Costruzioni sulla carta a

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Costruzioni sulla carta a"

Transcript

1 Avviso Istituzioni di matematiche 2 Diego Noja 7 aprile 2009 La prima prova intermedia si svolgerà: martedì 20 aprile 2009, dalle alle Cognomi dalla A alla L: aula U6-06 Cognomi dalla M alla Z: aula U6-08 Le lezioni del 13 e del 14 aprile sono sospese (vacanza accademica) CDL Scienze della Formazione Primaria Istituzioni di matematiche 2 pagina 1 CDL Scienze della Formazione Primaria Istituzioni di matematiche 2 pagina 2 Costruzioni sulla carta a quadretti M. Cazzola, Per non perdere la bussola, Quaderni a quadretti, Decibel-Zanichelli, Costruzioni sulla carta a quadretti CDL Scienze della Formazione Primaria Istituzioni di matematiche 2 pagina 3 CDL Scienze della Formazione Primaria Istituzioni di matematiche 2 pagina 4

2 Allineamenti di punti Angoli retti C Per disegnare angoli retti costruiamo due triangolini simili l uno vicino all altro in vari modi A B Tre punti sono allineati se e solo se... CDL Scienze della Formazione Primaria Istituzioni di matematiche 2 pagina 5 CDL Scienze della Formazione Primaria Istituzioni di matematiche 2 pagina 6 Similitudini e aree Che cosa significa l espressione raddoppiare una figura? Disegniamo due rettangoli di cui uno con i lati doppi dell altro Similitudini L area risulta moltiplicata per 4 CDL Scienze della Formazione Primaria Istituzioni di matematiche 2 pagina 7 CDL Scienze della Formazione Primaria Istituzioni di matematiche 2 pagina 8

3 Similitudini e aree L esempio del rettangolo riflette la situazione generale Se due figure sono simili tramite una similitudine di rapporto k, allora il rapporto tra le aree delle due figure è k 2 Similitudini e quadrettatura Per costruire figure simili può essere utile utilizzare quadrettature di dimensioni differenti CDL Scienze della Formazione Primaria Istituzioni di matematiche 2 pagina 9 CDL Scienze della Formazione Primaria Istituzioni di matematiche 2 pagina 10 Similitudini e quadrettatura Non sempre però una quadrettatura di dimensioni differenti è disponibile. Dobbiamo inventarci una griglia virtuale Raddoppiare una figura Come costruire un quadrato che abbia area doppia di quello rappresentato in figura? serve un k tale che k 2 = 2 ovvero k = 2 Osserviamo che questa griglia corrisponde ad una similitudine con rapporto di similitudine k = 2. Se due figure sono simili tramite una similitudine di rapporto k, allora il rapporto tra le aree delle due figure è k 2 CDL Scienze della Formazione Primaria Istituzioni di matematiche 2 pagina 11 CDL Scienze della Formazione Primaria Istituzioni di matematiche 2 pagina 12

4 Quante griglie virtuali? Ad ogni quadrato corrisponde una griglia virtuale diversa. Esercizi Dato un triangolo, è possibile costruire un quadrato in modo che due vertici del quadrato giacciano su un lato del triangolo gli altri due vertici del quadrato giacciano sugli altri due lati del triangolo? CDL Scienze della Formazione Primaria Istituzioni di matematiche 2 pagina 13 CDL Scienze della Formazione Primaria Istituzioni di matematiche 2 pagina 14 Esercizio Rivediamo la costruzione Un gioco Prendete un foglio di carta a quadretti, e scegliete un punto P. Seguite quanto faccio io a video, ma raddoppiate il numero di quadretti rispetto a quello che faccio io se io vado a destra, voi andate in alto sul vostro foglio se io vado in alto, voi andate a sinistra se io vado a sinistra, voi andate in basso se io vado in basso, voi andate a destra CDL Scienze della Formazione Primaria Istituzioni di matematiche 2 pagina 15 CDL Scienze della Formazione Primaria Istituzioni di matematiche 2 pagina 16

5 Un gioco Il gioco che abbiamo fatto (esercizio 1, p. 44, Misura, proporzionalità, similitudine), costruisce una similitudine convincetevi del fatto che quello che abbiamo fatto è effettivamente costruire una similitudine costruire situazioni analoghe a questa modificando le regole del gioco qual è il rapporto di similitudine? CDL Scienze della Formazione Primaria Istituzioni di matematiche 2 pagina 17 CDL Scienze della Formazione Primaria Istituzioni di matematiche 2 pagina 18 Abbiamo definito le similitudini come trasformazioni di tutto il piano. Giocoforza quando le rappresentiamo, ci limitiamo a considerarne l azione solo su una porzione di piano. Di fatto siamo in qualche modo legittimati a fare questa confusione: infatti le similitudini sono qualcosa di estremamente rigido sapere come una similitudine si comporta su un pezzo di piano, anche molto piccolo, ci permette di sapere come questa similitudine si comporta su tutto il piano. Supponiamo di avere tre punti A, B e C non allineati e di conoscere le immagini A, B e C di questi tre punti. Dato un qualsiasi punto P è possibile determinare univocamente l immagine P di P. CDL Scienze della Formazione Primaria Istituzioni di matematiche 2 pagina 19 CDL Scienze della Formazione Primaria Istituzioni di matematiche 2 pagina 20

Osservazioni sulla prima prova intermedia

Osservazioni sulla prima prova intermedia Avviso Istituzioni di matematiche 2 Diego Noja (diego.noja@unimib.it) 28 aprile 2009 La seconda prova intermedia si svolgerà martedì 26 maggio 2008, dalle 16.30 alle 18.30 Cognomi dalla A alla L: aula

Dettagli

SCHEDA M MOSAICI CLASSIFICARE CON LA SIMMETRIA

SCHEDA M MOSAICI CLASSIFICARE CON LA SIMMETRIA SCHEDA M MOSAICI CLASSIFICARE CON LA SIMMETRIA Qui sotto avete una griglia, che rappresenta una normale quadrettatura, come quella dei quaderni a quadretti; nelle attività che seguono dovrete immaginare

Dettagli

Contenuti del corso. Istituzioni di matematiche 2. Misura, proporzionalità, similitudine. Isometrie. Diego Noja (diego.noja@unimib.

Contenuti del corso. Istituzioni di matematiche 2. Misura, proporzionalità, similitudine. Isometrie. Diego Noja (diego.noja@unimib. Istituzioni di matematiche 2 Diego Noja (diego.noja@unimib.it) 9 marzo 2009 Contenuti del corso CDL Scienze della Formazione Primaria Istituzioni di matematiche 2 pagina 1 CDL Scienze della Formazione

Dettagli

Andrea Pagano, Laura Tedeschini Lalli

Andrea Pagano, Laura Tedeschini Lalli 3.5 Il toro 3.5.1 Modelli di toro Modelli di carta Esempio 3.5.1 Toro 1 Il modello di toro finito che ciascuno può costruire è ottenuto incollando a due a due i lati opposti di un foglio rettangolare.

Dettagli

Similitudine e omotetia nella didattica della geometria nella scuola secondaria di primo grado di Luciano Porta

Similitudine e omotetia nella didattica della geometria nella scuola secondaria di primo grado di Luciano Porta Similitudine e omotetia nella didattica della geometria nella scuola secondaria di primo grado di Luciano Porta Il concetto di similitudine è innato: riconosciamo lo stesso oggetto se è più o meno distante

Dettagli

FINALE ITALIANA 1998. 16 maggio 1998 - Università Bocconi

FINALE ITALIANA 1998. 16 maggio 1998 - Università Bocconi FINALE ITALIANA 1998 16 maggio 1998 - Università Bocconi 1. UN PROBLEMA TURCO Scrivere le quattro cifre del numero 1998 nelle caselle sottostanti in modo che il risultato delle operazioni indicate sia

Dettagli

SCUOLA DELL INFANZIA ANDERSEN 1 CIRCOLO SPINEA ANNO SCOLASTICO 2005-06. Prog. MATEMATICA Gruppo ANNI 5 Periodo MARZO Documentazione di MIELE GIOVANNA

SCUOLA DELL INFANZIA ANDERSEN 1 CIRCOLO SPINEA ANNO SCOLASTICO 2005-06. Prog. MATEMATICA Gruppo ANNI 5 Periodo MARZO Documentazione di MIELE GIOVANNA SCUOLA DELL INFANZIA ANDERSEN 1 CIRCOLO SPINEA ANNO SCOLASTICO 2005-06 Prog. MATEMATICA Gruppo ANNI 5 Periodo MARZO Documentazione di MIELE GIOVANNA Il progetto sulla Terza Dimensione Queste attività si

Dettagli

Classe seconda scuola primaria

Classe seconda scuola primaria Classe seconda scuola primaria Il percorso di seconda cerca di approfondire le differenze tra le principali proprietà delle figure geometriche solide, in particolare il cubo, e di creare attività di osservazione

Dettagli

LabM@t. Lucio Lombardo Radice. Maria Angela Grisanti 9/12/2009

LabM@t. Lucio Lombardo Radice. Maria Angela Grisanti 9/12/2009 LabM@t Perché, per controllare quello che gli allievi hanno imparato, non fate in classe un ora di giochi invece di interrogare? Giocare bene significa avere gusto per la precisione, amore per la lingua,

Dettagli

Terza Edizione Giochi di Achille (13-12-07) - Olimpiadi di Matematica Soluzioni Categoria M1 (Alunni di prima media)

Terza Edizione Giochi di Achille (13-12-07) - Olimpiadi di Matematica Soluzioni Categoria M1 (Alunni di prima media) Il Responsabile coordinatore dei giochi: Prof. Agostino Zappacosta Chieti tel. 087 65843 (cell.: 340 47 47 95) e-mail:agostino_zappacosta@libero.it Terza Edizione Giochi di Achille (3--07) - Olimpiadi

Dettagli

Kangourou Italia Gara del 20 marzo 2003 Categoria Cadet Per studenti di terza media o prima superiore

Kangourou Italia Gara del 20 marzo 2003 Categoria Cadet Per studenti di terza media o prima superiore 15-20-.qxd 29/03/2003 8.22 Pagina 16 Kangourou Italia Gara del 20 marzo 2003 Categoria Per studenti di terza media o prima superiore I quesiti dal N. 1 al N. 10 valgono 3 punti ciascuno 1. Quale dei seguenti

Dettagli

N. 4 I ludi geometrici di Leonardo da Vinci Un gioco per avvicinarsi al concetto di area franco ghione, daniele pasquazi

N. 4 I ludi geometrici di Leonardo da Vinci Un gioco per avvicinarsi al concetto di area franco ghione, daniele pasquazi N. 4 I ludi geometrici di Leonardo da Vinci Un gioco per avvicinarsi al concetto di area franco ghione, daniele pasquazi Tra i molteplici interessi scientifici di Leonardo non dobbiamo dimenticare la matematica.

Dettagli

n L ambiente di lavoro

n L ambiente di lavoro n L ambiente di lavoro n Usare Cabri n Comprendere Cabri n L ambiente di lavoro 1 Che cosa è Cabri Il programma Cabri* è stato sviluppato da Jean-Marie Laborde e Franck Bellemain presso l Institut d Informatique

Dettagli

Argomento interdisciplinare Tecnologia Geografia - Arte e immagine

Argomento interdisciplinare Tecnologia Geografia - Arte e immagine 1 Argomento interdisciplinare Tecnologia Geografia - Arte e immagine Libro consigliato: Disegno Laboratorio - IL MANUALE DI TECNOLOGIA _G.ARDUINO_LATTES pag. 16-17-18 Unità aggiornata: 7/2012 2 Se vogliamo

Dettagli

Istituto scolastico: IC Budrio- DD BudrioCompetenza da promuovere: Riconoscere e denominare le figure geometriche. Ambito: MATEMATICO

Istituto scolastico: IC Budrio- DD BudrioCompetenza da promuovere: Riconoscere e denominare le figure geometriche. Ambito: MATEMATICO Griglia di progettazione dell Unità di Competenza di MATEMATICA Titolo dell Unità di Competenza LE FIGURE GEOMETRICHE PIANE Denominazione della rete-polo : UNA RETE DI IDEE Istituto scolastico: IC Budrio-

Dettagli

ARTMAT Matematicando con l arte CLASSI 2-3 - 4

ARTMAT Matematicando con l arte CLASSI 2-3 - 4 ARTMAT Matematicando con l arte CLASSI 2-3 - 4 Le classi 2-3 - 4 della scuola primaria dell istituto comprensivo di Certaldo collocano questo percorso all interno della programmazione di classe annuale.

Dettagli

Giuseppe Ruffo. Fisica: lezioni e

Giuseppe Ruffo. Fisica: lezioni e Giuseppe Ruffo Fisica: lezioni e problemi Unità A2 - La rappresentazione di dati e fenomeni 1. Le rappresentazioni di un fenomeno 2. I grafici cartesiani 3. Le grandezze direttamente proporzionali 4. Altre

Dettagli

Corso di Laurea in Scienze della Formazione Primaria Università di Genova MATEMATICA Il

Corso di Laurea in Scienze della Formazione Primaria Università di Genova MATEMATICA Il Lezione 5:10 Marzo 2003 SPAZIO E GEOMETRIA VERBALE (a cura di Elisabetta Contardo e Elisabetta Pronsati) Esercitazione su F5.1 P: sarebbe ottimale a livello di scuola dell obbligo, fornire dei concetti

Dettagli

Piega, ripiega e... spiega. Laboratori sulla matematica con il foglio di carta

Piega, ripiega e... spiega. Laboratori sulla matematica con il foglio di carta Piega, ripiega e... spiega Laboratori sulla matematica con il foglio di carta Tutto comincia con un... Tutto comincia con un quadrato! Tutto comincia con un quadrato! Osserviamo: Trovate delle linee? I

Dettagli

Seminario di didattica 1

Seminario di didattica 1 Seminario di didattica - Contents Seminario di didattica 1 Alessia Bonanini, Alessio Cirimele, Alice Bottaro, Laura Spada, Laura Tarigo 28 maggio 2012 1 Seminario di didattica - Contents Indice Introduzione...................................

Dettagli

PROGETTO INTEGRATO D AREA Piana Pistoiese ISTITUTO COMPRENSIVO DI MONTALE DIREZIONE DIDATTICA I CIRCOLO QUARRATA

PROGETTO INTEGRATO D AREA Piana Pistoiese ISTITUTO COMPRENSIVO DI MONTALE DIREZIONE DIDATTICA I CIRCOLO QUARRATA PROGETTO INTEGRATO D AREA Piana Pistoiese ISTITUTO COMPRENSIVO DI MONTALE DIREZIONE DIDATTICA I CIRCOLO QUARRATA CLASSI QUARTE DI SCUOLA PRIMARIA Anno scolastico 2007-2008 DOCENTI LIA COLZI e CRISTINA

Dettagli

LE FRAZIONI DAL NUMERO ALLA MISURA

LE FRAZIONI DAL NUMERO ALLA MISURA LE FRAZIONI DAL NUMERO ALLA MISURA CLASSE terza TEMPI 2 ore settimanali per 6 mesi Monica Falleri, Antonio Moro, Sandra Taccetti, 2010 LE FASI DEL LAVORO Cosa pensano i bambini di Realizzazione di alcune

Dettagli

COM È FATTA UNA MERIDIANA

COM È FATTA UNA MERIDIANA COM È FATTA UNA MERIDIANA L orologio solare a cui noi comunemente diamo il nome di meridiana, in realtà dovrebbe essere chiamato quadrante; infatti è così che si definisce il piano su cui si disegnano

Dettagli

I quesiti dal N. 1 al N. 10 valgono 3 punti ciascuno

I quesiti dal N. 1 al N. 10 valgono 3 punti ciascuno Kangourou Italia Gara del 21 marzo 2002 Categoria Cadet Per studenti di terza media e prima superiore Regole: La prova è individuale. Ogni tipo di calcolatrice è vietato Vi è una sola risposta esatta per

Dettagli

Terza Edizione Giochi di Achille (13-12-07) - Olimpiadi di Matematica Soluzioni Categoria E4 (Alunni di quarta elementare)

Terza Edizione Giochi di Achille (13-12-07) - Olimpiadi di Matematica Soluzioni Categoria E4 (Alunni di quarta elementare) Il Responsabile coordinatore dei giochi: Prof. Agostino Zappacosta Chieti tel. 0871 6584 (cell.: 40 47 47 952) e-mail:agostino_zappacosta@libero.it Terza Edizione Giochi di Achille (1-12-07) - Olimpiadi

Dettagli

Frattali. E. Paolini 1 dicembre 2003

Frattali. E. Paolini 1 dicembre 2003 Frattali E. Paolini 1 dicembre 2003 La parola frattale è stata introdotta da Mandelbrot per indicare insiemi frastagliati o spezzettati. Non c è una definizione precisa e universalmente riconosciuta di

Dettagli

Una sperimentazione. Probabilità. Una previsione. Calcolo delle probabilità. Nonostante ciò, è possibile dire qualcosa.

Una sperimentazione. Probabilità. Una previsione. Calcolo delle probabilità. Nonostante ciò, è possibile dire qualcosa. Una sperimentazione Probabilità Si sta sperimentando l efficacia di un nuovo farmaco per il morbo di Parkinson. Duemila pazienti partecipano alla sperimentazione: metà di essi vengono trattati con il nuovo

Dettagli

Scuola di Wrenn, Dipartimento di Matematica. Investigare cerchi. Questo pacchetto di fogli di lavoro vi fornisce alcune attività per aiutarvi

Scuola di Wrenn, Dipartimento di Matematica. Investigare cerchi. Questo pacchetto di fogli di lavoro vi fornisce alcune attività per aiutarvi Scuola di Wrenn, Dipartimento di Matematica Investigare cerchi Questo pacchetto di fogli di lavoro vi fornisce alcune attività per aiutarvi a scoprire alcune proprietà di cerchi usando The Geometer s Sketchpad.

Dettagli

Dal tridimensionale al bidimensionale

Dal tridimensionale al bidimensionale PRIMARIA OGGI: COMPLESSITÀ E PROFESSIONALITÀ DOCENTE Firenze, 13-14settembre 2013 Dal tridimensionale al bidimensionale Elena Scubla I Circolo Didattico Sesto Fiorentino INDICAZIONI NAZIONALI PER IL CURRICOLO

Dettagli

La simmetria centrale

La simmetria centrale La simmetria centrale Una simmetria centrale di centro O è una isometria che associa al punto O se stesso e ad ogni altro punto P del piano il punto P in modo che O sia il punto medio del segmento PP.

Dettagli

Primo allenamento per i Giochi Kangourou della Matematica

Primo allenamento per i Giochi Kangourou della Matematica Primo allenamento per i Giochi Kangourou della Matematica Per gli alunni di prima e seconda media i quesiti sono dal numero 1 al numero 11 Per gli alunni di terza media i quesiti sono dal numero 7 al numero

Dettagli

f(x) = 1 x. Il dominio di questa funzione è il sottoinsieme proprio di R dato da

f(x) = 1 x. Il dominio di questa funzione è il sottoinsieme proprio di R dato da Data una funzione reale f di variabile reale x, definita su un sottoinsieme proprio D f di R (con questo voglio dire che il dominio di f è un sottoinsieme di R che non coincide con tutto R), ci si chiede

Dettagli

Criteri di Valutazione della scheda - Solo a carattere indicativo -

Criteri di Valutazione della scheda - Solo a carattere indicativo - Criteri di Valutazione della scheda - Solo a carattere indicativo - Previsioni Sono state fatte le previsioni e discussi i valori attesi con il ragionamento con cui sono stati calcolati E stata usata la

Dettagli

LE FORME GEOMETRICHE...TANTE SCATOLE...

LE FORME GEOMETRICHE...TANTE SCATOLE... LE FORME GEOMETRICHE...TANTE SCATOLE... INSEGNANTI: SIMONA MINNUCCI MICHELA BASTIANI ANNO SCOLASTICO 2011-2012 CLASSE: SECONDA TEMPI: GENNAIO-GIUGNO OBIETTIVO FORMATIVO ESPLORARE LA REALTÀ ATTRAVERSO ESPERIENZE

Dettagli

Istituto Comprensivo Montespertoli Anna Bigi, Samuele Scappini, Enrico Masi, Silvia Guerrazzi, Marialuce Bruscoli, Fortunata D agostino

Istituto Comprensivo Montespertoli Anna Bigi, Samuele Scappini, Enrico Masi, Silvia Guerrazzi, Marialuce Bruscoli, Fortunata D agostino Istituto Comprensivo Montespertoli Anna Bigi, Samuele Scappini, Enrico Masi, Silvia Guerrazzi, Marialuce Bruscoli, Fortunata D agostino L Istituto Comprensivo di Montespertoli partecipa al progetto LSS

Dettagli

FORME E SPAZIO. Progettato e realizzato da Giuliana De Pau

FORME E SPAZIO. Progettato e realizzato da Giuliana De Pau FORME E SPAZIO Destinata agli alunni di età compresa tra i 7 e i 12 anni con conoscenza di elementi di base di geometria, la presentazione fornisce le informazioni basilari per l avvio al disegno geometrico

Dettagli

INTORNO AL CUBO PER CLASSI III, IV E V DI SCUOLA PRIMARIA

INTORNO AL CUBO PER CLASSI III, IV E V DI SCUOLA PRIMARIA INTORNO AL CUBO PER CLASSI III, IV E V DI SCUOLA PRIMARIA Anno scolastico 2012/2013 1 Indice Componenti del gruppo di lavoro pag. 2 Premessa pag. 3 Descrizione dell'attività di laboratorio pag. 4 Verifica

Dettagli

Misure di base su una carta. Calcoli di distanze

Misure di base su una carta. Calcoli di distanze Misure di base su una carta Calcoli di distanze Per calcolare la distanza tra due punti su una carta disegnata si opera nel modo seguente: 1. Occorre identificare la scala della carta o ricorrendo alle

Dettagli

Titolo: IL QUADERNINO DEI RETICOLI

Titolo: IL QUADERNINO DEI RETICOLI Titolo: IL QUADERNINO DEI RETICOLI Autore: giulianamassaro@gmail.com Descrittori: geografia, tecnologia, Motivazione e contesto di applicazione La rappresentazione dello spazio: strumenti e strategie Le

Dettagli

Le soluzioni dei quesiti sono in fondo alla prova

Le soluzioni dei quesiti sono in fondo alla prova SCUOLA MEDIA STATALE GIULIANO DA SANGALLO Via Giuliano da Sangallo,11-Corso Duca di Genova,135-00121 Roma Tel/fax 06/5691345-e.mail:scuola.sangallo@libero.it SELEZIONE INTERNA PER LA MARATONA DI MATEMATICA

Dettagli

Relazione attività in classe sul Teorema di Pitagora

Relazione attività in classe sul Teorema di Pitagora Relazione attività in classe sul Teorema di Pitagora Lez. 2/04. Prima Lezione A.S. 2011/2012 Insegnante: Siamo nel VI secolo a.c. in Grecia. In questo periodo visse Pitagora che nacque a Samo e vi restò

Dettagli

LIVELLO STUDENT S1. S2. S3. S4. S5. S6.

LIVELLO STUDENT S1. S2. S3. S4. S5.  S6. LIVELLO STUDENT S1. (5 punti ) La figura mostra due quadrati uguali che hanno in comune esattamente un vertice. È possibile precisare la misura dell'angolo ABC? S2. (7 punti ) Negli usuali fogli (rettangolari)

Dettagli

Qui cade sua altezza

Qui cade sua altezza Qui cade sua altezza Silvia Sbaragli N.R.D. Bologna DFA, SUPSI Locarno (Svizzera) Pubblicato in: Sbaragli S. (2010). Qui cade sua altezza. La Vita Scolastica. 18, 25-27. Nell insegnamento della matematica

Dettagli

Dalla geometria in 3D alla geometria in 2D dal cubo al quadrato

Dalla geometria in 3D alla geometria in 2D dal cubo al quadrato Dalla geometria in 3D alla geometria in 2D dal cubo al quadrato Firenze, 5 maggio 2013 Scuola Città Pestalozzi 8 SEMINARIO NAZIONALE SUL CURRICOLO VERTICALE Classe prima e seconda Paola Bertini, Antonio

Dettagli

ALTRI SUGGERIMENTI PER IL PERCORSO AD OSTACOLI

ALTRI SUGGERIMENTI PER IL PERCORSO AD OSTACOLI ALTRI SUGGERIMENTI PER IL PERCORSO AD OSTACOLI Con l intento di proseguire l osservazione sulle competenze che i bambini posseggono nei confronti della matematica è stata intrapresa una rivisitazione del

Dettagli

Elementi di Geometria. Lezione 03

Elementi di Geometria. Lezione 03 Elementi di Geometria Lezione 03 I triangoli I triangoli sono i poligoni con tre lati e tre angoli. Nelle rappresentazioni grafiche (Figura 32) i vertici di un triangolo sono normalmente contrassegnati

Dettagli

PERCORSO RETTIFICATO

PERCORSO RETTIFICATO Il percorso rettificato serve per effettuare un rilievo topografico di una zona rapidamente, basandosi su un disegno schematico da tracciarsi man mano si cammina, ciò consiste, come dice il nome, nel raddrizzare

Dettagli

Il punto di stazione. Corso di orientamento e Cenni di topografia Dario Tommasi IW0QNL

Il punto di stazione. Corso di orientamento e Cenni di topografia Dario Tommasi IW0QNL Il punto di stazione Abbiamo visto tanti modi per usare la bussola, abbiamo visto come trovare un punto sulla carta e come darne le coordinate, come seguire un percorso, ma la cosa più importante è sapere

Dettagli

Nella seconda partita Tommaso ha vinto o perso delle figurine? E quante? Spiegate il vostro ragionamento.

Nella seconda partita Tommaso ha vinto o perso delle figurine? E quante? Spiegate il vostro ragionamento. 11 o RALLY MATEMATICO TRANSALPINO - PROVA II marzo 2003 ARMT.2003 p. 1 1. GIOCHI CON ME? (Cat. 3) /ARMT/2003-11 - II prova Tommaso va a casa di Francesco per giocare con le figurine. Tommaso ha 27 figurine.

Dettagli

CAPITOLO VII USO DELLA CARTA TOPOGRAFICA

CAPITOLO VII USO DELLA CARTA TOPOGRAFICA CAPITOLO VII USO DELLA CARTA TOPOGRAFICA LA CARTA TOPOGRAFICA 88. La carta topografica è una rappresentazione grafica di una parte più o meno ampia della superficie terrestre in una determinata scala.

Dettagli

Tutorial di HTML basato su HTML 4.0 e CSS 2

Tutorial di HTML basato su HTML 4.0 e CSS 2 Claudia Picardi Tutorial di HTML basato su HTML 4.0 e CSS 2 Informatica II per Scienze e Turismo Alpino Docenti: Viviana Patti e Claudia Picardi 3 Immagini in documenti HTML 3.1 Rappresentazione delle

Dettagli

TITOLO ESPERIENZA: POLIMINI

TITOLO ESPERIENZA: POLIMINI TITOLO ESPERIENZA: POLIMINI FIGURE COMPOSTE DALL'UNIONE DI QUADRATI PER APPROFONDIRE IN MODO PRATICO E GIOCOSO TEMI COME L'EQUIVALENZA DELLE FIGURE PIANE, L'ISOPERIMETRIA, LE ISOMETRIE CHE PORTANO A FAR

Dettagli

LINEE, SPAZI E FIGURE GEOMETRICHE, UN PERCORSO ATTRAVERSO L ARTE

LINEE, SPAZI E FIGURE GEOMETRICHE, UN PERCORSO ATTRAVERSO L ARTE LINEE, SPAZI E FIGURE GEOMETRICHE, UN PERCORSO ATTRAVERSO L ARTE Per cominciare Prepariamo una serie di pannelli, con fogli di carta da pacco, sui quali raccogliere le esperienze e le osservazioni: un

Dettagli

[Dimensionare la pagina-creare le tabelle-formattare le tabelle-formattare la pagina

[Dimensionare la pagina-creare le tabelle-formattare le tabelle-formattare la pagina [Dimensionare la pagina-creare le tabelle-formattare le tabelle-formattare la pagina Creare cartelle per salvare il lavoro] Per iniziare dobbiamo imparare a gestire quello spazio bianco che diverrà la

Dettagli

LA FINESTRA DI EXCEL

LA FINESTRA DI EXCEL 1 LA FINESTRA DI EXCEL Barra di formattazione Barra degli strumenti standard Barra del titolo Barra del menu Intestazione di colonna Contenuto della cella attiva Barra della formula Indirizzo della cella

Dettagli

12. Le date possono essere scritte in forma numerica usando le otto cifre. Per esempio, il 19 gennaio 2005 può essere scritto come 19-01-2005.

12. Le date possono essere scritte in forma numerica usando le otto cifre. Per esempio, il 19 gennaio 2005 può essere scritto come 19-01-2005. Logica matematica 12. Le date possono essere scritte in forma numerica usando le otto cifre. Per esempio, il 19 gennaio 2005 può essere scritto come 19-01-2005. In quale anno cadrà la prossima data nella

Dettagli

Appunti sull orientamento con carta e bussola

Appunti sull orientamento con carta e bussola Appunti sull orientamento con carta e bussola Indice Materiale necessario... 2 Orientiamo la carta topografica con l'aiuto della bussola... 2 Azimut... 2 La definizione di Azimut... 2 Come misurare l azimut...

Dettagli

Kangourou Italia Gara del 15 marzo 2007 Categoria Ecolier Per studenti di quarta o quinta della scuola primaria

Kangourou Italia Gara del 15 marzo 2007 Categoria Ecolier Per studenti di quarta o quinta della scuola primaria Testi_07.qxp 16-04-2007 12:02 Pagina 5 Kangourou Italia Gara del 15 marzo 2007 Categoria Per studenti di quarta o quinta della scuola primaria I quesiti dal N. 1 al N. 8 valgono 3 punti ciascuno 1. Osserva

Dettagli

Fare geometria come e perchè

Fare geometria come e perchè Fare geometria come e perchè La matematica non è una materia, è un metodo. Non è uno scaffale del sapere, quello che contiene formule, costruzioni mentali, astrazioni, che sembrano nascere le une dalle

Dettagli

Indicazioni: Quest estate andrò in vacanza al mare, in barca a vela, nuoterò nel mare, guarderò i pesci e i granchi. E voi dove andrete?

Indicazioni: Quest estate andrò in vacanza al mare, in barca a vela, nuoterò nel mare, guarderò i pesci e i granchi. E voi dove andrete? Unità XII Le vacanze Contenuti - Ambienti - Mezzi di trasporto - Preposizioni di luogo Attività AREA ANTROPOLOGICA 1. Orsoroberto va in vacanza L Orsoroberto racconta ai bambini che fra poco andrà in vacanza.

Dettagli

Logica e geometria con il linguaggio Logo

Logica e geometria con il linguaggio Logo Logica e geometria con il linguaggio Logo Classe: III, IV e V primaria Argomento: geometria e logica Autori: Guido Gottardi e Alberto Battaini Introduzione: senza la pretesa di redigere un trattato sul

Dettagli

2. Un teorema geniale e divertente anche per la scuola elementare

2. Un teorema geniale e divertente anche per la scuola elementare 051-056 BDM 56 Maurizi imp 21.5.2008 11:49 Pagina 51 II. Didattica 2. Un teorema geniale e divertente anche per la scuola elementare Lorella Maurizi 1 51 Ho proposto ai bambini di una classe quinta della

Dettagli

Obiettivo Principale: Aiutare gli studenti a capire cos è la programmazione

Obiettivo Principale: Aiutare gli studenti a capire cos è la programmazione 4 LEZIONE: Programmazione su Carta a Quadretti Tempo della lezione: 45-60 Minuti. Tempo di preparazione: 10 Minuti Obiettivo Principale: Aiutare gli studenti a capire cos è la programmazione SOMMARIO:

Dettagli

ESERCIZI PER LE VACANZE CLASSE 4^A anno scolastico 2011-2012

ESERCIZI PER LE VACANZE CLASSE 4^A anno scolastico 2011-2012 ESERCIZI PER LE VACANZE CLASSE ^A anno scolastico 011-01 PROBLEMI SULLA RETTA: 1. Scrivi l equazione della retta passante per i punti A(-;-) e B(6;10). Determina la distanza del punto C(-1;) da tale retta.

Dettagli

FORMARE COMPETENZE CON LA MATEMATICA

FORMARE COMPETENZE CON LA MATEMATICA FORMARE COMPETENZE CON LA MATEMATICA marcata esigenza di promuovere nella formazione scolastica vere e proprie competenze e non solo conoscenze e abilità. Sembrerebbe che il valore educativo della matematica

Dettagli

L economia: i mercati e lo Stato

L economia: i mercati e lo Stato Economia: una lezione per le scuole elementari * L economia: i mercati e lo Stato * L autore ringrazia le cavie, gli alunni della classe V B delle scuole Don Milanidi Bologna e le insegnati 1 Un breve

Dettagli

Disegno in quadretti le parti da calcolare; se capisco quanto vale un quadretto è fatta.

Disegno in quadretti le parti da calcolare; se capisco quanto vale un quadretto è fatta. CLASSE III C RECUPERO GEOMETRIA AREA PERIMETRO POLIGONI Disegno in quadretti le parti da calcolare; se capisco quanto vale un quadretto è fatta. ES: se ho fatto questo disegno e so che 1 quadretto vale

Dettagli

Ogni primino sa che...

Ogni primino sa che... Ogni primino sa che... A cura della équipe di matematica 25 giugno 2015 Competenze in ingresso Tradizionalmente, nei primi giorni di scuola, gli studenti delle classi prime del Pascal sostengono una prova

Dettagli

Vertici opposti. Fig. C6.1 Definizioni relative ai quadrilateri.

Vertici opposti. Fig. C6.1 Definizioni relative ai quadrilateri. 6. Quadrilateri 6.1 efinizioni Un poligono di 4 lati è detto quadrilatero. I lati di un quadrilatero che hanno un vertice in comune sono detti consecutivi. I lati di un quadrilatero non consecutivi tra

Dettagli

Fascicolo 1. Matematica - Scuola primaria Classe quinta Anno scolastico 2013 2014

Fascicolo 1. Matematica - Scuola primaria Classe quinta Anno scolastico 2013 2014 Griglia di correzione DOMANDE APERTE Fascicolo 1 Matematica - Scuola primaria Classe quinta Anno scolastico 2013 2014 Si ricorda che i dati di tutte le classi (campione e non campione) devono essere trasmessi

Dettagli

Anna Montemurro. 2Geometria. e misura

Anna Montemurro. 2Geometria. e misura Anna Montemurro Destinazione Matematica 2Geometria e misura GEOMETRIA E MISURA UNITÀ 11 Le aree dei poligoni apprendo... 11. 1 FIGURE PIANE EQUIVALENTI Consideriamo la figura A. A Le figure B e C

Dettagli

LA FINESTRA DI OPEN OFFICE CALC

LA FINESTRA DI OPEN OFFICE CALC LA FINESTRA DI OPEN OFFICE CALC Barra di Formattazione Barra Standard Barra del Menu Intestazione di colonna Barra di Calcolo Contenuto della cella attiva Indirizzo della cella attiva Cella attiva Intestazione

Dettagli

geometriche. Parte Sesta Trasformazioni isometriche

geometriche. Parte Sesta Trasformazioni isometriche Parte Sesta Trasformazioni isometriche In questa sezione di programma di matematica parliamo della geometria delle trasformazioni che studia le figure geometriche soggette a movimenti. Tali movimenti,

Dettagli

DIAGRAMMA CARTESIANO

DIAGRAMMA CARTESIANO DIAGRAMMA CARTESIANO Imparerai ora a costruire con excel un diagramma cartesiano. Inizialmente andremo a porre sul grafico un solo punto, lo vedremo cambiare di posizione cambiando i valori nelle celle

Dettagli

B. Vogliamo determinare l equazione della retta

B. Vogliamo determinare l equazione della retta Risoluzione quesiti ordinamento Quesito N.1 Indicata con α la misura dell angolo CAB, si ha che: 1 Area ( ABC ) = AC AB sinα = 3 sinα π 3 sinα = 3 sinα = 1 α = Il triangolo è quindi retto in A. La misura

Dettagli

Modulo didattico sulla misura di grandezze fisiche: la lunghezza

Modulo didattico sulla misura di grandezze fisiche: la lunghezza Modulo didattico sulla misura di grandezze fisiche: la lunghezza Lezione 1: Cosa significa confrontare due lunghezze? Attività n 1 DOMANDA N 1 : Nel vostro gruppo qual è la matita più lunga? DOMANDA N

Dettagli

Le scale di riduzione

Le scale di riduzione Le scale di riduzione Le dimensioni di un oggetto, quando sono troppo grandi perché siano riportate sul foglio da disegno, si riducono in scala. Scala 1 a 200 (si scrive 1 : 200) rappresenta una divisione.

Dettagli

Traduzione dell articolo ACHIEVING THE BEST ANGLE di Ed Kolano tratto dalla rivista Sport Aviation di dicembre 2000.

Traduzione dell articolo ACHIEVING THE BEST ANGLE di Ed Kolano tratto dalla rivista Sport Aviation di dicembre 2000. Traduzione dell articolo ACHIEVING THE BEST ANGLE di Ed Kolano tratto dalla rivista Sport Aviation di dicembre 2000. Otteniamo il miglior angolo di salita. Riduzione dei dati di prestazione in salita,

Dettagli

RAPPRESENTAZIONI GRAFICHE

RAPPRESENTAZIONI GRAFICHE RAPPRESENTAZIONI GRAFICHE Prendiamo in considerazione altre rappresentazioni di dati che sono strumenti utili anche in altre discipline di studio o altri settori della vita quotidiana. Questi strumenti

Dettagli

Esempi di funzione. Scheda Tre

Esempi di funzione. Scheda Tre Scheda Tre Funzioni Consideriamo una legge f che associa ad un elemento di un insieme X al più un elemento di un insieme Y; diciamo che f è una funzione, X è l insieme di partenza e X l insieme di arrivo.

Dettagli

IGiochidiArchimede--Soluzionibiennio

IGiochidiArchimede--Soluzionibiennio PROGETTO OLIMPIADI DI MATEMATICA U.M.I. UNIONE MATEMATICA ITALIANA MINISTERO DELLA PUBBLICA ISTRUZIONE SCUOLA NORMALE SUPERIORE IGiochidiArchimede--Soluzionibiennio 17 novembre 2010 Griglia delle risposte

Dettagli

Il valore formativo della matematica nella scuola di oggi

Il valore formativo della matematica nella scuola di oggi XXXI CONVEGNO UMI-CIIM Livorno, 16-18 Ottobre 2014 Il valore formativo della matematica nella scuola di oggi ARCIPELAGHI Un esempio di ambiente di apprendimento Annalisa Sodi Monia Bianchi COSA È UN AMBIENTE

Dettagli

Come creare uno schema per il punto croce con il PAINT

Come creare uno schema per il punto croce con il PAINT Come creare uno schema per il punto croce con il PAINT Copyright 2013 - Rossella Usai Calci (Pisa) - Italy. Ho scritto questo semplice Tutorial per chi come me ama ricamare su tela ma anche desidera farlo

Dettagli

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:...

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:... Ministero della Pubblica Istruzione Rilevazione degli apprendimenti Anno Scolastico 2006 2007 PROVA DI MATEMATICA Scuola Secondaria di II grado Classe Terza Tipo A Codici Scuola:..... Classe:.. Studente:.

Dettagli

Test di autovalutazione

Test di autovalutazione Test di autovalutazione 0 0 0 0 0 0 0 70 80 90 00 n Il mio punteggio, in centesimi, è n Rispondi a ogni quesito segnando una sola delle alternative. n onfronta le tue risposte con le soluzioni. n olora,

Dettagli

DISEGNO DI MACCHINE APPUNTI DELLE LEZIONI

DISEGNO DI MACCHINE APPUNTI DELLE LEZIONI DISEGNO DI MACCHINE APPUNTI DELLE LEZIONI Lezione 3: Proiezioni Ortogonali con il metodo europeo Francesca Campana Le proiezioni ortogonali Le proiezioni ortogonali descrivono bi-dimensionalmente un oggetto

Dettagli

IL PAESE QUATRICERCHIO

IL PAESE QUATRICERCHIO Scuola dell infanzia di Santa Maria in Punta UNITÀ DI APPRENDIMENTO: IL PAESE QUATRICERCHIO UN MONDO DI FORME(prima parte) Comprendente: UDA CONSEGNA AGLI STUDENTI PIANO DI LAVORO GRIGLIA DI OSSERVAZIONE/RUBRICA

Dettagli

PERCORSI DIDATTICI. La superficie. scuola: Matematica. scheda n : 6 ATTIVITA

PERCORSI DIDATTICI. La superficie. scuola: Matematica. scheda n : 6 ATTIVITA di: Anna Galli PERCORSI DIDATTICI La superficie scuola: F. Conti (I. C. Jesi Centro) area tematica: Matematica pensato per: 8-9 anni scheda n : 6 OBIETTIVI - Introduzione al concetto di superficie - Scoperta

Dettagli

LEZIONI CON I PAD Docente scuola secondaria IC Moglia Carla Casareggio Classi seconde 2014/2015 Proprietà triangoli e quadrilateri con Sketchometry

LEZIONI CON I PAD Docente scuola secondaria IC Moglia Carla Casareggio Classi seconde 2014/2015 Proprietà triangoli e quadrilateri con Sketchometry LEZIONI CON I PAD Docente scuola secondaria IC Moglia Carla Casareggio Classi seconde 2014/2015 Proprietà triangoli e quadrilateri con Sketchometry La costruzione di figure geometriche al computer con

Dettagli

Strumenti necessari per il disegno

Strumenti necessari per il disegno Capitolo 9 Strumenti necessari per il disegno Sarebbe sbagliato ridurre il campo del disegno in genere, e quindi anche del disegno in rilievo, alla sola riproduzione degli oggetti che abbiamo intorno.

Dettagli

Alla ricerca del rettangolo più bello

Alla ricerca del rettangolo più bello Alla ricerca del rettangolo più bello Livello scolare: biennio Abilità interessate Individuare nel mondo reale situazioni riconducibili alla similitudine e descrivere le figure con la terminologia specifica.

Dettagli

Kangourou Italia Gara del 15 marzo 2001 Categoria Cadet Per studenti di terza media e prima superiore

Kangourou Italia Gara del 15 marzo 2001 Categoria Cadet Per studenti di terza media e prima superiore Kangourou Italia Gara del 15 marzo 2001 Categoria Cadet Per studenti di terza media e prima superiore Regole:! La prova è individuale. E' vietato l'uso di calcolatrici di qualunque tipo.! Vi è una sola

Dettagli

LE FUNZIONI MATEMATICHE

LE FUNZIONI MATEMATICHE ALGEBRA LE FUNZIONI MATEMATICHE E IL PIANO CARTESIANO PREREQUISITI l l l l l conoscere il concetto di insieme conoscere il concetto di relazione disporre i dati in una tabella rappresentare i dati mediante

Dettagli

Corso completo di Excel 2003 per Certificazione Microsoft Office Specialist e Patente Europea (ECDL) - Prof. Roberto Fantaccione

Corso completo di Excel 2003 per Certificazione Microsoft Office Specialist e Patente Europea (ECDL) - Prof. Roberto Fantaccione Corso completo di Excel 2003 per Certificazione Microsoft Office Specialist e Patente Europea (ECDL) - Premessa Excel 2003 è un programma della suite di office 2003, in grado di organizzare e gestire tabelle

Dettagli

L analisi dei dati. Capitolo 4. 4.1 Il foglio elettronico

L analisi dei dati. Capitolo 4. 4.1 Il foglio elettronico Capitolo 4 4.1 Il foglio elettronico Le più importanti operazioni richieste dall analisi matematica dei dati sperimentali possono essere agevolmente portate a termine da un comune foglio elettronico. Prenderemo

Dettagli

allora la retta di equazione x=c è asintoto (verticale) della funzione

allora la retta di equazione x=c è asintoto (verticale) della funzione 1)Cosa rappresenta il seguente limite e quale ne è il valore? E il limite del rapporto incrementale della funzione f(x)= con punto iniziale, al tendere a 0 dell incremento h. Il valore del limite può essere

Dettagli

INIZIAMO A IMPARARE WORD

INIZIAMO A IMPARARE WORD Associazione Nazionale Seniores Enel Associazione di solidarietà tra dipendenti e pensionati delle Aziende del Gruppo Enel Sezione Territoriale Lombardia - Nucleo di Milano E-Mail del Nucleo di Milano:

Dettagli

Messa in tavola di un modello tridimensionale

Messa in tavola di un modello tridimensionale 18 Messa in tavola di un modello tridimensionale Creare viste d insieme e di dettaglio, con sezioni e particolari di un modello tridimensionale. Introduzione In questo capitolo vedremo come documentare

Dettagli

Per lanciare il programma Avvio - Programmi - Micromondi

Per lanciare il programma Avvio - Programmi - Micromondi Micromondi - "Appunti per iniziare" Pag. 1 Per lanciare il programma Avvio - Programmi - Micromondi Micromondi è un programma che si basa sul linguaggio LOGO (un linguaggio che attraverso comandi permette

Dettagli

0. Piano cartesiano 1

0. Piano cartesiano 1 0. Piano cartesiano Per piano cartesiano si intende un piano dotato di due assi (che per ragioni pratiche possiamo scegliere ortogonali). Il punto in comune ai due assi è detto origine, e funziona da origine

Dettagli