LO STATO GASSOSO. S: Forma e volume propri L: Volume proprio forma del contenitore G: Volume e forma del contenitore

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "LO STATO GASSOSO. S: Forma e volume propri L: Volume proprio forma del contenitore G: Volume e forma del contenitore"

Transcript

1 LO STATO GASSOSO Le diverse proprietà di massa degli stati di aggregazione della materia sono dovute all arrangiamento delle molecole (o atomi o ioni). Tutti gli stati rispondono ad una perturbazione (ad esempio variazione di T o P) in modo dipendente dalle distanze medie tra le particelle e dall entità delle forze tra esse. La maggior parte delle sostanze può esistere come solido, liquido o gas in opportune condizioni di T e P. S: Forma e volume propri L: olume proprio forma del contenitore G: olume e forma del contenitore Liquidi e solidi si dicono STATI CONDENSATI Parametri caratterizzanti i vari stati di aggregazione: Il olume molare standard: volume di 1 mole. Il.m.s. (a Standard Temperature and Pressure: 0 C e 1 atm) di un gas è,4 L mentre quello dei solidi è compreso tra 0,1 e 0,01 L. Numero di densità: numero di molecole per cm 3 (elevato per S e L, basso per i G). per il passaggio L G 1000% per il passaggio S L -10% Densità: d = massa/volume = g/ G fortemente dipendente da T S praticamente indipendenti da T L comportamento intermedio Ad esempio per l alcol etilico (etanolo, CH 3 CH OH) la densità allo stato liquido varia da 0,806 g/ml a 0 C, a 0.77 g/ml a 40 C, ma si osserva un aumento molto più significativo passando allo stato gassoso. La d dell etanolo vale infatti 1.5 g/l a 100 C. 1

2 Per un G la densità è funzione della massa molare. A STP: d O = 1.43 g/l d N = 1.5 g/l d He = 0.18 g/l Miscibilità: I gas sono TUTTI miscibili. Compressibilità: diminuzione relativa di per aumento di P (bassa per stati condensati a causa delle elevate forze intermolecolari). Una riduzione del 5% del di H O allo stato liquido richiede una pressione di ca. 100 atm, mentre allo stato gassoso la pressione necessaria è ca. 0,05 atm Espansione Termica: Si definisce coefficiente di ET l aumento relativo di per un aumento di T di 1 C Per i gas vale 1/73.15 = % Molto minori per gli stati condensati: H O da 0 a 1 C 0.0% Hg 0.018% Solidi < 0.0% Fluidità: (L e G) sono fluidi, scorrono. Rigidità: i S mantengono la loro forma senza sforzo e hanno resistenza strutturale allo scorrimento iscosità di Taglio: resistenza allo scorrimento quando uno strato di molecole scorre su un altro. Per i L è volte minore che per i S. Per i G è minore che per i L

3 Lo stato gassoso è completamente definito da 4 parametri di stato: P,. T ed n (numero di moli). P = rapporto tra forza e superficie su cui agisce SI Newton/m 1 N/m = 1 Pa (Pascal) Atm = P media esercitata dall atmosfera a livello del mare 1 atm = Pa = 760 mmhg = misura della porzione di spazio in cui le molecole possono muoversi T = misura della tendenza del calore ad abbandonare un corpo. Per misurare la T di un corpo lo si mette in contatto con un termometro fino al raggiungimento dell equilibrio termico. Termometri più comuni basati sulla variazione di di una sostanza in funzione di T. (Hg da -30 a 360 C, EtOH fino a ca C) MODELLO: GAS IDEALE (PERFETTO) Costituito da un insieme di particelle che sono: 1) talmente piccole che il loro può essere trascurato rispetto al a disposizione del gas (puntiformi) ) in moto continuo 3) in moto casuale (rettilineo finchè non incontrano un ostacolo) 4) non interagiscono apprezzabilmente 5) urti elastici (p = mv si conserva) I gas reali approssimano molto bene il modello a basse P e T BUON MODELLO: in condizioni ambiente i gas reali approssimano il comportamento ideale entro lo 0.1 %. 3

4 0I parametri di stato sono collegati da una serie di leggi derivate in modo sperimentale: Legge di Boyle: P = cost (T, n fisse) Legge di Charles: /T = cost (P, n fisse) Legge di Avogadro /n = cost (P, T fisse) La combinazione delle tre leggi fornisce l equazione di stato dei gas ideali. Legge di Boyle P = cost (T, n fisse) Isoterme di Boyle Y > a T maggiore P 1/P P 1 1 = P P P 4

5 Legge di Charles /T = cost (P, n) fisse 0-73 C T teorico = 0 a 0 C ( 1 /T 1 ) = /T ) Scala Kelvin (assoluta delle T) per ogni grado di raffreddamento il diminuisce di 1/ 73 dovrebbe diventare 0 a -73 il che è impossibile perché la materia non può annullarsi. Si pone così lo zero assoluto a zero K, T teorica oltre alla quale le normali leggi fisiche perdono significato. Legge di Avogadro /n = cost (a P e T fisse) ( 1 /n 1 ) = /n ) edi definizione di volume molare standard N A = (numero di Avogadro) Dopo aver considerato casi in cui la variazione di un solo parametro produce la variazione di un secondo parametro mentre il terzo rimane costante, si consideri la combinazione delle leggi. 5

6 Si può ricavare l equazione di stato calcolando il finale di 1 mole di gas quando P e T variano da P i e T i a P f e T f : Si separa il processo in stadi: 1) a P costante si scalda il gas a T f : i /T i = /T f i f = i T f /T i ) a T costante = T f si varia P da P i a P f : P f f = P i f = P i / P f Sostituendo a l espressione ottenuta al punto 1: P f f = P i i T f /T i o meglio P f f /T f = P i i / T i Scegliendo come stato iniziale STP: T i = 73 K P i = 1 atm i =,4 L Ovvero combinando le leggi di Boyle, Charles ed Avogadro si ha: P i i / T i = 0.08 L atm /K = R Dunque per 1 mole: R = costante universale dei gas R = 0.08 L atm/mole grado = 8.31 J/mole grado P = RT e per n moli P = n R T EQUAZIONE DI STATO DEI GAS IDEALI 6

7 Oltre a definire univocamente lo stato gassoso, l equazione di stato permette di calcolare densità e massa molare di un gas. L equazione di stato è correlabile alla densità e alla massa molare di un gas: P = n RT = PM g RT g/ = d perciò d = PM P RT un gas più pesante (di massa maggiore) avrà densità maggiore ma occuperà lo stesso di un gas più leggero. 7

8 Alle miscele gassose si applica la Legge di Dalton. Nell approssimazione del gas ideale, l equazione di stato è valida qualunque sia la natura delle particelle gassose. Dati T e la P dipende solo dal numero delle particelle. Se in un volume a temperatura T ci sono 100 molecole che esercitano una pressione P, ciascuna di esse eserciterà P/100 indipendentemente dalla sua natura chimica. Se 40 % N e 60 % O, il 40 % della P sarà dovuta ad N (Pressione Parziale) ed il 60 % ad O. Supponiamo di collegare due recipienti uguali contenenti due gas diversi nelle stesse condizioni di P e T. Quando i due gas hanno diffuso omogeneamente l uno nell altro la P rimane costante anche se il è doppio. P TOT = P A + P B P A = RT n A P B = n B RT P = (n A + n B ) RT Legge di Dalton: La P parziale di ciascun gas che fa parte di una miscela gassosa è uguale alla P che il gas eserciterebbe se occupasse da solo l intero volume a disposizione della miscela e la P totale è la somma delle pressioni parziali. 8

9 Relazione tra P totale e P parziale: 1) P A = n A RT ) P TOT = n TOT RT Dividendo (1) per (): P P A TOT n n A = = x A frazione molare TOT P A = x A P TOT Altra espressione della Legge di Dalton: La P parziale di un componente di una miscela gassosa è data dal prodotto della sua frazione molare per la P totale. n NB: i= 1 x i = 1 9

10 La teoria cinetica dei gas mette in relazione l aspetto macroscopico e quello microscopico dello stato gassoso. Essa è basata sullo sviluppo del modello del gas ideale (o perfetto). Anche la legge di Dalton può essere interpretata secondo questo modello dato che nessuna interazione è considerata tra le particelle gassose indipendentemente dalla natura chimica. Temperatura Ogni molecola avrà energia cinetica media: E = ½ mu Poiché gli urti sono elastici si ha conservazione dell E cin media, ovvero per due particelle ½ m A u 1A + ½ m B u 1B = ½ m A u A + ½ m B u B Nell approssimazione del gas ideale innumerevoli particelle urtano contro le pareti del recipiente e tra di loro, la loro velocità cambia continuamente a causa di tali urti. Si parla pertanto di distribuzione di velocità: si può fare una previsione statistica di quante sono le molecole che hanno una certa velocità. Ovvero sui può calcolare la frazione di molecole N/N che hanno velocità compresa tra u e u + u. Legge di distribuzione di Maxwell-Boltzmann: N E = N e -E/KT N E = no. di molecole con E >E N = no totale di molecole K = costante di Boltzmann (R/N Avogadro) 10

11 Ad una data T, l andamento della distribuzione è quello mostrato in Figura. L area sotto la curva rappresenta il numero totale di molecole, il massimo la velocità più probabile. All aumentare della T si ha un appiattimento della curva e sia la velocità media che quella più probabile sono maggiori. L interpretazione microscopica della T è quindi trasformazione di energia termica in energia cinetica delle molecole. E c = 3/ KT Il calcolo di N E è molto importante nelle reazioni perchè queste avvengono solo per le molecole che hanno un contenuto di E maggiore di un valore soglia. 11

12 Pressione La P può essere interpretata come dovuta agli urti delle molecole contro le pareti del recipiente che contiene il gas. Consideriamo un recipiente cubico di lato l contenente n molecole. z l y Il moto delle particelle è caotico perciò, statisticamente 1/3 si può considerare in moto lungo l asse x, 1/3 lungo l asse y e 1/3 lungo l asse z (ogni velocità avrà tre componenti lungo i 3 assi). Se si considera una molecola in moto lungo l asse y, all urto contro la parete la x sua velocità passa da u a u e, poichè la sua E cinetica deve rimanere costante (siamo a T costante): ½ mu y = -½ mu y La variazione di impulso per ogni collisione è: p = mu y (- mu y ) = mu y Dopo aver percorso una distanza l la molecola urterà nuovamente contro la stessa parete. Il numero di collisioni per unità di tempo sarà: n c = u / l 1

13 Il prodotto della variazione di impulso per ogni collisioni per il numero di collisioni per unità di tempo darà la forza esercitata per unità di tempo dalla molecola sulla parete: mu (u / l) = m u / l = F (ma) Pertanto, per 1/3 n molecole che si muovono lungo l asse y: 1 mu y F y = n 3 Analogamente per F x ed F z. In totale: F = mu n La Pressione (Forza su superficie) sarà: P = mu n 3 y = mu n y che dà anche la relazione tra P e T in termini di energia cinetica. P = mv / ½ mv = KT P = KT P è un energia: un gas può compiere lavoro espandendosi 13

14 Legge di Graham (effusione) L effusione è il processo con cui un gas sfugge nel vuoto dal recipiente che lo contiene attraverso un piccolo foro. Ad una data T l energia cinetica media delle particelle di gas è E c = 3/ KT = ½ mu E c = 3/ RT = ½ PM u per 1 molecola per 1 mole Perciò 3RT u = PM per due specie diverse: u 1 = u PM PM 1 Separazione di 35 U da 38 U per arricchire il combustibile delle centrali nucleari. Effusione di UF 6 : arricchimento fino al 90% in 38 U. Diffusione: movimento di un gas attraverso un altro gas. In questo caso la relazione è: u 1 PM = u PM 1 14

15 Le deviazioni dal comportamento ideale portano allo sviluppo dell Equazione di van der Waals: la specificità dei parametri a e b per ogni specifico gas ne fanno un equazione per il singolo gas. La deviazione dall idealità può essere spiegata dall esistenza di forze attrattive (forze di vdw) tra le molecole e dal fatto che queste non sono davvero puntiformi ma dotate di un reale. reale 0 perciò il a disposizione del gas è minore del del recipiente. Si considerino le molecole come sfere rigide di raggio r: i centri di due molecole non possono trovarsi a distanza minore di r. La molecola A impedisce alla molecola B di trovarsi in un volume sferico: 4 d 3 = π 3 Dove d = r E così la molecola B rispetto alla molecola A. Per N molecole il volume non disponibile è dunque: N 4 π d 3 3 = N πd 3 3 = b = COOLUME Il covolume è una proprietà caratteristica del gas in esame. Per una mole di gas reale il covolume, b, è il che le molecole si sottraggono reciprocamente. L equazione di stato diventa: P (-b) = RT 15

16 Si deve introdurre anche una correzione per la pressione: Se si considera un recipiente contenente molte molecole, la risultante delle Forze attrattive (gravitazionali e di tipo elettrico) sulle molecole al centro della massa di gas sarà nulla, ma non così per quelle vicine alla parete che saranno attratte verso l interno. La quantità di moto con cui urtano contro le pareti del recipiente sarà inferiore a quella ideale. Per correggere l equazione di stato si deve perciò aggiungere un fattore correttivo alla pressione. Si ottiene così l equazione di van der Waals per i gas reali: n a P + = ( b) nrt Non più un equazione generale ma una specifica equazione per ogni gas. Le forze di vdw sono maggiori per molecole più grandi (nube elettronica più espansa). La deviazione dall idealità dipende dal rapporto tra Ecin ed Epot (attrattiva). Se Ecin>>Epot (alta T) la deviazione dall idealità è piccola. 16

17 A basse pressioni il libero è sostanzialmente il del recipiente. A P elevate P/RT > 1: diminuisce il a disposizione per il libero moto del gas ed il numeratore, nel quale si usa l intero, è artificiosamente alto. Se invece si ha P/RT<1 è predominante l effetto delle attrazioni intermolecolari sulla P. Diminuisce P e dunque il numeratore. Per He ed H non si ha discesa dalla curva ideale perchè le attrazioni intermolecolari tra questi gas sono estremamente basse. 17

Il Gas Ideale. Il gas ideale é un'astrazione

Il Gas Ideale. Il gas ideale é un'astrazione Il Gas Ideale a) le particelle sono animate da moto perenne, ed occupano omogeneamente tutto lo spazio a loro disposizione b) il movimento delle particelle è casuale c) le particelle hanno volume proprio

Dettagli

Lo stato gassoso gas. Caratteristiche dello stato gassoso. liquido. solido. assenza di volume proprio forma fluida

Lo stato gassoso gas. Caratteristiche dello stato gassoso. liquido. solido. assenza di volume proprio forma fluida Lo stato gassoso gas liquido solido assenza di volume proprio forma fluida Caratteristiche dello stato gassoso Capacità di occupare tutto lo spazio a disposizione Distanze molto grandi tra le particelle

Dettagli

Stati di aggregazione della materia. dal microscopico al macroscopico: struttura. interazioni GASSOSO. proprietà SOLIDO LIQUIDO

Stati di aggregazione della materia. dal microscopico al macroscopico: struttura. interazioni GASSOSO. proprietà SOLIDO LIQUIDO Stati di aggregazione della materia GASSOSO dal microscopico al macroscopico: struttura interazioni proprietà SOLIDO LIQUIDO Lo stato gassoso È uno dei tre stati di aggregazione della materia, caratterizzato

Dettagli

Legge di stato dei gas ideali

Legge di stato dei gas ideali Legge di stato dei gas ideali Le leggi di Boyle e Charles/Gay Lussac possono essere riunite, insieme al principio di Avogadro, in un'unica equazione che correla fra loro P, V, T e numero di moli di un

Dettagli

Un modello per il gas ideale

Un modello per il gas ideale Un modello per il gas ideale Un gas ideale consiste di particelle (atomi o molecole) che hanno le seguenti proprietà 1. Il volume proprio delle particelle è trascurabile rispetto al volume occupato dal

Dettagli

PROPRIETÁ DEI LIQUIDI

PROPRIETÁ DEI LIQUIDI PROPRIETÁ DEI LIQUIDI Viscosità: resistenza di un fluido al flusso, ossia scorrimento relativo delle molecole Una semplice misura (indiretta) è il tempo di efflusso di un dato volume di liquido attraverso

Dettagli

Diagramma di stato di H 2 O

Diagramma di stato di H 2 O Lezione 13 1. Pressione e temperatura 2. Leggi dei gas 3. Teoria cinetica ei gas 4. Gas ideali e gas reali 5. Miscele gassose: legge di Dalton 6. Frazioni molari Diagramma di stato di H 2 O Diagrammi di

Dettagli

Lo stato gassoso. L atmosfera terrestre è il sistema gassoso in cui siamo immersi

Lo stato gassoso. L atmosfera terrestre è il sistema gassoso in cui siamo immersi Lo stato gassoso L atmosfera terrestre è il sistema gassoso in cui siamo immersi I gas sono comprimibili (ampi spazi vuoti tra le particelle?) I gas si espandono facilmente riempiendo rapidamente lo spazio

Dettagli

Lo stato gassoso. Particelle con volume proprio trascurabile puntiformi

Lo stato gassoso. Particelle con volume proprio trascurabile puntiformi Lo stato gassoso Gas ideale (o perfetto) Particelle in movimento (casuale) Particelle con volume proprio trascurabile puntiformi Assenza di interazioni tra le particelle trasformazioni fisiche e non chimiche

Dettagli

GLI STATI DI AGGREGAZIONE DELLA MATERIA. Lo stato gassoso

GLI STATI DI AGGREGAZIONE DELLA MATERIA. Lo stato gassoso GLI STATI DI AGGREGAZIONE DELLA MATERIA Lo stato gassoso Classificazione della materia MATERIA Composizione Struttura Proprietà Trasformazioni 3 STATI DI AGGREGAZIONE SOLIDO (volume e forma propri) LIQUIDO

Dettagli

Il gas perfetto è costituito da particelle

Il gas perfetto è costituito da particelle Stato aeriforme E costituito da gas o vapori; un sistema gassoso è formato da un grande numero di particelle a distanze grandi tra loro, in movimento caotico (la densità di un gas è inferiore a quella

Dettagli

LA MATERIA ED I SUOI STATI

LA MATERIA ED I SUOI STATI LA MATERIA ED I SUOI STATI GAS COMPOSIZIONE DELL ARIA 1. I gas ideali e la teoria cineticomolecolare Nel modello del gas ideale le particelle 1. l energia cinetica media delle particelle è proporzionale

Dettagli

GAS IDEALI (o gas perfetti )

GAS IDEALI (o gas perfetti ) GAS IDEALI (o gas perfetti ) TEORIA CINETICA DEI GAS (modello di gas ideale ) molecole puntiformi moto rettilineo ed urti elastici forze attrattive - repulsive intermolecolari nulle PARAMETRI DELLO STATO

Dettagli

1. Lo studio dei gas nella storia 2. I gas ideali e la teoria cinetico-molecolare 3. La pressione dei gas 4. La legge di Boyle o legge isoterma 5.

1. Lo studio dei gas nella storia 2. I gas ideali e la teoria cinetico-molecolare 3. La pressione dei gas 4. La legge di Boyle o legge isoterma 5. Unità n 6 Le leggi dei gas 1. Lo studio dei gas nella storia 2. I gas ideali e la teoria cinetico-molecolare 3. La pressione dei gas 4. La legge di Boyle o legge isoterma 5. La legge di Gay-Lussac o legge

Dettagli

STATO GASSOSO. nel 1766 nel 1772 nel 1774

STATO GASSOSO. nel 1766 nel 1772 nel 1774 STATO GASSOSO 1 STATO GASSOSO I gas furono le ultime sostanze ad essere identificate dal punto di vista chimico; infatti l idea dell esistenza di diversi tipi di gas si affermò solo lentamente. Scoperta

Dettagli

GAS. Forze di legame intermolecolari ridotte Stato altamente disordinato

GAS. Forze di legame intermolecolari ridotte Stato altamente disordinato I GAS PERFETTI GAS Forze di legame intermolecolari ridotte Stato altamente disordinato Principali caratteristiche: Bassa viscosità Assenza di volume e forma propri Comprimibilità Miscibilità Pressione:

Dettagli

Stati di aggregazione della materia

Stati di aggregazione della materia Stati di aggregazione della materia A seconda della natura dei legami tra gli atomi o delle forze tra le molecole si possono avere diversi stati di aggregazione della materia SOLIDO LIQUIDO GAS PLASMA

Dettagli

Lo stato gassoso e le sue proprietà

Lo stato gassoso e le sue proprietà Lo stato gassoso e le sue proprietà Dr. Gabriella Giulia Pulcini Ph.D. Student, Development of new approaches to teaching and learning Natural and Environmental Sciences University of Camerino, ITALY 1

Dettagli

. Proprietà degli stati della materia Aeriforme Liquido Solido

. Proprietà degli stati della materia Aeriforme Liquido Solido . Proprietà degli stati della materia Aeriforme Liquido Solido Volume variabile in funzione del recipiente Volume definito Volume definito Forma del recipiente Forma del recipiente Forma propria Miscibili

Dettagli

Stati di aggregazione della materia. GAS Volume e forma indefiniti LIQUIDO Volume definito, forma indefinita SOLIDO Volume e forma definiti

Stati di aggregazione della materia. GAS Volume e forma indefiniti LIQUIDO Volume definito, forma indefinita SOLIDO Volume e forma definiti 9. I Gas Farmacia Stati di aggregazione della materia GAS Volume e forma indefiniti LIQUIDO Volume definito, forma indefinita SOLIDO Volume e forma definiti Stato solido Nello stato solido l energia di

Dettagli

= cost a p costante V 1 /T 1 =V 2 /T 2 LEGGE DI GAY-LUSSAC: Un sistema allo stato gassoso è definito da 4. mmhg (torr), bar.

= cost a p costante V 1 /T 1 =V 2 /T 2 LEGGE DI GAY-LUSSAC: Un sistema allo stato gassoso è definito da 4. mmhg (torr), bar. GAS IDEALI Un sistema allo stato gassoso è definito da 4 parametri: OLUME () l, m 3 PRESSIONE (p) Pa, atm, mmhg (torr), bar QUANTITA DI SOSTANZA (n) mol TEMPERATURA (T) K Sperimentalmente sono state determinate

Dettagli

CO 2 NO 2 SO 2 CH 4. He Ne Ar H 2 N 2 O 2 Cl 2

CO 2 NO 2 SO 2 CH 4. He Ne Ar H 2 N 2 O 2 Cl 2 Lo stato gassoso I gas sono materiali caratterizzati dalla mancanza di forma e volume propri. Assumono la forma ed il volume del recipiente che li contiene e sono facilmente comprimibili. Le sostanze gassose

Dettagli

LEGGI DEI GAS. Gas sono sostanze sprovviste di forma e volume proprio

LEGGI DEI GAS. Gas sono sostanze sprovviste di forma e volume proprio LEGGI DEI GAS Gas sono sostanze sprovviste di forma e volume proprio Una grandezza molto significativa per descrivere un gas è la pressione, conseguenza delle collisioni del gas sulla superficie del contenitore.

Dettagli

Termodinamica (2) gas ideali Lezione 13, 19/11/2018, JW

Termodinamica (2) gas ideali Lezione 13, 19/11/2018, JW Termodinamica (2) gas ideali Lezione 13, 19/11/2018, JW 16.1-16.2 1 1. Gas ideali In un gas ideale l interazione tra le molecole può essere trascurata. Cerchiamo l'equazione di stato dei gas ideali, cioè

Dettagli

Le idee della chimica

Le idee della chimica G. Valitutti A.Tifi A.Gentile Seconda edizione Copyright 2009 Zanichelli editore Capitolo 6 Le leggi dei gas 1. Lo studio dei gas nella storia 2. I gas ideali e la teoria cinetico-molecolare 3. La pressione

Dettagli

STATI DI AGGREGAZIONE

STATI DI AGGREGAZIONE STATI DI AGGREGAZIONE SOLIDO HA FORMA E VOLUME PROPRIO LIQUIDI NON HA FORMA PROPRIA HA VOLUME PROPRIO GAS NON HA NE FORMA NE VOLUME PROPRI FORZE INTERMOLECOLARI Solidi > liquidi >> gas 0 Gas reali> gas

Dettagli

STATI DI AGGREGAZIONE

STATI DI AGGREGAZIONE STATI DI AGGREGAZIONE SOLIDO HA FORMA E VOLUME PROPRIO LIQUIDO NON HA FORMA PROPRIA HA VOLUME PROPRIO GAS NON HA NE FORMA NE VOLUME PROPRI FORZE INTERMOLECOLARI Solidi > liquidi >> gas 0 Gas reali> gas

Dettagli

GAS. Forze di legame intermolecolari ridotte Stato altamente disordinato

GAS. Forze di legame intermolecolari ridotte Stato altamente disordinato I GAS PERFETTI GAS Forze di legame intermolecolari ridotte Stato altamente disordinato Principali caratteristiche: Bassa viscosità Assenza di volume e forma propri Comprimibilità Miscibilità Pressione:

Dettagli

Queste proprietà derivano dalla grande distanza che separa le molecole che compongono un gas.

Queste proprietà derivano dalla grande distanza che separa le molecole che compongono un gas. Stato Gassoso Lo stato gassoso I gas hanno tre proprietà caratteristiche: 1.sono facilmente comprimibili 2. si espandono per riempire il loro contenitore 3. occupano molto più spazio dei solidi e liquidi

Dettagli

Leggi ricavate da osservazioni sperimentali : mantenendo costante due dei 4 parametri, come variano gli altri due?

Leggi ricavate da osservazioni sperimentali : mantenendo costante due dei 4 parametri, come variano gli altri due? Le leggi dei gas Lo stato gassoso è caratterizzato da mancanza di forma e volume propri, e dalla tendenza a occupare tutto il volume disponibile. Lo stato di un gas dipende da 4 parametri: Volume (V) Pressione

Dettagli

Esploriamo la chimica

Esploriamo la chimica 1 Valitutti, Tifi, Gentile Esploriamo la chimica Seconda edizione di Chimica: molecole in movimento Capitolo 6 Le leggi dei gas 1. I gas ideali e la teoria cinetico-molecolare 2. La pressione dei gas 3.

Dettagli

Corso di Chimica Generale CL Biotecnologie

Corso di Chimica Generale CL Biotecnologie Corso di Chimica Generale CL Biotecnologie STATI DELLA MATERIA Prof. Manuel Sergi MATERIA ALLO STATO GASSOSO MOLECOLE AD ALTA ENERGIA CINETICA GRANDE DISTANZA TRA LE MOLECOLE LEGAMI INTERMOLECOLARI DEBOLI

Dettagli

I gas e loro proprietà Cap , 9-12, 15-24, 27-28, 31-33, 37-40, 52, 93-96

I gas e loro proprietà Cap , 9-12, 15-24, 27-28, 31-33, 37-40, 52, 93-96 2016 2017 CCS - Biologia CCS Scienze Geologiche 1 I gas e loro proprietà Cap 11. 1-7, 9-12, 15-24, 27-28, 31-33, 37-40, 52, 93-96 2 Proprietà Generali dei Gas I gas possono essere espansi all infinito.

Dettagli

Sistemi Gassosi. GAS = specie che occupa tutto lo spazio disponibile. VOLUME = spazio occupato si misura in: m 3, L (1L = 1dm 3 )

Sistemi Gassosi. GAS = specie che occupa tutto lo spazio disponibile. VOLUME = spazio occupato si misura in: m 3, L (1L = 1dm 3 ) Sistemi Gassosi GAS = specie che occupa tutto lo spazio disponibile VOLUME = spazio occupato si misura in: m 3, L (1L = 1dm 3 ) PRESSIONE = forza per unità di superficie Unità di misura: Forza Newton (N)

Dettagli

L equilibrio dei gas. Lo stato di equilibrio di una data massa di gas è caratterizzato da un volume, una pressione e una temperatura

L equilibrio dei gas. Lo stato di equilibrio di una data massa di gas è caratterizzato da un volume, una pressione e una temperatura Termodinamica 1. L equilibrio dei gas 2. L effetto della temperatura sui gas 3. La teoria cinetica dei gas 4. Lavoro e calore 5. Il rendimento delle macchine termiche 6. Il secondo principio della termodinamica

Dettagli

Il prodotto della pressione per il volume di una determinata massa gassosa è direttamente proporzionale alla temperatura assoluta: PV = KT

Il prodotto della pressione per il volume di una determinata massa gassosa è direttamente proporzionale alla temperatura assoluta: PV = KT ESERCITAZIONE 5 LEGGI DEI GAS Le leggi che governano i rapporti che si stabiliscono tra massa, volume, temperatura e pressione di un gas, sono leggi limite, riferite cioè ad un comportamento ideale, cui

Dettagli

delle curve isoterme dell anidride carbonica

delle curve isoterme dell anidride carbonica COMPORTAMENTO DEI GAS REALI l andamento delle curve isoterme dell anidride carbonica mostra che: a temperature elevate le isoterme assomigliano a quelle di un gas perfetto Diagramma di Andrews a temperature

Dettagli

Lez 14 16/11/2016. Lezioni in didattica_fisica/did_fis1617/ E. Fiandrini Fis Sper e Appl Did 1617

Lez 14 16/11/2016. Lezioni in   didattica_fisica/did_fis1617/ E. Fiandrini Fis Sper e Appl Did 1617 Lez 14 16/11/2016 Lezioni in http://www.fisgeo.unipg.it/~fiandrin/ didattica_fisica/did_fis1617/ E. Fiandrini Fis Sper e Appl Did 1617 1 Esperienza di Joule E. Fiandrini Fis. Sper. e 2 Esperienza di Joule

Dettagli

Teoria cinetica dei Gas. Gas Ideali Velocità quadratica media Termodinamica dei gas ideali

Teoria cinetica dei Gas. Gas Ideali Velocità quadratica media Termodinamica dei gas ideali Teoria cinetica dei Gas Gas Ideali Velocità quadratica media Termodinamica dei gas ideali Definizione di Gas Perfetto. Un gas perfetto è un grand ensemble di particelle indistinguibili, identiche e puntiformi

Dettagli

L equilibrio dei gas

L equilibrio dei gas L equilibrio dei gas Lo stato di equilibrio di una data massa di gas è caratterizzato da un volume, una pressione e una temperatura 1 L equilibrio dei gas Un gas esercita una pressione sul recipiente che

Dettagli

14. Transizioni di Fase_a.a. 2009/2010 TRANSIZIONI DI FASE

14. Transizioni di Fase_a.a. 2009/2010 TRANSIZIONI DI FASE TRANSIZIONI DI FASE Fase: qualsiasi parte di un sistema omogenea, di composizione chimica costante e in un determinato stato fisico. Una fase può avere le stesse variabili intensive (P, T etc) ma ha diverse

Dettagli

STATO GASSOSO. parte I a. - GAS PERFETTI - GAS REALI Lucidi del Prof. D. Scannicchio

STATO GASSOSO. parte I a. - GAS PERFETTI - GAS REALI Lucidi del Prof. D. Scannicchio STATO GASSOSO parte I a - GAS PERFETTI - GAS REALI Lucidi del Prof. D. Scannicchio GAS PERFETTI molecole puntiformi (volume proprio nullo) urti elastici (stesse particelle prima e dopo l'urto) parametri

Dettagli

Chimica generale. Corsi di laurea in - Tecnologie alimentari per la ristorazione - Viticoltura ed enologia - Tecnologia agroalimentare PARTE 3

Chimica generale. Corsi di laurea in - Tecnologie alimentari per la ristorazione - Viticoltura ed enologia - Tecnologia agroalimentare PARTE 3 Chimica generale Corsi di laurea in - Tecnologie alimentari per la ristorazione - Viticoltura ed enologia - Tecnologia agroalimentare PARTE 3 1 GLI STATI DI AGGREGAZIONE DELLA MATERIA 2 I composti chimici

Dettagli

approfondimento Fasi e cambiamenti di fase

approfondimento Fasi e cambiamenti di fase approfondimento Fasi e cambiamenti di fase Gas ideali e gas reali Teoria cinetica dei gas e conseguenze Cambiamenti di fase e conservazione della energia Gas ideali e gas reali In un gas ideale: l interazione

Dettagli

-GAS IDEALI- Le particelle che costituiscono un gas ideale:

-GAS IDEALI- Le particelle che costituiscono un gas ideale: -GAS IDEALI- Le particelle che costituiscono un gas ideale: sono in movimento continuo e casuale hanno un volume trascurabile rispetto al volume totale a disposizione del gas non interagiscono fra loro

Dettagli

Distribuzione di densità

Distribuzione di densità Distribuzione di densità Distribuzione di densità in presenza di forze conservative. A F dx A La forza conservativa esterna agisce su ciascuno degli N componenti del gas all interno del volume Adx. La

Dettagli

STATO GASSOSO. parte I a. - GAS PERFETTI - GAS REALI Lucidi del Prof. D. Scannicchio

STATO GASSOSO. parte I a. - GAS PERFETTI - GAS REALI Lucidi del Prof. D. Scannicchio STATO GASSOSO parte I a - GAS PERFETTI - GAS REALI Lucidi del Prof. D. Scannicchio GAS PERFETTI molecole puntiformi (volume proprio nullo) urti elastici (stesse particelle prima e dopo l'urto) parametri

Dettagli

Leggi dei gas Equazione di stato dei gas perfetti

Leggi dei gas Equazione di stato dei gas perfetti Le leggi dei gas Quale descrizione fisico-matematica si può usare per i diversi stati di aggregazione della materia? Essa è tanto più semplice (equazioni) quanto meno interagenti sono fra loro le particelle

Dettagli

CdL Professioni Sanitarie A.A. 2012/2013. Unità 9: Gas e processi di diffusione

CdL Professioni Sanitarie A.A. 2012/2013. Unità 9: Gas e processi di diffusione L. Zampieri Fisica per CdL Professioni Sanitarie A.A. 12/13 CdL Professioni Sanitarie A.A. 2012/2013 Gas Unità 9: Gas e processi di diffusione Equazione di stato dei gas perfetti Trasformazioni termodinamiche

Dettagli

LEGAMI INTERMOLECOLARI LEGAMI INTERMOLECOLARI

LEGAMI INTERMOLECOLARI LEGAMI INTERMOLECOLARI I legami (o forze) intermolecolari sono le forze attrattive tra particelle: molecola - molecola, molecola - ione, ione - ione In assenza di queste interazioni tutti i composti sarebbero gassosi NB: attenzione

Dettagli

Forze Intermolecolari. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Forze Intermolecolari. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Forze Intermolecolari Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Forze Intermolecolari Le Forze Intermolecolari sono forze attrattive fra molecole. Le

Dettagli

Fisica per scienze ed ingegneria

Fisica per scienze ed ingegneria Serway, Jewett Fisica per scienze ed ingegneria Capitolo 19 Temperatura e principio zero della termodinamica I nostri sensi non sono affidabili per definire lo stato termico dei corpi. Ocorre un metodo

Dettagli

LA TEORIA CINETICA DEI GAS.

LA TEORIA CINETICA DEI GAS. LA TEORIA CINETICA DEI GAS. Il comportamento dei gas,contrariamente a quanto accade per i liquidi e per i solidi appare indipendente dalla specie chimica: la bassissima densità,la capacità di espandersi

Dettagli

TEORIA CINETICA DEI GAS - II

TEORIA CINETICA DEI GAS - II TEORIA CINETICA DEI GAS - II T R AT TO DA: I P ro b l e m i D e l l a F i s i c a - C u t n e l l, J o h n s o n, Yo u n g, S t a d l e r Z a n i c h e l l i e d i t o r e La F i s i c a di A m a l d i

Dettagli

Termodinamica. Marcello Borromeo corso di Fisica per Farmacia - Anno Accademico

Termodinamica. Marcello Borromeo corso di Fisica per Farmacia - Anno Accademico Termodinamica Studia sistemi estesi caratterizzati da pressione, volume e temperatura Si basa sulla definizione della temperatura e su tre principi Il primo principio riguarda la conservazione dell energia

Dettagli

delle curve isoterme dell anidride carbonica

delle curve isoterme dell anidride carbonica COMPORTAMENTO DEI GAS REALI l andamento delle curve isoterme dell anidride carbonica mostra che: a temperature elevate le isoterme assomigliano a quelle di un gas perfetto Diagramma di Andrews a temperature

Dettagli

Elementi che esistono come gas a 25 0 C and 1 atmosfera 5.1

Elementi che esistono come gas a 25 0 C and 1 atmosfera 5.1 I gas Capitolo 5 Elementi che esistono come gas a 25 0 C and 1 atmosfera 5.1 Tabella 5.1 Alcune sostanze che si trovano allo stato gassoso a 1 atm e 25 C Elementi H 2 (idrogeno molecolare) N 2 (azoto molecolare)

Dettagli

Dinamica molecolare. Moto molecolare, energia interna. e conservazione dell'energia

Dinamica molecolare. Moto molecolare, energia interna. e conservazione dell'energia Dinamica molecolare Moto molecolare, energia interna e conservazione dell'energia Dinamica dei gas La dinamica si applica a corpi di massa ordinaria (i moti sulla Terra) oppure a corpi molto grandi (i

Dettagli

Gas. Caratteristiche tipiche dei gas rispetto a solidi e liquidi. Leggi dei gas: legge di Boyle, legge di Charles, legge di Avogadro

Gas. Caratteristiche tipiche dei gas rispetto a solidi e liquidi. Leggi dei gas: legge di Boyle, legge di Charles, legge di Avogadro Gas Caratteristiche tipiche dei gas rispetto a solidi e liquidi Definizione di pressione Unità di misura della pressione Leggi dei gas: legge di Boyle, legge di Charles, legge di Avogadro Equazione di

Dettagli

Proprietà volumetriche delle sostanze pure. Termodinamica dell Ingegneria Chimica

Proprietà volumetriche delle sostanze pure. Termodinamica dell Ingegneria Chimica Proprietà volumetriche delle sostanze pure Termodinamica dell Ingegneria Chimica le fasi di una specie pura Una sostanza la cui composizione chimica non varia in tutta la massa presa in considerazione

Dettagli

Gli stati di aggregazione della materia.

Gli stati di aggregazione della materia. Gli stati di aggregazione della materia. Stati di aggregazione della materia: Solido, liquido, gassoso Passaggi di stato: Solido Liquido (fusione) e liquido solido (solidificazione); Liquido aeriforme

Dettagli

Ultima verifica pentamestre. 1)definizione di miscuglio, soluzione, composto, elemento, molecola ( definizione importantissima!!!!!!!!

Ultima verifica pentamestre. 1)definizione di miscuglio, soluzione, composto, elemento, molecola ( definizione importantissima!!!!!!!! Ultima verifica pentamestre 1)definizione di miscuglio, soluzione, composto, elemento, molecola ( definizione importantissima!!!!!!!!) 2) gruppi dal IV al VIII 3) differenza tra massa atomica e massa atomica

Dettagli

GAS IDEALI E REALI. Prendiamo ora in considerazione un sistema particolare termodinamico: il gas. Un gas è un fluido con le seguenti caratteristiche:

GAS IDEALI E REALI. Prendiamo ora in considerazione un sistema particolare termodinamico: il gas. Un gas è un fluido con le seguenti caratteristiche: GAS IDEALI E REALI Gas ideale. Prendiamo ora in considerazione un sistema particolare termodinamico: il gas. Un gas è un fluido con le seguenti caratteristiche: - non ha forma, ne volume proprio; - e comprimibile.

Dettagli

I Gas. Farmacia. Lezione

I Gas. Farmacia. Lezione I Gas Farmacia Lezione 2016-2017 GAS Importanza dei gas L airbag si riempie di N2 gas in seguito ad un urto. Il gas viene generato dalla decomposizione della sodio azide NaN3. 2 NaN3 ---> 2 Na + 3 N2 Stati

Dettagli

LA TEORIA CINETICA DEI GAS

LA TEORIA CINETICA DEI GAS LA TEORIA CINETICA DEI GAS Le teorie microscopiche Le proprietà degli atomi e delle molecole spiegano le proprietà che riscontriamo nei sistemi macroscopici. Grandee microscopiche Massa di una molecola

Dettagli

Calcolo di Integrali

Calcolo di Integrali Calcolo di Integrali 28 aprile 2013 Indice 1 Teoria cinetica dei gas: la distribuzione delle velocità di Maxwell 2 2 Lavoro associato a una trasformazione isoterma 4 1 1 Teoria cinetica dei gas: la distribuzione

Dettagli

Appunti di termodinamica che completano il libro di testo

Appunti di termodinamica che completano il libro di testo Appunti di termodinamica che completano il libro di testo Forze intermolecolari Gas perfetto Dal punto di vista macroscopico un gas perfetto è un gas rarefatto a una temperatura molto maggiore di quella

Dettagli

Gradi di libertà negli sta/ di aggregazione della materia

Gradi di libertà negli sta/ di aggregazione della materia Gradi di libertà negli sta/ di aggregazione della materia I solidi cristallini sono cara-erizza0 da un ordine nelle posizioni e nelle orientazioni. Gradi di libertà negli sta/ di aggregazione della materia

Dettagli

Proprietà volumetriche delle sostanze pure. Principi di Ingegneria Chimica Ambientale

Proprietà volumetriche delle sostanze pure. Principi di Ingegneria Chimica Ambientale Proprietà volumetriche delle sostanze pure Principi di Ingegneria Chimica Ambientale le fasi di una specie pura Una sostanza la cui composizione chimica non varia in tutta la massa presa in considerazione

Dettagli

Energia interna. 1 se non durante gli urti

Energia interna. 1 se non durante gli urti Energia interna L energia interna E int di un sistema è la somma delle energie cinetiche e potenziali (dovute alle interazioni) delle particelle che lo compongono. In un gas ideale le particelle sono indipendenti:

Dettagli

Termodinamica Chimica

Termodinamica Chimica Universita degli Studi dell Insubria Termodinamica Chimica Gas Reali dario.bressanini@uninsubria.it http://scienze-como.uninsubria.it/bressanini I Gas Reali I gas reali non sempre si comportano idealmente,

Dettagli

I gas. ChimicaGenerale_lezione10

I gas. ChimicaGenerale_lezione10 I gas Nel 1630 fu usato per la prima volta il termine gas: Van Helmont che lo inventò, pensava però che non fosse possibile contenere un gas in un recipiente, perché aveva una natura e una composizione

Dettagli

1.Pressione di un Gas

1.Pressione di un Gas 1.Pressione di un Gas Un gas è formato da molecole che si muovono in modo disordinato, urtandosi fra loro e urtando contro le pareti del recipiente che le contiene. Durante gli urti, le molecole esercitano

Dettagli

Teoria Cinetica Molecolare dei Gas Ideali

Teoria Cinetica Molecolare dei Gas Ideali Teoria Cinetica Molecolare dei Gas Ideali Un gas è composto da molecole molto lontane tra di loro in confronto alle loro dimensioni e possono essere considerate puntiformi, quindi prive di volume. Le molecole

Dettagli

I gas. Le caratteristiche dei gas. La legge di Boyle

I gas. Le caratteristiche dei gas. La legge di Boyle I gas Le caratteristiche dei gas Lo stato aeriforme è definito come uno dei tre stati della materia. Lo stato aeriforme può essere costituito da vapore o da gas. Un vapore è diverso da un gas in quanto

Dettagli

Stati d aggregazione della materia

Stati d aggregazione della materia Stati d aggregazione della materia SOLIDO: Forma e volume propri. GASSOSO: Forma e volume del recipiente in cui è contenuto. LIQUIDO: Forma del recipiente in cui è contenuto, ma volume proprio. Parametri

Dettagli

Chimica. Gli stati di aggregazione della materia

Chimica. Gli stati di aggregazione della materia Chimica Gli stati di aggregazione della materia La materia si presenta in natura in tre modelli di aggregazione dei suoi costituenti (atomi, molecole o ioni): solido, liquido, aeriforme. Da un punto di

Dettagli

Bagatti, Corradi, Desco, Ropa. Chimica. seconda edizione

Bagatti, Corradi, Desco, Ropa. Chimica. seconda edizione Bagatti, Corradi, Desco, Ropa Chimica seconda edizione Bagatti, Corradi, Desco, Ropa, Chimica seconda edizione Capitolo 2. La carta d identità delle sostanze SEGUI LA MAPPA descrivere atomica 1 descrivere

Dettagli

BIOLOGIA A. A CHIMICA

BIOLOGIA A. A CHIMICA Laurea triennale in BIOLOGIA A. A. 03-4 4 CHIMICA Lezioni di Chimica Fisica rof. Antonio Toffoletti Conversione di una grandezza tra unità di misura differenti Uno scienziato ha misurato la pressione atmosferica

Dettagli

LE PROPRIETA DEI GAS

LE PROPRIETA DEI GAS LE PROPRIETA DEI GAS Per definire lo stato di un gas, bisogna definire le tre grandezze fisiche, chiamate variabili di stato, che lo caratterizzano: volume, pressione e temperatura. E' possibile descrivere

Dettagli

Fisica Applicata, Area Infermieristica, M. Ruspa REGIMI DI MOTO DI UN FLUIDO REALE

Fisica Applicata, Area Infermieristica, M. Ruspa REGIMI DI MOTO DI UN FLUIDO REALE REGIMI DI MOTO DI UN FLUIDO REALE MOTO LAMINARE O TURBOLENTO? Dipende dalla velocita di scorrimento del fluido! VELOCITA CRITICA La velocita critica per un fluido di viscosita η e di densita d che scorre

Dettagli

GLI STATI DI AGGREGAZIONE DELLA MATERIA. Lo stato liquido

GLI STATI DI AGGREGAZIONE DELLA MATERIA. Lo stato liquido GLI STATI DI AGGREGAZIONE DELLA MATERIA Lo stato liquido Lo stato liquido Liquidi: energia dei moti termici confrontabile con quella delle forze coesive. Limitata libertà di movimento delle molecole, che

Dettagli

Sommario della lezione Teoria cinetica dei gas. Gas Reali. Cenni di termodinamica

Sommario della lezione Teoria cinetica dei gas. Gas Reali. Cenni di termodinamica Sommario della lezione 13-15 Teoria cinetica dei gas Gas Reali Cenni di termodinamica Equazione di stato dei gas ideali PV = n RT I gas si discostano dal comportamento ideale ad alti valori della pressione

Dettagli

Gas ideale: velocità delle particelle e pressione (1)

Gas ideale: velocità delle particelle e pressione (1) Gas ideale: velocità delle particelle e pressione (1) In un gas ideale le particelle sono considerate puntiformi e risentono di forze solo durante gli urti (perfettamente elastici) con le pareti del recipiente.

Dettagli

Termodinamica Chimica

Termodinamica Chimica Universita degli Studi dell Insubria Termodinamica Chimica I Gas Ideali dario.bressanini@uninsubria.it http://scienze-como.uninsubria.it/bressanini Proprietà di un Gas Può essere compresso facilmente Esercita

Dettagli

Dal macroscopico al microscopico

Dal macroscopico al microscopico Dal macroscopico al microscopico Costituenti della materia ATOMI (in greco indivisibili, intuizione di Democrito V secolo a. C.) Atomi, di dimensioni di circa 10-10 m, si differenziano a seconda dell elemento

Dettagli

Stati della materia. Esempio. Fusione e solidificazione. Esempio. Stati di aggregazione della materia

Stati della materia. Esempio. Fusione e solidificazione. Esempio. Stati di aggregazione della materia Stati della materia STATI DI AGGREGAZIONE DELLA MATERIA E GAS PERFETTI Cosa sono gli stati della materia? Gli stati della materia sono come si presenta la materia nell universo fisico e dipendono dalla

Dettagli

Dipartimento di Scienze Chimiche. Ambiente. Sistema

Dipartimento di Scienze Chimiche. Ambiente. Sistema Descrizione macroscopica dei sistemi materiali Sistema: materia compresa entro una superficie chiusa (ad esempio la superficie interna di un contenitore, ma può essere anche una superficie matematica,

Dettagli

TERMODINAMICA stato gassoso. TERMODINAMICA stato gassoso. Elio GIROLETTI - Università degli Studi di Pavia, Dip. Fisica nucleare e teorica

TERMODINAMICA stato gassoso. TERMODINAMICA stato gassoso. Elio GIROLETTI - Università degli Studi di Pavia, Dip. Fisica nucleare e teorica UNIERSITÀ DEGLI STUDI DI PAIA dip. Fisica nucleare e teorica via Bassi 6, 27100 Pavia, Italy tel. 038298.7905 - girolett@unipv.it - www.unipv.it/webgiro 1 elio giroletti TERMODINAMICA stato gassoso FISICA

Dettagli

Fluidi (FMLP: Cap. 11 Meccanica dei fluidi)

Fluidi (FMLP: Cap. 11 Meccanica dei fluidi) In un fluido Fluidi (FMLP: Cap. 11 Meccanica dei fluidi) le molecole non sono vincolate a posizioni fisse a differenza di quello che avviene nei solidi ed in particolare nei cristalli Il numero di molecole

Dettagli

La temperatura. La materia può trovarsi in tre stati diversi di aggregazione diversi: solido, liquido e gassoso

La temperatura. La materia può trovarsi in tre stati diversi di aggregazione diversi: solido, liquido e gassoso 1 La temperatura La materia può trovarsi in tre stati diversi di aggregazione diversi: solido, liquido e gassoso Qualunque sia lo stato di aggregazione, le particelle (molecole o atomi) di cui è fatta

Dettagli

2014 2015 CCS - Biologia CCS - Fisica I gas e loro proprietà. I liquidi e loro proprietà

2014 2015 CCS - Biologia CCS - Fisica I gas e loro proprietà. I liquidi e loro proprietà 2014 2015 CCS - Biologia CCS - Fisica I gas e loro proprietà 1 I liquidi e loro proprietà 2 Proprietà Generali dei Gas I gas possono essere espansi all infinito. I gas occupano i loro contenitori uniformemente

Dettagli

Proprietà dei gas (Cap. 13)

Proprietà dei gas (Cap. 13) Proprietà dei gas (Cap. 13) I gas Misura della pressione Leggi di Boyle, di Charles e di Gay-Lussac Ipotesi di Avogadro Legge del gas ideale Determinazione della massa molecolare dei gas Legge di Dalton

Dettagli

Termodinamica Chimica

Termodinamica Chimica Uniersita degli Studi dell Insubria Termodinamica Chimica Teoria Cinetica dei Gas dario.bressanini@uninsubria.it http://scienze-como.uninsubria.it/bressanini I Padri della Teoria Cinetica Boltzmann e Maxwell,

Dettagli

TEORIA CINETICA DEI GAS (CENNI)

TEORIA CINETICA DEI GAS (CENNI) TEORIA CINETICA DEI GAS (CENNI) G. Pugliese 1 Teoria cinetica Ø a teoria cinetica stabilisce un collegamento tra il comportamento macroscopico di un gas e il suo comportamento microscopico. Ø e grandezze

Dettagli

DOCENTE: Prof. Alessandro Vergara Tel TESTO CONSIGLIATO: LA CHIMICA FISICA ATTRAVERSO ESERCIZI SANTE CAPASSO

DOCENTE: Prof. Alessandro Vergara Tel TESTO CONSIGLIATO: LA CHIMICA FISICA ATTRAVERSO ESERCIZI SANTE CAPASSO CORSO DI CHIMICA FISICA DOCENTE: Prof. Alessandro Vergara Tel 081674259 avergara@unina.it web docenti: https://www.docenti.unina.it/alessandro.vergara TESTO CONSIGLIATO: LA CHIMICA FISICA ATTRAVERSO ESERCIZI

Dettagli

Equilibri chimici. Chimica

Equilibri chimici. Chimica Chimica Silvia LICOCCIA Professore Ordinario di Fondamenti Chimici per le Tecnologie Dipartimento di Scienze e Tecnologie Chimiche Università di Roma Tor Vergata Equilibri chimici Equilibrio Chimico Studio

Dettagli

Bilancio di energia: il Primo Principio della Termodinamica. Termodinamica dell Ingegneria Chimica

Bilancio di energia: il Primo Principio della Termodinamica. Termodinamica dell Ingegneria Chimica Bilancio di energia: il Primo Principio della Termodinamica Termodinamica dell Ingegneria Chimica 1 I Sistemi termodinamici Un sistema è definito da una superficie di controllo, reale o immaginaria, che

Dettagli