Grazie ai Colleghi di Geometria del Dipartimento di Matematica dell Università degli Studi di Torino per il loro prezioso contributo. Grazie al Prof.

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Grazie ai Colleghi di Geometria del Dipartimento di Matematica dell Università degli Studi di Torino per il loro prezioso contributo. Grazie al Prof."

Transcript

1 A01 178

2 Grazie ai Colleghi di Geometria del Dipartimento di Matematica dell Università degli Studi di Torino per il loro prezioso contributo. Grazie al Prof. S.M. Salamon per tanti utili suggerimenti e per la realizzazione di molti grafici. Grazie ai Proff. Sergio Console, Federica Galluzzi, Sergio Garbiero e Mario Valenzano per aver letto il manoscritto. Un ringraziamento particolare agli Studenti del Corso di Studi in Fisica dell Università di Torino, la loro partecipazione attiva e il loro entusiasmo hanno motivato questa esperienza.

3 Elsa Abbena Anna Maria Fino Gian Mario Gianella Algebra lineare e geometria analitica Volume I

4 Copyright MMXII ARACNE editrice S.r.l. via Raffaele Garofalo, 133/A B Roma (06) ISBN I diritti di traduzione, di memorizzazione elettronica, di riproduzione e di adattamento anche parziale, con qualsiasi mezzo, sono riservati per tutti i Paesi. Non sono assolutamente consentite le fotocopie senza il permesso scritto dell Editore. I edizione: marzo 2012

5 Indice Prefazione 1 1 Sistemi Lineari Equazioni lineari Sistemi lineari Sistemi lineari omogenei Matrici e Determinanti Somma di matrici e prodotto di un numero reale per una matrice Il prodotto di matrici I sistemi lineari in notazione matriciale La matrice inversa La trasposta di una matrice Matrici quadrate di tipo particolare Le equazioni matriciali Calcolo della matrice inversa, primo metodo La traccia di una matrice quadrata Il determinante I Teoremi di Laplace. Un altra definizione di rango di una matrice Calcolo della matrice inversa, secondo metodo Il Teorema di Cramer Per saperne di più Calcolo Vettoriale Definizione di vettore Somma di vettori Il prodotto di un numero reale per un vettore Dipendenza lineare e basi Il cambiamento di base in V Angolo tra due vettori Operazioni non lineari tra vettori Il prodotto scalare di due vettori i

6 ii INDICE Il prodotto vettoriale di due vettori Il prodotto misto di tre vettori Cambiamento di basi ortonormali in V 3 einv Esercizi di riepilogo svolti Per saperne di più Un altra definizione di vettore Ulteriori proprietà delle operazioni tra vettori Spazi Vettoriali e Sottospazi Vettoriali Spazi vettoriali Sottospazi vettoriali Definizione ed esempi Intersezione e somma di sottospazi vettoriali Generatori, basi e dimensione Base di uno spazio vettoriale Basi e somma diretta Rango di una matrice Il cambiamento di base Iperpiani vettoriali Esercizi di riepilogo svolti Per saperne di più Equazioni vettoriali e Teorema del Rango Equivalenza tra due definizioni di rango di una matrice Spazi vettoriali complessi, matrici hermitiane e anti-hermitiane Spazi Vettoriali Euclidei Definizione di prodotto scalare Norma di un vettore Basi ortonormali Il complemento ortogonale Esercizi di riepilogo svolti Per saperne di più Spazi vettoriali hermitiani Applicazioni Lineari Matrice associata ad un applicazione lineare. Equazioni di un applicazione lineare Cambiamenti di base e applicazioni lineari Immagine e controimmagine di sottospazi vettoriali Operazioni tra applicazioni lineari Sottospazi vettoriali invarianti Applicazione lineare aggiunta. Endomorfismi autoaggiunti Esercizi di riepilogo svolti...233

7 INDICE iii 6.8 Per saperne di più Forme lineari - dualità Cambiamento di base in V Spazio vettoriale biduale Dualità nel caso degli spazi vettoriali euclidei Trasposta di un applicazione lineare Endomorfismi autoaggiunti e matrici hermitiane Isometrie, similitudini, trasformazioni unitarie Diagonalizzazione Autovalori e autovettori di un endomorfismo Determinazione degli autovalori e degli autospazi Endomorfismi diagonalizzabili. Matrici diagonalizzabili Il Teorema Spettrale Esercizi di riepilogo svolti Per saperne di più Diagonalizzazione simultanea Il Teorema di Cayley Hamilton Teorema spettrale e endomorfismi autoaggiunti. Caso complesso Autovalori delle isometrie, similitudini, trasformazioni unitarie Forme Bilineari e Forme Quadratiche Forme bilineari simmetriche Matrice associata ad una forma bilineare simmetrica Forme quadratiche Nucleo e vettori isotropi Classificazione di una forma quadratica Forme canoniche La segnatura di una forma quadratica Esercizi di riepilogo svolti Per saperne di più Forme bilineari simmetriche ed endomorfismi autoaggiunti Forme bilineari simmetriche e spazio vettoriale duale Altri metodi di classificazione di una forma quadratica Il determinante come forma p-lineare Geometria Analitica nel Piano Il riferimento cartesiano, generalità Distanza tra due punti Punto medio di un segmento Baricentro di un triangolo Luoghi geometrici del piano...356

8 iv INDICE 9.3 Riferimento polare Traslazione Simmetrie Curva simmetrica rispetto all asse delle ordinate Curva simmetrica rispetto all asse delle ascisse Curva simmetrica rispetto all origine Retta nel piano Retta per un punto parallela ad un vettore Retta per un punto ortogonale ad un vettore Retta per due punti distinti Rette particolari Il coefficiente angolare ed il suo legame con a,b,c Parallelismo, ortogonalità, angoli e distanze Condizione di parallelismo tra rette Condizione di perpendicolarità tra rette Angolo tra due rette Posizione reciproca di due rette nel piano Distanza di un punto da una retta Fasci di rette Esercizi di riepilogo svolti Per saperne di più Rette immaginarie Riduzione a Forma Canonica delle Coniche La circonferenza nel piano Posizione reciproca tra una retta e una circonferenza Retta tangente ad una circonferenza in un suo punto Posizione reciproca di due circonferenze. Circonferenza per tre punti Fasci di circonferenze Le coniche: definizione e proprietà focali L ellisse L iperbole Iperbole equilatera riferita agli asintoti La parabola Coniche e traslazioni Le coniche: luoghi geometrici di punti Le coniche: equazioni di secondo grado, riduzione delle coniche in forma canonica Esercizi di riepilogo svolti Per saperne di più Potenza di un punto rispetto ad una circonferenza Equazioni parametriche delle coniche Le coniche in forma polare

9 INDICE v Retta tangente ad una conica in un suo punto Geometria Analitica nello Spazio Il riferimento cartesiano nello spazio Distanza tra due punti Punto medio di un segmento Baricentro di un triangolo e di un tetraedro Area di un triangolo e volume di un tetraedro Rappresentazione di un piano nello spazio Piano per un punto ortogonale ad un vettore Piano per un punto parallelo a due vettori Piano per tre punti non allineati Rappresentazione della retta nello spazio Retta per un punto parallela ad un vettore Retta per due punti distinti Posizione reciproca di due piani. Retta come intersezione di due piani Posizioni reciproche tra rette e piani Posizione reciproca di tre piani Posizione reciproca tra retta e piano Posizione reciproca di due rette nello spazio Fasci di piani Distanze e angoli Distanza di un punto da un piano Distanza di un punto da una retta Minima distanza tra due rette sghembe. Perpendicolare comune a due rette sghembe Angolo tra due rette Angolo tra retta e piano Angolo tra due piani Sfera e posizione reciproca con rette e piani Sfera Posizione reciproca tra piano e sfera Posizione reciproca tra retta e sfera La circonferenza nello spazio Posizione reciproca tra due sfere. Fasci di sfere Coordinate sferiche Esercizi di riepilogo svolti Per saperne di più Baricentro geometrico di punti Potenza di un punto rispetto ad una sfera Sfere in dimensione quattro...522

10 vi INDICE 12 Coni, Cilindri, Superfici di Rotazione e Quadriche Cenni sulla rappresentazione di curve e superfici Il cono Cono tangente ad una sfera Proiezione di una curva da un punto su un piano Il cilindro Cilindri con assi paralleli agli assi coordinati Cilindro circoscritto ad una sfera Proiezione di una curva su un piano secondo una direzione assegnata Coordinate cilindriche Superfici di rotazione Cenni sulle superfici rigate Quadriche Quadriche rigate Esercizi di riepilogo svolti Per saperne di più Piano tangente ad una quadrica in un suo punto Bibliografia 607 Indice dei simboli 609 Indice Analitico 613

11 Prefazione Con l attivazione delle lauree triennali, i corsi universitari hanno subìto una notevole riduzione del numero di ore a disposizione per le lezioni ed esercitazioni. Questo libro, che trae origine dalle lezioni di Geometria e Algebra Lineare I che gli Autori hanno tenuto al primo anno del Corso di Laurea in Fisica presso l Università di Torino, costituisce ora un testo completo che può essere anche utilizzato nelle Facoltà di Ingegneria, come pure nel Corso di Laurea in Matematica per lo studio della Geometria Analitica nel Piano e nello Spazio e per tutte quelle parti di Algebra Lineare di base trattate in campo reale. Esso si presenta in due volumi di agevole consultazione: il primo dedicato alla parte teorica ed il secondo formato da una raccolta di esercizi, proposti con le relative soluzioni, per lo più tratti dai testi d esame. La suddivisione in capitoli del secondo volume si riferisce agli argomenti trattati nei corrispondenti capitoli del primo volume. Il testo è di facile lettura e con spiegazioni chiare e ampiamente dettagliate, un po diverso per stile ed impostazione dagli usuali testi universitari del settore, al fine di sostenere ed incoraggiare gli Studenti nel delicato passaggio dalla scuola secondaria superiore all Università. In quasi tutti i capitoli del primo volume è stato inserito un paragrafo dal titolo Per saperne di più non solo per soddisfare la curiosità del Lettore ma con il preciso obiettivo di offrire degli orientamenti verso ulteriori sviluppi della materia che gli Studenti avranno occasione di incontrare sia in altri corsi di base sia nei numerosi corsi a scelta delle Lauree Triennali e Magistrali. Gli Autori avranno pienamente raggiunto il loro scopo se, attraverso la lettura del libro, saranno riusciti a trasmettere il proprio entusiasmo per lo studio di una materia di base per la maggior parte delle discipline scientifiche, rendendola appassionante. La figure inserite nel testo sono tutte realizzate con il programma di calcolo simbolico Mathematica, versione 7. Alcuni esercizi proposti sono particolarmente adatti ad essere risolti con Mathematica o con Maple. Per suggerimenti, osservazioni e chiarimenti si invita a contattare gli Autori agli indirizzi 1

Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria Elettronica

Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria Elettronica Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria Elettronica Terzo Appello del corso di Geometria e Algebra II Parte - Docente F. Flamini, Roma, 7/09/2007 SVOLGIMENTO COMPITO III APPELLO

Dettagli

1 Regole generali per l esame. 2 Libro di Testo

1 Regole generali per l esame. 2 Libro di Testo FACOLTÀ DI INGEGNERIA Corso di GEOMETRIA E ALGEBRA (mn). (Ing. per l Ambiente e il Territorio, Ing. Informatica - Sede di Mantova) A.A. 2008/2009. Docente: F. BISI. 1 Regole generali per l esame L esame

Dettagli

Prova scritta di Geometria 2 Prof. M. Boratynski

Prova scritta di Geometria 2 Prof. M. Boratynski 10/9/2008 Es. 1: Si consideri la forma bilineare simmetrica b su R 3 associata, rispetto alla base canonica {e 1, e 2, e 3 } alla matrice 3 2 1 A = 2 3 0. 1 0 1 1) Provare che (R 3, b) è uno spazio vettoriale

Dettagli

(V) (FX) Z 6 è un campo rispetto alle usuali operazioni di somma e prodotto.

(V) (FX) Z 6 è un campo rispetto alle usuali operazioni di somma e prodotto. 29 giugno 2009 - PROVA D ESAME - Geometria e Algebra T NOME: MATRICOLA: a=, b=, c= Sostituire ai parametri a, b, c rispettivamente la terzultima, penultima e ultima cifra del proprio numero di matricola

Dettagli

Programmazione per competenze del corso Matematica, Secondo biennio

Programmazione per competenze del corso Matematica, Secondo biennio Programmazione per del corso Matematica, Secondo biennio Competenze di area Traguardi per lo sviluppo delle degli elementi del calcolo algebrico algebriche di primo e secondo grado di grado superiore al

Dettagli

Università degli Studi di Roma La Sapienza Laurea in Ingegneria Energetica A.A. 2014-2015 Programma del corso di Geometria Prof.

Università degli Studi di Roma La Sapienza Laurea in Ingegneria Energetica A.A. 2014-2015 Programma del corso di Geometria Prof. Università degli Studi di Roma La Sapienza Laurea in Ingegneria Energetica A.A. 2014-2015 Programma del corso di Geometria Prof. Antonio Cigliola Prerequisiti Logica elementare. Principio di Induzione.

Dettagli

PROGRAMMA di MATEMATICA

PROGRAMMA di MATEMATICA Liceo Scientifico F. Lussana - Bergamo PROGRAMMA di MATEMATICA Classe 3^ I a.s. 2014/15 - Docente: Marcella Cotroneo Libro di testo : Leonardo Sasso "Nuova Matematica a colori 3" - Petrini Ore settimanali

Dettagli

2) Sul piano coordinato z = 0 studiare il fascio Φ di coniche di equazione. determinando in particolare le sue coniche spezzate ed i suoi punti base.

2) Sul piano coordinato z = 0 studiare il fascio Φ di coniche di equazione. determinando in particolare le sue coniche spezzate ed i suoi punti base. DPARTMENTO D MATEMATCA E NFORMATCA Corso di Laurea in ngegneria Telematica Prova scritta di Elementi di Algebra e Geometria assegnata il 18/7/02 È assegnato l endomorfismo f : R 3 R 3 definito dalle relazioni

Dettagli

Federico Lastaria. Analisi e Geometria 2. Matrici simmetriche. Il teorema spettrale. 1/24

Federico Lastaria. Analisi e Geometria 2. Matrici simmetriche. Il teorema spettrale. 1/24 Contenuto Endomorfismi auto-aggiunti. Matrici simmetriche. Il teorema spettrale Gli autovalori di una matrice simmetrica sono tutti reali. (Dimostrazione fatta usando i numeri complessi). Dimostrazione

Dettagli

ELEMENTI DI ALGEBRA LINEARE E GEOMETRIA Corso di Laurea Ingegneria Edile-Architettura

ELEMENTI DI ALGEBRA LINEARE E GEOMETRIA Corso di Laurea Ingegneria Edile-Architettura Cognome Nome Matricola ELEMENTI DI ALGEBRA LINEARE E GEOMETRIA Corso di Laurea Ingegneria Edile-Architettura (Primo appello/ii prova parziale 15/6/15 - Chiarellotto-Urbinati) Per la II prova: solo esercizi

Dettagli

Giuseppina Anatriello Matteo Allegro Tavole di Calcolo con GeoGebra

Giuseppina Anatriello Matteo Allegro Tavole di Calcolo con GeoGebra A01 Giuseppina Anatriello Matteo Allegro Tavole di Calcolo con GeoGebra Copyright MMXIV ARACNE editrice int.le S.r.l. www.aracneeditrice.it info@aracneeditrice.it via Quarto Negroni,15 00040Ariccia (RM)

Dettagli

Algebra Lineare e Geometria

Algebra Lineare e Geometria Algebra Lineare e Geometria Corso di Laurea in Ingegneria Elettronica A.A. 2013-2014 Prova d esame del 16/06/2014. 1) a) Determinare la matrice associata all applicazione lineare T : R 3 R 4 definita da

Dettagli

Liceo Scientifico F. Lussana Bergamo Programma di MATEMATICA A.S. 2014/2015 Classe 3 A C Prof. Matteo Bonetti. Equazioni e Disequazioni

Liceo Scientifico F. Lussana Bergamo Programma di MATEMATICA A.S. 2014/2015 Classe 3 A C Prof. Matteo Bonetti. Equazioni e Disequazioni Liceo Scientifico F. Lussana Bergamo Programma di MATEMATICA A.S. 2014/2015 Classe 3 A C Prof. Matteo Bonetti Equazioni e Disequazioni Ripasso generale relativo alla risoluzione di equazioni, disequazioni,

Dettagli

TAVOLE E FORMULARI DI MATEMATICA PER LE SCUOLE MEDIE E SUPERIORI DI OGNI ORDINE E GRADO

TAVOLE E FORMULARI DI MATEMATICA PER LE SCUOLE MEDIE E SUPERIORI DI OGNI ORDINE E GRADO TAVOLE E FORMULARI DI MATEMATICA PER LE SCUOLE MEDIE E SUPERIORI DI OGNI ORDINE E GRADO Carlo Sintini www.matematicamente.it INDICE TAVOLE NUMERICHE Potenze e radici quadre e cube dei numeri fino a 200

Dettagli

Docente: DI LISCIA F. CLASSE 1T MODULO 1: GLI INSIEMI NUMERICI

Docente: DI LISCIA F. CLASSE 1T MODULO 1: GLI INSIEMI NUMERICI Docente: DI LISCIA F. Materia: MATEMATICA CLASSE 1T MODULO 1: GLI INSIEMI NUMERICI Insiemi numerici: numeri naturali, proprietà delle operazioni aritmetiche; Potenze e loro proprietà; Criteri di divisibilità;

Dettagli

LICEO SCIENTIFICO STATALE "G. GALILEI" - MACERATA a.s. 2014-2015. Contratto formativo

LICEO SCIENTIFICO STATALE G. GALILEI - MACERATA a.s. 2014-2015. Contratto formativo LICEO SCIENTIFICO STATALE "G. GALILEI" - MACERATA a.s. 2014-2015 Prof.: ANGELO ANGELETTI Disciplina: MATEMATICA Classe: 3M Contratto formativo 1. Analisi della classe Una prova d ingresso svolta all inizio

Dettagli

Amministrazione, finanza e marketing - Turismo Ministero dell Istruzione, dell Università e della Ricerca PROGRAMMAZIONE DISCIPLINARE PER U. di A.

Amministrazione, finanza e marketing - Turismo Ministero dell Istruzione, dell Università e della Ricerca PROGRAMMAZIONE DISCIPLINARE PER U. di A. UdA n. 1 Titolo: Disequazioni algebriche Saper esprimere in linguaggio matematico disuguaglianze e disequazioni Risolvere problemi mediante l uso di disequazioni algebriche Le disequazioni I principi delle

Dettagli

A.A. 2014/2015 Corso di Algebra Lineare

A.A. 2014/2015 Corso di Algebra Lineare A.A. 2014/2015 Corso di Algebra Lineare Stampato integrale delle lezioni Massimo Gobbino Indice Lezione 01: Vettori geometrici nel piano cartesiano. Operazioni tra vettori: somma, prodotto per un numero,

Dettagli

ISTITUTO ISTRUZIONE SUPERIORE

ISTITUTO ISTRUZIONE SUPERIORE ISTITUTO ISTRUZIONE SUPERIORE Federico II di Svevia Indirizzi: Liceo Scientifico Classico Linguistico Artistico e Scienze Applicate Via G. Verdi, 1 85025 MELFI (PZ) Tel. 097224434/35 Cod. Min.: PZIS02700B

Dettagli

Matteo Moda Geometria e algebra lineare Fasci. Fasci. N.B.: Questo argomento si trova sull eserciziario. Fasci di rette nel piano

Matteo Moda Geometria e algebra lineare Fasci. Fasci. N.B.: Questo argomento si trova sull eserciziario. Fasci di rette nel piano Fasci N.B.: Questo argomento si trova sull eserciziario Fasci di rette nel piano 1 Fasci di piani nello spazio 2 Matteo Moda Geometria e algebra lineare Fasci Date due rette r ed r di equazione: : 0 :

Dettagli

PIANO DI LAVORO DI MATEMATICA Docente: MARIATERESA COSENTINO

PIANO DI LAVORO DI MATEMATICA Docente: MARIATERESA COSENTINO CLASSE IC Classico ANNO SCOLASTICO 2012-2013 PIANO DI LAVORO DI MATEMATICA Docente: MARIATERESA COSENTINO Gli allievi, in generale, si dedicano allo studio della matematica e della fisica con diligenza

Dettagli

CLASSE 1ª Manutenzione e Assistenza Tecnica

CLASSE 1ª Manutenzione e Assistenza Tecnica CLASSE 1ª Manutenzione e Assistenza Tecnica Programma svolto di MATEMATICA Anno scolastico 2013/14 ELEMENTI DI RACCORDO CON LA SCUOLA MEDIA GLI INSIEMI CALCOLO LETTERALE GEOMETRIA - Ordinamento, proprietà,

Dettagli

UNIVERSITÀ DEGLI STUDI DI FERRARA

UNIVERSITÀ DEGLI STUDI DI FERRARA UNIVERSITÀ DEGLI STUDI DI FERRARA Anno Accademico 2012/2013 REGISTRO DELL ATTIVITÀ DIDATTICA Docente: ANDREOTTI MIRCO Titolo del corso: MATEMATICA ED ELEMENTI DI STATISTICA Corso: CORSO UFFICIALE Corso

Dettagli

PROGRAMMA CONSUNTIVO

PROGRAMMA CONSUNTIVO PAGINA: 1 PROGRAMMA CONSUNTIVO A.S.2014-15 SCUOLA: Liceo Linguistico Teatro alla Scala DOCENTE: BASSO RICCI MARIA MATERIA: MATEMATICA- INFORMATICA Classe 2 Sezione A CONTENUTI Sistemi lineari numerici

Dettagli

Università degli Studi di Roma Tor Vergata. Corso di Laurea in Ingegneria Meccanica

Università degli Studi di Roma Tor Vergata. Corso di Laurea in Ingegneria Meccanica Università degli Studi di Roma Tor Vergata. Corso di Laurea in Ingegneria Meccanica Esame di Geometria (Prof. F. Tovena) Argomenti: Proprietà di nucleo e immagine di una applicazione lineare. dim V = dim

Dettagli

PIANO DI LAVORO PERSONALE

PIANO DI LAVORO PERSONALE ISTITUTO STATALE di ISTRUZIONE SUPERIORE DI SAN DANIELE DEL FRIULI VINCENZO MANZINI CORSI DI STUDIO: Amministrazione, Finanza e Marketing/IGEA Costruzioni, Ambiente e Territorio/Geometri Liceo Linguistico/Linguistico

Dettagli

CORSO DI LAUREA in Ingegneria Informatica (Vecchio Ordinamento)

CORSO DI LAUREA in Ingegneria Informatica (Vecchio Ordinamento) CORSO D LAUREA in ngegneria nformatica (Vecchio Ordinamento) Prova scritta di Geometria assegnata il 19/3/2002 Sia f : R 3 R 4 l applicazione lineare la cui matrice associata rispetto alle basi canoniche

Dettagli

CONI, CILINDRI, SUPERFICI DI ROTAZIONE

CONI, CILINDRI, SUPERFICI DI ROTAZIONE CONI, CILINDRI, SUPERFICI DI ROTAZIONE. Esercizi x + z = Esercizio. Data la curva x, calcolare l equazione del cilindro avente γ y = 0 come direttrice e con generatrici parallele al vettore v = (, 0, ).

Dettagli

Teoria in sintesi 10. Attività di sportello 1, 24 - Attività di sportello 2, 24 - Verifica conclusiva, 25. Teoria in sintesi 26

Teoria in sintesi 10. Attività di sportello 1, 24 - Attività di sportello 2, 24 - Verifica conclusiva, 25. Teoria in sintesi 26 Indice L attività di recupero 6 Funzioni Teoria in sintesi 0 Obiettivo Ricerca del dominio e del codominio di funzioni note Obiettivo Ricerca del dominio di funzioni algebriche; scrittura del dominio Obiettivo

Dettagli

Programma definitivo Analisi Matematica 2 - a.a. 2005-06 Corso di Laurea Triennale in Ingegneria Civile (ICI)

Programma definitivo Analisi Matematica 2 - a.a. 2005-06 Corso di Laurea Triennale in Ingegneria Civile (ICI) 1 Programma definitivo Analisi Matematica 2 - a.a. 2005-06 Corso di Laurea Triennale in Ingegneria Civile (ICI) Approssimazioni di Taylor BPS, Capitolo 5, pagine 256 268 Approssimazione lineare, il simbolo

Dettagli

Esempi di funzione. Scheda Tre

Esempi di funzione. Scheda Tre Scheda Tre Funzioni Consideriamo una legge f che associa ad un elemento di un insieme X al più un elemento di un insieme Y; diciamo che f è una funzione, X è l insieme di partenza e X l insieme di arrivo.

Dettagli

Esame di Geometria - 9 CFU (Appello del 28 gennaio 2013 - A)

Esame di Geometria - 9 CFU (Appello del 28 gennaio 2013 - A) Esame di Geometria - 9 CFU (Appello del 28 gennaio 23 - A) Cognome: Nome: Nr.matricola: Corso di laurea: Esercizio. Nello spazio R 3, siano dati il piano e i punti P = (, 2, ), Q = (2,, ). π : x + 2y 3

Dettagli

ISTITUTO DI ISTRUZIONE SECONDARIA SUPERIORE MINERARIO GIORGIO ASPRONI ENRICO FERMI IGLESIAS

ISTITUTO DI ISTRUZIONE SECONDARIA SUPERIORE MINERARIO GIORGIO ASPRONI ENRICO FERMI IGLESIAS ISTITUTO DI ISTRUZIONE SECONDARIA SUPERIORE MINERARIO GIORGIO ASPRONI ENRICO FERMI IGLESIAS Classe: 3 a B Informatica Docente: Gianni Lai PROGRAMMAZIONE DIDATTICA DISCIPLINARE MATEMATICA e COMPLEMENTI

Dettagli

Facoltà di Ingegneria anno accademico 2007/08 Registro dell'attività didattica. Calcolo 2 [40214]

Facoltà di Ingegneria anno accademico 2007/08 Registro dell'attività didattica. Calcolo 2 [40214] Facoltà di Ingegneria anno accademico 2007/08 Registro dell'attività didattica Calcolo 2 [40214] Attività didattica: Attività didattica [codice] Corso di studio Facoltà Calcolo 2 [40214] Ingegneria delle

Dettagli

CLASSE 4B LICEO SCIENTIFICO PROGRAMMA SVOLTO A.S. 2011-12. Disciplina : MATEMATICA. Docente Prof.ssa Paola Perego

CLASSE 4B LICEO SCIENTIFICO PROGRAMMA SVOLTO A.S. 2011-12. Disciplina : MATEMATICA. Docente Prof.ssa Paola Perego CONVITTO NAZIONALE MARIA LUIGIA di Parma CLASSE 4B LICEO SCIENTIFICO PROGRAMMA SVOLTO A.S. 2011-12 Disciplina : MATEMATICA Docente Prof.ssa Paola Perego COMPETENZE CONOSCENZE Funzione esponenziale e logaritmica

Dettagli

Corso Integrato di DISEGNO A Prof.ssa Anna De Santis

Corso Integrato di DISEGNO A Prof.ssa Anna De Santis Prima Facoltà di Architettura Ludovico Quaroni Corso di Laurea in DISEGNO INDUSTRIALE A.A. 2007-08 - 1 Semestre Corso Integrato di DISEGNO A Prof.ssa Anna De Santis Calendario del corso con argomenti svolti

Dettagli

Liceo Scientifico G. Galilei Macerata

Liceo Scientifico G. Galilei Macerata Classe 3 Sez D Materia : Matematica Docente: Angelini Antonella Liceo Scientifico G. Galilei Macerata Anno Scolastico 2009-2010 Contratto Formativo Individuale 1.ANALISI DELLA CLASSE: Conoscenze Competenze

Dettagli

Dipartimento di Matematica Corso di laurea in Fisica Compito di Geometria assegnato il 1 Febbraio 2002

Dipartimento di Matematica Corso di laurea in Fisica Compito di Geometria assegnato il 1 Febbraio 2002 Compito di Geometria assegnato il 1 Febbraio 2002 Trovare l equazione della conica irriducibile tangente all asse x nel punto A(2, 0), tangente all asse y e passante per i punti B(1, 1) e C(2, 2) Scrivere

Dettagli

LICEO ARTISTICO PROGRAMMAZIONE DIDATTICA RIFERITA ALLA

LICEO ARTISTICO PROGRAMMAZIONE DIDATTICA RIFERITA ALLA Anno Scolastico 2014/15 LICEO ARTISTICO PROGRAMMAZIONE DIDATTICA RIFERITA ALLA DISCIPLINA : MATEMATICA PRIMO BIENNIO L asse matematico ha l obiettivo di far acquisire allo studente saperi e competenze

Dettagli

Forme bilineari e prodotti scalari. Definizione Dato lo spazio vettoriale V (K) sul campo K, una funzione. b :

Forme bilineari e prodotti scalari. Definizione Dato lo spazio vettoriale V (K) sul campo K, una funzione. b : Forme bilineari e prodotti scalari Definizione Dato lo spazio vettoriale V (K) sul campo K, una funzione b : { V V K ( v, w) b( v, w), si dice forma bilineare su V se per ogni u, v, w V e per ogni k K:

Dettagli

Facoltà di Dipartimento di Ingegneria Elettrica e dell'informazione anno accademico 2014/15 Registro lezioni del docente SPORTELLI LUIGI

Facoltà di Dipartimento di Ingegneria Elettrica e dell'informazione anno accademico 2014/15 Registro lezioni del docente SPORTELLI LUIGI Facoltà di Dipartimento di Ingegneria Elettrica e dell'informazione anno accademico 2014/15 Registro lezioni del docente SPORTELLI LUIGI Attività didattica ANALISI MATEMATICA [2000] Periodo di svolgimento:

Dettagli

REGISTRO DELLE LEZIONI

REGISTRO DELLE LEZIONI UNIVERSITA DEGLI STUDI DI GENOVA Facoltà di INGEGNERIA REGISTRO DELLE LEZIONI Del Corso Geometria 2 (Parte del corso Analisi matematica e Geometria) - Codice 56586 - Laurea Magistrale in Ingegneria Navale

Dettagli

MATEMATICA. PRIMO ANNO (Liceo Classico e Liceo delle Scienze Umane)

MATEMATICA. PRIMO ANNO (Liceo Classico e Liceo delle Scienze Umane) 1/7 PRIMO ANNO Testo consigliato: BERGAMINI TRIFONE BAROZZI, Matematica.azzurro, vol. 1, Zanichelli Obiettivi minimi. Acquisire il linguaggio specifico della disciplina; sviluppare espressioni algebriche

Dettagli

PREREQUISITI. Cenni di logica elementare:

PREREQUISITI. Cenni di logica elementare: PREREQUISITI La Conferenza dei Presidi delle Facoltà di Ingegneria Italiane (documento di giugno 2006) ritiene che per intraprendere con profitto gli studi in Ingegneria gli studenti debbano possedere:

Dettagli

PROGRAMMA SVOLTO NELLA CLASSE I E A.S. 2012/2013 DISCIPLINA : MATEMATICA DOCENTI : CECILIA SAMPIERI, TAMARA CECCONI

PROGRAMMA SVOLTO NELLA CLASSE I E A.S. 2012/2013 DISCIPLINA : MATEMATICA DOCENTI : CECILIA SAMPIERI, TAMARA CECCONI PROGRAMMA SVOLTO NELLA CLASSE I E A.S. 2012/2013 LIBRO DI TESTO:L. Sasso Nuova Matematica a colori Algebra e Geometria 1 edizione Azzurra ed. Petrini TEMA A I numeri e linguaggio della Matemati Unità 1

Dettagli

RETTE, PIANI, SFERE, CIRCONFERENZE

RETTE, PIANI, SFERE, CIRCONFERENZE RETTE, PIANI, SFERE, CIRCONFERENZE 1. Esercizi Esercizio 1. Dati i punti A(1, 0, 1) e B(, 1, 1) trovare (1) la loro distanza; () il punto medio del segmento AB; (3) la retta AB sia in forma parametrica,

Dettagli

RICHIAMI SULLE MATRICI. Una matrice di m righe e n colonne è rappresentata come

RICHIAMI SULLE MATRICI. Una matrice di m righe e n colonne è rappresentata come RICHIAMI SULLE MATRICI Una matrice di m righe e n colonne è rappresentata come A = a 11 a 12... a 1n a 21 a 22... a 2n............ a m1 a m2... a mn dove m ed n sono le dimensioni di A. La matrice A può

Dettagli

GEOMETRIA I Corso di Geometria I (seconda parte)

GEOMETRIA I Corso di Geometria I (seconda parte) Corso di Geometria I (seconda parte) anno acc. 2009/2010 Cambiamento del sistema di riferimento in E 3 Consideriamo in E 3 due sistemi di riferimento ortonormali R e R, ed un punto P (x, y, z) in R. Lo

Dettagli

modulo A1.1 modulo A1.2 livello A1 modulo A2.1 modulo A2.2 matematica livello A2 livello A3

modulo A1.1 modulo A1.2 livello A1 modulo A2.1 modulo A2.2 matematica livello A2 livello A3 livello A1 modulo A1.1 modulo A1.2 matematica livello A2 modulo A2.1 modulo A2.2 livello A insiemi e appartenenza interpretazione grafica nel piano traslazioni proprietà commutatività associatività elemento

Dettagli

Lezioni di geometria combinatoria

Lezioni di geometria combinatoria Quaderni dell'unione Matematica Italiana 48 Giuseppe Tallirli Lezioni di geometria combinatoria Pitagora Editrice Bologna 2005 Indice Prefazione v 1 Campi di Galois 1 1.1 Introduzione 1 1.2 Automorfismi

Dettagli

GAAL: Capitolo di Geometria Affine e Coniche

GAAL: Capitolo di Geometria Affine e Coniche GAAL: Capitolo di Geometria Affine e Coniche Nozioni introduttive: Distanza indotta Isometrie lineari (Gruppo ortogonale) Isometrie Affinità Spazi affini: Sottospazi affini Combinazione affine di punti

Dettagli

ESERCIZI DI RIPASSO, A.A

ESERCIZI DI RIPASSO, A.A ESERCIZI DI RIPASSO, A.A. 14-15 Per ogni risposta, segnare V se è vera, F se è falsa. Ogni test viene valutato 3 punti se vengono date tutte e sole le risposte corrette. Altrimenti, la valutazione è 0.

Dettagli

DIPARTIMENTO DI MATEMATICA Liceo musicale

DIPARTIMENTO DI MATEMATICA Liceo musicale DIPARTIMENTO DI MATEMATICA Liceo musicale PRIMO BIENNIO 1. Profilo generale L insegnamento di matematica nel primo biennio ha come finalità l acquisizione dei concetti e dei metodi elementari della disciplina

Dettagli

Umberto Torchio Maria Grazia Santini Sistemi di gestione in sanità

Umberto Torchio Maria Grazia Santini Sistemi di gestione in sanità A09 Umberto Torchio Maria Grazia Santini Sistemi di gestione in sanità Accreditamento, certificazione ed audit clinico in strutture sanitarie e socio-sanitarie Risoluzioni test prove di esami Copyright

Dettagli

MATEMATICA TRIENNIO CORSO TURISTICO, AMMINISTRAZIONE FINANZA MARKETING, SISTEMI INFORMATIVI AZIENDALI

MATEMATICA TRIENNIO CORSO TURISTICO, AMMINISTRAZIONE FINANZA MARKETING, SISTEMI INFORMATIVI AZIENDALI MATEMATICA TRIENNIO CORSO TURISTICO, AMMINISTRAZIONE FINANZA MARKETING, SISTEMI INFORMATIVI AZIENDALI Obiettivi del triennio: ; elaborando opportune soluzioni; 3) utilizzare le reti e gli strumenti informatici

Dettagli

Liceo Linguistico I.F.R.S. Marcelline. Curriculum di Matematica

Liceo Linguistico I.F.R.S. Marcelline. Curriculum di Matematica Liceo Linguistico I.F.R.S. Marcelline Curriculum di Matematica Introduzione La matematica nel nostro Liceo Linguistico ha come obiettivo quello di far acquisire allo studente saperi e competenze che lo

Dettagli

DIARIO DEL CORSO DI GEOMETRIA E ALGEBRA LINEARE

DIARIO DEL CORSO DI GEOMETRIA E ALGEBRA LINEARE DIARIO DEL CORSO DI GEOMETRIA E ALGEBRA LINEARE DOCENTI: S. MATTAREI (TITOLARE), G. VIGNA SURIA, D. FRAPPORTI Prima settimana. Lezione di martedí 23 febbraio 2010 Introduzione al corso: applicazioni dell

Dettagli

Richiami su norma di un vettore e distanza, intorni sferici in R n, insiemi aperti, chiusi, limitati e illimitati.

Richiami su norma di un vettore e distanza, intorni sferici in R n, insiemi aperti, chiusi, limitati e illimitati. PROGRAMMA di Fondamenti di Analisi Matematica 2 (DEFINITIVO) A.A. 2010-2011, Paola Mannucci, Canale 2 Ingegneria gestionale, meccanica e meccatronica, Vicenza Testo Consigliato: Analisi Matematica, M.

Dettagli

REGISTRO DELLE LEZIONI

REGISTRO DELLE LEZIONI UNIVERSITA DEGLI STUDI DI GENOVA FACOLTA DI SCIENZE MATEMATICHE, FISICHE E NATURALI REGISTRO DELLE LEZIONI del Corso UFFICIALE di GEOMETRIA B tenute dal prof. Domenico AREZZO nell anno accademico 2006/2007

Dettagli

I.P.S.A.R. ARBUS SEDE COORDINATA I.P.S.I.A. GUSPINI PROGRAMMAZIONE ANNUALE DI V SEZ. A T.S.R. ANNO SCOLASTICO 2013.2014

I.P.S.A.R. ARBUS SEDE COORDINATA I.P.S.I.A. GUSPINI PROGRAMMAZIONE ANNUALE DI V SEZ. A T.S.R. ANNO SCOLASTICO 2013.2014 I.P.S.A.R. ARBUS SEDE COORDINATA I.P.S.I.A. GUSPINI PROGRAMMAZIONE ANNUALE DI DOCENTE PROF. CLASSE MATEMATICA SANDRO CADDEO V SEZ. A T.S.R. ANNO SCOLASTICO 2013.2014 OBIETTIVI. Gli obiettivi generali ed

Dettagli

15 febbraio 2010 - Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a. 2009-2010 COGNOME... NOME... N. MATRICOLA...

15 febbraio 2010 - Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a. 2009-2010 COGNOME... NOME... N. MATRICOLA... 15 febbraio 010 - Soluzione esame di geometria - 1 crediti Ingegneria gestionale - a.a. 009-010 COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura

Dettagli

Ferruccio Orecchia. esercizi di GEOMETRIA 1

Ferruccio Orecchia. esercizi di GEOMETRIA 1 A01 102 Ferruccio Orecchia esercizi di GEOMETRIA 1 Copyright MCMXCIV ARACNE editrice S.r.l. www.aracneeditrice.it info@aracneeditrice.it via Raffaele Garofalo, 133 A/B 00173 Roma (06) 93781065 ISBN 978

Dettagli

CdL in Ingegneria Informatica (Orp-Z)

CdL in Ingegneria Informatica (Orp-Z) CdL in ngegneria nformatica (Orp-Z) Prova scritta di Algebra Lineare assegnata il 22 Novembre 2004 - A Usare solo carta fornita dal Dipartimento di Matematica e nformatica, riconsegnandola tutta. Sia f

Dettagli

Soluzione. (a) L insieme F 1 e linearmente indipendente; gli insiemi F 2 ed F 3 sono linearmente

Soluzione. (a) L insieme F 1 e linearmente indipendente; gli insiemi F 2 ed F 3 sono linearmente 1. Insiemi di generatori, lineare indipendenza, basi, dimensione. Consideriamo nello spazio vettoriale R 3 i seguenti vettori: v 1 = (0, 1, ), v = (1, 1, 1), v 3 = (, 1, 0), v 4 = (3, 3, ). Siano poi F

Dettagli

Corso di Laurea in Ingegneria Informatica (L8) Anno Accademico 2015/2016 ALGEBRA LINEARE E GEOMETRIA

Corso di Laurea in Ingegneria Informatica (L8) Anno Accademico 2015/2016 ALGEBRA LINEARE E GEOMETRIA Dipartimento di Ingegneria Elettrica, Elettronica e Informatica Corso di Laurea in Ingegneria Informatica (L8) Anno Accademico 2015/2016 ALGEBRA LINEARE E GEOMETRIA Docente titolare dell insegnamento:

Dettagli

PROGRAMMAZIONE DIDATTICA DISCIPLINARE. Indirizzo: ITC. Anno scolastico Materia Classi 2012 2013 MATEMATICA Terze

PROGRAMMAZIONE DIDATTICA DISCIPLINARE. Indirizzo: ITC. Anno scolastico Materia Classi 2012 2013 MATEMATICA Terze PROGRAMMAZIONE DIDATTICA DISCIPLINARE Indirizzo: ITC Anno scolastico Materia Classi 22 23 MATEMATICA Terze. Competenze al termine del percorso di studi Padroneggiare il linguaggio formale e i procedimenti

Dettagli

Richiami sulle derivate parziali e definizione di gradiente di una funzione, sulle derivate direzionali. Regola della catena per funzioni composte.

Richiami sulle derivate parziali e definizione di gradiente di una funzione, sulle derivate direzionali. Regola della catena per funzioni composte. PROGRAMMA di Fondamenti di Analisi Matematica 2 (che sarà svolto fino al 7 gennaio 2013) A.A. 2012-2013, Paola Mannucci e Claudio Marchi, Canali 1 e 2 Ingegneria Gestionale, Meccanica-Meccatronica, Vicenza

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 004 Il candidato risolva uno dei due problemi e 5 dei 10 quesiti in cui si articola il questionario. PROBLEMA 1 Sia f la funzione definita da: f

Dettagli

Appunti di Algebra Lineare

Appunti di Algebra Lineare Appunti di Algebra Lineare Indice 1 I vettori geometrici. 1 1.1 Introduzione................................... 1 1. Somma e prodotto per uno scalare....................... 1 1.3 Combinazioni lineari e

Dettagli

PROGRAMMAZIONE di MATEMATICA CLASSE PRIMA

PROGRAMMAZIONE di MATEMATICA CLASSE PRIMA PROGRAMMAZIONE di MATEMATICA 1.NUMERI CLASSE PRIMA Comprende il significato Comprendere il significato Insiemi numerici NQZ Utilizzare le tecniche e le procedure del calcolo aritmetico e algebrico rappresentandole

Dettagli

Elenco moduli Argomenti Strumenti / Testi Letture. Tassi equivalenti. Rendite temporanee e perpetue. Rimborso di prestiti.

Elenco moduli Argomenti Strumenti / Testi Letture. Tassi equivalenti. Rendite temporanee e perpetue. Rimborso di prestiti. Pagina 1 di 9 DISCIPLINA: MATEMATICA APPLICATA INDIRIZZO: SISTEMI INFORMATIVI AZIENDALI CLASSE: 4 SI DOCENTE : ENRICA GUIDETTI Elenco moduli Argomenti Strumenti / Testi Letture 1 Ripasso Retta e coniche;

Dettagli

TEORIA E RICERCA IN EDUCAZIONE / 13 Collana del Dipartimento di Scienze dell Educazione e della Formazione UNIVERSITÀ DEGLI STUDI DI TORINO A11 573

TEORIA E RICERCA IN EDUCAZIONE / 13 Collana del Dipartimento di Scienze dell Educazione e della Formazione UNIVERSITÀ DEGLI STUDI DI TORINO A11 573 TEORIA E RICERCA IN EDUCAZIONE / 13 Collana del Dipartimento di Scienze dell Educazione e della Formazione UNIVERSITÀ DEGLI STUDI DI TORINO A11 573 Emanuela Maria Torre STRATEGIE DI RICERCA VALUTATIVA

Dettagli

PROGRAMMAZIONE DIDATTICA RIFERITA ALLA DISCIPLINA :MATEMATICA

PROGRAMMAZIONE DIDATTICA RIFERITA ALLA DISCIPLINA :MATEMATICA Istituto Istruzione Superiore A. Venturi Modena Liceo artistico - Istituto Professionale Grafica Via Rainusso, 66-41124 MODENA Sede di riferimento (Via de Servi, 21-41121 MODENA) tel. 059-222156 / 245330

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2003 Sessione straordinaria

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2003 Sessione straordinaria ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 3 Sessione straordinaria Il candidato risolva uno dei due problemi e 5 dei quesiti in cui si articola il questionario. PROBLEMA È assegnata

Dettagli

CORSO DI LAUREA INF TWM ANNO DI IMMATRICOLAZIONE MATRICOLA

CORSO DI LAUREA INF TWM ANNO DI IMMATRICOLAZIONE MATRICOLA COGNOME NOME CORSO DI LAUREA INF TWM ANNO DI IMMATRICOLAZIONE MATRICOLA SIMULAZIONE SCRITTO DI MATEMATICA DISCRETA, SECONDA PARTE Per ottenere la sufficienza bisogna rispondere in modo corretto ad almeno

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2004

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2004 ESAME DI STAT DI LICE SCIENTIFIC CRS SPERIMENTALE P.N.I. 004 Il candidato risolva uno dei due problemi e 5 dei 0 quesiti in cui si articola il questionario. PRBLEMA Sia la curva d equazione: ke ove k e

Dettagli

ISTITUTO D'ISTRUZIONE SUPERIORE A. MOTTI PROGRAMMAZIONE ANNUALE ANNO SCOLASTICO 2014 /2015

ISTITUTO D'ISTRUZIONE SUPERIORE A. MOTTI PROGRAMMAZIONE ANNUALE ANNO SCOLASTICO 2014 /2015 ISTITUTO D'ISTRUZIONE SUPERIORE A. MOTTI PROGRAMMAZIONE ANNUALE ANNO SCOLASTICO 2014 /2015 A047 MATEMATICA CLASSE PRIMA PROFESSIONALE DOCENTI : CARAFFI ALESSANDRA, CORREGGI MARIA GRAZIA, FAZIO ANGELA,

Dettagli

sezioni incluso Espandi tutto 0. Elementi di matematica elementare (parzialmente incluso) Sezione 0.1: I numeri reali Sezione 0.2: Regole algebriche.

sezioni incluso Espandi tutto 0. Elementi di matematica elementare (parzialmente incluso) Sezione 0.1: I numeri reali Sezione 0.2: Regole algebriche. sezioni incluso Espandi tutto 0. Elementi di matematica elementare (parzialmente incluso) Sezione 0.1: I numeri reali Sezione 0.2: Regole algebriche. Potenze e percentuali Sezione 0.3: Disuguaglianze Sezione

Dettagli

CURRICOLO DISCIPLINARE DI MATEMATICA

CURRICOLO DISCIPLINARE DI MATEMATICA A.S. 2014/2015 MINISTERO DELL ISTRUZIONE DELL UNIVERSITÀ E DELLA RICERCA Istituto Comprensivo Palena-Torricella Peligna Scuola dell Infanzia, Primaria e Secondaria di 1 grado Palena (CH) SCUOLA SECONDARIA

Dettagli

Facoltà di Economia. Anno Accademico 2009-2010 - Programma del Corso. Matematica Generale (PROGRAMMA EFFETTIVAMENTE SVOLTO)

Facoltà di Economia. Anno Accademico 2009-2010 - Programma del Corso. Matematica Generale (PROGRAMMA EFFETTIVAMENTE SVOLTO) Insegnamento Docente Corso di Laurea CFU 8 Lingua di Insegnamento Italiano Semestre di svolgimento Primo Tipologia Fondamentale SSD SECS-S/06 Codice di Ateneo Anno di Corso Primo Matematica Generale (PROGRAMMA

Dettagli

Vincenzo Ciancio Armando Ciancio. Metodi matematici per le applicazioni finanaziarie

Vincenzo Ciancio Armando Ciancio. Metodi matematici per le applicazioni finanaziarie A01 73 Vincenzo Ciancio Armando Ciancio Metodi matematici per le applicazioni finanaziarie Copyright MMV ARACNE editrice S.r.l. www.aracneeditrice.it info@aracneeditrice.it via Raffaele Garofalo, 133

Dettagli

Le trasformazioni geometriche

Le trasformazioni geometriche Le trasformazioni geometriche Le trasformazioni geometriche Le trasformazioni affini del piano o affinità Le similitudini Le isometrie Le traslazioni Le rotazioni Le simmetrie assiale e centrale Le omotetie

Dettagli

LE FUNZIONI MATEMATICHE

LE FUNZIONI MATEMATICHE ALGEBRA LE FUNZIONI MATEMATICHE E IL PIANO CARTESIANO PREREQUISITI l l l l l conoscere il concetto di insieme conoscere il concetto di relazione disporre i dati in una tabella rappresentare i dati mediante

Dettagli

estratto da Competenze assi culturali Raccolta delle rubriche di competenza formulate secondo i livelli EFQ a cura USP Treviso Asse matematico

estratto da Competenze assi culturali Raccolta delle rubriche di competenza formulate secondo i livelli EFQ a cura USP Treviso Asse matematico Competenza matematica n. BIENNIO, BIENNIO Utilizzare le tecniche e le procedure del calcolo aritmetico ed algebrico, rappresentandole anche sotto forma grafica BIENNIO BIENNIO Operare sui dati comprendendone

Dettagli

Autovalori e Autovettori

Autovalori e Autovettori Daniela Lera Università degli Studi di Cagliari Dipartimento di Matematica e Informatica A.A. 2008-2009 Autovalori e Autovettori Definizione Siano A C nxn, λ C, e x C n, x 0, tali che Ax = λx. (1) Allora

Dettagli

Liceo G.B. Vico Corsico

Liceo G.B. Vico Corsico Liceo G.B. Vico Corsico Classe: 3A Materia: MATEMATICA Insegnante: Nicola Moriello Testo utilizzato: Bergamini Trifone Barozzi: Manuale blu.0 di Matematica Moduli S, L, O, Q, Beta ed. Zanichelli 1) Programma

Dettagli

DIPARTIMENTO DI MATEMATICA Liceo scientifico e liceo scientifico delle scienze applicate

DIPARTIMENTO DI MATEMATICA Liceo scientifico e liceo scientifico delle scienze applicate 1. Profilo generale DIPARTIMENTO DI MATEMATICA Liceo scientifico e liceo scientifico delle scienze applicate PRIMO BIENNIO L insegnamento di matematica nel primo biennio ha come finalità l acquisizione

Dettagli

LE TRASFORMAZIONI GEOMETRICHE NEL PIANO

LE TRASFORMAZIONI GEOMETRICHE NEL PIANO LE TRASFORMAZIONI GEOMETRICHE NEL PIANO Una trasformazione geometrica è una funzione che fa corrispondere a ogni punto del piano un altro punto del piano stesso Si può pensare come MOVIMENTO di punti e

Dettagli

QUAL È LA DISTANZA TRA ROMA E NEW YORK? UN PO' DI GEOMETRIA ANALITICA SULLA SFERA

QUAL È LA DISTANZA TRA ROMA E NEW YORK? UN PO' DI GEOMETRIA ANALITICA SULLA SFERA QUAL È LA DISTANZA TRA ROMA E NEW YORK? UN PO' DI GEOMETRIA ANALITICA SULLA SFERA Michele Impedovo Bollettino dei Docenti di Matematica del Canton Ticino (CH) n 36, maggio 98. Il problema Il lavoro che

Dettagli

ESERCITAZIONI PROPEDEUTICHE DI MATEMATICA. A. Concetti e proprietà di base del sistema dei numeri della matematica ( ) + 64 7 10 :5

ESERCITAZIONI PROPEDEUTICHE DI MATEMATICA. A. Concetti e proprietà di base del sistema dei numeri della matematica ( ) + 64 7 10 :5 ESERCITAZIONI PROPEDEUTICHE DI MATEMATICA PER IL CORSO DI LAUREA IN SCIENZE DELLA FORMAZIONE PRIMARIA Ana Millán Gasca Luigi Regoliosi La lettura e lo studio del libro Pensare in matematica da parte degli

Dettagli

CLASSI PRIME Scienze Applicate 5 ORE

CLASSI PRIME Scienze Applicate 5 ORE CLASSI PRIME Scienze Applicate 5 ORE Settembre Ottobre Somministrazione di test di ingresso. Novembre dicembre Insiemi numerici Operazioni negli insiemi N, Q Operazioni negli insiemi Z, Q. Potenze con

Dettagli

Le funzioni elementari. Corsi di Laurea in Tecniche di Radiologia... A.A. 2010-2011 - Analisi Matematica - Le funzioni elementari - p.

Le funzioni elementari. Corsi di Laurea in Tecniche di Radiologia... A.A. 2010-2011 - Analisi Matematica - Le funzioni elementari - p. Le funzioni elementari Corsi di Laurea in Tecniche di Radiologia... A.A. 200-20 - Analisi Matematica - Le funzioni elementari - p. /43 Funzioni lineari e affini Potenze ad esponente naturale Confronto

Dettagli

4. Proiezioni del piano e dello spazio

4. Proiezioni del piano e dello spazio 4. Proiezioni del piano e dello spazio La visualizzazione di oggetti tridimensionali richiede di ottenere una vista piana dell'oggetto. Questo avviene mediante una sequenza di operazioni. Innanzitutto,

Dettagli

Diagonalizzazione di matrici e applicazioni lineari

Diagonalizzazione di matrici e applicazioni lineari CAPITOLO 9 Diagonalizzazione di matrici e applicazioni lineari Esercizio 9.1. Verificare che v = (1, 0, 0, 1) è autovettore dell applicazione lineare T così definita T(x 1,x 2,x 3,x 4 ) = (2x 1 2x 3, x

Dettagli

PROGRAMMAZIONE DEL DIPARTIMENTO DI MATEMATICA 2015/2016 Classi Prime

PROGRAMMAZIONE DEL DIPARTIMENTO DI MATEMATICA 2015/2016 Classi Prime PROGRAMMAZIONE DEL DIPARTIMENTO DI MATEMATICA 2015/2016 Classi Prime Metodi e strumenti Nelle lezioni in aula si farà uso: [] della lezione dialogata (utilizzata di norma, e che prevede lo sviluppo anche

Dettagli

TEMA 1. 1. Della seguente matrice, calcolare i complementi algebrici e il determinante: a + b 1 a 2 S = a + b + 3 a + 2b. x = t. f = x 2 + 2xy 3y 2,

TEMA 1. 1. Della seguente matrice, calcolare i complementi algebrici e il determinante: a + b 1 a 2 S = a + b + 3 a + 2b. x = t. f = x 2 + 2xy 3y 2, Prova scritta di MATEMATICA B1 Vicenza, 17 marzo 008 TEMA 1 1 1 A = 1 0 1. 3 0 1. Stabilire se il seguente sottoinsieme di M(, R): {( ) a + b 1 a S = a, b R}, a + b + 3 a + b è un sottospazio di M(, R).

Dettagli

Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016

Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016 Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016 Prodotti scalari e forme bilineari simmetriche (1) Sia F : R 2 R 2 R un applicazione definita da F (x, y) = x 1 y 1 + 3x 1 y 2 5x 2 y 1 + 2x 2

Dettagli

PROGRAMMAZIONE MODULARE DI MATEMATICA CLASSE SECONDA INDIRIZZI: AMMINNISTRAZIONE FINANZA E MARKETING - TURISMO SEZIONE TECNICO

PROGRAMMAZIONE MODULARE DI MATEMATICA CLASSE SECONDA INDIRIZZI: AMMINNISTRAZIONE FINANZA E MARKETING - TURISMO SEZIONE TECNICO PROGRAMMAZIONE MODULARE MATEMATICA CL SECONDA INRIZZI: AMMINNISTRAZIONE FINANZA E MARKETING - TURISMO SEZIONE TECNICO MODULO 1 : Frazioni algebriche ed equazioni fratte C1, M1, M3 Determinare il campo

Dettagli

Paolo Di Sia Elementi di Didattica della matematica I. Laboratorio

Paolo Di Sia Elementi di Didattica della matematica I. Laboratorio A01 Paolo Di Sia Elementi di Didattica della matematica I Laboratorio Copyright MMXIII ARACNE editrice S.r.l. www.aracneeditrice.it info@aracneeditrice.it via Raffaele Garofalo, 133/A B 00173 Roma (06)

Dettagli

VALLAURI L ASSE MATEMATICO

VALLAURI L ASSE MATEMATICO Istituto Professionale di Stato per l Industria e l Artigianato Giancarlo Vallauri Via B. Peruzzi, 13 41012 CARPI (MO) VALLAURI www.vallauricarpi.it Tel. 059 691573 Fax 059 642074 vallauri@vallauricarpi.it

Dettagli