misura. Adesso, ad un arbitrario punto P dello spazio associamo una terna di numeri reali x

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "misura. Adesso, ad un arbitrario punto P dello spazio associamo una terna di numeri reali x"

Transcript

1 4. Geometria di R 3. Questo paragrafo è molto simile al paragrafo : tratta infatti delle proprietà geometriche elementari dello spazio R 3. Per assegnare delle coordinate nello spazio, fissiamo innanzitutto un punto, che chiamiamo l origine. Scegliamo poi tre rette perpendicolari che si incontrano in : due rette orizzontali come assi delle e delle, e la terza verticale come asse delle. Fissiamo su di esse un verso edun unità di misura. Adesso, ad un arbitrario punto P dello spazio associamo una terna di numeri reali, che indicano rispettivamente le proiezioni di P sugli assi delle, e. P Fig.. Il punto P = ( nello spazio R 3. Le coordinate, e 3 individuano il punto P in modo unico. Si possono identificare quindi i punti P dello spazio con le terne : P =. Ad esempio, i punti sull asse delle sono quelli che soddisfano = =, i punti sull asse delle quelli che soddisfano = = e i punti sull asse delle quelli che soddisfano = =. L origine è il punto. L insieme delle terne ordinate si chiama spazio cartesiano e si indica con R 3 : R 3 = { :,, R}. Nello spazio R 3, insieme agli assi coordinati, si considerano anche i piani coordinati: sono i tre piani ortogonali che si intersecano nell origine, ognuno dei quali contiene due dei 3 assi coordinati. Essi sono: il piano (, i cui punti soddisfano =, il piano (, i cui punti soddisfano = ed il piano (, i cui punti soddisfano =.

2 = = = Fig.2. I piani coordinati in R 3 Come nel caso del piano, indicheremo in seguito con estremo il punto. anche il vettore uscente dall origine e di Fig.3. Il vettore = (. Il vettore = di lunghezza zero, si chiama vettore nullo. Per semplicità di notazione, scriveremo spesso sottointendendo = ; similmente scriveremo y per y y 2, etc... y 3 2

3 Definizione. Siano e y due vettori in R 3. Allora la somma + y di e y è il vettore dato da + y = + y + y 2 + y 3 Il vettore opposto del vettore è il vettore = La differenza y dei vettori e y è il vettore y = y y 2 y 3 Definizione. Sia λ R. Il prodotto di per λ è il vettore dato da λ = λ λ λ Come nel piano, anche nello spazio la somma tra vettori ha un interpretazione geometrica. Osserviamo che due vettori qualunque e y in R 3 sono contenuti in un piano π passante per, e y. Il vettore somma + y si trova applicando la regola del parallelogramma ai vettori e y sul piano π. Per costruzione, + y è contenuto nel piano π. Resta solo da verificare che le coordinate di + y così ottenute sono effettivamente + y + y 2 + y 3 Anche in R 3, il vettore differenza y è paralello alla retta passante per e y; la lunghezza di y è uguale alla distanza fra e y. y +y -y Fig.4. La somma + y, la differenza y. Osservazione. La costruzione appena discussa è utile perché riconduce la somma di vettori nello spazio ad una somma di vettori sul piano. Ci permette inoltre di definire l angolo ϑ fra due vettori e y dello spazio, 3

4 come l angolo da essi formato nel piano π che li contiene. Nel caso in cui e y sono uno multiplo dell altro, il piano π non è unico ed i vettori, y, + y, y stanno tutti sulla stessa retta. In questo caso, l angolo fra e y è ϑ =. y θ Fig.5 L angolo ϑ fra e y. La somma fra vettori gode delle seguenti proprietà: Proposizione 4.. (i (Proprietà associativa della somma Per ogni, y, z R 3 ( + y + z = + (y + z; (ii (Proprietà commutativa Per ogni, y R 3 + y = y + ; (iii (Proprietà associativa del prodotto Per ogni R 3 e λ, µ R λ(µ = (λµ; (iv (Proprietà distributiva Per ogni, y R 3 e λ, µ R λ( + y = λ + λy, (λ + µ = λ + µ. Dimostrazione. Anche in questo caso, le proprietà (i, (ii, (iii e (iv sono semplici conseguenze delle analoghe proprietà dei numeri reali. Definizione. (Prodotto scalare. Dati due vettori e y in R 3 il prodotto scalare y è il numero reale dato da y = y + y 2 + y 3. Il prodotto scalare gode delle seguenti proprietà 4

5 Proposizione 4.2. (i (Proprietà commutativa Per ogni, y R 3 y = y ; (ii (Proprietà distributiva Per ogni, y, z R 3 (y + z = y + z; (iii (Omogeneità Per ogni, y R 3 ed ogni λ R λ( y = (λ y = (λy; (iv (Positività Per ogni R 3, = se e soltanto se =. Dimostrazione. La dimostrazione è molto simile a quella della Prop..2 ed è lasciata al lettore. Definizione. La norma di un vettore R 3 è definita da = = Per il Teorema di Pitagora, la norma del vettore è uguale alla lunghezza del segmento congiungente e. Equivalentemente, la norma di è la distanza del punto dall origine Fig.6. Il Teorema di Pitagora in R 3. Analogamente, dalla Fig.4 vediamo che y è la distanza fra i punti e y y 2. Usando la norma, y 3 diamo un interpretazione geometrica del prodotto scalare. Proposizione 4.3. Siano e y due vettori in R 3. (i Allora y = y cos ϕ dove ϕ è l angolo fra i vettori e y. (ii I vettori e y sono perpendicolari se e soltanto se y =. 5

6 Dimostrazione. Sia π un piano che passa per, e y. Consideriamo in π il triangolo di vertici i punti, e y. Dalla Fig.4, vediamo che i lati del triangolo hanno lunghezze, y e y. Applicando la regola del coseno troviamo y 2 = 2 + y 2 2 y cos ϕ. Dalla definizione stessa della norma abbiamo e quindi ( y 2 + ( y ( y 3 2 = y 2 + y y y cos ϕ 2 y 2 y 2 2 y 3 = 2 y cos ϕ come richiesto. Per la parte (ii, osserviamo che cos ϕ = se e soltanto se ϕ = ±π/2, cioè se e soltanto se ϕ è un angolo retto. Corollario 4.4. (Disuguaglianza di Cauchy-Schwarz. Siano e y vettori in R 3. Allora y y. Dimostrazione. Questo segue dal fatto che cos ϕ. (Vedi l Eserc..B. Proposizione 4.5. Siano e y vettori in R 3. Allora (i (Disugualianza triangolare + y + y ; (ii Per ogni λ R λ = λ. Dimostrazione. (i Sia π un piano che passa per, e y. In π c è il triangolo di vertici, e + y. Poiché i lati hanno lunghezze, y e + y, la disuguaglianza triangolare in R 3 segue dalla disuguaglianza triangolare nel piano. Una seconda dimostrazione dello stesso fatto si può ottenere anche usando la disuguaglianza di Cauchy-Schwarz del Cor.4.4: + y 2 = ( + y 2 + ( + y ( + y 3 2 = y 2 + y y ( y + y 2 + y 3 = 2 + y y, 2 + y y = ( + y 2. Poiché + y e + y sono numeri non negativi, possiamo estrarne le radici quadrate ottenendo la disuguaglianza cercata. (ii Direttamente dalla definizione della norma troviamo Estraendo le radici quadrate, otteniamo come richiesto. λ 2 = (λ 2 + (λ 2 + (λ 2 = λ 2 ( = λ 2 2. λ = λ Come applicazione del prodotto scalare, calcoliamo le proiezioni ortogonali di un vettore R 3 su una retta l o su un piano β, passanti per l origine. Proposizione 4.6. Siano e y due vettori in R 3, con y. Allora si decompone in modo unico come = cy + z con c R e z perpendicolare a y Per lo scalare c vale la seguente formula c = y y y Il vettore cy è detto la proiezione ortogonale di sulla retta passante per l origine e parallela al vettore y. Il vettore z = cy è detto la proiezione ortogonale di sul piano passante per l origine di equazione e perpendicolare a y. 6

7 Dimostrazione. La dimostrazione è del tutto simile a quella della Proposizione.6 ed è lasciata al lettore. π β ( β Fig.7. La proiezione ortogonale del vettore sul piano β. Conseriamo adesso matrici 3 3 (a coefficienti reali, cioè tabelle di numeri della forma A = a a 2 a 3 a 2 a 22 a 23 a 3 a 32 a 33 Le righe della matrice sono tre vettori di R 3 (scritti orizzontalmente anzichè verticalmente, denotati A, A 2 e A 3. Le colonne di A sono tre vettori di R 3, denotati rispettivamente A, A 2 e A 3. Per esempio: A = Ad esempio: il coefficiente a 2 = 3, a 3 = 2, A 3 = (2,,, A 3 = Definizione. Il determinante di A è il numero reale. det A = a a 22 a 33 + a 2 a 23 a 3 + a 3 a 2 a 32 a 3 a 22 a 3 a 2 a 2 a 33 a a 23 a 32 Nell esempio precedente det A = = 6. Definizione.La matrice trasposta di una matrice A è la matrice A T le cui colonne sono righe di A. Se A è quella dell esempio precedente, si ha che A T = Una prima proprietà, che segue immediamatamente dalla definizione, è (i det A = det A T 7

8 Grazie a ciò, tutte le proprietà del determinante espresse in funzione delle righe sono vere anche in funzione delle colonne, e viceversa. Definizione.Fissati i, j =, 2, 3, la sottomatrice complementare di a ij è la matrice 2 2 che si ottiene da A cancellando la i-esima riga e la j-esima colonna. Essa si denota A ij. Nell esempio precedente si ha, ad esempio, che A 32 = è la seguente (ii Sviluppi di Laplace. Si ha che: (. Un altra utile proprietà dei determinanti 3 per ogni fissato i =, 2, 3 3 ( i+j a ij det A ij j= (sviluppo secondo la i-esima riga per ogni fissato j =, 2, 3 3 ( i+j a ij det A ij i= (sviluppo secondo la j-esima colonna Anche questo segue direttamente dalla definizione. Ad esempio, per i =, raccogliendo di termini a j per j =, 2, 3 (ciascuno di essi sta in due addendi nella formula della definizione di determinante si ha lo sviluppo secondo la prima riga: det A = a (a 22 a 33 a 23 a 32 a 2 (a 2 a 33 a 23 a 3 +a 3 (a 2 a 32 a 22 a 3 = a det A a det A 2 +a 3 det A 3. Ad esempio, sviluppando dalla seconda riga il determinante della matrice A dell esempio si calcola: ( ( ( 3 3 det A = 2 det 7 det det = = Sviluppando invece dalla terza colonna abbiamo det A = det ( ( ( det det = = Altre proprietà che seguono subito dalla definizione o da un appropriato sviluppo di Laplace: (iii Scambiando due righe (o due colonne il determinante cambia segno; (iv Se due righe (o due colonne sono vettori proporzionali, allora il determinante è zero. Introduciamo adesso il prodotto vettoriale in R 3 : si noti che il prodotto vettoriale non è definito nel piano R 2, né in R n per n > 3. È una nozione che esiste solo in R3. Il prodotto vettoriale è un applicazione che ad una coppia di vettori, y R 3 associa un terzo vettore y R 3. Nella seguente definizione usiamo la seguente notazione: i, j, k denotano i versori dei tra assi coordinati, cioé i =, j =, k =, Definizione. Siano, y R 3. Il prodotto vettoriale y di e y è il vettore di R 3 definito formalmente come y = det i y j y 2 k y 3 8

9 sviluppato secondo la prima riga, cioè y = ( y 3 y 2 ( y 3 y + ( y 2 y = 2y 3 y 2 y y 3 y 2 y A questo punto abbiamo la seguente interpretazione geometrica del determinante. Usiamo la seguente Notazione. Dati tre vettori, y, z R 3 denotiamo ( y z la matrice le cui colonne sono rispettivamente, y e z. In altre parole: ( y z = y z y 2 z 2 y 3 z 3 Proposizione 4.7. Siano, y, z R 3. Allora det ( y z = (y z Dimostrazione. Per definizione (y z = ( y 3 y 2 + ( y y 3 + ( y 2 y, cioè lo sviluppo di det ( y z secondo la prima colonna. bigskip Abbiamo inoltre Proposizione 4.8. Siano, y R 3. Il prodotto vettoriale y gode delle seguenti proprietà: (i y = y; (ii Il vettore y è perpendicolare sia ad che a y: (iii La norma di y soddisfa ( y =, y ( y = ; y = y sen ϕ, dove ϕ è l angolo fra e y. Dunque y è uguale all area del parallelogramma di vertici,, y e + y, Dimostrazione. (i Direttamente dalla definizione, o usando il fatto che, scambiando due colonne, il determinante cambia segno. (ii Per la proposizione precedente, ( y = det ( y, cioè il determinante di una matrice con due colonne uguali, che è zero per la proprietà (iv del determinante. Questo dimostra che e y sono perpendicolari. Similmente troviamo y ( y =. Per la parte (iii abbiamo 2 y 2 sen 2 ϕ = 2 y 2 ( cos 2 ϕ = 2 y 2 ( y 2 = ( (y 2 + y y 2 3 ( y + y 2 + y 3 2 = y y y 2 + 2y y 2 + 3y y y 2 2 y y 3 2 y 2 y 3 = ( y 2 y 2 + ( y 3 y 2 + ( y 3 y 2 2 = y 2. Estraendo le radici quadrate, troviamo l uguaglianza cercata. Poichè poi è la lunghezza della base del parallegramma costruito su e y e y sen ϕ è l altezza ( o viceversa, abbiamo dimostrato anche l ultima parte dell enunciato (iii. Proposizione 4.9. (i Il parallelepipedo di spigoli i vettori, y e z ha volume V dato da V = det ( y z (ii det ( y z = se e solo se almeno uno dei vettori, y e z sta nel piano (o nella retta passante per l origine e generato dagli altri due. 9

10 Dimostrazione. (i Il volume V del parallelepipedo di spigoli, y e z è uguale all area del parallelogramma di vertici,, y e + y moltiplicata per l altezza. L altezza è uguale alla lunghezza della proiezione del vettore z sulla retta che passa per e y. y θ z y ϕ Fig.8. Il parallelepipedo di spigoli, y e z. Per la Prop.4.8, l area del parallelogramma è uguale a y sen ϕ, ove ϕ è l angolo fra i vettori e y, e la lunghezza della proiezione di z sulla retta per e y è uguale a z cos ϑ, ove ϑ è l angolo fra i vettori z e y. Il volume V è quindi dato da V = y sen ϕ z cos ϑ = y z cos ϑ = z ( y = det ( y z. dove la seconda uguaglianza segue dalla proposizione precedente, la terza dalla prop..3 (prima dispensa e l ultima uguaglianza segue dalla Proposizione 4.7. (ii Segue dal punto (i e dal fatto che un parallelepipedo ha volume zero se e solo ha dimensione due o uno, cioè almeno uno dei vettori sta nel piano generato dagli altri due (se ha dimensione due oppure, nel caso dimensione uno, se tutti e tre i vettori sono proprozionali. Definizione. L orientazione Or(, y, z di tre vettori, y, z R 3 è il segno del determinante det y z y 2 z 2 y 3 z 3 Si dice che, y, z sono orientati positivamente se Or(, y, z >. Per esempio, i vettori e, e 2 e e 3 sono orientati positivamente perchè det = + + =. Scambiare due vettori cambia il segno dell orientazione: Or(y,, z = Or(, y, z. Geometricamente, tre vettori, y e z sono orientati positivamente se possono essere identificati rispettivamente con il medio, il pollice e l indice della mano destra. Altrimenti sono orientati negativamente e possono essere identificati rispettivamente con il medio, il pollice e l indice della mano sinistra.

11 z indice z indice y pollice medio medio y pollice Mano sinistra Mano destra Fig.9. L orientazione. Osservazione. I vettori {, y e y} formano una terna di vettori orientata positivamente. Esercizi. (4.A Siano = ( 2 3 e y = ( 2 3 due vettori in R 3. (i Calcolare y, + 3y e 2 + y. (ii Calcolare le lunghezze di questi vettori. (4.B Siano e y i vettori dell Eserc.4.A. (i Calcolare i prodotti scalari y, e anche (5 + 7y. (ii Calcolare il coseno dell angolo fra e y. (iii Calcolare il coseno dell angolo fra e + y. (4.C Sia il vettore dell Eserc.4.A. (i Trovare un vettore v tale che v =. (ii Trovare un vettore w tale che { w =, v w =. (4.D Sia v R 3 un vettore non nullo. Sia λ = v. (i Calcolare la lunghezza di λ v. (ii Trovare un vettore parallelo a v che abbia lunghezza /λ. (4.E Siano e y due vettori in R 3. Sia v = (i Calcolare le distanze y, v e y v. (ii Far vedere che v è il punto medio fra e y. (4.F Siano e y i due vettori dell Eserc.4.A. (i Calcolare y. (ii Calcolare ( y. (iii Calcolare l area del triangolo di vertici, e y. ( ( + y /2 ( + y 2/2. ( + y 3/2 ( ( (4.G Siano = e y = 2. (i Trovare un vettore v perpendicolare sia a che a y. (ii Trovare un vettore come nella parte (i, di lunghezza.

12 (4.H Siano, y e z i vettori (, 2 ( 2, 2 ( 3. (i Calcolare il volume del parallelepipedo che ha come spigoli i vettori, y e z. (ii Calcolare il volume del parallelepipedo che ha come spigoli i vettori 2, y e z. (iii Calcolare il volume del parallelepipedo che ha come spigoli i vettori + y, y e z. (iv Calcolare il volume del parallelepipedo che ha come spigoli i vettori + 5y + 7z, y e z. (4.I Siano, y e z i vettori in R 3 dati da ( (4.J Siano = 2 ( 6 2, 3 ( 2 3, 6 ( (i Calcolare le lunghezze di, y e z e i coseni degli angoli fra, y e z. (ii Calcolare il volume del parallelepipedo che ha come spigoli i vettori + 5y + 7z, y e z. ( ( e y = e z =. 3 (i Calcolare i vettori ( y z ed (y z. (ii Calcolare ( y z ed (y z. (4.K Siano, y e z i vettori dell Eserc.4.H. (i Calcolare l orientazione Or(, y, z. (ii Calcolare l orientazione Or(y, z,. (iii Calcolare l orientazione Or(, y, + y. (4.L Siano,,..., 8 R 3 gli otto punti in R 3 dati da ( ( =, =, = 5 = ( 5, 6 = ( 5, 7 = ( 2 ( 2 5. (, 4 = (, 8 =. 5 (i Far vedere che,, e 4 sono i vertici di un parallelogramma. (ii Far vedere che i + 5 = i+4 per ogni i, i 4. (iii Far vedere che,..., 8 formano i vertici di un parallelepipedo. Calcolarne il volume. (4.M Siano, y, z R 3 e supponiamo che Or(, y, z = +. (i Far vedere che i vettori, y e z si possono mettere in ordine in sei modi diversi:, z, y oppure z,, y ecc. (ii Per tutti i sei modi calcolare l orientazione: Or(, z, y, Or(z,, y... ecc. (4.N Siano α, β, γ R numeri non nulli che soddisfano α + β + γ =. Consideriamo i seguenti vettori in R 3 : p = ( αβ βγ, q = γα ( βγ γα, r = αβ ( γα αβ. βγ (i Calcolare gli angoli fra i vettori p, q e r. (ii Calcolare il volume del parallelepipedo che ha come spigoli i vettori p, q e r. 2

misura. Adesso, ad un arbitrario punto P dello spazio associamo una terna di numeri reali x

misura. Adesso, ad un arbitrario punto P dello spazio associamo una terna di numeri reali x 4. Geometria di R 3. Questo paragrafo è molto simile al paragrafo : tratta infatti delle proprietà geometriche elementari dello spazio R 3. Per assegnare delle coordinate nello spazio, fissiamo innanzitutto

Dettagli

misura. Adesso, ad un arbitrario punto P dello spazio associamo una terna di numeri reali x

misura. Adesso, ad un arbitrario punto P dello spazio associamo una terna di numeri reali x 4. Geometria di R 3. Questo paragrafo è molto simile al paragrafo : tratta infatti delle proprietà geometriche elementari dello spazio R 3. Per assegnare delle coordinate nello spazio, fissiamo innanzitutto

Dettagli

x 1 Fig.1 Il punto P = P =

x 1 Fig.1 Il punto P = P = Geometria di R 2 In questo paragrafo discutiamo le proprietà geometriche elementari del piano Per avere a disposizione delle coordinate nel piano, fissiamo un punto, che chiamiamo l origine Scegliamo poi

Dettagli

Spazi vettoriali euclidei.

Spazi vettoriali euclidei. Spazi vettoriali euclidei Prodotto scalare, lunghezza e ortogonalità in R n Consideriamo lo spazio vettoriale R n = { =,,, n R}, n con la somma fra vettori e il prodotto di un vettore per uno scalare definiti

Dettagli

Prodotto scalare e prodotto vettoriale. Elisabetta Colombo

Prodotto scalare e prodotto vettoriale. Elisabetta Colombo Corso di Approfondimenti di Matematica Biotecnologie, Anno Accademico 2010-2011, http://users.mat.unimi.it/users/colombo/programmabio.html Vettori Vettori 1 2 3 4 di di Ricordiamo il in R n Dati a = (a

Dettagli

Esercitazione di Analisi Matematica II

Esercitazione di Analisi Matematica II Esercitazione di Analisi Matematica II Barbara Balossi 06/04/2017 Esercizi di ripasso Esercizio 1 Sia data l applicazione lineare f : R 3 R 3 definita come f(x, y, z) = ( 2x + y z, x 2y + z, x y). a) Calcolare

Dettagli

Prodotto scalare. Piani nello spazio Federico Lastaria, Analisi e Geometria 1. Politecnico di Milano Corso di Analisi e Geometria 1

Prodotto scalare. Piani nello spazio Federico Lastaria, Analisi e Geometria 1. Politecnico di Milano Corso di Analisi e Geometria 1 Politecnico di Milano Corso di Analisi e Geometria 1 Federico Lastaria federico.lastaria@polimi.it Prodotto scalare in R n. Piani nello spazio. 19 Dicembre 2016 Indice 1 Prodotto scalare nello spazio 2

Dettagli

Geometria Analitica nello Spazio

Geometria Analitica nello Spazio Geometria Analitica nello Spazio Andrea Damiani 4 marzo 2015 Equazione della retta - forma parametrica Se sono dati il punto A(x 0, y 0, z 0 ) e il vettore v (v x, v y, v z ), il generico punto P (x, y,

Dettagli

ax 1 + bx 2 + c = 0, r : 2x 1 3x = 0.

ax 1 + bx 2 + c = 0, r : 2x 1 3x = 0. . Rette in R ; circonferenze. In questo paragrafo studiamo le rette e le circonferenze in R. Ci sono due modi per descrivere una retta in R : mediante una equazione cartesiana oppure mediante una equazione

Dettagli

P z. OP x, OP y, OP z sono le proiezioni ortogonali di v sugli assi x, y, z, per cui: OP x = ( v i) i. k j. P x. OP z = ( v k) k

P z. OP x, OP y, OP z sono le proiezioni ortogonali di v sugli assi x, y, z, per cui: OP x = ( v i) i. k j. P x. OP z = ( v k) k Richiami di calcolo vettoriale Consideriamo il vettore libero v = OP. Siano P x, P y, P z le proiezioni ortogonali di P sui tre assi cartesiani. v è la diagonale del parallelepipedo costruito su OP x,

Dettagli

LEZIONE 8. k e w = wx ı + w y j + w z. k di R 3 definiamo prodotto scalare di v e w il numero

LEZIONE 8. k e w = wx ı + w y j + w z. k di R 3 definiamo prodotto scalare di v e w il numero LEZINE 8 8.1. Prodotto scalare. Dati i vettori geometrici v = v x ı + v y j + v z k e w = wx ı + j + k di R 3 definiamo prodotto scalare di v e w il numero v, w = ( v x v y v z ) w x = v x + v y + v z.

Dettagli

Una approssimazione allo spazio della fisica classica. Spazi affini euclidei.

Una approssimazione allo spazio della fisica classica. Spazi affini euclidei. Una approssimazione allo spazio della fisica classica. Spazi affini euclidei. Federico Lastaria. Analisi e Geometria 1. Una introduzione allo spazio della fisica classica. 1/20 Lo spazio E 3 (il piano

Dettagli

Bivettori. Determinanti. Prodotto vettoriale.

Bivettori. Determinanti. Prodotto vettoriale. Bivettori. Determinanti. Prodotto vettoriale. 10 Dicembre 2018 Per approfondimenti: bibliografia e siti web sull algebra geometrica (Geometric Algebra): http://geometry.mrao.cam.ac.uk/ https://assets.cambridge.org/052148/0221/sample/0521480221ws.pdf

Dettagli

Vettori e Calcolo vettoriale

Vettori e Calcolo vettoriale Vettori e Calcolo vettoriale Ci poniamo nello spazio ordinario S, in cui valgono gli assiomi della geometria euclidea. I vettori vengono rappresentati mediante frecce, con un punto iniziale e un punto

Dettagli

Prodotto scalare e ortogonalità

Prodotto scalare e ortogonalità Prodotto scalare e ortogonalità 12 Novembre 1 Il prodotto scalare 1.1 Definizione Possiamo estendere la definizione di prodotto scalare, già data per i vettori del piano, ai vettori dello spazio. Siano

Dettagli

Geometria BAER Canale I Esercizi 11

Geometria BAER Canale I Esercizi 11 Geometria BAER Canale I Esercizi 11 Esercizio 1. Data la retta x = t r : y = t z = 1 si trovi il punto A di r tale che l angolo di r con il vettore AO sia π/2, e il punto B di r tale che l angolo di r

Dettagli

Vettori e geometria analitica in R 3 1 / 25

Vettori e geometria analitica in R 3 1 / 25 Vettori e geometria analitica in R 3 1 / 25 Sistemi di riferimento in R 3 e vettori 2 / 25 In fisica, grandezze fondamentali come forze, velocità, campi elettrici e magnetici vengono convenientemente descritte

Dettagli

(f g)(x) = f(g(x)), (f (g h))(x) = f(g(h(x))) = ((f g) h)(x).

(f g)(x) = f(g(x)), (f (g h))(x) = f(g(h(x))) = ((f g) h)(x). Trasformazioni geometriche di R In questo paragrafo studiamo alcune trasformazioni geometriche del piano R Per trasformazioni si intendono sempre delle applicazioni bigettive f : R R Le trasformazioni

Dettagli

Argomenti Capitolo 1 Richiami

Argomenti Capitolo 1 Richiami Argomenti Capitolo 1 Richiami L insieme dei numeri reali R si rappresenta geometricamente con l insieme dei punti di una retta orientata su cui sia stato fissato un punto 0 e un segmento unitario. L insieme

Dettagli

Coordinate cartesiane e coordinate omogenee

Coordinate cartesiane e coordinate omogenee Coordinate cartesiane e coordinate omogenee Fissiamo nel piano un sistema di riferimento cartesiano ortogonale O, x, y, u. Ad ogni punto P del piano possiamo associare le coordinate cartesiane (x, y),

Dettagli

, 3x y = a 2 = b 2 + c 2 2bc cos α.

, 3x y = a 2 = b 2 + c 2 2bc cos α. Esercizi. Soluzioni. (.A ) Siano x = e y =. 2 (i) Calcolare e disegnare i vettori x, 2x, x, 0x. (ii) Calcolare e disegnare i vettori x + y, x y, y e x y. (iii) Calcolare x, y, x + y e x y. Sol. 2 0 (i)

Dettagli

Corso di Geometria, a.a Ing. Informatica e Automatica Esercizi VI: soluzioni

Corso di Geometria, a.a Ing. Informatica e Automatica Esercizi VI: soluzioni Corso di Geometria, a.a. 2009-2010 Ing. Informatica e Automatica Esercizi VI: soluzioni 5 novembre 2009 1 Geometria del piano e prodotto scalare Richiami. Il prodotto scalare di due vettori del piano v,

Dettagli

ax 1 + bx 2 + c = 0, r : 2x 1 3x 2 + 1 = 0.

ax 1 + bx 2 + c = 0, r : 2x 1 3x 2 + 1 = 0. . Rette in R ; circonferenze. In questo paragrafo studiamo le rette e le circonferenze in R. Ci sono due modi per descrivere una retta in R : mediante una equazione cartesiana oppure mediante una equazione

Dettagli

VETTORI GEOMETRICI / RICHIAMI

VETTORI GEOMETRICI / RICHIAMI M.GUIDA, S.ROLANDO, 2016 1 VETTORI GEOMETRICI / RICHIAMI Chiamiamo vettore un qualsiasi segmento orientato del piano o dello spazio. Orientare un segmento significa scegliere un verso per percorrerlo,

Dettagli

Vettori. Capitolo Vettori applicati e vettori liberi

Vettori. Capitolo Vettori applicati e vettori liberi apitolo 3 Vettori 3.1 Vettori applicati e vettori liberi In questo numero introduciamo il concetto di vettore geometrico su una retta, nel piano e nello spazio che ci consentirà di sviluppare un linguaggio

Dettagli

Esercizi Riepilogativi Svolti

Esercizi Riepilogativi Svolti Universita degli Studi di Roma - "Tor Vergata" - Facolta Ingegneria Esercizi GEOMETRIA Edile-Architettura e dell Edilizia SPAZI EUCLIDEI. TRASFORMAZIONI. ORIENTAZIONI. FORMULE DI GEOMETRIA IN R. Docente:

Dettagli

Note per il corso di Geometria e algebra lineare Laurea in Ing.Inform. e Com., Ing.Info.Gest.Imp., Informatica. 1 Vettori geometrici 1.

Note per il corso di Geometria e algebra lineare Laurea in Ing.Inform. e Com., Ing.Info.Gest.Imp., Informatica. 1 Vettori geometrici 1. 1 Note per il corso di Geometria e algebra lineare 2016-17 Laurea in Ing.Inform. e om., Ing.Info.Gest.Imp., Informatica 1 Vettori geometrici 1.1 I prodotti cartesiani R R = R 2 e R R R = R 3, costituiti

Dettagli

Geometria BAER Canale A-K Esercizi 9

Geometria BAER Canale A-K Esercizi 9 Geometria BAER 2016-2017 Canale A-K Esercizi 9 Esercizio 1. Si considerino i punti del piano A (1, 1), B (4, 1), C ( 1/2, 2) (a) Si determini se i punti A, B, C sono allineati e, in caso affermativo, si

Dettagli

Prodotto scalare e norma

Prodotto scalare e norma Capitolo 7 Prodotto scalare e norma Riprendiamo ora lo studio dei vettori da un punto di vista più geometrico. È noto, per esempio dalla Fisica, che spesso è comodo visualizzare un vettore del piano o

Dettagli

= (cioè le due terne di numeri direttori ( devono essere ) proporzionali). Tale uguaglianza non è verificata, poiché risulta ρ

= (cioè le due terne di numeri direttori ( devono essere ) proporzionali). Tale uguaglianza non è verificata, poiché risulta ρ Alcuni esercizi sullo spazio euclideo R Nel seguito R indicherà lo spazio euclideo tridimensionale standard, dotato del riferimento cartesiano naturale (pag 56-57 del libro Nota: gli esercizi proposti

Dettagli

Politecnico di Milano Corso di Analisi e Geometria 1. Federico Lastaria. Il prodotto vettore Gennaio 2013

Politecnico di Milano Corso di Analisi e Geometria 1. Federico Lastaria. Il prodotto vettore Gennaio 2013 Politecnico di Milano Corso di Analisi e Geometria 1 Federico Lastaria Il prodotto vettore Gennaio 2013 Indice 1 Il prodotto vettore 1 1.1 Definizione di prodotto vettore.......................... 1 1.2

Dettagli

A =, c d. d = ad cb. c d A =

A =, c d. d = ad cb. c d A = Geometria e Algebra (II), 271112 1 Definizione D ora innanzi, al posto di dire matrice quadrata di tipo n n o matrice quadrata n n diremo matrice quadrata di ordine n o in breve matrice di ordine n Il

Dettagli

1. Complemento ortogonale di un vettore non nullo Abbiamo visto che nel piano

1. Complemento ortogonale di un vettore non nullo Abbiamo visto che nel piano Geometria e Algebra (II), 11.12.12 1. Complemento ortogonale di un vettore non nullo Abbiamo visto che nel piano P O i vettori ortogonali ad un dato vettore non nullo descrivono una retta per O, e nello

Dettagli

1 Risoluzione di sistemi lineari con l uso dei determinanti

1 Risoluzione di sistemi lineari con l uso dei determinanti 2006 Trapani Dispensa di Geometria, 1 Risoluzione di sistemi lineari con l uso dei determinanti Sia A una matrice n n con det(a) 0 consideriamo il sistema lineare AX = b abbiamo n = numero di righe di

Dettagli

Parte 11. Geometria dello spazio II

Parte 11. Geometria dello spazio II Parte 11. Geometria dello spazio II A. Savo Appunti del Corso di Geometria 2010-11 Indice delle sezioni 1 Il prodotto scalare, 1 2 Distanze, angoli, aree, 4 3 Il prodotto vettoriale, 6 4 Condizioni di

Dettagli

Rango di una matrice e teorema di Rouché-Capelli

Rango di una matrice e teorema di Rouché-Capelli Rango di una matrice e teorema di Rouché-Capelli Sappiamo che a una matrice m n, A, è associata l applicazione lineare L A : R n R m, L A (X) = AX, X R n. Definizione 1. Lo spazio nullo di A, N (A), è

Dettagli

MATRICI e DETERMINANTI. Prof.ssa Maddalena Dominijanni

MATRICI e DETERMINANTI. Prof.ssa Maddalena Dominijanni MATRICI e DETERMINANTI Le matrici non sono altro che tabelle di elementi ordinati per righe e colonne. Se m = n la matrice si dice quadrata Matrice quadrata di ordine 3 Matrice rettangolare di tipo 2 3

Dettagli

VETTORIALE E PRODOTTO MISTO. PIANI E RETTE DI

VETTORIALE E PRODOTTO MISTO. PIANI E RETTE DI Universita degli Studi di Roma - "Tor Vergata" - Facolta Ingegneria Esercizi GEOMETRIA (Edile-Architettura e dell Edilizia) PRODOTTO VETTORIALE E PRODOTTO MISTO. PIANI E RETTE DI R 3. FASCI E STELLE. FORMULE

Dettagli

Capitolo I: Complementi di geometria vettoriale

Capitolo I: Complementi di geometria vettoriale Liceo Lugano 1, 01-013 3E (Luca Rovelli) Capitolo I: Complementi di geometria vettoriale 1. Vettori geometrici in V 3 Dal momento che i concetti fondamentali sono già stati approfonditi nel piano, ci limitiamo

Dettagli

( ) TEORIA DELLE MATRICI. A. Scimone a.s pag 1

( ) TEORIA DELLE MATRICI. A. Scimone a.s pag 1 . Scimone a.s 1997 98 pag 1 TEORI DELLE MTRICI Dato un campo K, definiamo matrice ad elementi in K di tipo (m, n) un insieme di numeri ordinati secondo righe e colonne in una tabella rettangolare del tipo

Dettagli

Errata corrige. p. 10 riga 5 del secondo paragrafo: misurare

Errata corrige. p. 10 riga 5 del secondo paragrafo: misurare Errata corrige p. 9 esercizio 5. Modificare testo dell esercizio come segue: Dati una retta r e un punto P, esistono infiniti piani per P paralleli a r: si tratta dei piani che contengono la retta s per

Dettagli

x + 2y = 0 Soluzione. La retta vettoriale di equazione cartesiana x + 2y = 0.

x + 2y = 0 Soluzione. La retta vettoriale di equazione cartesiana x + 2y = 0. Algebra Lineare. a.a. 4-5. Gruppo A-H. Prof. P. Piazza Soluzioni del compito pomeridiano del //5 Esercizio. Sia V = R il piano vettoriale euclideo con base ortonormale standard {e, e }. Determinare le

Dettagli

Ricordiamo brevemente come possono essere rappresentate le rette nel piano: 1) mediante un'equazione cartesiana. = ( p 1

Ricordiamo brevemente come possono essere rappresentate le rette nel piano: 1) mediante un'equazione cartesiana. = ( p 1 Introduzione Nella computer grafica, gli oggetti geometrici sono definiti a partire da un certo numero di elementi di base chiamati primitive grafiche Possono essere punti, rette e segmenti, curve, superfici

Dettagli

LeLing12: Ancora sui determinanti.

LeLing12: Ancora sui determinanti. LeLing2: Ancora sui determinanti. Ārgomenti svolti: Sviluppi di Laplace. Prodotto vettoriale e generalizzazioni. Rango e determinante: i minori. Il polinomio caratteristico. Ēsercizi consigliati: Geoling

Dettagli

Corso di Geometria BIAR, BSIR Esercizi 10: soluzioni

Corso di Geometria BIAR, BSIR Esercizi 10: soluzioni Corso di Geometria 2010-11 BIAR, BSIR Esercizi 10: soluzioni 1 Geometria dello spazio Esercizio 1. Dato il punto P 0 = ( 1, 0, 1) e il piano π : x + y + z 2 = 0, determinare: a) Le equazioni parametriche

Dettagli

Geometria e Topologia I (U1-4) 2006-mag-10 61

Geometria e Topologia I (U1-4) 2006-mag-10 61 Geometria e Topologia I (U1-4) 2006-mag-10 61 (15.9) Teorema. Consideriamo il piano affine. Se A A 2 (K) è un punto e r una retta che non passa per A, allora esiste unica la retta per A che non interseca

Dettagli

GEOMETRIA PIANA. 1) sia verificata l uguaglianza di segmenti AC = CB (ossia C è punto medio del segmento AB);

GEOMETRIA PIANA. 1) sia verificata l uguaglianza di segmenti AC = CB (ossia C è punto medio del segmento AB); VETTORI E GEOMETRIA ANALITICA 1 GEOMETRIA PIANA Segmenti e distanza tra punti. Rette in forma cartesiana e parametrica. Posizioni reciproche di due rette, parallelismo e perpendicolarità. Angoli e distanze.

Dettagli

Geometria analitica: rette e piani

Geometria analitica: rette e piani Geometria analitica: rette e piani parametriche Allineamento nel piano nello spazio Angoli tra rette e distanza 2 2006 Politecnico di Torino 1 Esempio 2 Sia A = (1, 2). Per l interpretazione geometrica

Dettagli

Lezione 6 Richiami di Geometria Analitica

Lezione 6 Richiami di Geometria Analitica 1 Piano cartesiano Lezione 6 Richiami di Geometria Analitica Consideriamo nel piano due rette perpendicolari che si intersecano in un punto O Consideriamo ciascuna di queste rette come retta orientata

Dettagli

x1 + 1 x T p. x 2

x1 + 1 x T p. x 2 Geometria e Algebra Trasformazioni del piano Soluzioni Siano p e q i Trovare le formule per la traslazione T p ii Calcolare T p T p iii Calcolare T p T p iv Calcolare T q T p T p T q Sol i Si ha ii iii

Dettagli

Corso di Geometria Lezione II: Spazi vettoriali

Corso di Geometria Lezione II: Spazi vettoriali .. Corso di Geometria Lezione II: Spazi vettoriali F. Baldassarri 8 ottobre 2013 Definizione di spazio vettoriale Uno spazio vettoriale su un campo C (ad es. Q,R,C,{0, 1}) è un insieme V dotato di due

Dettagli

Lezione 10 27/11/09. = 0 = x y + 2z = 0. Le componenti del vettore v devono essere quindi soluzione del sistema linere omogeneo. { x y +2z = 0 x z = 0

Lezione 10 27/11/09. = 0 = x y + 2z = 0. Le componenti del vettore v devono essere quindi soluzione del sistema linere omogeneo. { x y +2z = 0 x z = 0 Lezione 10 7/11/09 Esercizio 1 Nello spazio vettoriale euclideo V 3 sia W il sottospazio generato dai vettori v 1 = 1, 1, 1), v = 0,, 1) Determinare un vettore di W di modulo 3 ortogonale al vettore v

Dettagli

V il segmento orientato. V con VETTORI. Costruzione di un vettore bidimensionale

V il segmento orientato. V con VETTORI. Costruzione di un vettore bidimensionale VETTORI Costruzione di un vettore bidimensionale Nel piano con un righello si traccia una retta r tratteggiata Su r si disegna un segmento di lunghezza l d una delle estremità si disegni la punta di una

Dettagli

La lunghezza dei vettori e legata alle operazioni sui vettori nel modo seguente: Consideriamo due vettori v, w e il vettore v + w loro somma.

La lunghezza dei vettori e legata alle operazioni sui vettori nel modo seguente: Consideriamo due vettori v, w e il vettore v + w loro somma. Matematica II, 20.2.. Lunghezza di un vettore nel piano Consideriamo il piano vettoriale geometrico P O. Scelto un segmento come unita, possiamo parlare di lunghezza di un vettore v P O rispetto a tale

Dettagli

(P x) (P y) = x P t (P y) = x (P t P )y = x y.

(P x) (P y) = x P t (P y) = x (P t P )y = x y. Matrici ortogonali Se P è una matrice reale n n, allora (P x) y x (P t y) per ogni x,y R n (colonne) Dim (P x) y (P x) t y (x t P t )y x t (P t y) x (P t y), CVD Ulteriori caratterizzazioni delle matrici

Dettagli

VETTORI E SCALARI DEFINIZIONI. Si definisce scalare una grandezza definita interamente da un solo numero, affiancato dalla sua unità di misura.

VETTORI E SCALARI DEFINIZIONI. Si definisce scalare una grandezza definita interamente da un solo numero, affiancato dalla sua unità di misura. VETTORI E SCALARI DEFINIZIONI Si definisce scalare una grandezza definita interamente da un solo numero, affiancato dalla sua unità di misura. Un vettore è invece una grandezza caratterizzata da 3 entità:

Dettagli

Appunti sul corso di Complementi di Matematica (modulo Analisi)

Appunti sul corso di Complementi di Matematica (modulo Analisi) Appunti sul corso di Complementi di Matematica (modulo Analisi) prof. B.Bacchelli. 04 - Vettori topologia in R n : Riferimenti: R.Adams, Calcolo Differenziale 2. Cap. 1.2: In R n : vettori, somma, prodotto

Dettagli

1 Esercizi 19. 2(3) 5( 2) + k = 0 (1) da cui ricaviamo k = 16 e la retta desiderata è 2x 5y 16 = 0.

1 Esercizi 19. 2(3) 5( 2) + k = 0 (1) da cui ricaviamo k = 16 e la retta desiderata è 2x 5y 16 = 0. Esercizi 9. Scrivere l equazione cartesiana della retta per P (3, 2) parallela alla retta 2x y + 4 = 0. Soluzione. La retta cercata deve essere della forma 2x y + k = 0 con k da determinarsi imponendo

Dettagli

Metodo delle coordinate. Rette nel piano. Mauro Saita. Versione provvisoria. Novembre 2015.

Metodo delle coordinate. Rette nel piano. Mauro Saita. Versione provvisoria. Novembre 2015. . Rette nel piano. maurosaita@tiscalinet.it Versione provvisoria. Novembre 2015. Indice 1 Cartesio (1596-1650). 2 2 Lo spazio vettoriale R 2 2 2.1 Prodotto scalare. Distanza.............................

Dettagli

= elemento che compare nella seconda riga e quinta colonna = -4 In generale una matrice A di m righe e n colonne si denota con

= elemento che compare nella seconda riga e quinta colonna = -4 In generale una matrice A di m righe e n colonne si denota con Definizione di matrice Una matrice (di numeri reali) è una tabella di m x n numeri disposti su m righe e n colonne. I numeri che compaiono nella tabella si dicono elementi della matrice. La loro individuazione

Dettagli

e la lunghezza della proiezione del vettore B sul vettore A. s = A B =A b

e la lunghezza della proiezione del vettore B sul vettore A. s = A B =A b 8) Prodotto scalare o prodotto interno Si definisce prodotto scalare s di due vettori A e B, l area del rettangolo che ha per lati il modulo del vettore A e la lunghezza della proiezione del vettore B

Dettagli

1 Vettori. LeLing4: Vettori.

1 Vettori. LeLing4: Vettori. LeLing4: Vettori. Ārgomenti svolti: Vettori. Prodotto scalare, angolo, lunghezza e proiezzione. Disuguaglianze di Cauchy-Schwarz e triangolare. Equazione della retta, del piano e dell iperpiano. Ēsercizi

Dettagli

Geometria BAER Canale I Esercizi 10

Geometria BAER Canale I Esercizi 10 Geometria BAER Canale I Esercizi 10 Esercizio 1. Data la retta x = t r : y = t z = 1 si trovi il punto A di r tale che l angolo di r con il vettore AO sia π/2, e il punto B di r tale che l angolo di r

Dettagli

Indice. IL METODO DELLE COORDINATE NEL PIANO Mauro Saita Versione provvisoria. Giugno 2019.

Indice. IL METODO DELLE COORDINATE NEL PIANO Mauro Saita Versione provvisoria. Giugno 2019. IL METODO DELLE COORDINATE NEL PIANO maurosaita@tiscalinet.it Versione provvisoria. Giugno 2019. Indice 1 Il piano euclideo 2 1.1 La rivoluzione cartesiana: fare geometria con l algebra............. 2

Dettagli

21. (cenni di) Geometria analitica del piano.

21. (cenni di) Geometria analitica del piano. . (cenni di) Geometria analitica del piano... Definizione. Sia π un piano e sia O un suo punto. Siano i e j due versori ortogonali tra loro e paralleli al piano π. Diremo che la terna ordinata (O, i, j)

Dettagli

Corso di Geometria, a.a Ing. Informatica e Automatica Esercizi VII: soluzioni

Corso di Geometria, a.a Ing. Informatica e Automatica Esercizi VII: soluzioni Corso di Geometria, a.a. 2009-2010 Ing. Informatica e Automatica Esercizi VII: soluzioni 12 novembre 2009 1 Geometria dello spazio Esercizio 1 Dato il punto P 0 = ( 1, 0, 1) e il piano π : x + y + z 2

Dettagli

Istituzioni di Matematiche Modulo A (ST)

Istituzioni di Matematiche Modulo A (ST) Istituzioni di Matematiche Modulo A (ST V II foglio di esercizi ESERCIZIO. Nei seguenti sistemi lineari, discutere l insieme delle soluzioni al variare del parametro t, o dei parametri t e τ, in R. 5 x

Dettagli

Corso di Geometria BIAR, BSIR Esercizi 8: soluzioni

Corso di Geometria BIAR, BSIR Esercizi 8: soluzioni Corso di Geometria 2010-11 BIAR, BSIR Esercizi 8: soluzioni Esercizio 1. a) Disegnare la retta r di equazione cartesiana x 2y 4 = 0. b) Determinare l equazione cartesiana della retta r 1 passante per P

Dettagli

Corso di Geometria - CdL triennale in Ingegneria a.a

Corso di Geometria - CdL triennale in Ingegneria a.a Corso di Geometria - CdL triennale in Ingegneria a.a. 208-9 C. Liverani, J. Garofali Tutorato del 7/05/9 Geometria analitica nel piano e nello spazio. Tra tutte le rette parallele a r : x 2y = 0 trovare

Dettagli

2 Forma canonica metrica delle ipequadriche

2 Forma canonica metrica delle ipequadriche 26 Trapani Dispensa di Geometria, 1 Iperquadriche Sia A una matrice reale simmetrica n n, non nulla, sia b un vettore colonnna in R n e sia c R. L insieme delle soluzioni in R n dell equazione X t AX +

Dettagli

Geometria BATR-BCVR Esercizi 9

Geometria BATR-BCVR Esercizi 9 Geometria BATR-BCVR 2015-16 Esercizi 9 Esercizio 1. Per ognuna delle matrici A i si trovi una matrice ortogonale M i tale che Mi ta im sia diagonale. ( ) 1 1 2 3 2 A 1 = A 2 1 2 = 1 1 0 2 0 1 Esercizio

Dettagli

GEOMETRIA svolgimento di uno scritto del 11 Gennaio 2012

GEOMETRIA svolgimento di uno scritto del 11 Gennaio 2012 GEOMETRIA svolgimento di uno scritto del Gennaio ) Trovare una base per lo spazio delle soluzioni del seguente sistema omogeneo: x + y 5z = 3x y + z = x y + 8z =. Il sistema può essere scritto in forma

Dettagli

CORSO DI GEOMETRIA DETERMINANTE A.A. 2018/2019 PROF. VALENTINA BEORCHIA

CORSO DI GEOMETRIA DETERMINANTE A.A. 2018/2019 PROF. VALENTINA BEORCHIA CORSO DI GEOMETRIA DETERMINANTE AA 2018/2019 PROF VALENTINA BEORCHIA INDICE 1 Definizione induttiva di determinante 1 2 Caratterizzazione delle matrici quadrate di rango massimo 5 3 Regole di Laplace 6

Dettagli

Sommario lezioni di geometria

Sommario lezioni di geometria Sommario lezioni di geometria C. Franchetti November 12, 2006 1 Geometria analitica nel piano 1.1 Distanza di due punti Siano P 1 = (x 1, y 1 ), P 2 = (x 2, y 2 ) due punti del piano, se d(p 1, P 2 ) indica

Dettagli

Def. Un vettore è un segmento orientato.

Def. Un vettore è un segmento orientato. VETTORI Def. Un vettore è un segmento orientato. La freccia indica il verso del vettore. La lunghezza del segmento indica il modulo (o intensità) del vettore. La retta cui appartiene il segmento indica

Dettagli

1 Esercizi di ripasso 4

1 Esercizi di ripasso 4 Esercizi di ripasso 4. Determinare k in modo che il piano kx + 2y 6z + = 0 sia parallelo al piano x + y z + = 0. Soluzione. La condizione di parallelismo richiede che ( ) k 2 6 rg = Ne segue che k = e

Dettagli

Matematica Domande di Algebra e Geometria Analitica

Matematica Domande di Algebra e Geometria Analitica Matematica Domande di Algebra e Geometria Analitica prof. Vincenzo De Felice 2015 O studianti, studiate le matematiche, e non edificate sanza fondamenti. Leonardo da Vinci (1452-1519). 1 2 Tutto per la

Dettagli

Riassumiamo le proprietà dei numeri reali da noi utilizzate nel corso di Geometria.

Riassumiamo le proprietà dei numeri reali da noi utilizzate nel corso di Geometria. Capitolo 2 Campi 2.1 Introduzione Studiamo ora i campi. Essi sono una generalizzazione dell insieme R dei numeri reali con le operazioni di addizione e di moltiplicazione. Nel secondo paragrafo ricordiamo

Dettagli

Esercizi di Algebra Lineare - Foglio 9

Esercizi di Algebra Lineare - Foglio 9 Esercizi di Algebra Lineare - Foglio 9 Soluzioni Esercizio 1. Nello spazio R 3, si considerino i quattro punti A (0, 1, 0), B (, 1, ), (3,, 0) e D (3,, ). (a) Determinare il baricentro del triangolo AB.

Dettagli

CORSO DI LAUREA IN INGEGNERIA EDILE/ARCHITETTURA

CORSO DI LAUREA IN INGEGNERIA EDILE/ARCHITETTURA CORSO DI LAUREA IN INGEGNERIA EDILE/ARCHITETTURA FOGLIO DI ESERCIZI 1 GEOMETRIA 2009/10 Esercizio 1.1 (2.2). Determinare l equazione parametrica e Cartesiana della retta dello spazio (a) Passante per i

Dettagli

II Università degli Studi di Roma

II Università degli Studi di Roma Versione preliminare gennaio TOR VERGATA II Università degli Studi di Roma Dispense di Geometria. Capitolo 3. 7. Coniche in R. Nel Capitolo I abbiamo visto che gli insiemi di punti P lineare di primo grado

Dettagli

18 aprile Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA...

18 aprile Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA... COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura ore. ISTRUZIONI Ti sono stati consegnati tre fogli, stampati fronte e retro. Come prima cosa scrivi

Dettagli

Analisi Matematica 1 e Matematica 1 Geometria Analitica: Rette

Analisi Matematica 1 e Matematica 1 Geometria Analitica: Rette Analisi Matematica 1 e Matematica 1 Geometria Analitica: Rette Annalisa Amadori e Benedetta Pellacci amadori@uniparthenope.it pellacci@uniparthenope.it Università di Napoli Parthenope Contenuti Nel Piano

Dettagli

Esercizi geometria analitica nel piano. Corso di Laurea in Informatica A.A. Docente: Andrea Loi. Correzione

Esercizi geometria analitica nel piano. Corso di Laurea in Informatica A.A. Docente: Andrea Loi. Correzione Esercizi geometria analitica nel piano Corso di Laurea in Informatica A.A. Docente: Andrea Loi Correzione 1. Scrivere le equazioni parametriche delle rette r e s di equazioni cartesiane r : 2x y + = 0

Dettagli

Prova scritta di Geometria 1 Docente: Giovanni Cerulli Irelli 20 Gennaio 2017

Prova scritta di Geometria 1 Docente: Giovanni Cerulli Irelli 20 Gennaio 2017 Prova scritta di Geometria Docente: Giovanni Cerulli Irelli Gennaio 7 Esercizio. Si considerino i seguenti tre punti dello spazio euclideo: P :=, Q :=, R :=.. Dimostrare che P, Q ed R non sono collineari.

Dettagli

2 Algebra lineare. 2.1 Lo spazio euclideo R n

2 Algebra lineare. 2.1 Lo spazio euclideo R n 2 Algebra lineare 2.1 Lo spazio euclideo R n Dato un numero n N, il simbolo R n sta ad indicare il prodotto cartesiano R R di n copie di R; in altre parole, si tratta delle n-uple ( coppie per n = 2, terne

Dettagli

LEZIONE 5. Typeset by AMS-TEX

LEZIONE 5. Typeset by AMS-TEX LEZINE 5 5.1. Vettori geometrici. In questo lezione inizieremo a studiare enti geometrici ben noti quali punti, segmenti (orientati), rette, piani nel piano A 2 e nello spazio A 3 affini (cioè in cui valgono

Dettagli

Appunti di geometria analitica dello spazio. di Fabio Maria Antoniali

Appunti di geometria analitica dello spazio. di Fabio Maria Antoniali Appunti di geometria analitica dello spazio di Fabio Maria Antoniali versione del 23 maggio 2017 1 Un po di teoria 1.1 Vettori e punti 1.1.1 Componenti cartesiane e vettoriali Fissato nello spazio un riferimento

Dettagli

1 Coniche. s (x, y, t ) (1) 1 (x, y, t )F r 2

1 Coniche. s (x, y, t ) (1) 1 (x, y, t )F r 2 1 Coniche Studieremo le curve nel piano euclideo, cioè nel piano con un sistema di riferimento cartesiano ortogonale fissato, oppure nel completamento proiettivo di questo piano, ottenuto con l introduzione

Dettagli

Esame scritto di Geometria I

Esame scritto di Geometria I Esame scritto di Geometria I Università degli Studi di Trento Corso di laurea in Fisica A.A. 26/27 Appello di febbraio 27 Esercizio Sia f h : R R l applicazione lineare definita da f h (e ) = 2e + (2 h)e

Dettagli

a.a MG.VETTORI E RETTE

a.a MG.VETTORI E RETTE a.a. 2013-2014 MG.VETTORI E RETTE Definizione 0.1. Un vettore applicato o segmento orientato dello spazio ordinario è il dato di una coppia ordinata di punti dello spazio, il primo detto punto iniziale

Dettagli

1 Esercizi Scrivere le equazioni ridotte rispetto a z della retta. x + 4y z + 1 = 0 r : x + 3y + 2z 3 = 0. x + 4y = z 1 x + 3y = 2z + 3

1 Esercizi Scrivere le equazioni ridotte rispetto a z della retta. x + 4y z + 1 = 0 r : x + 3y + 2z 3 = 0. x + 4y = z 1 x + 3y = 2z + 3 Esercizi 8. Scrivere le equazioni ridotte rispetto a z della retta x + 4y z + = 0 x + 3y + z 3 = 0 Soluzione. Risolviamo rispetto a z: x + 4y = z x + 3y = z + 3 x + 4y = z y = 3z 4 da cui x = z + 5 y =

Dettagli

Testi consigliati e contatti

Testi consigliati e contatti Testi consigliati e contatti P.Bonacini, M. G. Cinquegrani, L. Marino, Algebra lineare: esercizi svolti, Cavallotto Edizioni, Catania P. Bonacini, M. G. Cinquegrani, L. Marino, Geometria analitica: esercizi

Dettagli

Capitolo 2. Cenni di geometria analitica nel piano

Capitolo 2. Cenni di geometria analitica nel piano Capitolo Cenni di geometria analitica nel piano 1 Il piano cartesiano Il piano cartesiano è una rappresentazione grafica del prodotto cartesiano R = R R La rappresentazione grafica è possibile se si crea

Dettagli

Equivalentemente, le colonne di A sono linearmente indipendenti se e solo se

Equivalentemente, le colonne di A sono linearmente indipendenti se e solo se Lezioni di Algebra Lineare. Versione novembre 2008 VI. Il determinante Il determinante det A di una matrice A, reale e quadrata, è un numero reale associato ad A. Dunque det è una funzione dall insieme

Dettagli

Momento angolare L. P. Maggio Prodotto vettoriale

Momento angolare L. P. Maggio Prodotto vettoriale Momento angolare L. P. Maggio 2007 1. Prodotto vettoriale 1.1. Definizione Il prodotto vettoriale di due vettori tridimensionali a e b è un vettore c così definito: a) Il modulo di c è pari all area del

Dettagli

RETTE E PIANI. ove h R. Determinare i valori di h per cui (1) r h e α sono incidenti ed, in tal caso, determinare l angolo ϑ h da essi formato;

RETTE E PIANI. ove h R. Determinare i valori di h per cui (1) r h e α sono incidenti ed, in tal caso, determinare l angolo ϑ h da essi formato; RETTE E PIANI Esercizi Esercizio 1. Nello spazio con riferimento cartesiano ortogonale Oxyz si considerino la retta r h ed il piano α rispettivamente di equazioni x = 1 + t r h : y = 1 t α : x + y + z

Dettagli

Parte 8. Prodotto scalare, teorema spettrale

Parte 8. Prodotto scalare, teorema spettrale Parte 8. Prodotto scalare, teorema spettrale A. Savo Appunti del Corso di Geometria 3-4 Indice delle sezioni Prodotto scalare in R n, Basi ortonormali, 4 3 Algoritmo di Gram-Schmidt, 7 4 Matrici ortogonali,

Dettagli