Tali quantità o caratteristiche essenziali di un fenomeno possono essere qualitative o quantitative e vengono dette variabili.

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Tali quantità o caratteristiche essenziali di un fenomeno possono essere qualitative o quantitative e vengono dette variabili."

Transcript

1 OBIETTIVO DELLA RICERCA SCIENTIFICA MODELLO DEL FENOMENO NATURALE stabilire se esistono relazioni tra le quantità che si ritengono essenziali per la descrizione di un fenomeno. è una costruzione ideale e semplificata rispetto alla realtà, ma che si basa su alcune caratteristiche fondamentali del modo in cui il fenomeno si realizza. Tali quantità o caratteristiche essenziali di un fenomeno possono essere qualitative o quantitative e vengono dette variabili. Trovare tali relazioni permette anche di poter effettuare previsioni sull andamento del fenomeno e sul valore di alcune variabili, al variare delle altre. Prof.ssa Angela Donatiello

2 Relazioni e funzioni Siano A e B due insiemi Si definisce prodotto cartesiano tra A e B (e lo si indica con il simbolo A B) l insieme formato da tutte le coppie ordinate (,y) al variare di in A e di y in B A B = {(,y) A y B} Esempio. A = {a,b,c,d} B = {,,3} A B = { (a,); (a,); (a,3); (b,); (b,); (b,3); (c,); (c,); (c,3); (d,); (d,); (d,3)} Prof.ssa Angela Donatiello

3 Rappresentazione del prodotto cartesiano Mediante diagramma cartesiano Mediante tabella a doppia entrata A d c b A B 3 a (a,) (a,) (a,3) b (b,) (b,) (b,3) c (c,) (c,) (c,3) d (d,) (d,) (d,3) a 3 B Prof.ssa Angela Donatiello 3

4 Una coppia ordinata è tale in quanto conta l ordine in cui vengono indicati gli elementi. Una coppia è (a,b) è ordinata (a,b) (b,a) Due coppie ordinate (, y ) e (, y ) sono uguali = e y = y La più nota applicazione degli insiemi prodotto è il PIANO CARTESIANO. Indichiamo con R l insieme dei numeri reali. Per definizione, il piano cartesiano è l insieme di tutte le coppie ordinate (,y) con e y numeri reali. R R = {(,y) R y R } Prof.ssa Angela Donatiello 4

5 Il primo numero è detto ascissa e il secondo ordinata. Gli assi e y rappresentano graficamente l insieme dei numeri reali R. CORRISPONDENZA BIUNIVOCA: P piano (,y) R R In sintesi: Il piano cartesiano è composto da tutti i punti del piano in corrispondenza biunivoca con tutte le coppie ordinate (,y) al variare di e y in R, ossia da tutti gli elementi dell insieme prodotto R R, dove R indica l insieme dei numeri reali. Prof.ssa Angela Donatiello 5

6 I quadrante = {(,y): > 0, y > 0} II quadrante = {(,y): < 0, y > 0} III quadrante = {(,y): < 0, y < 0} IV quadrante = {(,y): > 0, y < 0} II I III IV Prof.ssa Angela Donatiello 6

7 INSIEME INSIEME STRUTTURATO RELAZIONI OPERAZIONI ORDINE EQUIVALENZA INTERNE ESTERNE Prof.ssa Angela Donatiello 7

8 RELAZIONI DEF. Si definisce RELAZIONE tra due insiemi A e B un qualsiasi sottoinsieme del prodotto cartesiano A B R AB A R = {( a,);(b,);(c,3)} AB d c b a R a 3 B Prof.ssa Angela Donatiello 8

9 Esempio. A={Tina, Gino, Lina, Dino} B={piano, violino, arpa} La relazione che ci interessa rappresentare è: R=...suona... Tale relazione mette in corrispondenza gli elementi dell insieme A con quelli dell insieme B. Visualizziamo questa relazione su un diagramma sagittale: A Tina piano B Gino violino Lina arpa Dino E dunque possibile rappresentare la relazione precedente mediante un diagramma cartesiano: Prof.ssa Angela Donatiello 9

10 arpa violino piano Tina Gino Lina Dino Oppure mediante una tabella a doppia entrata: Tina Gino Lina Dino Arpa Violino piano Tina R arpa Tina R/ violino Prof.ssa Angela Donatiello 0

11 Più in generale, considerati due insiemi H e K e stabilita una regola R che permetta di individuare un legame tra gli elementi del primo insieme e quelli y del secondo, si ha che: (,y) sono in relazione R y (,y) non sono in relazione R/ y Viene così a formarsi il sottoinsieme G del prodotto cartesiano H µ K, costituito da quelle particolari coppie (,y) di H µ K che soddisfano la relazione espressa. Tale insieme viene definito grafico della relazione R, che pertanto sarà indicata con il simbolo R = (H µ K, G). Secondo la simbologia dell insiemistica, si può dunque pensare di sintetizzare tale concetto nel seguente modo: R y : (,y) G R/ y : (,y) G Prof.ssa Angela Donatiello

12 Una relazione può essere determinata da una formula matematica Il cui grafico è: G = {(,y) + y = 4 RR y = 4 + } rappresenta una circonferenza con centro nell origine degli assi e raggio. Prof.ssa Angela Donatiello

13 FUNZIONE DEF. Siano A e B insiemi. Una funzione f : A B è una relazione tra A e B che ad ogni elemento di A associa uno e un solo elemento di B. In simboli matematici: f : A B è una funzione di A in B A!y B y = f() a c b 3 4 Prof.ssa Angela Donatiello 3

14 = VARIABILE INDIPENDENTE y = VARIABILE DIPENDENTE DEF. Si definisce DOMINIO della funzione l insieme dei valori assunti dalla variabile DEF. Si definisce CODOMINIO della funzione l insieme dei valori assunti dalla funzione, ossia l insieme delle y di B che vengono associati a ciascun di A. Gli elementi y associati a ciascun elemento di A vengono dette immagini di. Il CODOMINIO è detto anche INSIEME DELLE IMMAGINI di una funzione. C = f (A) = {f() B A} = {y B A : y = f()} GRAFICO della funzione f: G = {(,f()) A} Prof.ssa Angela Donatiello 4

15 DEF. Una funzione f : A B è detta INIETTIVA se e solo se ogni elemento di B è immagine di al più un elemento di A A B a c b 3 4 Non iniettiva A B a c b 3 4 Iniettiva In simboli: f : A B è una funzione iniettiva,, A ( A (f ( ) = f ( f ( ) ) f ( = )) ) Prof.ssa Angela Donatiello 5

16 DEF. Una funzione f : A B è detta SURIETTIVA se e solo se ogni elemento di B è immagine di almeno un elemento di A A B a b Non suriettiva c 3 A B a b Suriettiva f(a) = B c In simboli: f : A B è una funzione suriettiva y B A y = f () Prof.ssa Angela Donatiello 6

17 Prof.ssa Angela Donatiello 7 DEF. Una funzione f : A B è detta BIETTIVA o BIUNIVOCA se e solo se è sia iniettiva che suriettiva a b c A B Suriettiva ma non iniettiva a b c 3 4 A B Iniettiva ma non suriettiva a b c 3 A B Biettiva o biunivoca

18 Se A e B sono entrambi sottoinsiemi dell insieme R dei numeri reali, allora si parlerà di funzione reale di variabile reale. f : A R B R è A!y B y = f() una funzione reale di variabile reale di A in B Il grafico di una funzione reale di variabile reale è l insieme delle coppie ordinate (,f()) rappresentate da punti del piano cartesiano. Tali punti possono essere infiniti, pertanto il grafico della funzione sarà rappresentato da una curva sul piano cartesiano. Tutti i punti di tale curva soddisfano la funzione considerata, ossia sono coppie (,f()) del grafico di f. Prof.ssa Angela Donatiello 8

19 Esempio. Sia f : R a + 3 R Essa può essere anche più semplicemente espressa mediante l equazione y = + 3 il cui grafico nel piano cartesiano è una retta. Tale funzione è detta funzione LINEARE Prof.ssa Angela Donatiello 9

20 Due insiemi A e B hanno la stessa cardinalità se e solo se esiste una funzione biettiva di A in B. A B a b Biettiva o biunivoca c 3 A = B f : A B biettiva Nel caso di insiemi finiti, la cardinalità di un insieme indica il numero dei suoi elementi, mentre per insiemi infiniti può accadere che insiemi siano equipotenti ad un loro sottoinsieme proprio, ossia che abbiano la stessa cardinalità di un sottoinsieme strettamente contenuto in esso. Prof.ssa Angela Donatiello 0

21 Sia f : D R af() C R PROPRIETA DELLE FUNZIONI, D con La funzione si dice crescente in senso stretto f ( ) < f ( ) y = log(+) y = e < Prof.ssa Angela Donatiello

22 La funzione si dice crescente in senso lato o non decrescente, f ( D con ) f ( ) < y = f() = + 3 < < Prof.ssa Angela Donatiello

23 La funzione si dice decrescente in senso stretto, f ( D con ) > f ( ) < y = Prof.ssa Angela Donatiello 3

24 La funzione si dice decrescente in senso lato o non crescente, f ( D con ) f ( ) < y = 3 6 > Le funzioni non decrescenti o non crescenti si dicono monotòne. In particolare le funzioni decrescenti in senso stretto o crescenti in senso stretto si dicono monotòne in senso stretto. Prof.ssa Angela Donatiello 4

25 Sia f : D R af() C R La funzione si definisce PARI ) D )f ( ) = f () D y = parabola con vertice nell origine degli assi ^ grafico simmetrico rispetto all asse y Prof.ssa Angela Donatiello 5

26 La funzione si definisce DISPARI ) D )f ( ) = f () D 50 y = 3 funzione cubica grafico simmetrico rispetto all origine degli assi ^ Esempio: y = Prof.ssa Angela Donatiello 6

27 Sia f : D R af() C R La funzione si definisce PERIODICA T ) D )f ( f () Il più piccolo dei numeri T per cui vale tale proprietà è detto PERIODO della funzione f. > 0 + T) = + T D y = sen 0.8 periodica di periodo T = π sin() Prof.ssa Angela Donatiello 7

28 Date le funzioni f : D f R a f() C R g: D g R ag() C R La funzione g è detta una RESTRIZIONE della funzione f o f è detta PROLUNGAMENTO della funzione g )D g ) D D f g g() = f () Esempio. f : a + g : a + OSS. Due funzioni sono UGUALI se e solo se ) Hanno stesso DOMINIO ) Hanno stesso CODOMINIO 3) Hanno lo stesso GRAFICO Prof.ssa Angela Donatiello 8

29 + D f : 0 N : D : + > 0 0 > 0-0, 0, + D f = ] ] ] [ D g : + 0 > > D g = ] 0,+ [ Le due funzioni coincidono solo per > 0, in quanto nell altro intervallo la funzione g non è definita: g è una restrizione della f. Prof.ssa Angela Donatiello 9

30 Sia f : D f R a f() C R Si definisce CONTROIMMAGINE dell elemento y mediante f l insieme di tutti gli elementi del dominio tale che y è immagine della. f (y) = { D y = f ()} Si definisce CONTROIMMAGINE di C f (C) = { D f () C} Nota: non si confonda la notazione f - (y) con /f(y) (reciproco o inverso) Condizione necessaria e sufficiente affinché l equazione f() = y 0, con y 0 dato e incognita, abbia soluzioni è che y 0 appartenga al codominio. Prof.ssa Angela Donatiello 30

31 In questo caso l equazione f()=y 0 ha tre soluzioni, in quanto la retta y = y 0 interseca tre volte la curva. Tale funzione non è iniettiva, poiché a valori distinti della corrisponde lo stesso valore della funzione. f è INVERTIBILE f è biettiva Ossia, una funzione è invertibile se e solo se l equazione f() = y 0 ammette una e una sola soluzione, ovvero se e solo se y C! D y = f () Prof.ssa Angela Donatiello 3

32 Una classe importante di funzioni invertibili è data dalle funzioni monotone in senso stretto. In questo caso ogni retta parallela all asse intersecherà la curva in un solo punto. Quindi: y C! D y = f () Prof.ssa Angela Donatiello 3

33 Se la funzione è invertibile è possibile definire la funzione inversa f : y Ca = f (y) D y = f () D = C C = D Una funzione e la sua inversa hanno il grafico simmetrico rispetto alla bisettrice del I e III quadrante. y = e y = ln Prof.ssa Angela Donatiello 33

34 Funzioni composte Si consideri la funzione y = 3 +. Essa nasce dalla composizione di due funzioni a 3 + a 3 + Naturalmente tale esempio evidenzia alcuni limiti evidenti: per poter comporre le due funzioni è necessario che il valore assunto dalla prima funzione sia un numero sul quale risulti calcolabile il valore assunto dalla seconda funzione. Se alla si associasse il valore -6, si avrebbe 3(-6)+ = -6, ma non esiste la radice quadrata di -6. Prof.ssa Angela Donatiello 34

35 In generale, due funzioni f : D f C f g : D g Cg sono componibili se il codominio della prima è contenuto nel dominio della seconda, ossia se C D Si definisce in tal caso una nuova funzione h = go f : D a g(f ()) f g f C g D f Dg C g f() g(f()) Prof.ssa Angela Donatiello 35

36 OSS. Nel caso in cui si volessero comporre due funzioni f e g per cui non si verifica che C D, allora bisognerà scegliere un f g sottoinsieme D' f Df in modo da determinare, mediante la funzione f, per ogni D' f, valori di f() Dgnei quali sia possibile calcolare la seconda funzione g. h : a log( + ) Esempio. h è una funzione composta mediante le funzioni: f : a + g : t a log t D h : + > Prof.ssa Angela Donatiello 36

37 OSS. La composizione di funzioni non è commutativa go f f o g Esempio. f : a + g : a g o f : a + a ( + ) f o g : a a + go f f o g Prof.ssa Angela Donatiello 37

38 GRAFICI DELLE FUNZIONI REALI DI VARIABILE REALE Il grafico della circonferenza di equazione + y = 4 non è una funzione, in quanto ad ogni elemento del dominio corrispondono due immagini. Se si traccia una retta parallela all asse y, si individuano due intersezioni di tale retta con il grafico della curva. Il grafico di una funzione interseca una retta =h in al più un punto Prof.ssa Angela Donatiello 38

39 Non è iniettiva in quanto se si traccia una retta parallela all asse, si individuano due intersezioni con il grafico della curva Una funzione iniettiva interseca una retta y=k in al più un punto Prof.ssa Angela Donatiello 39

40 Le slides sono reperibili all indirizzo web: Il programma GRAPH con cui sono stati realizzati i grafici è scaricabile all indirizzo: Prof.ssa Angela Donatiello 40

Tali quantità o caratteristiche essenziali di un fenomeno possono essere qualitative o quantitative e vengono dette variabili.

Tali quantità o caratteristiche essenziali di un fenomeno possono essere qualitative o quantitative e vengono dette variabili. OBIETTIVO DELLA RICERCA SCIENTIFICA MODELLO DEL FENOMENO NATURALE stabilire se esistono relazioni tra le quantità che si ritengono essenziali per la descrizione di un fenomeno. è una costruzione ideale

Dettagli

FUNZIONI E INSIEMI DI DEFINIZIONE

FUNZIONI E INSIEMI DI DEFINIZIONE FUNZIONI E INSIEMI DI DEFINIZIONE In matematica, una funzione f da X in Y consiste in: ) un insieme X detto insieme di definizione I.d.D. (o dominio) di f 2) un insieme Y detto codominio di f 3) una legge

Dettagli

Esempi di funzione...

Esempi di funzione... Funzioni Dati due insiemi non vuoti A e B, si chiama applicazione o funzione da A a B una relazione tra i due insiemi che a ogni elemento di A fa corrispondere uno e un solo elemento di B. A B Esempi di

Dettagli

FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale

FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale FUNZIONI Siano X e Y due insiemi. Def. Una funzione f definita in X a valori in Y è una corrispondenza (una legge) che associa ad ogni elemento X al più un elemento in Y. X Y Def. L insieme Y è detto codominio

Dettagli

FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale

FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale FUNZIONI Siano X e Y due insiemi. Def. Una funzione f definita in X a valori in Y è una corrispondenza (una legge) che associa ad ogni elemento X al piú un elemento in Y. X Y Def. L insieme Y è detto codominio

Dettagli

CENNI SUL CONCETTO DI FUNZIONE

CENNI SUL CONCETTO DI FUNZIONE CENNI SUL CONCETTO DI FUNZIONE Dati due insiemi A e B, una funzione f è una relazione tra gli elementi dell insieme A e gli elementi dell insieme B tale che ad ogni elemento di A corrisponde uno ed un

Dettagli

03 - Le funzioni reali di variabile reale

03 - Le funzioni reali di variabile reale Università degli Studi di Palermo Facoltà di Economia CdS Sviluppo Economico e Cooperazione Internazionale ppunti del corso di Matematica 03 - Le funzioni reali di variabile reale nno ccademico 2013/2014

Dettagli

3. Generalità sulle funzioni

3. Generalità sulle funzioni ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA 3. Generalità sulle funzioni A. A. 2013-2014 1 DALLA RETTA REALE AL PIANO CARTESIANO L equivalenza tra numeri reali e punti di una retta permette

Dettagli

05 - Funzioni di una Variabile

05 - Funzioni di una Variabile Università degli Studi di Palermo Facoltà di Economia Dipartimento di Scienze Economiche, Aziendali e Statistiche Appunti del corso di Matematica 05 - Funzioni di una Variabile Anno Accademico 2015/2016

Dettagli

ESERCITAZIONE 7 : FUNZIONI

ESERCITAZIONE 7 : FUNZIONI ESERCITAZIONE 7 : FUNZIONI e-mail: tommei@dm.unipi.it web: www.dm.unipi.it/ tommei Ricevimento: Martedi 16-18 Dipartimento di Matematica, piano terra, studio 126 20 Novembre 2012 Corso di recupero Docente:

Dettagli

Matematica Lezione 8

Matematica Lezione 8 Università di Cagliari Corso di Laurea in Farmacia Matematica Lezione 8 Sonia Cannas 6/11/2018 Funzioni: definizione Nella lezione 5 abbiamo visto che le funzioni sono particolari tipi di relazioni tra

Dettagli

3. Generalità sulle funzioni

3. Generalità sulle funzioni ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA 3. Generalità sulle funzioni A. A. 2014-2015 L.Doretti 1 DALLA RETTA REALE AL PIANO CARTESIANO L equivalenza tra numeri reali e punti di una retta

Dettagli

2. I numeri reali e le funzioni di variabile reale

2. I numeri reali e le funzioni di variabile reale . I numeri reali e le funzioni di variabile reale Introduzione Il metodo comunemente usato in Matematica consiste nel precisare senza ambiguità i presupposti, da non cambiare durante l elaborazione dei

Dettagli

1.4 Geometria analitica

1.4 Geometria analitica 1.4 Geometria analitica IL PIANO CARTESIANO Per definire un riferimento cartesiano nel piano euclideo prendiamo: Un punto detto origine i Due rette orientate passanti per. ii Due punti e per definire le

Dettagli

f : A B NOTAZIONE DELLE FUNZIONI x associa A D y è l immagine di x : y = f (x) (variabile dipendente)

f : A B NOTAZIONE DELLE FUNZIONI x associa A D y è l immagine di x : y = f (x) (variabile dipendente) Funzioni Dati due insiemi non vuoti A e B, si chiama funzione da A a B una relazione tra i due insiemi che a ogni elemento di A fa corrispondere uno e un solo elemento di B. A B NOTAZIONE DELLE FUNZIONI

Dettagli

Coordinate Cartesiane nel Piano

Coordinate Cartesiane nel Piano Coordinate Cartesiane nel Piano O = (0,0) origine degli assi x ascissa, y ordinata sistemi monometrici: stessa unità di misura sui due assi x, y sistemi dimetrici: unità di misura diverse sui due assi

Dettagli

Corso di Analisi Matematica Funzioni di una variabile

Corso di Analisi Matematica Funzioni di una variabile Corso di Analisi Matematica Funzioni di una variabile Laurea in Informatica e Comunicazione Digitale A.A. 2013/2014 Università di Bari ICD (Bari) Analisi Matematica 1 / 24 1 Generalità 2 Funzioni reali

Dettagli

Definizione: Dato un sottoinsieme non vuoti di. Si chiama funzione identica o identità di in sé la funzione tale che.

Definizione: Dato un sottoinsieme non vuoti di. Si chiama funzione identica o identità di in sé la funzione tale che. Esercitazioni di Analisi Matematica Prof.ssa Chiara Broggi Materiale disponibile su www.istitutodefilippi.it/claro Lezione 2: Funzioni reali e loro proprietà Definizione: Siano e due sottoinsiemi non vuoti

Dettagli

Def. L unico elemento y Y associato ad un elemento x domf si dice immagine. di x attraverso f e si scrive y = f(x) (oppure f : x y = f(x)).

Def. L unico elemento y Y associato ad un elemento x domf si dice immagine. di x attraverso f e si scrive y = f(x) (oppure f : x y = f(x)). FUNZIONI Siano X e due insiemi. Def. Una funzione f definita in X a valori in è una corrispondenza (una legge) che associa ad ogni elemento X al piú un elemento in. Def. L insieme è detto codominio di

Dettagli

Funzioni: definizioni e tipi. Prof.ssa Maddalena Dominijanni

Funzioni: definizioni e tipi. Prof.ssa Maddalena Dominijanni Funzioni: definizioni e tipi Definizione di funzione Dati due insiemi non vuoti A e B, si dice funzione o applicazione da A a B una relazione che associa ad ogni elemento dell insieme A uno ed un solo

Dettagli

Matematica. Funzioni. Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica

Matematica. Funzioni. Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica Matematica Funzioni Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica Le Funzioni e loro caratteristiche Introduzione L analisi di diversi fenomeni della natura o la risoluzione di problemi

Dettagli

MATEMATICA. a.a. 2014/15. 1a. Funzioni (II parte):

MATEMATICA. a.a. 2014/15. 1a. Funzioni (II parte): MATEMATICA a.a. 014/15 1a. Funzioni (II parte): Funzioni iniettive, suriettive, bigettive. Funzioni reali. Campo di esistenza. Funzioni pari e dispari Funzione iniettiva y=f() 1 3 X 4 y 6 Y y y 1 y 3 y

Dettagli

Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x. (ad un numero reale associo. il suo inverso). 2 2/3... e... 0.

Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x. (ad un numero reale associo. il suo inverso). 2 2/3... e... 0. FUNZIONI Siano X e Y due insiemi. Def. Una funzione f definita in X a valori in Y è una corrispondenza (una legge) che associa ad ogni elemento X al piú un elemento in Y. PSfrag replacements X Y Def. L

Dettagli

Istituzioni di Matematiche seconda parte

Istituzioni di Matematiche seconda parte Istituzioni di Matematiche seconda parte anno acc. 2012/2013 Univ. degli Studi di Milano Cristina Turrini (Univ. degli Studi di Milano) Istituzioni di Matematiche 1 / 31 index Proprietà elementari dei

Dettagli

ISTITUTO SUPERIORE XXV APRILE LICEO CLASSICO ANDREA DA PONTEDERA classi 5A-5B PROGRAMMA DI MATEMATICA

ISTITUTO SUPERIORE XXV APRILE LICEO CLASSICO ANDREA DA PONTEDERA classi 5A-5B PROGRAMMA DI MATEMATICA ISTITUTO SUPERIORE XXV APRILE LICEO CLASSICO ANDREA DA PONTEDERA classi 5A-5B PROGRAMMA DI MATEMATICA PRIMA PARTE Intervallo limitato di numeri reali Dati due numeri reali a e b, con a

Dettagli

PREMESSE DELL ANALISI INFINETISIMALE

PREMESSE DELL ANALISI INFINETISIMALE PREMESSE DELL ANALISI INFINETISIMALE LE PREMESSE DELL ANALISI INFINETISIMALE Insiemi numerici e insiemi di punti Un insieme i cui elementi sono numeri reali è chiamato insieme numerico. Detto R l insieme

Dettagli

UNITÀ DIDATTICA 2 LE FUNZIONI

UNITÀ DIDATTICA 2 LE FUNZIONI UNITÀ DIDATTICA LE FUNZIONI. Le funzioni Definizione. Siano A e B due sottoinsiemi non vuoti di R. Si chiama funzione di A in B una qualsiasi legge che fa corrispondere a ogni elemento A uno ed un solo

Dettagli

Unità Didattica N 2 Le Funzioni Univoche Sintesi 1

Unità Didattica N 2 Le Funzioni Univoche Sintesi 1 Unità Didattica N Le Funzioni Univoche Sintesi 1 Unità Didattica N Le funzioni univoche 01) Definizione di applicazione o funzione o mappa 0) Classificazione delle funzioni numeriche 03) Insieme di definizione

Dettagli

Funzioni e grafici. prof. Andres Manzini

Funzioni e grafici. prof. Andres Manzini Università degli studi di Modena e Reggio Emilia Dipartimento di Scienze e Metodi dell Ingegneria Corso MOOC Iscriversi a Ingegneria Reggio Emilia Introduzione Definizione Si dice funzione (o applicazione)

Dettagli

FUNZIONI NUMERICHE. Funzione numerica

FUNZIONI NUMERICHE. Funzione numerica Funzione numerica FUNZIONI NUMERICHE Una funzione si dice numerica se gli insiemi A e B sono insiemi numerici, cioè N (insieme dei numeri naturali), Z (insieme dei numeri relativi), Q (insieme dei numeri

Dettagli

Generalità sulle funzioni

Generalità sulle funzioni Pagina 1 Generalità sulle funzioni Definizione: Dati due insiemi A e B, si definisce funzione una relazione che associa ad ogni elemento di A uno e un solo elemento di B. Osservazione: Dalla definizione

Dettagli

Funzioni. iniettiva se x y = f (x) f (y) o, equivalentemente, f (x) = f (y) = x = y

Funzioni. iniettiva se x y = f (x) f (y) o, equivalentemente, f (x) = f (y) = x = y Funzioni. Dati due insiemi A e B (non necessariamente distinti) si chiama funzione da A a B una qualunque corrispondenza (formula, regola) che associa ad ogni elemento di A uno ed un solo elemento di B.

Dettagli

Modello di un fenomeno

Modello di un fenomeno Funzioni Modello di un fenomeno Un modello è una costruzione ideale basata su alcune caratteristiche essenziali del fenomeno, dette variabili. Un modello è ovviamente una approssimazione del fenomeno che

Dettagli

LICEO CLASSICO ANDREA DA PONTEDERA

LICEO CLASSICO ANDREA DA PONTEDERA ISTITUTO SUPERIORE XXV APRILE LICEO CLASSICO ANDREA DA PONTEDERA classe 5A PROGRAMMA DI MATEMATICA svolto fino al 15 aprile (evidenziate in giallo le aggiunte rispetto al file precedente) Intervallo limitato

Dettagli

Introduzione al concetto di funzione

Introduzione al concetto di funzione Introduzione al concetto di funzione Hynek Kovarik Università di Brescia Analisi Matematica 1 Hynek Kovarik (Università di Brescia) Introduzione al concetto di funzione Analisi Matematica 1 1 / 32 Definizione

Dettagli

Prof. Milizia, Liceo Scientifico di Mesagne (BR) 1

Prof. Milizia, Liceo Scientifico di Mesagne (BR) 1 Prof. Milizia, Liceo Scientifico di Mesagne (BR) 1 CAPITOLO 8. LE FUNZIONI. 1. Generalità sulle funzioni.. Le rappresentazioni di una funzione. 3. Le funzioni reali di variabile reale. 4. L espressione

Dettagli

LE FUNZIONI. Cosa sono DEFINIZIONI

LE FUNZIONI. Cosa sono DEFINIZIONI LE FUNZIONI Cosa sono Il concetto di funzione nasce nell antichità come nozione di dipendenza di una variabile da un altra. I matematici greci già facevano uso implicito del concetto di funzione in argomenti

Dettagli

Geometria analitica di base. Equazioni di primo grado nel piano cartesiano Funzioni quadratiche Funzioni a tratti Funzioni di proporzionalità inversa

Geometria analitica di base. Equazioni di primo grado nel piano cartesiano Funzioni quadratiche Funzioni a tratti Funzioni di proporzionalità inversa Equazioni di primo grado nel piano cartesiano Funzioni quadratiche Funzioni a tratti Funzioni di proporzionalità inversa Equazioni di primo grado nel piano cartesiano Risoluzione grafica di un equazione

Dettagli

.y 6. .y 4. .y 5. .y 2.y 3 B C C B. B f A B f -1

.y 6. .y 4. .y 5. .y 2.y 3 B C C B. B f A B f -1 Funzioni FUNZIONI Una funzione è una relazione fra due insiemi non vuoti e, che associa ad ogni elemento uno e un solo elemento. In simboli si scrive: = oppure. A x 1. x. x 3..y 1.y.y 3 B C.y 5 x 4..y

Dettagli

Introduzione al concetto di funzione

Introduzione al concetto di funzione Introduzione al concetto di funzione Hynek Kovarik Università di Brescia Analisi A Hynek Kovarik (Università di Brescia) Introduzione al concetto di funzione Analisi A 1 / 36 Definizione di funzione: è

Dettagli

Sottoinsiemi di Numeri Reali

Sottoinsiemi di Numeri Reali INTERVALLI LIMITATI a,b R Sottoinsiemi di Numeri Reali intervallo chiuso [a,b] = { R : a b} intervallo aperto (a,b) = { R : a < < b} intervallo chiuso a sinistra e aperto a destra [a,b) = { R : a < b}

Dettagli

Prof. Milizia, Liceo Scientifico di Mesagne (BR) 1

Prof. Milizia, Liceo Scientifico di Mesagne (BR) 1 Prof. Milizia, Liceo Scientifico di Mesagne (BR) 1 CAPITOLO 8. LE FUNZIONI. 1. Generalità sulle funzioni.. Le rappresentazioni di una funzione.. Funzioni iniettive, suriettive e biiettive.. Le funzioni

Dettagli

ISTITUTO TECNICO STATALE COMMERCIALE E PER GEOMETRI A. MARTINI Castelfranco Veneto (TV) Relazioni e Funzioni n n n n

ISTITUTO TECNICO STATALE COMMERCIALE E PER GEOMETRI A. MARTINI Castelfranco Veneto (TV) Relazioni e Funzioni n n n n 0 ottobre 008 A. MARTINI Castelranco Veneto (TV) Relazioni e Funzioni. Insieme delle parti. Partizione di un insieme 3. Prodotto cartesiano 4. Deinizione di relazione 5. Deinizione di unzione 6. Funzioni

Dettagli

FUNZIONI E LORO PROPRIETÀ. V CLASSICO a. s. 2015-2016 prof. ssadelfino M. G.

FUNZIONI E LORO PROPRIETÀ. V CLASSICO a. s. 2015-2016 prof. ssadelfino M. G. FUNZIONI E LORO PROPRIETÀ 1 V CLASSICO a. s. 2015-2016 prof. ssadelfino M. G. A1 DEFINIZIONE DI FUNZIONE 2 Diapositiva 2 A1 Autore; 08/09/2015 DEFINIZIONE DI FUNZIONE X Y E una funzione! g a b c d e f.1.2.3.4

Dettagli

Funzioni. Capitolo Concetti preliminari. Definizione. Dati due insiemi A e B, si chiama funzione f da A a B, e la si indica col simbolo

Funzioni. Capitolo Concetti preliminari. Definizione. Dati due insiemi A e B, si chiama funzione f da A a B, e la si indica col simbolo Capitolo Funzioni. Concetti preliminari Definizione. Dati due insiemi A e B, si chiama funzione f da A a B, e la si indica col simbolo f : A B, una corrispondenza che associa ad ogni elemento A un unico

Dettagli

Funzioni reali di variabile reale

Funzioni reali di variabile reale Introduzione Funzioni reali di variabile reale Algebra delle funzioni reali Funzioni composta e inversa Funzioni monotone i definisce funzione reale di variabile reale e s indica con f: A R una funzione

Dettagli

CONVITTO NAZIONALE MARIA LUIGIA. Programma svolto. Definizione di funzione tra insiemi numerici. Definizione di funzioni reali a variabile reale

CONVITTO NAZIONALE MARIA LUIGIA. Programma svolto. Definizione di funzione tra insiemi numerici. Definizione di funzioni reali a variabile reale CONVITTO NAZIONALE MARIA LUIGIA Classe 3B Liceo Scientifico Anno scolastico 2011-2012 Docente: prof.ssa Paola Perego Disciplina: Matematica MODULO 1 : Funzioni Programma svolto ARGOMENTO CONOSCENZE/CONTENUTI

Dettagli

Liceo Scientifico A. Romita Programma di Matematica Anno scolastico 2016/2017 Prof.ssa Santella Mariagrazia

Liceo Scientifico A. Romita Programma di Matematica Anno scolastico 2016/2017 Prof.ssa Santella Mariagrazia Liceo Scientifico A. Romita Programma di Matematica Anno scolastico 2016/2017 Prof.ssa Santella Mariagrazia Classe III sez. A Modulo 1 Unità didattica 1 Ripetizione della risoluzione delle equazioni di

Dettagli

LE FUNZIONI. Cosa sono DEFINIZIONI

LE FUNZIONI. Cosa sono DEFINIZIONI LE FUNZIONI Cosa sono Il concetto di funzione nasce nell antichità come nozione di dipendenza di una variabile da un altra. I matematici greci già facevano uso implicito del concetto di funzione in argomenti

Dettagli

Corso di Laurea in Scienze dell Architettura Modulo di Analisi Matematica

Corso di Laurea in Scienze dell Architettura Modulo di Analisi Matematica Corso di Laurea in Scienze dell Architettura Modulo di Analisi Matematica 62,5 ore di lezione frontale mariannasaba@unica.it Orario lezioni: Lunedì ore 11:15-13:00 Giovedì ore 15:00-16:45 Venerdì ore 8:15-10:00

Dettagli

Geometria analitica di base (seconda parte)

Geometria analitica di base (seconda parte) SAPERE Al termine di questo capitolo, avrai appreso: il concetto di luogo geometrico la definizione di funzione quadratica l interpretazione geometrica di un particolare sistema di equazioni di secondo

Dettagli

Matematica. 1. Modelli matematici e relazioni funzionali. Giuseppe Vittucci Marzetti 1

Matematica. 1. Modelli matematici e relazioni funzionali. Giuseppe Vittucci Marzetti 1 Matematica 1. Modelli matematici e relazioni funzionali Giuseppe Vittucci Marzetti 1 Corso di laurea in Scienze dell Organizzazione Dipartimento di Sociologia e Ricerca Sociale Università degli Studi di

Dettagli

Istituzioni di Matematiche prima parte

Istituzioni di Matematiche prima parte Istituzioni di Matematiche prima parte anno acc. 2010/2011 Univ. degli Studi di Milano Cristina Turrini (Univ. degli Studi di Milano) Istituzioni di Matematiche 1 / 45 index Proprietà elementari dei sottoinsiemi

Dettagli

Liceo Scientifico A. Romita Programma di Matematica Anno scolastico 2016/2017 Prof.ssa Santella Mariagrazia

Liceo Scientifico A. Romita Programma di Matematica Anno scolastico 2016/2017 Prof.ssa Santella Mariagrazia Liceo Scientifico A. Romita Programma di Matematica Anno scolastico 2016/2017 Prof.ssa Santella Mariagrazia Classe III sez. F Modulo 1 Unità didattica 1 Ripetizione della risoluzione delle equazioni di

Dettagli

Funzione Composta. Date due funzioni g : A B e f : B C si può definire la funzione composta: notazione funzionale y = f (g(x))

Funzione Composta. Date due funzioni g : A B e f : B C si può definire la funzione composta: notazione funzionale y = f (g(x)) Funzione Composta Date due funzioni g : A B e f : B C si può definire la funzione composta: f g : A C g() f (g()) notazione funzionale = f (g()) La composizione ha senso se il valore g() appartiene al

Dettagli

Nome Cognome. Classe 3D 25 Febbraio Verifica di matematica

Nome Cognome. Classe 3D 25 Febbraio Verifica di matematica Nome Cognome. Classe D Febbraio Verifica di matematica ) Data l equazione: k 6 a) Scrivi per quali valori di k rappresenta un ellisse, precisando per quali valori è una circonferenza b) Scrivi per quali

Dettagli

Funzioni Reali di Variabile Reale

Funzioni Reali di Variabile Reale Funzioni Reali di Variabile Reale Lezione 2 Prof. Rocco Romano 1 1 Dipartimento di Farmacia Università degli Studi di Salerno Corso di Matematica, 2017/2018 Prof. Rocco Romano (Università Studi Salerno)

Dettagli

Coordinate Cartesiane nel Piano

Coordinate Cartesiane nel Piano Coordinate Cartesiane nel Piano O = (0,0) origine degli assi x ascissa, y ordinata sistemi monometrici: stessa unità di misura sui due assi x, y sistemi dimetrici: unità di misura diverse sui due assi

Dettagli

Verso il concetto di funzione

Verso il concetto di funzione Verso il concetto di funzione Il termine funzione già appare in alcuni scritti del matematico Leibniz (1646-1716). Tuttavia, in un primo momento tale termine venne usato in riferimento a espressioni analitiche

Dettagli

1 Funzioni reali di una variabile reale

1 Funzioni reali di una variabile reale 1 Funzioni reali di una variabile reale Qualche definizione e qualche esempio che risulteranno utili più avanti Durante tutto questo corso studieremo funzioni reali di una variabile reale, cioè Si ha f

Dettagli

APPUNTI SU FUNZIONI REALI DI VARIABILE REALE E LORO LIMITI

APPUNTI SU FUNZIONI REALI DI VARIABILE REALE E LORO LIMITI APPUNTI SU FUNZIONI REALI DI VARIABILE REALE E LORO LIMITI 1. preliminari sulle funzioni Definizione 1. Una funzione è una legge che ad ogni elemento di un insieme D (detto dominio) associa un unico elemento

Dettagli

FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti

FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti Discutendo graficamente la disequazione x > 3 + x, verificare che l insieme delle soluzioni è un intervallo e trovarne

Dettagli

Noi studiamo funzioni da R R x è la variabile indipendente y è la variabile dipendente

Noi studiamo funzioni da R R x è la variabile indipendente y è la variabile dipendente FUNZIONE Una funzione f definita in X a valori in Y è una corrispondenza che : y=f(x) è l immagine di x attraverso la legge f Il sottinsieme di X a cui la legge f associa un immagine si dice dominio della

Dettagli

Nozioni introduttive e notazioni

Nozioni introduttive e notazioni Capitolo 1 Nozioni introduttive e notazioni 1.1 Gli insiemi La teoria degli insiemi è alla base di tutta la matematica, in quanto ne fornisce il linguaggio base e le notazioni. Non daremo qui una definizione

Dettagli

01 - Elementi di Teoria degli Insiemi

01 - Elementi di Teoria degli Insiemi Università degli Studi di Palermo Facoltà di Economia CdS Sviluppo Economico e Cooperazione Internazionale Appunti del corso di Matematica 01 - Elementi di Teoria degli Insiemi Anno Accademico 2013/2014

Dettagli

ELEMENTI di TEORIA degli INSIEMI

ELEMENTI di TEORIA degli INSIEMI ELEMENTI di TEORI degli INSIEMI & 1. Nozioni fondamentali. ssumeremo come primitivi il concetto di insieme e di elementi di un insieme. Nel seguito gli insiemi saranno indicati con lettere maiuscole (,,C,...)

Dettagli

Appunti di Matematica 5 - Funzioni - Funzioni. f : A B, con A e B insiemi non vuoti, è una legge x A uno e un solo elemento y B

Appunti di Matematica 5 - Funzioni - Funzioni. f : A B, con A e B insiemi non vuoti, è una legge x A uno e un solo elemento y B Funzioni Deinizione di unzione : una unzione che associa ad ogni elemento : A B, con A e B insiemi non vuoti, è una legge A uno e un solo elemento y B y = () y viene chiamato immagine di e indicato anche

Dettagli

FUNZIONI ELEMENTARI Funzione retta

FUNZIONI ELEMENTARI Funzione retta 1 FUNZIONI ELEMENTARI Funzione retta L equazione generale della funzione retta è y = a x + b dove a, b sono numeri reali fissati. Il termine b si chiama termine noto e dà l ordinata dell intersezione tra

Dettagli

Proprietà delle funzioni. M.Simonetta Bernabei & Horst Thaler

Proprietà delle funzioni. M.Simonetta Bernabei & Horst Thaler Proprietà delle funzioni M.Simonetta Bernabei & Horst Thaler Funzioni crescenti e decrescenti Una funzione f è crescente in (a, b) se f ( 1 ) f ( ) quando 1

Dettagli

Coordinate cartesiane nel piano

Coordinate cartesiane nel piano Coordinate cartesiane nel piano O = (0, 0) origine degli assi x ascissa, y ordinata sistemi monometrici: stessa unità di misura sui due assi x, y sistemi dimetrici: unità di misura diverse sui due assi

Dettagli

Lezione 16 (18 dicembre)

Lezione 16 (18 dicembre) Lezione 16 (18 dicembre) Funzione logaritmica Funzioni crescenti e decrescenti Funzioni e traslazioni Funzioni pari e dispari Funzioni iniettive, suriettive, bigettive Grafico della funzione logaritmica

Dettagli

3 Relazioni e funzioni. M. Simonetta Bernabei & Horst Thaler

3 Relazioni e funzioni. M. Simonetta Bernabei & Horst Thaler 3 Relazioni e funzioni M. Simonetta Bernabei & Horst Thaler Relazioni e funzioni Una relazione è un insieme di coppie ordinate (x,y). Animali Vita media (anni) x Tempo massimo di vita (anni) y Gatto 12

Dettagli

Coordinate Cartesiane nel Piano

Coordinate Cartesiane nel Piano Coordinate Cartesiane nel Piano O = (0,0) origine degli assi ascissa, y ordinata sistemi monometrici: stessa unità di misura sui due assi, y sistemi dimetrici: unità di misura diverse sui due assi (spesso

Dettagli

Programma di matematica classe 3^ sez. E a.s

Programma di matematica classe 3^ sez. E a.s Programma di matematica classe 3^ sez. E a.s. 2018-2019 Testo in adozione: LA matematica a colori - EDIZIONE BLU per il secondo biennio vol.3 Autore: Leonardo Sasso Ed Petrini -------------------------------------------------------------------------

Dettagli

Proprietà delle funzioni. M.Simonetta Bernabei & Horst Thaler

Proprietà delle funzioni. M.Simonetta Bernabei & Horst Thaler Proprietà delle funzioni M.Simonetta Bernabei & Horst Thaler Funzioni crescenti e decrescenti Crescente Decrescente Crescente Estremi di una funzione f ( ) f ( c) per ogni in [a, b]. f ( ) f ( d) per ogni

Dettagli

Verifica del 8 febbraio 2018

Verifica del 8 febbraio 2018 Verifica del 8 febbraio 018 Esercizio 1 (15 punti) Risolvi le seguenti disequazioni: 1 x 1 a) x + 6x + 8 x 3 b) x + 1 + 1 c) d) Esercizio (0 punti) 3 x 8 x 4 x 3 ax 9 Considera la funzione f ( x) = x 3x

Dettagli

Esercizi complementari

Esercizi complementari Esercizi complementari (tratti dagli esercizi del prof. Alberto Del Fra) Relazioni 1) Quali delle seguenti relazioni sono di equivalenza? x, y R {0} xry x/y Q x, y Z xry x + y è divisibile per 17 x, y

Dettagli

Matematica. 2. Funzioni, equazioni e disequazioni lineari e quadratiche. Giuseppe Vittucci Marzetti 1

Matematica. 2. Funzioni, equazioni e disequazioni lineari e quadratiche. Giuseppe Vittucci Marzetti 1 Matematica 2. e quadratiche Giuseppe Vittucci Marzetti 1 Corso di laurea in Scienze dell Organizzazione Dipartimento di Sociologia e Ricerca Sociale Università degli Studi di Milano-Bicocca A.A. 2018-19

Dettagli

Funzione Composta. Il campo di esistenza della funzione composta è costituito dai soli valori di x per i quali la composizione funzionale ha senso.

Funzione Composta. Il campo di esistenza della funzione composta è costituito dai soli valori di x per i quali la composizione funzionale ha senso. Funzione Composta Date due funzioni g : A B e f : B C si può definire la funzione composta: f g : A C g() f(g()) notazione funzionale (f g)() = f(g()) La composizione ha senso se il valore g() appartiene

Dettagli

PROGRAMMA SVOLTO E INDICAZIONI LAVORO ESTIVO. a. s CLASSE 3Cs. Insegnante: prof.ssa Franca TORCHIA Disciplina: MATEMATICA

PROGRAMMA SVOLTO E INDICAZIONI LAVORO ESTIVO. a. s CLASSE 3Cs. Insegnante: prof.ssa Franca TORCHIA Disciplina: MATEMATICA PROGRAMMA SVOLTO E INDICAZIONI LAVORO ESTIVO a s 07-08 CLASSE Cs Insegnante: profssa Franca TORCHIA Disciplina: MATEMATICA PROGRAMMA SVOLTO EQUAZIONI E DISEQUAZIONI - Disequazioni e princìpi di equivalenza

Dettagli

Liceo Classico Statale Vittorio Emanuele II Matematica in analisi

Liceo Classico Statale Vittorio Emanuele II Matematica in analisi Liceo Classico Statale Vittorio Emanuele II Matematica in analisi Le funzioni Definizione di funzione Dati due insiemi A e B, si definisce funzione una relazione che associa ad ogni elemento di A uno e

Dettagli

SYLLABUS DI GEOMETRIA ANALITICA 3A DON BOSCO

SYLLABUS DI GEOMETRIA ANALITICA 3A DON BOSCO SYLLABUS DI GEOMETRIA ANALITICA 3A DON BOSCO 2014-15 Si precisa che, con questo syllabus, l intenzione non è quella di ridurre l apprendimento della matematica allo studio mnemonico di una serie di procedure.

Dettagli

Chi non risolve esercizi non impara la matematica.

Chi non risolve esercizi non impara la matematica. .7 esercizi 5.7 esercizi Chi non risolve esercizi non impara la matematica. La relazione f: { studenti del Versari-Macrelli } { classi del Versari-Macrelli } «lo studente è iscritto alla classe» è una

Dettagli

Le funzioni reali di una variabile reale

Le funzioni reali di una variabile reale Le funzioni reali di una variabile reale Prof. Giovanni Ianne DEFINIZIONE DI FUNZIONE REALE DI UNA VARIABILE REALE Dati due insiemi non vuoti A, B R, una funzione f da A in B è una relazione fra A e B

Dettagli

Proprietà delle funzioni. M.Simonetta Bernabei, Horst Thaler

Proprietà delle funzioni. M.Simonetta Bernabei, Horst Thaler Proprietà delle funzioni M.Simonetta Bernabei, Horst Thaler Funzioni crescenti e decrescenti Una funzione f è crescente (non decrescente) in un intervallo I se f ( 1 ) < f ( ) (f ( 1 ) f ( )), quando 1

Dettagli

LE FUNZIONI CLASSE III D

LE FUNZIONI CLASSE III D LE FUNZIONI CLASSE III D GENERALITÀ SULLE FUNZIONI Definizione: Dati due insiemi A e B, si definisce funzione una relazione che associa a ogni elemento di A uno e un solo elemento di B. Osservazione: Dalla

Dettagli

01 - Elementi di Teoria degli Insiemi

01 - Elementi di Teoria degli Insiemi Università degli Studi di Palermo Facoltà di Economia CdS Statistica per l Analisi dei Dati Appunti del corso di Matematica 01 - Elementi di Teoria degli Insiemi Anno Accademico 2013/2014 M Tumminello,

Dettagli

I2. Relazioni e funzioni

I2. Relazioni e funzioni I2. Relazioni e funzioni I2. Relazioni Una relazione è un sottoinsieme del prodotto cartesiano. Esempio I2. Dati gli insiemi ={ldo, runo, Carlo} e ={nna, arbara} si consideri la relazione, espressa in

Dettagli

Funzione 1. Matematica con Elementi di Statistica - prof. Anna Torre

Funzione 1. Matematica con Elementi di Statistica - prof. Anna Torre Funzione 1 il concetto di funzione nasce da quello di corrispondenza fra grandezze tale corrispondenza può essere data in svariati modi: da un rilevamento empirico da una formula (legge) ESEMPI: 1. la

Dettagli

Soluzioni esercizi complementari

Soluzioni esercizi complementari Soluzioni esercizi complementari Relazioni 1) Quali delle seguenti relazioni sono di equivalenza? x, y R {0} xry x/y Q x, y Z xry x + y è divisibile per 17 x, y Z xry x y X, Y sottoinsiemi di un insieme

Dettagli

Matematica per l Economia Sottoinsieme L-Z Dipartimento di Economia Universitá degli Studi di Bari 3) FUNZIONI. Giovanni Villani

Matematica per l Economia Sottoinsieme L-Z Dipartimento di Economia Universitá degli Studi di Bari 3) FUNZIONI. Giovanni Villani Matematica per l Economia Sottoinsieme L-Z Dipartimento di Economia Universitá degli Studi di Bari 3) FUNZIONI Giovanni Villani FUNZIONI Definizione 1 Assegnati due insiemi A e B, si definisce funzione

Dettagli

Capitolo 3. Le funzioni elementari

Capitolo 3. Le funzioni elementari Capitolo 3 Le funzioni elementari Uno degli scopi di questo capitolo è lo studio delle funzioni reali di variabile reale, ossia funzioni che hanno come dominio un sottoinsieme di R e codominio R. Lo studio

Dettagli

Istituzioni di Matematiche seconda parte

Istituzioni di Matematiche seconda parte Istituzioni di Matematiche seconda parte anno acc. 2013/2014 Univ. Studi di Milano D.Bambusi, C.Turrini (Univ. Studi di Milano) Istituzioni di Matematiche 1 / 19 index 1 D.Bambusi, C.Turrini (Univ. Studi

Dettagli

Lo studio delle trasformazioni del piano in sé presuppone anche la conoscenza di alcune

Lo studio delle trasformazioni del piano in sé presuppone anche la conoscenza di alcune Capitolo 1 Richiami sulle funzioni 1.1 Richiami di teoria Lo studio delle trasformazioni del piano in sé presuppone anche la conoscenza di alcune nozioni sulle funzioni e sui vettori. Per tale motivo in

Dettagli

PROGRAMMA DI MANTENIMENTO ESTIVO

PROGRAMMA DI MANTENIMENTO ESTIVO ISTITUTO TECNICO PER IL TURISMO EUROSCUOL ISTITUTO TECNICO PER GEOMETRI INCHI SCUOLE PRITRIE PROGRMM DI MNTENIMENTO ESTIVO CLSSE MTERI PROF. QURT GEOMETRI Matematica ndrea ernesco Làvore NNO SCOLSTICO

Dettagli

Unità Didattica N 2 Le funzioni

Unità Didattica N 2 Le funzioni Unità Didattica N Le funzioni 1 Unità Didattica N Le funzioni 05) Definizione di applicazione o funzione o mappa. 06) Classificazione delle funzioni numeriche 07) Estremi di una funzione, funzioni limitate.

Dettagli

Rette 1. Matematica con Elementi di Statistica

Rette 1. Matematica con Elementi di Statistica Rette 1 nel piano cartesiano ogni equazione di primo grado a +b +c = 0 con a e b non contemporaneamente nulli, rappresenta una retta e viceversa ogni retta può essere descritta con un equazione di questo

Dettagli

Università degli Studi Di Salerno FACOLTÀ DI SCIENZE MATEMATICHE E FISICHE NATURALI. Corso di Analisi Matematica A.A. 2009 / 2010.

Università degli Studi Di Salerno FACOLTÀ DI SCIENZE MATEMATICHE E FISICHE NATURALI. Corso di Analisi Matematica A.A. 2009 / 2010. Università degli Studi Di Salerno FACOLTÀ DI SCIENZE MATEMATICHE E FISICHE NATURALI Corso di Analisi Matematica A.A. 009 / 00 Le Funzioni Fabio Memoli indice Il Concetto di Funzione Funzioni Reali Di Variabile

Dettagli

Funzioni Esercizi e complementi

Funzioni Esercizi e complementi Funzioni Esercizi e complementi e-mail: maurosaita@tiscalinet.it Novembre 05. Indice Esercizi Insiemi ininiti 6 Suggerimenti e risposte 9 Esercizi. Scrivere la deinizione di unzione e ornire almeno un

Dettagli