canale A-K Esercizi 11

Geometria BAER Canale A-K Esercizi 11 Geometria BAER 6-7 Canale A-K Esercizi Esercizio. Scrivere la matrice delle seguenti trasformazioni ortogonali del piano (a Proiezione ortogonale sulla retta x + y = (b Rotazione di π/4 seguita da riflessione

Dettagli

Lezione 6 Richiami di Geometria Analitica

Lezione 6 Richiami di Geometria Analitica 1 Piano cartesiano Lezione 6 Richiami di Geometria Analitica Consideriamo nel piano due rette perpendicolari che si intersecano in un punto O Consideriamo ciascuna di queste rette come retta orientata

Dettagli

Si deve verificare (sulla brutta copia) che (1 i 3)z dà lo stesso risultato usando l espressione del testo e la soluzione trovata.

Si deve verificare (sulla brutta copia) che (1 i 3)z dà lo stesso risultato usando l espressione del testo e la soluzione trovata. Università degli Studi di Bergamo Corso integrato di Analisi 1 (Geometria e Algebra Lineare 18 febbraio 1 Tema A Tempo a disposizione: ore. Calcolatrici, libri e appunti non sono ammessi. Ogni esercizio

Dettagli

Esercizi Riepilogativi Svolti

Esercizi Riepilogativi Svolti Universita degli Studi di Roma - "Tor Vergata" - Facolta Ingegneria Esercizi GEOMETRIA (Edile-Architettura e dell Edilizia) QUADRICHE DI R 3. Docente: Prof. F. Flamini Esercizi Riepilogativi Svolti Esercizio

Dettagli

Geometria A. Università degli Studi di Trento Corso di laurea in Matematica A.A. 2017/ Maggio 2018 Prova Intermedia

Geometria A. Università degli Studi di Trento Corso di laurea in Matematica A.A. 2017/ Maggio 2018 Prova Intermedia Geometria A Università degli Studi di Trento Corso di laurea in Matematica A.A. 7/8 Maggio 8 Prova Intermedia Il tempo per la prova è di ore. Durante la prova non è permesso l uso di appunti e libri. Esercizio

Dettagli

Esercizi per Geometria II Geometria euclidea e proiettiva

Esercizi per Geometria II Geometria euclidea e proiettiva Esercizi per Geometria II Geometria euclidea e proiettiva Filippo F. Favale 10 aprile 01 Esercizio 1 Sia E 3 lo spazio euclideo tridimensionale dotato di un riferimento cartesiano ortonormale di coordinate

Dettagli

GEOMETRIA. 9 settembre ore. Istruzioni: Trascrivere i risultati dei quiz della prima parte nella tabella in questa pagina.

GEOMETRIA. 9 settembre ore. Istruzioni: Trascrivere i risultati dei quiz della prima parte nella tabella in questa pagina. GEOMETRIA 9 settembre 29 2 ore Istruzioni: Scrivere cognome, nome, matricola in Stampatello negli appositi spazi. Trascrivere i risultati dei quiz della prima parte nella tabella in questa pagina. La risposta

Dettagli

Geometria analitica: curve e superfici

Geometria analitica: curve e superfici Geometria analitica: curve e superfici Quadriche Quadriche in forma canonica Quadriche in generale Coni e cilindri Curve nello spazio Coniche nello spazio Coni e cilindri in forma canonica e parametrica

Dettagli

23. Le coniche nel piano euclideo.

23. Le coniche nel piano euclideo. 3. Le coniche nel piano euclideo. 3. Definizione. Una matrice C ad elementi reali quadrata C si dice ortogonale se C T = C. 3. Osservazione. Una matrice C ad elementi reali quadrata C è ortogonale se e

Dettagli

Parte 12a. Trasformazioni del piano. Forme quadratiche

Parte 12a. Trasformazioni del piano. Forme quadratiche Parte 12a Trasformazioni del piano Forme quadratiche A Savo Appunti del Corso di Geometria 2013-14 Indice delle sezioni 1 Trasformazioni del piano, 1 2 Cambiamento di coordinate, 8 3 Forme quadratiche,

Dettagli

Università degli Studi di Bergamo Modulo di Geometria e Algebra Lineare (vecchio programma) 2 settembre 2013 Tema A

Università degli Studi di Bergamo Modulo di Geometria e Algebra Lineare (vecchio programma) 2 settembre 2013 Tema A Università degli Studi di Bergamo Modulo di Geometria e Algebra Lineare (vecchio programma) settembre 013 Tema A Tempo a disposizione: ore. Calcolatrici, libri e appunti non sono ammessi. Ogni esercizio

Dettagli

GEOMETRIA. 2 Febbraio ore. Istruzioni: Scrivere cognome, nome, numero di matricola in stampatello negli appositi spazi.

GEOMETRIA. 2 Febbraio ore. Istruzioni: Scrivere cognome, nome, numero di matricola in stampatello negli appositi spazi. GEOMETRIA 2 Febbraio 2007 2 ore Istruzioni: Scrivere cognome, nome, numero di matricola in stampatello negli appositi spazi. Trascrivere i risultati dei quiz della prima parte nella tabella in questa pagina.

Dettagli

Universita degli Studi di Roma - "Tor Vergata" - Facolta Ingegneria Esercizi GEOMETRIA (Edile-Architettura e dell Edilizia) CONICHE DI

Universita degli Studi di Roma - Tor Vergata - Facolta Ingegneria Esercizi GEOMETRIA (Edile-Architettura e dell Edilizia) CONICHE DI Universita degli Studi di Roma - "Tor Vergata" - Facolta Ingegneria Esercizi GEOMETRIA (Edile-Architettura e dell Edilizia) CONICHE DI R. Docente: Prof. F. Flamini Esercizi Riepilogativi Svolti Esercizio

Dettagli

Geometria Anali-ca. DOCENTE: Vincenzo Pappalardo MATERIA: Matematica L ELLISSE

Geometria Anali-ca. DOCENTE: Vincenzo Pappalardo MATERIA: Matematica L ELLISSE Geometria Anali-ca DOCENTE: Vincenzo Pappalardo MATERIA: Matematica L ELLISSE INTRODUZIONE L ellisse fa parte di un insieme di curve (circonferenza, parabola, iperbole) chiamate coniche, perché si possono

Dettagli

Università degli Studi Roma Tre - Corso di Laurea in Matematica Tutorato di Geometria 2

Università degli Studi Roma Tre - Corso di Laurea in Matematica Tutorato di Geometria 2 Università degli Studi Roma Tre - Corso di Laurea in Matematica Tutorato di Geometria A.A. 9-1 - Docente: Prof. A. Verra Tutori: Dott.ssa Paola Stolfi e Annamaria Iezzi Soluzioni Tutorato numero 6 (1 Dicembre

Dettagli

GEOMETRIA svolgimento di uno scritto del 11 Gennaio 2012

GEOMETRIA svolgimento di uno scritto del 11 Gennaio 2012 GEOMETRIA svolgimento di uno scritto del Gennaio ) Trovare una base per lo spazio delle soluzioni del seguente sistema omogeneo: x + y 5z = 3x y + z = x y + 8z =. Il sistema può essere scritto in forma

Dettagli

Le quadriche. Fissiamo nello spazio un sistema di riferimento cartesiano ortogonale O, x, y, z, u.

Le quadriche. Fissiamo nello spazio un sistema di riferimento cartesiano ortogonale O, x, y, z, u. Le quadriche Fissiamo nello spazio un sistema di riferimento cartesiano ortogonale O, x, y, z, u. Definizione Una quadrica è il luogo dei punti, propri o impropri, reali o immaginari, che con le loro coordinate

Dettagli

CORSO DI LAUREA IN INGEGNERIA MECCANICA A.A PROVA SCRITTA DI GEOMETRIA DEL Corsi dei Proff. M. BORDONI, A.

CORSO DI LAUREA IN INGEGNERIA MECCANICA A.A PROVA SCRITTA DI GEOMETRIA DEL Corsi dei Proff. M. BORDONI, A. CORSO DI LAUREA IN INGEGNERIA MECCANICA A.A. - PROVA SCRITTA DI GEOMETRIA DEL -- Corsi dei Proff. M. BORDONI, A. FOSCHI Esercizio. E data l applicazione lineare L : R 4 R 3 definita dalla matrice A = 3

Dettagli

Teoria generale delle coniche 1 / 19

Teoria generale delle coniche 1 / 19 Teoria generale delle coniche 1 / 19 Caso a 12 0 2 / 19 Prima di passare all aspetto puramente analitico conviene visualizzare la situazione geometrica esaminando la seguente figura, che rappresenta un

Dettagli

LEZIONE 16 A = Verifichiamo se qualcuna fra le entrate a di A è suo autovalore. determinare per quale entrata a di A risulta rk(a ai 2 ) 1.

LEZIONE 16 A = Verifichiamo se qualcuna fra le entrate a di A è suo autovalore. determinare per quale entrata a di A risulta rk(a ai 2 ) 1. LEZIONE 16 16.1. Autovalori, autovettori ed autospazi di matrici. Introduciamo la seguente definizione. Definizione 16.1.1. Siano k = R, C e A k n,n. Un numero λ k si dice autovalore di A su k) se rka

Dettagli

ax 1 + bx 2 + c = 0, r : 2x 1 3x = 0.

ax 1 + bx 2 + c = 0, r : 2x 1 3x = 0. . Rette in R ; circonferenze. In questo paragrafo studiamo le rette e le circonferenze in R. Ci sono due modi per descrivere una retta in R : mediante una equazione cartesiana oppure mediante una equazione

Dettagli

Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria - Edile ed Edile/Architettura

Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria - Edile ed Edile/Architettura Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria - Edile ed Edile/Architettura Primo Appello del corso di Geometria 2 Docente F. Flamini, Roma, 22/02/2007 SVOLGIMENTO COMPITO I APPELLO

Dettagli

SPAZI EUCLIDEI, APPLICAZIONI SIMMETRICHE, FORME QUADRATICHE

SPAZI EUCLIDEI, APPLICAZIONI SIMMETRICHE, FORME QUADRATICHE SPAZI EUCLIDEI, APPLICAZIONI SIMMETRICHE, FORME QUADRATICHE. Esercizi Esercizio. In R calcolare il modulo dei vettori,, ),,, ) ed il loro angolo. Esercizio. Calcolare una base ortonormale del sottospazio

Dettagli

ax 1 + bx 2 + c = 0, r : 2x 1 3x 2 + 1 = 0.

ax 1 + bx 2 + c = 0, r : 2x 1 3x 2 + 1 = 0. . Rette in R ; circonferenze. In questo paragrafo studiamo le rette e le circonferenze in R. Ci sono due modi per descrivere una retta in R : mediante una equazione cartesiana oppure mediante una equazione

Dettagli

Appunti ed esercizi sulle coniche

Appunti ed esercizi sulle coniche 1 LA CIRCONFERENZA 1 Appunti ed esercizi sulle coniche Versione del 1 Marzo 011 1 La circonferenza Nel piano R, fissati un punto O = (a, b) e un numero r > 0, la circonferenza (o cerchio) C di centro O

Dettagli

Esericizi Quadriche e Coniche nello spazio

Esericizi Quadriche e Coniche nello spazio Esericizi Quadriche e Coniche nello spazio 1. In R 3 sia A = (1, 1, 0) e sia r la retta passante per A, parallela al piano x + y + z = 0 e complanare alla retta s di equazione cartesiana x + y z = 0 =

Dettagli

Teoria generale delle coniche 1 / 17

Teoria generale delle coniche 1 / 17 Teoria generale delle coniche 1 / 17 Introduzione 2 / 17 Una conica in R 2 è il luogo di punti γ definito da un equazione di secondo grado in x,y, cioè γ : a 11 x 2 + 2a 12 xy+a 22 y 2 + 2a 13 x+2a 23

Dettagli

Isometrie e cambiamenti di riferimento

Isometrie e cambiamenti di riferimento Isometrie e cambiamenti di riferimento Isometrie Le isometrie sono trasformazioni del piano o dello spazio che conservano angoli e distanze. Esempi sono le rotazioni del piano, le riflessioni in una retta

Dettagli

MATRICI ORTOGONALI. MATRICI SIMMETRICHE E FORME QUADRATICHE

MATRICI ORTOGONALI. MATRICI SIMMETRICHE E FORME QUADRATICHE DIAGONALIZZAZIONE 1 MATRICI ORTOGONALI. MATRICI SIMMETRICHE E FORME QUADRATICHE Matrici ortogonali e loro proprietà. Autovalori ed autospazi di matrici simmetriche reali. Diagonalizzazione mediante matrici

Dettagli

Esame scritto di Geometria 2

Esame scritto di Geometria 2 Esame scritto di Geometria Università degli Studi di Trento Corso di laurea in Matematica A.A. 013/014 Settembre 014 Esercizio 1 Sia P 3 lo spazio proiettivo reale tridimensionale dotato del riferimento

Dettagli

ESAMI E ESERCITAZIONI A.A

ESAMI E ESERCITAZIONI A.A ESAMI E ESERCITAZIONI AA 2013-14 ANDREA RATTO Sommario In questo file presentiamo prove d esame, esercitazioni ed esami relativi al Corso di Geometria e Algebra per Ingegneria Ambientale e Civile (aa2013-14)

Dettagli

Vincenzo Aieta CONICHE, FASCI DI CONICHE

Vincenzo Aieta CONICHE, FASCI DI CONICHE Vincenzo Aieta CONICHE, FASCI DI CONICHE Le coniche 1 Teoria delle Coniche Il nome conica deriva dal semplice fatto che gli antichi Greci secando con un piano una conica a doppia falda ottenevano, a seconda

Dettagli

Geometria analitica piana

Geometria analitica piana Geometria analitica piana 1. La geometria analitica Il metodo della geometria analitica consiste nell applicare gli strumenti dell algebra allo studio della geometria. Il legame tra enti algebrici ed enti

Dettagli

formano una base B di R 3. Scrivere la matrice di passaggio dalla base B alla base canonica e dire se tale matrice è ortogonale.

formano una base B di R 3. Scrivere la matrice di passaggio dalla base B alla base canonica e dire se tale matrice è ortogonale. ) Mostrare che i 3 vettori v=, u=, w= 3 formano una base B di R 3. Scrivere la matrice di passaggio dalla base B alla base canonica e dire se tale matrice è ortogonale. ) Sia f : R 4 R 4 la seguente applicazione

Dettagli

LEZIONE 12. Y = f(x) = f( x j,1 f(e j ) = x j,1 A j = AX = µ A (X),

LEZIONE 12. Y = f(x) = f( x j,1 f(e j ) = x j,1 A j = AX = µ A (X), LEZIONE 1 1.1. Matrice di un applicazione lineare. Verifichiamo ora che ogni applicazione lineare f: R n R m è della forma µ A per un unica A R m,n. Definizione 1.1.1. Per ogni j 1,..., n indichiamo con

Dettagli

Esercitazione n 6. Esercizio 1: Determinare i punti di massimo e minimo relativo delle seguenti funzioni: (b)f(x, y) = 4y 4 16x 2 y + x

Esercitazione n 6. Esercizio 1: Determinare i punti di massimo e minimo relativo delle seguenti funzioni: (b)f(x, y) = 4y 4 16x 2 y + x Esercitazione n 6 1 Massimi e minimi di funzioni di più variabili Esercizio 1: Determinare i punti di massimo e minimo relativo delle seguenti funzioni: (a)f(x, y) = x 3 + y 3 + xy (b)f(x, y) = 4y 4 16x

Dettagli

Le coniche retta generatrice

Le coniche retta generatrice Le coniche Consideriamo un cono retto a base circolare a due falde ed un piano. Le intersezioni possibili tra le due figure sono rappresentate dallo schema seguente Le figure che si possono ottenere sono

Dettagli

Compito di geometria 2 del 21/06/2005

Compito di geometria 2 del 21/06/2005 Compito di geometria 2 del 21/06/2005 1 Nel piano euclideo reale E 2 si consideri il fascio di coniche (k + 1x 2 + (k 1y 2 2kx + 2y k 1 = 0 a Classificare e, delle coniche degeneri del fascio, trovare

Dettagli

H precedente. Procedendo come sopra, si costruisce la matrice del cambiamento di base

H precedente. Procedendo come sopra, si costruisce la matrice del cambiamento di base Geometria analitica e algebra lineare, anno accademico 9/1 Commenti ad alcuni esercizi 17 Diagonalizzazione di matrici simmetriche Coniche Commenti ad alcuni degli esercizi proposti 17 Diagonalizzazione

Dettagli

Esercitazioni del Aprile di Geometria A

Esercitazioni del Aprile di Geometria A Esercitazioni del 4-6-7-8 Aprile di Geometria A Università degli Studi di Trento Corso di laurea in Matematica A.A. 7/8 Matteo Bonini matteo.bonini@unitn.it Esercizio Si considerino in E 3 (R) i piani

Dettagli

CORSO DI LAUREA IN INGEGNERIA EDILE/ARCHITETTURA

CORSO DI LAUREA IN INGEGNERIA EDILE/ARCHITETTURA CORSO DI LAUREA IN INGEGNERIA EDILE/ARCHITETTURA II PROVA DI ACCERTAMENTO, FILA A GEOMETRIA 19/06/008 Esercizio 0.1. Si consideri il seguente endomorfismo di R 4 T (x, y, z, w) = ( x + y + z + w, y + z,

Dettagli

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica GE110 - Geometria 1 a.a Prova scritta del TESTO E SOLUZIONI

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica GE110 - Geometria 1 a.a Prova scritta del TESTO E SOLUZIONI UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica GE0 - Geometria a.a. 07-08 Prova scritta del 7-7-08 TESTO E SOLUZIONI Svolgere tutti gli esercizi.. Per R considerare il sistema lineare X

Dettagli

22 Coniche proiettive

22 Coniche proiettive Geometria e Topologia I (U1-4) 2006-giu-06 95 22 Coniche proiettive (22.1) Definizione. Sia K[x 0, x 1,..., x n ] l anello dei polinomi nelle indeterminate (variabili) x 0, x 1,..., x n. Un polinomio di

Dettagli

LEZIONE 25. P si dice speciale se det(p ) = 1 non

LEZIONE 25. P si dice speciale se det(p ) = 1 non LEZIONE 5 5.. Matrici ortogonali. Facciamo una breve digressione su un importante famiglia di matrici, quelle ortogonali. Definizione 5... P R n,n si dice ortogonale se t P I n. Prima di dare esempi di

Dettagli

LEZIONE 9. Figura 9.1.1

LEZIONE 9. Figura 9.1.1 LEZIONE 9 9.1. Equazioni cartesiane di piani. Abbiamo visto come rappresentare parametricamente un piano. Un altro interessante metodo di rappresentazione di un piano nello spazio è tramite la sua equazione

Dettagli

CORSO DI LAUREA IN INGEGNERIA EDILE/ARCHITETTURA

CORSO DI LAUREA IN INGEGNERIA EDILE/ARCHITETTURA CORSO DI LAUREA IN INGEGNERIA EDILE/ARCHITETTURA II PROVA DI ACCERTAMENTO, FILA B GEOMETRIA 19/06/008 Esercizio 0.1. Si consideri il seguente endomorfismo di R 4 T (x, y, z, w) = (x + y z + w, y z, x +

Dettagli

Appendice: Forme quadratiche

Appendice: Forme quadratiche Appendice: Forme quadratiche A A 2006/2007 1 Prodotto Scalare Definizione 11 Si definisce Spazio Euclideo uno spazio vettoriale con assegnato un prodotto scalare Definizione 12 Sia V uno spazio vettoriale

Dettagli

Mutue posizioni della parabola con gli assi cartesiani

Mutue posizioni della parabola con gli assi cartesiani Mutue posizioni della parabola con gli assi cartesiani L equazione di una parabola generica è data da: Consideriamo l equazione che definisce i punti di intersezione della parabola con l asse delle ascisse

Dettagli

a 11 a 12 a 13 x y 1 a 12 a 22 a 23 a 13 a 23 a 33 1 e sfruttando la notazione matriciale la (1) può essere riscritta come a 11 a 12 a 13 x a11 a A =

a 11 a 12 a 13 x y 1 a 12 a 22 a 23 a 13 a 23 a 33 1 e sfruttando la notazione matriciale la (1) può essere riscritta come a 11 a 12 a 13 x a11 a A = Coniche Tutti sappiamo che intersecando un piano e un cono si ottengono delle sezioni che proiettate sul piano risultano essere una circonferenza, un ellisse, un iperbole o una parabola. Queste curve vengono

Dettagli

Algebra lineare Geometria 1 15 luglio 2009

Algebra lineare Geometria 1 15 luglio 2009 Algebra lineare Geometria 1 15 luglio 2009 Esercizio 1. Nello spazio vettoriale reale R 3 [x] si considerino l insieme A k = {1 + x, k + (1 k)x 2, 1 + (k 1)x 2 + x 3 }, il vettore v k = k + kx x 3 e la

Dettagli

1 Esercizi di ripasso Nel piano con un riferimento RC(Oxy) siano dati i punti O(0, 0) e A(2, 4).

1 Esercizi di ripasso Nel piano con un riferimento RC(Oxy) siano dati i punti O(0, 0) e A(2, 4). Esercizi di ripasso. Nel piano con un riferimento RC(Oxy) siano dati i punti O(0, 0) e A(2, 4). (a) Determinare le equazioni delle circonferenze che passano per O e A e aventi raggio 5. (b) Determinare

Dettagli

Soluzioni dello scritto di Geometria del 28 Maggio 2009

Soluzioni dello scritto di Geometria del 28 Maggio 2009 Soluzioni dello scritto di Geometria del 8 Maggio 9 1) Trovare le equazioni del sottospazio V(w, x, y, z) R 4 generato dalle quaterne c 1 = (,,, 1) e c = (, 1, 1, ). ) Trovare una base per OGNI autospazio

Dettagli

P z. OP x, OP y, OP z sono le proiezioni ortogonali di v sugli assi x, y, z, per cui: OP x = ( v i) i. k j. P x. OP z = ( v k) k

P z. OP x, OP y, OP z sono le proiezioni ortogonali di v sugli assi x, y, z, per cui: OP x = ( v i) i. k j. P x. OP z = ( v k) k Richiami di calcolo vettoriale Consideriamo il vettore libero v = OP. Siano P x, P y, P z le proiezioni ortogonali di P sui tre assi cartesiani. v è la diagonale del parallelepipedo costruito su OP x,

Dettagli

Geometria 1 Prof. Paolo Piazza Secondo esonero. Soluzione.

Geometria 1 Prof. Paolo Piazza Secondo esonero. Soluzione. Geometria Prof. Paolo Piazza Secondo esonero. 5 Giugno 07 Esercizio.. Consideriamo E e l affinità T A,c, T A,c (x) := Ax + c, con A = e c = Determinare sottogruppi propri di Aff (R), G, G, G ed elementi

Dettagli

PROVA SCRITTA DI GEOMETRIA 2 14 Febbraio 2017

PROVA SCRITTA DI GEOMETRIA 2 14 Febbraio 2017 PROVA SCRITTA DI GEOMETRIA 2 14 Febbraio 2017 La prova orale deve essere sostenuta entro il 28 Febbraio 2017 A Fissato un sistema di riferimento cartesiano nello spazio si consideri la quadriche Q di equazione

Dettagli

Geometria analitica - Esercizi 6

Geometria analitica - Esercizi 6 Geometria analitica - Esercizi 6 1. Si studi la conica di equazione 4 5 x2 + 24 5 xy + 11 5 y2 + 5x + 10y + 89 16 = 0, e se ne disegni il grafico. 2. Si studi dal punto di vista affine (senza determinare

Dettagli

1 Coniche. s (x, y, t ) (1) 1 (x, y, t )F r 2

1 Coniche. s (x, y, t ) (1) 1 (x, y, t )F r 2 1 Coniche Studieremo le curve nel piano euclideo, cioè nel piano con un sistema di riferimento cartesiano ortogonale fissato, oppure nel completamento proiettivo di questo piano, ottenuto con l introduzione

Dettagli