CORSO DI LAUREA IN INGEGNERIA EDILE/ARCHITETTURA b) Dal testo sappiamo già che si tratta di un isometria. Rappresentando i punti si vede che sia

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "CORSO DI LAUREA IN INGEGNERIA EDILE/ARCHITETTURA b) Dal testo sappiamo già che si tratta di un isometria. Rappresentando i punti si vede che sia"

Transcript

1 CORSO DI LAUREA IN INGEGNERIA EDILE/ARCHITETTURA FOGLIO DI ESERCIZI GEOMETRIA 008/09 Esercizio.. Dati i punti i O0, 0), A, ), B, ), determinare l isometria fx, y) = x, y ) tale che fo) = O, fa) = A, fb) = B nei seguenti casi. Stabilire in particolare se si tratta di una traslazione, rotazione, riflessione e glissoriflessione trovando gli eventuali punti fissi. ) ) ) a) O =,, A =,, B 7 =,. b) O =, 0), A + 4 ) =,, B = c) O = 0, 0), A = ) ), 9, B =,. ) ) d) O =, ), A =, 7, B =, , + ). a) Dal testo sappiamo già che si tratta di un isometria. Rappresentando i punti si vede che sia l angolo 0ÂB che l angolo 0 Â B sono antiorari, quindi si tratta di una trasformazione diretta: una rotazione o una traslazione. Dobbiamo cercare una trasformazione del tipo x = cx sy + a y = sx + cy + b Imponendo le sei condizioni fo) = O, fa) = A, fb) = B otteniamo il sistema = a = b = c s + a = s + c + b = c s + a 7 = s + c + b a = b = s = c = 4c 4 + c + = c s + 7 = s + c + a = b = s = 0 c = = 7 = 7 Notiamo che per risolvere il sistema abbiamo usato solamente le prime quattro equazioni, mentre abbiamo usato le ultime due per verificare la soluzione. Si tratta della trasformazione fx, y) = che è una traslazione e non ha punti fissi. direttamente impostando il sistema che non ha soluzione. fx, y) = x, y) x, y + ) La mancanza di punti fissi si può anche verificare x = x y = y + b) Dal testo sappiamo già che si tratta di un isometria. Rappresentando i punti si vede che sia l angolo 0ÂB che l angolo 0 Â B sono antiorari, quindi si tratta di una trasformazione diretta: una rotazione o una traslazione. Dobbiamo cercare una trasformazione del tipo x = cx sy + a y = sx + cy + b

2 FOGLIO DI ESERCIZI GEOMETRIA 008/09 Imponendo le sei condizioni fo) = O, fa) = A, fb) = B otteniamo il sistema = a a = a = 0 = b b = 0 b = 0 = c s + a +4 = 4s + +8 s + s = = s + c + b c = s + +4 c = = c s + a + = s + c + b 4 6 = c s + + = s + c = + + = + Notiamo che per risolvere il sistema abbiamo usato solamente le prime quattro equazioni, mentre abbiamo usato le ultime due per verificare la soluzione. Si tratta della trasformazione fx, y) = x ) y +, x + y che è una rotazione. Possiamo quindi trovare il punto fisso centro di rotazione) impostando il sistema x = fx, y) = x, y) x y + x + y = y = x + y y = x = x y = ) Quindi il centro di rotazione è il punto fisso P,. c) Dal testo sappiamo già che si tratta di un isometria. Rappresentando i punti si vede che l angolo 0ÂB è antiorario mentre l angolo 0 Â B è orario, quindi si tratta di una trasformazione inversa: una riflessione o una glissoriflessione. Dobbiamo cercare una trasformazione del tipo x = cx + sy + a y = sx cy + b Notiamo che poiché O = O, il punto O è fisso, quindi si tratta di una riflessione in quanto le glissoriflessioni non hanno punti fissi. Imponendo le sei condizioni fo) = O, fa) = A, fb) = B otteniamo il sistema 0 = a a = 0 a = 0 0 = b b = 0 b = 0 9 = c + s + a = s c + b = c + s + a = s c + b c = 9 s = s 7 9s = c + s = s c c = s = 4 = = 8 + Notiamo che per risolvere il sistema abbiamo usato solamente le prime quattro equazioni, mentre abbiamo usato le ultime due per verificare la soluzione. Si tratta della trasformazione fx, y) = x + 4 y, 4 x + ) y che è una riflessione. Possiamo quindi trovare la retta di punti fissi asse di simmetria) impostando il sistema x = fx, y) = x, y) x + 4 y 8x 4y = 0 y = 4 x + y y = x 4x y = 0 Quindi tutti i punti della retta y = x sono punti fissi e y = x è l asse di simmetria. d) Dal testo sappiamo già che si tratta di un isometria. Rappresentando i punti si vede che l angolo 0ÂB è antiorario mentre l angolo 0 Â B è orario, quindi si tratta di una trasformazione inversa: una riflessione o una glissoriflessione. Si tratta quindi di cercare una trasformazione del tipo x = cx + sy + a y = sx cy + b

3 FOGLIO DI ESERCIZI GEOMETRIA 008/09 Imponendo le sei condizioni fo) = O, fa) = A, fb) = B otteniamo il sistema = a = b = c + s + a 4 = s c + b = c + s + a 7 = s c + b a = b = c = s 4 = s 9 + 9s + = c + s 7 = s c + a = b = c = 4 s = = = Notiamo che per risolvere il sistema abbiamo usato solamente le prime quattro equazioni, mentre abbiamo usato le ultime due per verificare la soluzione. Si tratta della trasformazione fx, y) = 4 x + y, x 4 ) y + che è una glissoriflessione. Infatti impostando il sistema fx, y) = x, y) non otteniamo soluzioni. x = 4 x + y y = x 4 y + x = y 0 9y = 9y + Esercizio..). Per ognuna delle seguenti coppie di matrici A, B e scalari λ, µ R, calcolare A + B, B A, λa + µb, AB, BA, A : λ =, µ = 0 λ =, µ = Comiciamo dalla prima coppia di matrici: A λa + µ A + 0 [ 7 7 B 7 7 ] B 6 A 4 A = A 6 6 Analogamente per la seconda coppia di matrici: A + 4 B λa + µ A A B 4 0 A = A 0

4 4 FOGLIO DI ESERCIZI GEOMETRIA 008/09 Esercizio..). Date le seguenti matrici: 0 A = 0 0 ; A = ; A 4 = 4 ; 4 4 A 4 = 0 ; A = ; A 6 = ; calcolare, quando possibile, i prodotti A i A j per i, j =,,, 4,, 6. Ricordiamo che una matrice è detta n m se ha n righe e m colonne. Inoltre è possibile moltiplicare due matrici A e B solamente se A è del tipo n m B è del tipo m k cioè se il numero delle colonne di A è uguale al numero delle righe di B). Il risultato è una matrice C del tipo n k. Scriviamo solo i prodotti che è possibile effettuare: A A = A A = A 0 A 4 = A 0 A = A A = A A 6 = A 4 A = 40 8 A 4 A 6 = A A = 0 A A 4 = 4 0 A A = A 6 A = A A 4 = A 0 6 A = 4 Esercizio.4.). Date le matrici calcolare A B e AB T. [ ] [ ] A [ 6 9 ] [ 4 6 ] = [ 8 AB T = [ ] = Notiamo che la matrice [ ] è detta matrice scalare. Esercizio..6). Calcolare la potenza A della matrice 0 0 ]

5 FOGLIO DI ESERCIZI GEOMETRIA 008/09 Si tratta di eseguire due prodotti: 4 6 A = A A = Esercizio.6.8). Date le seguenti matrici A, calcolare, se esiste, l inversa di A cioè determinare se esiste la matrice B tale che A B I). Consideriamo la matrice Per potere effettuare i prodotti AB e BA, la matrice B deve essere. Sia quindi x y z w la generica matrice. Si ha A x y x + z y + w = z w x + z y + w Dalla condizione A I segue x + z = x = z x = z y + w = 0 y = w y = w x + z = 0 z) + z = 0 = 0 y + w = w) + w = 0 = La terza e la quarta equazione sono impossibili, di conseguenza tutto il sistema non ammette soluzione. Questo indica che la matrice A non ammette inversa. Consideriamo ora la matrice e sia x y z w la generica matrice. Si ha x y x z y w A = z w x + z y + w Dalla condizione A I segue x z = x = + z x = + z x = y w = 0 y = w y = w y = x + z = 0 + z) + z = 0 z = z = y + w = w + w = w = w = Di conseguenza deve essere E immediato verificare che tale matrice B soddisfa anche la condizione B I, di conseguenza B è la matrice inversa di A cercata. Una tale matrice B inversa di A viene normalmente indicata con A.

6 6 FOGLIO DI ESERCIZI GEOMETRIA 008/09 Esercizio.7.9). Date le matrici 0 0 calcolare AB, BA, BC e CB. 0 C = A BC = B C 0 9 Notiamo che AB BA, mentre BC = CB. Infatti il prodotto tra matrici non è in generale commutativo; nel secondo caso si presenta questa situazione particolare in quanto C = I. Esercizio.8.0). Si consideri il seguente insieme matrici triangolari superiori di M R)) } a b I = a, b, c R 0 c Si verifichi che I è chiuso rispetto al prodotto e alla somma di matrici, ovvero che presi due elementi di I anche il loro prodotto e la loro somma sono elementi di I. Siano a b 0 c x y 0 z due generici elementi di I. Dobbiamo verificare che A + B e AB sono ancora elementi di I: a b x y a + x b + y A + + = I 0 c 0 z 0 c + z ax ay + bz A I 0 cz Notiamo che l unica condizione per l appartenenza a I è che l elemento di posizione, si annulli. Esercizio.9.). Mostrare attraverso un esempio che esistono matrici A, B non nulle tali che A 0. Possiamo prendere per esempio Infatti A e B sono non nulle e A Esercizio.0.). Sia e B una matrice tale che A BA. Si dimostri che dove λ, x R. λi x Sia b b b b

7 FOGLIO DI ESERCIZI GEOMETRIA 008/09 7 la generica matrice. Si ha b b A b + b = b + b 0 b b b b b b B b b = + b b b 0 b b + b Dalla condizione A BA segue b + b = b b + b = b + b b = b b = b + b Di conseguenza B deve essere del tipo t s = 0 t Abbiamo quindi ottenuto che dove λ, x R. b = 0 b = b 0 = 0 b = 0 t t λi + 0 s = t 0 x b = t b = s b = 0 b = t s Esercizio..). Date le matrici e C = 4 determinare la matrice B tale che A + C. E sufficiente osservare che se Quindi A + C A + A + A + C C A = Esercizio..8). Si risolva il sistema Ax = b dove x, x = 4 x b = s, t R Quindi Ax = b implica x + x = x + 4x = Ax = 4 [ x x ] x + x = x + 4x x = x 4 6x + 4x = x = 7 x = La matrice A è detta matrice dei coefficienti e la matrice b matrice o colonna dei termini noti del sistema x + x = x + 4x = Si dice anche più semplicemente che A e b oppure A b) sono le matrici associate al sistema. Notiamo che si può passare da A al sistema o viceversa semplicemente aggiungendo o togliendo le incognite.

8 8 FOGLIO DI ESERCIZI GEOMETRIA 008/09 Esercizio..0). Si risolva il sistema Ax = b nei seguenti casi x a) 0 6, x = x b = x 4 4 x b) 0 6, x = x b = 4 0 x 4 c) 0, x = x x b = 4 0 x 0 a) Calcoliamo il prodotto x x + x + x Ax = 0 6 x = x + 6x x x Quindi la condizione Ax = b implica x + x + x = x + x + x = x + 6x = x = 6 x = 4 x = x = ) + = x = x = x = x = x = b) Scriviamo direttamente il sistema associato a A e b aggiungendo le incognite: 4x + x + x = x + 6x = 4 0 = 4 Notiamo subito che l ultima equazione è impossibile, quindi il sistema non ammette soluzione. c) Scriviamo direttamente il sistema associato a A e b aggiungendo le incognite: x + x + x = x + x = 4 0 = 0 Notiamo che il sistema ha tre incognite, ma solamente due equazioni significative). Abbiamo quindi una variabile libera. Partiamo dall ultima equazione significativa) aggiungendo un parametro. Poniamo per esempio x = t Potevamo equivalentemente porre x = t): x + x + x = x = t + 4) + t = t + 9 x = t + 4 x = t + 4 x = t x = t x = t + 9 x = t + 4 t R x = t Notiamo che in questo caso il sistema ammette infinite soluzione: ogni valore assegnato a t permette di trovare una delle infinite soluzioni.

Operazioni tra matrici e n-uple

Operazioni tra matrici e n-uple CAPITOLO Operazioni tra matrici e n-uple Esercizio.. Date le matrici 0 4 e dati λ = 5, µ =, si calcoli AB, BA, A+B, B A, λa+µb. Esercizio.. Per ognuna delle seguenti coppie di matrici A, B e scalari λ,

Dettagli

CORSO DI LAUREA IN INGEGNERIA DELLE TELECOMUNICAZIONI

CORSO DI LAUREA IN INGEGNERIA DELLE TELECOMUNICAZIONI CORSO DI LAUREA IN INGEGNERIA DELLE TELECOMUNICAZIONI FOGLIO DI ESERCIZI # GEOMETRIA E ALGEBRA 009/0 Esercizio.. Dati i vettori di R : v (,, ), v (, 4, 6), v (,, 5), v 4 (,, 0) determinare se v 4 è combinazione

Dettagli

Esercizi di Algebra Lineare. Claretta Carrara

Esercizi di Algebra Lineare. Claretta Carrara Esercizi di Algebra Lineare Claretta Carrara Indice Capitolo. Operazioni tra matrici e n-uple. Soluzioni 3 Capitolo. Rette e piani 5. Suggerimenti 9. Soluzioni 0 Capitolo 3. Gruppi, spazi e sottospazi

Dettagli

Esercizi di Algebra Lineare. Claretta Carrara

Esercizi di Algebra Lineare. Claretta Carrara Esercizi di Algebra Lineare Claretta Carrara Indice Capitolo 1. Operazioni tra matrici e n-uple 1 1. Soluzioni 3 Capitolo. Rette e piani 15 1. Suggerimenti 19. Soluzioni 1 Capitolo 3. Gruppi, spazi e

Dettagli

Corso di Geometria BIAR, BSIR Esercizi 2: soluzioni

Corso di Geometria BIAR, BSIR Esercizi 2: soluzioni Corso di Geometria 2- BIAR, BSIR Esercizi 2: soluzioni Esercizio Calcolare il determinante della matrice 2 3 : 3 2 a) con lo sviluppo lungo la prima riga, b) con lo sviluppo lungo la terza colonna, c)

Dettagli

Geometria BAER PRIMO CANALE Foglio esercizi 1

Geometria BAER PRIMO CANALE Foglio esercizi 1 Geometria BAER PRIMO CANALE Foglio esercizi 1 Esercizio 1. Risolvere le seguenti equazioni lineari nelle variabili indicate trovando una parametrizzazione dell insieme delle soluzioni. a) x + 5y = nelle

Dettagli

CORSO DI LAUREA IN INGEGNERIA EDILE/ARCHITETTURA

CORSO DI LAUREA IN INGEGNERIA EDILE/ARCHITETTURA CORSO DI LAUREA IN INGEGNERIA EDILE/ARCHITETTURA FOGLIO DI ESERCIZI 4 GEOMETRIA 2008/09 Esercizio 4.1 (5.10). Dati i vettori di R 3 : v 1 (1, 1, 2), v 2 (2, 4, 6), v 3 ( 1, 2, 5), v 4 (1, 1, 10) determinare

Dettagli

Esercizi di Algebra Lineare. Claretta Carrara

Esercizi di Algebra Lineare. Claretta Carrara Esercizi di Algebra Lineare Claretta Carrara Indice Capitolo. Operazioni tra matrici e n-uple. Soluzioni 3 Capitolo 2. Rette e piani 5. Suggerimenti 9 2. Soluzioni 20 Capitolo 3. Gruppi, spazi e sottospazi

Dettagli

CAPITOLO 2. Rette e piani. y = 3x+1 y x+z = 0

CAPITOLO 2. Rette e piani. y = 3x+1 y x+z = 0 CAPITOLO Rette e piani Esercizio.1. Determinare l equazione parametrica e Cartesiana della retta del piano (a) Passante per i punti A(1,) e B( 1,). (b) Passante per il punto C(,) e parallela al vettore

Dettagli

CORSO DI LAUREA IN INGEGNERIA EDILE/ARCHITETTURA

CORSO DI LAUREA IN INGEGNERIA EDILE/ARCHITETTURA CORSO DI LAUREA IN INGEGNERIA EDILE/ARCHITETTURA FOGLIO DI ESERCIZI 1 GEOMETRIA 2009/10 Esercizio 1.1 (2.2). Determinare l equazione parametrica e Cartesiana della retta dello spazio (a) Passante per i

Dettagli

Geometria BAER I canale Foglio esercizi 2

Geometria BAER I canale Foglio esercizi 2 Geometria BAER I canale Foglio esercizi Esercizio. ( ) Data la matrice, determinare tutte le matrici X Mat( ) tali che AX = 0 e tutte le matrici Y Mat( ) tali che Y 0. ( ) ( ) ( ) x y x + z y + w Soluzione:

Dettagli

CORSO DI LAUREA IN INGEGNERIA DELLE TELECOMUNICAZIONI

CORSO DI LAUREA IN INGEGNERIA DELLE TELECOMUNICAZIONI CORSO DI LAUREA IN INGEGNERIA DELLE TELECOMUNICAZIONI FOGLIO DI ESERCIZI # 4 GEOMETRIA E ALGEBRA LINEARE 009/0 Esercizio 4. (Esercizio 7.3). Calcolare l inversa delle matrici (invertibili) [ ] 3 A = B

Dettagli

CORSI DI LAUREA IN MATEMATICA E FISICA

CORSI DI LAUREA IN MATEMATICA E FISICA CORSI DI LAUREA IN MATEMATICA E FISICA FOGLIO DI ESERCIZI # 6 GEOMETRIA 1 Esercizio 6.1 (Esercizio 5.1). Scrivere un vettore w R 3 linearmente dipendente dal vettore v ( 1, 9, 0). Per esempio il vettore

Dettagli

CAPITOLO 14. Quadriche. Alcuni esercizi di questo capitolo sono ripetuti in quanto risolti in maniera differente.

CAPITOLO 14. Quadriche. Alcuni esercizi di questo capitolo sono ripetuti in quanto risolti in maniera differente. CAPITOLO 4 Quadriche Alcuni esercizi di questo capitolo sono ripetuti in quanto risolti in maniera differente. Esercizio 4.. Stabilire il tipo di quadrica corrispondente alle seguenti equazioni. Se si

Dettagli

CORSO DI LAUREA IN INGEGNERIA EDILE/ARCHITETTURA

CORSO DI LAUREA IN INGEGNERIA EDILE/ARCHITETTURA CORSO DI LAUREA IN INGEGNERIA EDILE/ARCHITETTURA FOGLIO DI ESERCIZI GEOMETRIA 009/0 Esercizio. (7.9). Si consideri il sistema di equazioni lineari: x + y + z = x + y + z = x + y + 3z = a) Si dica per quali

Dettagli

Esercizi sulle coniche (prof.ssa C. Carrara)

Esercizi sulle coniche (prof.ssa C. Carrara) Esercizi sulle coniche prof.ssa C. Carrara Alcune parti di un esercizio possono ritrovarsi in un altro esercizio, insieme a parti diverse. È un occasione per affrontarle da un altra angolazione.. Determinare

Dettagli

Geometria BIAR Esercizi 2

Geometria BIAR Esercizi 2 Geometria BIAR 0- Esercizi Esercizio. a Si consideri il generico vettore v b R c (a) Si trovi un vettore riga x (x, y, z) tale che x v a (b) Si trovi un vettore riga x (x, y, z) tale che x v kb (c) Si

Dettagli

Esercizi sulle coniche (prof.ssa C. Carrara)

Esercizi sulle coniche (prof.ssa C. Carrara) Esercizi sulle coniche prof.ssa C. Carrara Alcune parti di un esercizio possono ritrovarsi in un altro esercizio, insieme a parti diverse. È un occasione per affrontarle più volte.. Stabilire il tipo di

Dettagli

CORSO DI LAUREA IN INGEGNERIA EDILE/ARCHITETTURA

CORSO DI LAUREA IN INGEGNERIA EDILE/ARCHITETTURA CORSO DI LAUREA IN INGEGNERIA EDILE/ARCHITETTURA FOGLIO DI ESERCIZI # 7 GEOMETRIA 2005/06 Ricordiamo le seguenti formule: L Area di un parallelogramma in R 2, di lati u = (u 1, u 2 ), v = (v 1, v 2 ) è:

Dettagli

ax 1 + bx 2 + c = 0, r : 2x 1 3x = 0.

ax 1 + bx 2 + c = 0, r : 2x 1 3x = 0. . Rette in R ; circonferenze. In questo paragrafo studiamo le rette e le circonferenze in R. Ci sono due modi per descrivere una retta in R : mediante una equazione cartesiana oppure mediante una equazione

Dettagli

Esercizi per Geometria II Geometria euclidea e proiettiva

Esercizi per Geometria II Geometria euclidea e proiettiva Esercizi per Geometria II Geometria euclidea e proiettiva Filippo F. Favale 10 aprile 01 Esercizio 1 Sia E 3 lo spazio euclideo tridimensionale dotato di un riferimento cartesiano ortonormale di coordinate

Dettagli

Rette e piani in R 3

Rette e piani in R 3 Rette e piani in R 3 In questa dispensa vogliamo introdurre in modo elementare rette e piani nello spazio R 3 (si faccia riferimento anche al testo Algebra Lineare di S. Lang). 1 Rette in R 3 Vogliamo

Dettagli

Federica Gregorio e Cristian Tacelli

Federica Gregorio e Cristian Tacelli 1 Sistemi lineari Federica Gregorio e Cristian Tacelli Un sistema lineare m n (m equazioni in n incognite) è un insieme di equazioni lineari che devono essere soddisfatte contemporaneamente a 11 x 1 +

Dettagli

Note sull algoritmo di Gauss

Note sull algoritmo di Gauss Note sull algoritmo di Gauss 29 settembre 2009 Generalità Un sistema lineare di m equazioni in n incognite x,..., x n è un espressione del tipo: a x + a 2 x 2 + + a n x n = b a 2 x + a 22 x 2 + + a 2n

Dettagli

Matrici triangolari [Abate, 3.2] Lezioni 05 e 06. Determinante di una matrice triangolare [Abate, es. 9.3] Matrici ridotte per righe.

Matrici triangolari [Abate, 3.2] Lezioni 05 e 06. Determinante di una matrice triangolare [Abate, es. 9.3] Matrici ridotte per righe. Matrici triangolari [Abate, 32] Definizione Una matrice A = a ij ) R m,n si dice triangolare superiore se a ij = 0 per ogni i > j; triangolare inferiore se a ij = 0 per ogni i < j Lezioni 05 e 06 Una matrice

Dettagli

Geometria 2, a.a. 2006/2007 Ingegneria Edile-Edile Architettura

Geometria 2, a.a. 2006/2007 Ingegneria Edile-Edile Architettura Geometria 2, a.a. 2006/2007 Ingegneria Edile-Edile Architettura Tutore: Eleonora Palmieri 14 febbraio 2007 Esercizio 1: Si consideri in R 2 la conica Γ : 2x 2 1 + 4x 2 2 + x 1 + 2x 2 = 0. 1. Ridurre Γ

Dettagli

Risoluzione di sistemi lineari

Risoluzione di sistemi lineari Risoluzione di sistemi lineari Teorema (Rouché-Capelli) Dato il sistema di m equazioni in n incognite Ax = b, con A M at(m, n) b R n x R n [A b] si ha che: matrice dei coefficienti, vettore dei termini

Dettagli

Esercizi di ripasso: geometria e algebra lineare.

Esercizi di ripasso: geometria e algebra lineare. Esercizi di ripasso: geometria e algebra lineare. Esercizio. Sia r la retta passante per i punti A(2,, 3) e B(,, 2) in R 3. a. Scrivere l equazione cartesiana del piano Π passante per A e perpendicolare

Dettagli

VETTORIALE E PRODOTTO MISTO. PIANI E RETTE DI

VETTORIALE E PRODOTTO MISTO. PIANI E RETTE DI Universita degli Studi di Roma - "Tor Vergata" - Facolta Ingegneria Esercizi GEOMETRIA (Edile-Architettura e dell Edilizia) PRODOTTO VETTORIALE E PRODOTTO MISTO. PIANI E RETTE DI R 3. FASCI E STELLE. FORMULE

Dettagli

A =, c d. d = ad cb. c d A =

A =, c d. d = ad cb. c d A = Geometria e Algebra (II), 271112 1 Definizione D ora innanzi, al posto di dire matrice quadrata di tipo n n o matrice quadrata n n diremo matrice quadrata di ordine n o in breve matrice di ordine n Il

Dettagli

Riassumiamo le proprietà dei numeri reali da noi utilizzate nel corso di Geometria.

Riassumiamo le proprietà dei numeri reali da noi utilizzate nel corso di Geometria. Capitolo 2 Campi 2.1 Introduzione Studiamo ora i campi. Essi sono una generalizzazione dell insieme R dei numeri reali con le operazioni di addizione e di moltiplicazione. Nel secondo paragrafo ricordiamo

Dettagli

Matrici e sistemi. Sistemi lineari. Invertibilità Matrici elementari Criteri di invertibilità Sistemi quadrati e Teorema di Cramer

Matrici e sistemi. Sistemi lineari. Invertibilità Matrici elementari Criteri di invertibilità Sistemi quadrati e Teorema di Cramer Sistemi lineari Invertibilità Matrici elementari Criteri di invertibilità Sistemi quadrati e Teorema di Cramer 2 2006 Politecnico di Torino 1 Prodotto tra matrici quadrate Date comunque A e B matrici quadrate

Dettagli

Argomento 13 Sistemi lineari

Argomento 13 Sistemi lineari Sistemi lineari: definizioni Argomento Sistemi lineari Un equazione nelle n incognite x,, x n della forma c x + + c n x n = b ove c,, c n sono numeri reali (detti coefficienti) e b è un numero reale (detto

Dettagli

Sistemi lineari - Parte Seconda - Esercizi

Sistemi lineari - Parte Seconda - Esercizi Sistemi lineari - Parte Seconda - Esercizi Terminologia Operazioni elementari sulle righe. Equivalenza per righe. Riduzione a scala per righe. Rango di una matrice. Forma canonica per righe. Eliminazione

Dettagli

Esercitazioni di Geometria A: spazi euclidei

Esercitazioni di Geometria A: spazi euclidei Esercitazioni di Geometria A: spazi euclidei 9-10 marzo 2016 Esercizio 1 Sia V uno spazio vettoriale sul campo K = R e si consideri una base B = {e 1, e 2, e 3 }. Si consideri la matrice a coefficienti

Dettagli

1 1, { x1 2x 2 + x 3 = 0 2x 2 8x 3 = 1 x 1 x 4 = = 0

1 1, { x1 2x 2 + x 3 = 0 2x 2 8x 3 = 1 x 1 x 4 = = 0 a.a. 5-6 Esercizi. Sistemi lineari. Soluzioni.. Determinare quali delle quaterne, 3,, sono soluzioni del sistema di tre equazioni in 4 incognite { x x + x 3 = x 8x 3 = x x 4 =. Sol. Sostituendo ad x, x,

Dettagli

11 settembre Soluzione esame di geometria - Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA...

11 settembre Soluzione esame di geometria - Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA... COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura 3 ore. ISTRUZIONI Ti sono stati consegnati tre fogli, stampati fronte e retro. Come prima cosa scrivi

Dettagli

Note sui sistemi lineari per il Corso di Geometria per Chimica, Facoltà di Scienze MM.FF.NN., UNICAL (Dott.ssa Galati C.) Rende, 4 Maggio 2010

Note sui sistemi lineari per il Corso di Geometria per Chimica, Facoltà di Scienze MM.FF.NN., UNICAL (Dott.ssa Galati C.) Rende, 4 Maggio 2010 Note sui sistemi lineari per il Corso di Geometria per Chimica, Facoltà di Scienze MM.FF.NN., UNICAL (Dott.ssa Galati C.) Rende, 4 Maggio 21 Sistemi lineari. Un sistema lineare di n 1 equazioni in m incognite

Dettagli

Istituzioni di Matematica I. Esercizi su sistemi lineari. & % x + y " #z = "1 & '#x " y+ z =1

Istituzioni di Matematica I. Esercizi su sistemi lineari. & % x + y  #z = 1 & '#x  y+ z =1 Istituzioni di Matematica I Esercizi su sistemi lineari Esempio. Dire per quali valori di λ R il sistema x " y+ z = 2 % x + y " z = " x " y+ z = ha una sola soluzione, per quali nessuna, per quali infinite

Dettagli

Lezione 6 Richiami di Geometria Analitica

Lezione 6 Richiami di Geometria Analitica 1 Piano cartesiano Lezione 6 Richiami di Geometria Analitica Consideriamo nel piano due rette perpendicolari che si intersecano in un punto O Consideriamo ciascuna di queste rette come retta orientata

Dettagli

Geometria BAER I canale Foglio esercizi 5

Geometria BAER I canale Foglio esercizi 5 Geometria BAER I canale Foglio esercizi 5 Esercizio. Si considerino i sottospazi di R 4 : E = L[v =, v = Si trovi una base di E F. ] F = L[w = 3, w = 4, w 3 = Soluzione: Osserviamo che w 3 = w + w, dunque

Dettagli

Esercizi Riepilogativi Svolti

Esercizi Riepilogativi Svolti Universita degli Studi di Roma - "Tor Vergata" - Facolta Ingegneria Esercizi GEOMETRIA Edile-Architettura e dell Edilizia SPAZI EUCLIDEI. TRASFORMAZIONI. ORIENTAZIONI. FORMULE DI GEOMETRIA IN R. Docente:

Dettagli

Riassumiamo le proprietà dei numeri reali da noi utilizzate nel corso di Geometria.

Riassumiamo le proprietà dei numeri reali da noi utilizzate nel corso di Geometria. Capitolo 2 Campi 2.1 Introduzione Studiamo ora i campi. Essi sono una generalizzazione dell insieme R dei numeri reali con le operazioni di addizione e di moltiplicazione. Nel secondo paragrafo ricordiamo

Dettagli

Autovettori e autovalori

Autovettori e autovalori Autovettori e autovalori Definizione 1 Sia A Mat(n, n), matrice a coefficienti reali. Si dice autovalore di A un numero λ R tale che v 0 R n Av = λv. Ogni vettore non nullo v che soddisfa questa relazione

Dettagli

Geometria BAER I canale Foglio esercizi 2

Geometria BAER I canale Foglio esercizi 2 Geometria BAER I canale Foglio esercizi 2 Esercizio 1. Calcolare il determinante e l inversa (quando esiste) della matrice ( ) cos θ sin θ R θ =, θ [0, 2π] sin θ cos θ Soluzione: Il determinante ( é cos

Dettagli

Note per il corso di Geometria Corso di laurea in Ing. Edile/Architettura. 4 Sistemi lineari. Metodo di eliminazione di Gauss Jordan

Note per il corso di Geometria Corso di laurea in Ing. Edile/Architettura. 4 Sistemi lineari. Metodo di eliminazione di Gauss Jordan Note per il corso di Geometria 2006-07 Corso di laurea in Ing. Edile/Architettura Sistemi lineari. Metodo di eliminazione di Gauss Jordan.1 Operazioni elementari Abbiamo visto che un sistema di m equazioni

Dettagli

Geometria BAER Canale I Esercizi 11

Geometria BAER Canale I Esercizi 11 Geometria BAER Canale I Esercizi Esercizio. Scrivere la matrice delle seguenti trasformazioni ortogonali del piano (a Proiezione ortogonale sulla retta x + y = 0 (b Rotazione di π/4 seguita da riflessione

Dettagli

Corso di GEOMETRIA Dipartimento di Ingegneria ed Architettura Università degli Studi di Trieste Prof. Fabio Perroni. 3. Sistemi di equazioni lineari

Corso di GEOMETRIA Dipartimento di Ingegneria ed Architettura Università degli Studi di Trieste Prof. Fabio Perroni. 3. Sistemi di equazioni lineari Corso di GEOMETRIA Dipartimento di Ingegneria ed Architettura Università degli Studi di Trieste Prof Fabio Perroni 3 Sistemi di equazioni lineari Siano m, n N \ {}, sia K un campo Definizione a) Un sistema

Dettagli

Esercizi sulle affinità - aprile 2009

Esercizi sulle affinità - aprile 2009 Esercizi sulle affinità - aprile 009 Ingegneria meccanica 008/009 Esercizio Sono assegnate nel piano le sei rette r : =, s : =, t : =, r : =, s : =, t : = determinare l affinità che trasforma ordinatamente

Dettagli

Corso di Geometria - CdL triennale in Ingegneria a.a

Corso di Geometria - CdL triennale in Ingegneria a.a Corso di Geometria - CdL triennale in Ingegneria a.a. 8-9 C. Liverani, J. Garofali Tutorato del 3/5/9 Cambiamenti di base Per fissare le notazioni ricordiamo che date due basi B = {v,..., v n } e B = {v,...,

Dettagli

CORSO DI LAUREA IN INGEGNERIA EDILE/ARCHITETTURA

CORSO DI LAUREA IN INGEGNERIA EDILE/ARCHITETTURA CORSO DI LAUREA IN INGEGNERIA EDILE/ARCHITETTURA II PROVA DI ACCERTAMENTO, FILA A GEOMETRIA 19/06/008 Esercizio 0.1. Si consideri il seguente endomorfismo di R 4 T (x, y, z, w) = ( x + y + z + w, y + z,

Dettagli

Corso di Geometria BIAR, BSIR Esercizi 10: soluzioni

Corso di Geometria BIAR, BSIR Esercizi 10: soluzioni Corso di Geometria 2010-11 BIAR, BSIR Esercizi 10: soluzioni 1 Geometria dello spazio Esercizio 1. Dato il punto P 0 = ( 1, 0, 1) e il piano π : x + y + z 2 = 0, determinare: a) Le equazioni parametriche

Dettagli

Esercizi svolti sulle applicazioni lineari

Esercizi svolti sulle applicazioni lineari Francesco Daddi - dicembre Esercii svolti sulle applicaioni lineari Eserciio. Si consideri la trasformaione lineare T : R R che ha come matrice associata, rispetto alla base β = {,, ) T ;,, ) T ;,, ) T}

Dettagli

SISTEMI DI EQUAZIONI LINEARI

SISTEMI DI EQUAZIONI LINEARI SISTEMI DI EQUAZIONI LINEARI Date le rette di equazioni ax + by + c = 0 e a x + b y + c = 0 quanti punti hanno in comune? Per rispondere devo risolvere il sistema ax + by + c = 0 ቊ a x + b y + c = 0 e

Dettagli

(V) (FX) L unione di due basi di uno spazio vettoriale è ancora una base dello spazio vettoriale.

(V) (FX) L unione di due basi di uno spazio vettoriale è ancora una base dello spazio vettoriale. 8 gennaio 2009 - PROVA D ESAME - Geometria e Algebra T NOME: MATRICOLA: a=, b=, c= Sostituire ai parametri a, b, c rispettivamente la terzultima, penultima e ultima cifra del proprio numero di matricola

Dettagli

LEZIONE 12. Y = f(x) = f( x j,1 f(e j ) = x j,1 A j = AX = µ A (X),

LEZIONE 12. Y = f(x) = f( x j,1 f(e j ) = x j,1 A j = AX = µ A (X), LEZIONE 1 1.1. Matrice di un applicazione lineare. Verifichiamo ora che ogni applicazione lineare f: R n R m è della forma µ A per un unica A R m,n. Definizione 1.1.1. Per ogni j 1,..., n indichiamo con

Dettagli

Esercitazioni del Marzo di Geometria A

Esercitazioni del Marzo di Geometria A Esercitazioni del -5 Marzo di Geometria A Università degli Studi di Trento Corso di laurea in Matematica AA 07/08 Matteo Bonini matteobonini@unitnit Esercizio Si consideri la matrice 0 A 0 0 0 0 (i Scrivere

Dettagli

Prodotto scalare e ortogonalità

Prodotto scalare e ortogonalità Prodotto scalare e ortogonalità 12 Novembre 1 Il prodotto scalare 1.1 Definizione Possiamo estendere la definizione di prodotto scalare, già data per i vettori del piano, ai vettori dello spazio. Siano

Dettagli

Geometria BAER I canale Foglio esercizi 3

Geometria BAER I canale Foglio esercizi 3 Geometria BAER I canale Foglio esercizi 3 Esercizio. Discutere le soluzioni del seguente sistema lineare nelle incognite,, z al variare del parametro k. 3 + kz = k k + 3z = k k + z = Soluzione: Il determinante

Dettagli

Geometria BAER Canale A-K Esercizi 11

Geometria BAER Canale A-K Esercizi 11 Geometria BAER 6-7 Canale A-K Esercizi Esercizio. Scrivere la matrice delle seguenti trasformazioni ortogonali del piano (a Proiezione ortogonale sulla retta x + y = (b Rotazione di π/4 seguita da riflessione

Dettagli

Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria Edile ed Edile/Architettura. Geometria Proiettiva Docente F.

Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria Edile ed Edile/Architettura. Geometria Proiettiva Docente F. Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria Edile ed Edile/Architettura Geometria Proiettiva Docente F. Flamini CONICHE PROIETTIVE: Classificazione e forme canoniche proiettive Si

Dettagli

UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE CORSO DI LAUREA IN ECONOMIA BANCARIA FINANZIARIA ED ASSICURATIVA

UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE CORSO DI LAUREA IN ECONOMIA BANCARIA FINANZIARIA ED ASSICURATIVA UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE CORSO DI LAUREA IN ECONOMIA BANCARIA FINANZIARIA ED ASSICURATIVA II Parziale - Compito C 3/5/25 A. A. 24 25 ) Risolvere il seguente sistema

Dettagli

Sistemi lineari. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara

Sistemi lineari. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara Sistemi lineari Lorenzo Pareschi Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara http://utenti.unife.it/lorenzo.pareschi/ lorenzo.pareschi@unife.it Lorenzo Pareschi (Univ. Ferrara)

Dettagli

Algebra Lineare. a.a Gruppo A-H. Prof. P. Piazza Soluzioni compito pomeridiano del 20/12/2004

Algebra Lineare. a.a Gruppo A-H. Prof. P. Piazza Soluzioni compito pomeridiano del 20/12/2004 Algebra Lineare. a.a. 2004-05. Gruppo A-H. Prof. P. Piazza Soluzioni compito pomeridiano del 20/12/2004 Esercizio 1. Consideriamo una retta r dello spazio affine. Diremo che le equazioni cartesiane di

Dettagli

Equivalentemente, le colonne di A sono linearmente indipendenti se e solo se

Equivalentemente, le colonne di A sono linearmente indipendenti se e solo se Lezioni di Algebra Lineare. Versione novembre 2008 VI. Il determinante Il determinante det A di una matrice A, reale e quadrata, è un numero reale associato ad A. Dunque det è una funzione dall insieme

Dettagli

Corso di Geometria, a.a Ing. Informatica e Automatica Esercizi VI: soluzioni

Corso di Geometria, a.a Ing. Informatica e Automatica Esercizi VI: soluzioni Corso di Geometria, a.a. 2009-2010 Ing. Informatica e Automatica Esercizi VI: soluzioni 5 novembre 2009 1 Geometria del piano e prodotto scalare Richiami. Il prodotto scalare di due vettori del piano v,

Dettagli

P z. OP x, OP y, OP z sono le proiezioni ortogonali di v sugli assi x, y, z, per cui: OP x = ( v i) i. k j. P x. OP z = ( v k) k

P z. OP x, OP y, OP z sono le proiezioni ortogonali di v sugli assi x, y, z, per cui: OP x = ( v i) i. k j. P x. OP z = ( v k) k Richiami di calcolo vettoriale Consideriamo il vettore libero v = OP. Siano P x, P y, P z le proiezioni ortogonali di P sui tre assi cartesiani. v è la diagonale del parallelepipedo costruito su OP x,

Dettagli

r 2 r 2 2r 1 r 4 r 4 r 1

r 2 r 2 2r 1 r 4 r 4 r 1 SPAZI R n 1. Esercizi Esercizio 1. Stabilire quali dei seguenti sottoinsiemi sono sottospazi: V 1 = {(x, y, z) R 3 /x = y = z} V = {(x, y, z) R 3 /x = 4} V 3 = {(x, y, z) R 3 /z = x } V 4 = {(x, y, z)

Dettagli

SOLUZIONE della prova scritta di Algebra Lineare e Geometria assegnata giorno 1 ottobre 2012

SOLUZIONE della prova scritta di Algebra Lineare e Geometria assegnata giorno 1 ottobre 2012 Prova scritta di giorno ottobre 0 SOLUZIONE della prova scritta di Algebra Lineare e Geometria assegnata giorno ottobre 0 x ) Sia X = z u e solo se I y t una matrice in R 3, X V se e solo se esiste λ R

Dettagli

Geometria analitica del piano pag 12 Adolfo Scimone

Geometria analitica del piano pag 12 Adolfo Scimone Geometria analitica del piano pag 12 Adolfo Scimone Fasci di rette Siano r e r' due rette distinte di equazioni r: ax + by + c r': a' x + b' y + c' Consideriamo la retta combinazione lineare delle due

Dettagli

Corso di Geometria BIAR, BSIR Esercizi 4: soluzioni

Corso di Geometria BIAR, BSIR Esercizi 4: soluzioni Corso di Geometria - BIAR, BSIR Esercizi : soluzioni Esercizio. Sono dati i seguenti sistemi lineari omogenei nelle incognite x, y, z: { x + y z = x + y z = x + y z = S : x y + z =, S :, S 3 : x 3y =,

Dettagli

Geometria BAER Canale I Esercizi 12

Geometria BAER Canale I Esercizi 12 Geometria BAER Canale I Esercizi Esercizio. x = 0 x = Date le rette r : y = t e s : y = t, si verifichi che sono sghembe e si scrivano le equazioni z = t z = t parametriche di una retta r ortogonale ed

Dettagli

GEOMETRIA /2009 II

GEOMETRIA /2009 II Universita degli Studi di Roma - "Tor Vergata" - Facolta Ingegneria Esercizi GEOMETRIA Edile e Edile-Architettura - a.a. 008/009 II Emisemestre - Settimana - Foglio 0 Docente: Prof. F. Flamini - Tutore:

Dettagli

Analisi Matematica 1 e Matematica 1 Geometria Analitica: Coniche

Analisi Matematica 1 e Matematica 1 Geometria Analitica: Coniche Analisi Matematica 1 e Matematica 1 Geometria Analitica: Coniche Annalisa Amadori e Benedetta Pellacci amadori@uniparthenope.it pellacci@uniparthenope.it Università di Napoli Parthenope Contenuti Coniche

Dettagli

Testi di esercizi di preparazione alla I prova in itinere Gli esercizi in elenco sono in gran parte tratti da vecchie prove d esame

Testi di esercizi di preparazione alla I prova in itinere Gli esercizi in elenco sono in gran parte tratti da vecchie prove d esame Testi di esercii di preparaione alla I prova in itinere Gli esercii in elenco sono in gran parte tratti da veccie prove d esame Eserciio Al variare di k discutere e ove possibile risolvere il sistema lineare

Dettagli

CORSO DI LAUREA IN INGEGNERIA.

CORSO DI LAUREA IN INGEGNERIA. CORSO DI LAUREA IN INGEGNERIA. FOGLIO DI ESERCIZI 9 GEOMETRIA E ALGEBRA LINEARE 2012/13 Esercizio 9.1 (8.40). Sia T : R 2 R 3 l applicazione definita da T(x,y) = (2x,x y,2y), e siano B = {(1,0), (1,1)

Dettagli

ATTENZIONE: : giustificate le vostre argomentazioni! Geometria Canale 3. Lettere J-PE (Prof P. Piazza) Esame scritto del 12/02/2014. Compito A.

ATTENZIONE: : giustificate le vostre argomentazioni! Geometria Canale 3. Lettere J-PE (Prof P. Piazza) Esame scritto del 12/02/2014. Compito A. Geometria Canale. Lettere J-PE (Prof P. Piazza) Esame scritto del 12/02/2014. Compito A. Nome e Cognome: Numero di Matricola: Esercizio Punti totali Punteggio 1 7 2 6 6 4 6+1 5 6+2 Totale 1+ ATTENZIONE:

Dettagli

CORSO DI LAUREA IN INGEGNERIA EDILE/ARCHITETTURA

CORSO DI LAUREA IN INGEGNERIA EDILE/ARCHITETTURA CORSO DI LAUREA IN INGEGNERIA EDILE/ARCHITETTURA II PROVA DI ACCERTAMENTO, FILA B GEOMETRIA 19/06/008 Esercizio 0.1. Si consideri il seguente endomorfismo di R 4 T (x, y, z, w) = (x + y z + w, y z, x +

Dettagli

GEOMETRIA svolgimento di uno scritto del 11 Gennaio 2012

GEOMETRIA svolgimento di uno scritto del 11 Gennaio 2012 GEOMETRIA svolgimento di uno scritto del Gennaio ) Trovare una base per lo spazio delle soluzioni del seguente sistema omogeneo: x + y 5z = 3x y + z = x y + 8z =. Il sistema può essere scritto in forma

Dettagli

12 gennaio Commenti esame di geometria - Ing. gestionale - a.a

12 gennaio Commenti esame di geometria - Ing. gestionale - a.a Questo documento riporta commenti, approfondimenti o metodi di soluzione alternativi per alcuni esercizi dell esame Ovviamente alcuni esercizi potevano essere risolti utilizzando metodi ancora diversi

Dettagli

La retta nel piano. Supponiamo che la retta r sia assegnata attraverso un suo punto P 0 (x 0, y 0 ) e un vettore v (l, m) che ne indichi la direzione.

La retta nel piano. Supponiamo che la retta r sia assegnata attraverso un suo punto P 0 (x 0, y 0 ) e un vettore v (l, m) che ne indichi la direzione. La retta nel piano Equazioni vettoriale e parametriche di una retta Supponiamo che la retta r sia assegnata attraverso un suo punto P 0 (x 0, y 0 ) e un vettore v (l, m) che ne indichi la direzione. Condizione

Dettagli

Geometria affine e proiettiva

Geometria affine e proiettiva Geometria affine e proiettiva Laura Facchini 7 aprile 20 Esercizio. Sia E 4 il 4-spazio euclideo numerico dotato del riferimento cartesiano standard di coordinate (x, y, z, w. Siano P (0, 0,,, P (, 2,,,

Dettagli

Elementi di Algebra Lineare

Elementi di Algebra Lineare Elementi di Algebra Lineare Corso di Calcolo Numerico, a.a. 2009/2010 Francesca Mazzia Dipartimento di Matematica Università di Bari 13 Marzo 2006 Francesca Mazzia (Univ. Bari) Elementi di Algebra Lineare

Dettagli

A = e 1 = e 2 + e 3, e 2 = e 1 + e 3, e 3 = e 1, ; e 3 =

A = e 1 = e 2 + e 3, e 2 = e 1 + e 3, e 3 = e 1, ; e 3 = aa -6 Soluzioni Esercizi Applicazioni lineari Sia data l applicazione lineare F : R R, F X A X, dove A i Sia {e, e, e } la base canonica di R Far vedere che i vettori e e + e, e e + e, e e, formano una

Dettagli

LAUREA IN INGEGNERIA CIVILE ED AMBIENTE-TERRITORIO Corso di Matematica 2 Padova TEMA n.1

LAUREA IN INGEGNERIA CIVILE ED AMBIENTE-TERRITORIO Corso di Matematica 2 Padova TEMA n.1 LAUREA IN INGEGNERIA CIVILE ED AMBIENTE-TERRITORIO Corso di Matematica Padova -8-8 TEMA n.1 PARTE 1. Quesiti preliminari Stabilire se le seguenti affermazioni sono vere o false giustificando brevemente

Dettagli

Ricordiamo. 1. Tra le equazioni delle seguenti rette individua e disegna quelle parallele all asse delle ascisse:

Ricordiamo. 1. Tra le equazioni delle seguenti rette individua e disegna quelle parallele all asse delle ascisse: La retta Retta e le sue equazioni Equazioni di rette come luogo geometrico y = h h R equazione di una retta parallela all asse delle ascisse x = 0 equazione dell asse delle ordinate y = h h R equazione

Dettagli

Sistemi lineari. a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2 : : : a m1 x 1 + a m2 x 2 +..

Sistemi lineari. a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2 : : : a m1 x 1 + a m2 x 2 +.. Sistemi lineari: definizioni Sistemi lineari Un equazione nelle n incognite x,, x n della forma c x + + c n x n = b ove c,, c n sono numeri reali (detti coefficienti) e b è un numero reale (detto termine

Dettagli

Istituzioni di Matematiche Modulo A (ST)

Istituzioni di Matematiche Modulo A (ST) Istituzioni di Matematiche Modulo A (ST V II foglio di esercizi ESERCIZIO. Nei seguenti sistemi lineari, discutere l insieme delle soluzioni al variare del parametro t, o dei parametri t e τ, in R. 5 x

Dettagli

3. Elementi di Algebra Lineare.

3. Elementi di Algebra Lineare. CALCOLO NUMERICO Francesca Mazzia Dipartimento Interuniversitario di Matematica Università di Bari 3. Elementi di Algebra Lineare. 1 Sistemi lineari Sia A IR m n, x IR n di n Ax = b è un vettore di m componenti.

Dettagli

Prova scritta di Algebra lineare e Geometria- 16 Aprile 2010

Prova scritta di Algebra lineare e Geometria- 16 Aprile 2010 CdL in Ingegneria del Recupero Edilizio ed Ambientale - - Ingegneria Edile-Architettura (M-Z)- Ingegneria delle Telecomunicazioni - - Ingegneria Informatica (A-F), (R-Z) Prova scritta di Algebra lineare

Dettagli

Esercizi di geometria per Fisica / Fisica e Astrofisica

Esercizi di geometria per Fisica / Fisica e Astrofisica Esercizi di geometria per Fisica / Fisica e Astrofisica Foglio 3 - Soluzioni Esercizio. Stabilire se i seguenti sottoinsiemi di R 3 sono sottospazi vettoriali: (a) S = {(x y z) R 3 : x + y + z = }. (b)

Dettagli

AUTOVALORI, AUTOVETTORI, AUTOSPAZI

AUTOVALORI, AUTOVETTORI, AUTOSPAZI AUTOVALORI, AUTOVETTORI, AUTOSPAZI. Esercizi Esercizio. Sia f : R 3 R 3 l endomorfismo definito da f(x, y, z) = (x+y, y +z, x+z). Calcolare gli autovalori ed una base per ogni autospazio di f. Dire se

Dettagli

Sistemi Lineari I. March 22, 2015

Sistemi Lineari I. March 22, 2015 Sistemi Lineari I March 22, 205 Sistemi lineari Nel seguito denoteremo con K il campo reale o il campo complesso e con K n l insieme delle n-uple ordinate di elementi di K Sia D un sottoinsieme di K n

Dettagli

UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE CORSO DI LAUREA IN ECONOMIA BANCARIA FINANZIARIA ED ASSICURATIVA

UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE CORSO DI LAUREA IN ECONOMIA BANCARIA FINANZIARIA ED ASSICURATIVA UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE CORSO DI LAUREA IN ECONOMIA BANCARIA FINANZIARIA ED ASSICURATIVA II Parziale - Compito B 3/05/005 A. A. 004 005 ) Risolvere il seguente sistema

Dettagli

Geometria 2. Università degli Studi di Trento Corso di Laurea in Matematica A.A. 2011/ luglio 2012

Geometria 2. Università degli Studi di Trento Corso di Laurea in Matematica A.A. 2011/ luglio 2012 Geometria Università degli Studi di Trento Corso di Laurea in Matematica A.A. 011/01 0 luglio 01 Si svolgano i seguenti esercizi. Esercizio 1. Sia E il -spazio euclideo dotato del riferimento cartesiano

Dettagli

Sistemi II. Sistemi II. Elisabetta Colombo

Sistemi II. Sistemi II. Elisabetta Colombo Corso di Approfondimenti di Matematica per Biotecnologie, Anno Accademico 2011-2012, http://users.mat.unimi.it/users/colombo/programmabio.html 1 2 3 con R.C.+ o 1.10 Rango massimo e determinante con R.C.+

Dettagli

Esercitazioni del Aprile di Geometria A

Esercitazioni del Aprile di Geometria A Esercitazioni del 4-6-7-8 Aprile di Geometria A Università degli Studi di Trento Corso di laurea in Matematica A.A. 7/8 Matteo Bonini matteo.bonini@unitn.it Esercizio Si considerino in E 3 (R) i piani

Dettagli

Dipendenza e indipendenza lineare (senza il concetto di rango)

Dipendenza e indipendenza lineare (senza il concetto di rango) CAPITOLO 5 Dipendenza e indipendenza lineare (senza il concetto di rango) Esercizio 5.1. Scrivere un vettore w R 3 linearmente dipendente dal vettore v ( 1, 9, 0). Esercizio 5.2. Stabilire se i vettori

Dettagli

Corso di Laurea in Matematica - Esame di Geometria UNO. Prova scritta del 4 settembre 2014

Corso di Laurea in Matematica - Esame di Geometria UNO. Prova scritta del 4 settembre 2014 Corso di Laurea in Matematica - Esame di Geometria UNO Prova scritta del 4 settembre 014 Cognome Nome Numero di matricola Corso (A o B) Voto ATTENZIONE. Riportare lo svolgimento completo degli esercizi.

Dettagli