Circuiti in regime sinusoidale

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Circuiti in regime sinusoidale"

Transcript

1 ircuii in regime sinusoidale are versione del Funzioni sinusoidali a cos ampiezza fase iniziale radiani, rad < pulsazione rad/s f frequenza herz, Hz T periodo secondi, s f T T π f T

2 egimi sinusoidali i considera un circuio lineare dinamico in cui ui i generaori indipendeni sono sinusoidali e hanno la sessa pulsazione e equazioni del circuio cosiuiscono un sisema di equazioni differenziali lineari nel quale i ermini noi sono funzioni sinusoidali con pulsazione e equazioni generalmene ammeono una soluzione sinusoidale con pulsazione e il circuio è asinoicamene sabile, quesa soluzione paricolare rappresena la componene di regime della risposa regime sinusoidale 3 egimi sinusoidali egime sinusoidale: condizione di funzionameno di un circuio nella quale ue le ensioni e le correni sono funzioni sinusoidali del empo aveni la sessa pulsazione Fissaa la pulsazione, una funzione sinusoidale è definia da due parameri ampiezza fase l problema della deerminazione della soluzione paricolare sinusoidale delle equazioni del circuio cioè della deerminazione delle ampiezze e delle fasi di ue le ensioni e correni può essere ricondoo ad un problema di ipo algebrico mediane la rasformaa di einmez l meodo di analisi basao sulla rasformaa di einmez è deo anche meodo simbolico 4

3 Trasformaa di einmez Trasformaa di einmez: d ogni funzione sinusoidale di pulsazione a cos si associa un numero complesso avene modulo ampiezza della funzione sinusoidale argomeno fase della funzione sinusoidale a e cos sen = fasore o numero complesso rappresenaivo di a nirasformaa di einmez: - a ee e e cos 5 nerpreazione geomerica a funzione s e può essere rappresenaa nel piano complesso mediane un veore che ruoa con velocià angolare a proiezione sull asse reale resiuisce la funzione a l fasore deermina la posizione del veore per, a parire dalla quale, noa, si può ricosruire a e e cos a e 6

4 roprieà della rasformaa di einmez Unicià a rasformaa di einmez sabilisce una corrispondenza biunivoca ra le funzioni sinusoidali di pulsazione e i numeri complessi a b cos a B cos B b B e e a b B 7 roprieà della rasformaa di einmez inearià a rasformaa di einmez è un operazione lineare a b cos a B cos B b B e e, a b a b B : 8

5 9 roprieà della rasformaa di einmez 3 egola di derivazione a rasformaa della derivaa di una funzione sinusoidale si oiene moliplicando per la rasformaa della funzione Dimosrazione: d d a a cos a e a cos sen a d d a e e e e a d d 0 roprieà della rasformaa di einmez 4 egola di derivazione pplicando ricorsivamene la regola di derivazione si possono oenere le rasformae delle derivae di ordine superiore n n n n n d d d d d d d d d d d d a a a a a a

6 nirasformaa Noo il numero complesso rappresenaivo di una funzione sinusoidale e a x y e noa la pulsazione, è possibile deerminare in modo univoco la funzione sinusoidale a mediane la relazione cos cos arg a Noa: ale la relazione gy/x ma queso non consene di affermare che arcgy/x Dao che la funzione angene ha periodo esisono due valori di nell inervallo in cui la angene ha lo sesso valore er deerminare occorre enere cono dei segni di x e y nirasformaa deerminazione della fase

7 nirasformaa deerminazione della fase x y e x y y arcg x sgn y y arcg sgn y x per y 0 sgn y 0 per y 0 per y 0 per per per per x 0 x 0 x 0, y x 0, y Diagrammi fasoriali fasori possono essere rappresenai mediane veori nel piano complesso e operazioni sui fasori possono essere eseguie anche operando graficamene sui veori diagrammi nel piano complesso diagrammi fasoriali possono essere uilizzai per visualizzare le relazioni ra i fasori

8 Operazioni grafiche sui fasori a somma ra due fasori può essere eseguia per via grafica mediane la regola del parallelogramma B e e B m m B e e B m m B g m m B e e B Operazioni grafiche sui fasori oliplicando un fasore per una cosane reale posiiva si oiene un fasore il cui modulo è oliplicando un fasore per una cosane reale negaiva si oiene un fasore il cui modulo è e che ha verso opposo ad

9 Operazioni grafiche sui fasori 3 oliplicando un fasore per una cosane immaginaria si oiene un fasore con modulo e ruoao di 90 rispeo ad in senso aniorario per 0 in senso orario per 0 Operazioni grafiche sui fasori 4 oliplicando un fasore per una cosane complessa c si oiene un fasore con modulo c e argomeno arg argc Noa: ome si vedrà in seguio, se e c sono fasori, c non è un fasore per queso non si parla di prodoo ra due fasori

10 Bipoli in regime sinusoidale ondizioni di regime sinusoidale Tensione e correne orienae secondo la convenzione dell uilizzaore: v cos v i cos fasameno fra ensione e correne: i e e 9 esisore in regime sinusoidale v i i G v G cos cos G 0 la ensione e la correne sono in fase 0

11 nduore in regime sinusoidale v d i d sen cos la correne è in quadraura in riardo rispeo alla ensione nduore relazioni ra i fasori v d i d X B eaanza: X usceanza: B X

12 ondensaore in regime sinusoidale d v i d sen cos la correne è in quadraura in anicipo rispeo alla ensione 3 ondensaore relazioni ra i fasori i d v d B X usceanza: B eaanza: X B 4

13 egge di Ohm simbolica e relazioni ra i fasori della ensione e della correne per il resisore, l induore e il condensaore sono casi paricolari delle equazioni Y omponene Y esisore G nduore ondensaore 5 egge di Ohm simbolica iù in generale, per un bipolo lineare non conenene generaori indipendeni, la ensione e la correne sono legae ra loro da relazioni differenziali lineari omogenee er la proprieà di linearià e la regola di derivazione della rasformaa di einmez, le corrispondeni relazioni ra i fasori della ensione e della correne sono lineari algebriche omogenee, e quindi ancora del ipo Y Nel caso generale e Y sono funzioni complesse della pulsazione X Y G B 6

14 mpedenza er un bipolo lineare non conenene generaori si definisce impedenza il rapporo Ζ X e resisenza X reaanza unià di misura ohm l modulo dell impedenza è uguale al rapporo ra le ampiezze della ensione e della correne argomeno dell impedenza è uguale allo sfasameno ra la ensione e la correne 0 correne in riardo sulla ensione arg 0 correne in anicipo sulla ensione 7 mmeenza l reciproco dell impedenza è deo ammeenza Y Y G B e G conduanza B susceanza unià di misura siemens algono le relazioni Y X X X X X X G B G B G B G X B X X X G G B G Y X G B B B Y 8

15 Noa l ermine fasori viene uilizzao per indicare numeri complessi che corrispondono ramie la rasformaa di einmez a funzioni sinusoidali Nelle relazioni = o = Y, è sono fasori, perché rappresenano funzioni sinusoidali v e i impedenza e l ammeenza Y non corrispondono a funzioni sinusoidali, ma rappresenano le operazioni in generale differenziali che legano le funzioni v e i impedenza e l ammeenza Y non sono fasori ma operaori complessi 30 Bipolo serie d d i i v v v X mpedenza: mmeenza: B G Y arcg arg

16 Bipolo serie er un bipolo serie passivo con e si ha e >X =m G ey > B =my 0 la correne è sfasaa in riardo rispeo alla ensione er il bipolo ende a comporarsi come il solo resisore er il bipolo ende a comporarsi come il solo induore e quindi come un circuio apero 3 Bipolo serie 3 Diagramma nel piano complesso mpiezze delle ensioni: arcg 3

17 33 Bipolo parallelo d d d d dx x v v i v v i i i 34 Bipolo parallelo X Y B G Y mpedenza: mmeenza: arcg arg

18 Bipolo parallelo 3 er un bipolo parallelo passivo con e si ha e> X =m G ey> B =my 0 / la correne è sfasaa in riardo rispeo alla ensione er il bipolo ende a comporarsi come il solo induore e quindi come un corocircuio / er il bipolo ende a comporarsi some il solo resisore 0 35 Bipolo parallelo 4 Diagramma nel piano complesso mpiezze delle correni: arcg 36

19 37 Bipolo serie d d d d dx x i i v i i v v v 38 Bipolo serie X arcg arg mpedenza: B G Y mmeenza:

20 Bipolo serie 3 er un bipolo serie passivo con e > si ha e> X =m< G ey> =my> la correne è sfasaa in anicipo rispeo alla ensione er il bipolo ende a comporarsi come il solo condensaore e quindi come un circuio apero er il bipolo ende a comporarsi some il solo resisore 0 39 Bipolo serie 4 Diagramma nel piano complesso mpiezze delle ensioni: arcg 40

21 4 Bipolo parallelo d d v v i i i B G Y X Y mpedenza: mmeenza: arcg arg 4 Bipolo parallelo er un bipolo parallelo passivo con e si ha ex =m< G ey B my la correne è sfasaa in anicipo rispeo alla ensione er il bipolo ende a comporarsi come il solo resisore 0 er il bipolo ende a comporarsi some il solo condensaore e quindi come un corocircuio

22 Bipolo parallelo 3 Diagramma nel piano complesso mpiezze delle correni: arcg 43 nalisi di circuii in regime sinusoidale Equazioni dei componeni Generaori indipendeni: sono noe le ensioni o le correni sono noi anche i loro fasori G G Bipoli lineari: Y Generaori dipendeni: per la proprieà di linearià, le relazioni ra i fasori sono r g 44

23 nalisi di circuii in regime sinusoidale Equazioni dei collegameni e relazioni ra le grandezze funzioni del empo sono espresse da equazioni algebriche lineari omogenee del ipo i v 0 0 er le proprieà di unicià e di linearià della rasformaa di einmez 0 0 i v e leggi di Kirchhoff valgono anche per i fasori delle ensioni e delle correni 45 nalisi di circuii in regime sinusoidale 3 e equazioni di un circuio lineare in regime sinusoidale, scrie in ermini di fasori, hanno la sessa forma delle equazioni di un circuio lineare resisivo in regime sazionario eoremi e i meodi di analisi dedoi a parire delle equazioni generali dei circuii resisivi si possono esendere ai circuii in regime sinusoidale eseguendo le segueni sosiuzioni: esisenza mpedenza onduanza mmeenza Tensione Fasore della ensione orrene Fasore della correne 46

24 nalisi di circuii in regime sinusoidale 4 n paricolare si possono esendere ai circuii lineari in regime sinusoidale le relazioni di equivalenza come serie, parallelo sella-riangolo rasformazione dei generaori formule di illman i meodi di analisi generali meodo delle maglie, meodo dei nodi e meodo degli anelli il eorema di sovrapposizione il eorema di sosiuzione i eoremi di Thévenin e Noron 47 mpedenze in serie e in parallelo mpedenze in serie N mpedenze in parallelo N K N Y Y Y N Y Y K N 48

25 49 ariore di ensione e di correne ariore di ensione ariore di correne N N Y Y 50 Trasformazioni dei generaori G G G G Y

26 Equivalenza sella-riangolo Teorema di sovrapposizione poesi: circuio lineare conenene N generaori indipendeni di ensione v G,..., v GN N generaori indipendeni di correne i G,..., i GN ui i generaori sono sinusoidali con la sessa pulsazione condizioni di regime sinusoidale fasori della ensione e della correne del generico lao i sono combinazioni lineari dei fasori delle ensioni e delle correni impresse dai generaori indipendeni i i N N α y i i G G N N z β i i G G 5

27 Funzioni di ree coefficieni delle combinazioni sono funzioni complesse della pulsazione e sono dei funzioni di di ree α i adimensionale y i i G i G 0 h 0 h 0 h 0 h ha le dimensioni di un ammeenza ha le dimensioni di un impedenza 0 h 0 h e funzioni di ree che meono in relazione i fasori della ensione e della correne dello sesso lao sono dee funzioni di immeenza e funzioni di ree che meono in relazione fasori di ensioni e correni di lai diversi sono dee funzioni di rasferimeno z β i i i G i G 0 h 0 h adimensionale 53 mpedenza di ingresso Funzioni di immeenza N G 0 h 0 h mmeenza di ingresso Y G 0 h 0 h 54

28 Funzioni di rasferimeno apporo di rasferimeno di ensione α i i G 0 h 0 h apporo di rasferimeno di correne β i i G 0 h 0 h 55 Funzioni di rasferimeno mpedenza di rasferimeno z i i G 0 h 0 h mmeenza di rasferimeno y i i G 0 h 0 h 56

29 Funzioni di ree Tue le funzioni di ree sono funzioni razionali della variabile complessa cioè sono rappori ra polinomi nella variabile H bm a n m n b a m n m n b b a a 0 0 iò deriva dal fao che i fasori delle ensioni e delle correni possono essere calcolai a parire da un sisema di equazioni i cui coefficieni conengono i faori o preseni nelle equazioni caraerisiche dei componeni dinamici coefficieni dei polinomi, a e b, sono sempre reali e dipendono dai parameri dei componeni diversi dai generaori indipendeni 57 Teorema di Thévenin poesi: condizioni di regime sinusoidale il bipolo -B è formao da componeni lineari e generaori indipendeni il bipolo - è comandao in correne l bipolo -B equivale a un bipolo formao da un generaore indipendene di ensione 0 in serie con un impedenza eq 0 è la ensione a vuoo del bipolo -B eq è l impedenza equivalene del bipolo -B con i generaori indipendeni azzerai B 0 eq B 58

30 Teorema di Noron poesi: condizioni di regime sinusoidale il bipolo -B è formao da componeni lineari e generaori indipendeni il bipolo -B è comandao in ensione l bipolo -B equivale a un bipolo formao da un generaore indipendene di correne cc in parallelo con un ammeenza Y eq cc è la correne di corocircuio del bipolo -B Y eq è l ammeenza equivalene del bipolo -B con i generaori indipendeni azzerai B cc Yeq B 59

Circuiti in regime sinusoidale

Circuiti in regime sinusoidale ircuii in regime sinusoiale are www.ie.ing.unibo.i/pers/masri/iaica.hm versione el -0-03 Funzioni sinusoiali a cos ampiezza fase iniziale raiani, ra pulsazione ra/s f frequenza herz, Hz T perioo seconi,

Dettagli

Circuiti in regime sinusoidale

Circuiti in regime sinusoidale ircuii in regime sinusoidale www.die.ing.unibo.i/pers/masri/didaica.hm versione del 6-4- Funzioni sinusoidali a cos ampiezza fase iniziale radiani, rad pulsazione rad/s f frequenza herz, Hz T periodo secondi,

Dettagli

Circuiti dinamici. Circuiti del primo ordine. (versione del ) Circuiti del primo ordine

Circuiti dinamici. Circuiti del primo ordine.  (versione del ) Circuiti del primo ordine ircuii dinamici ircuii del primo ordine www.die.ing.unibo.i/pers/masri/didaica.hm (versione del 4-5- ircuii del primo ordine ircuii del primo ordine: circuii il cui sao è definio da una sola variabile

Dettagli

Soluzioni di reti elettriche lineari PAS Introduzione

Soluzioni di reti elettriche lineari PAS Introduzione Soluzioni di rei eleriche lineari PAS Inroduzione Domanda: Cosa sono le rei eleriche lineari in regime Periodico Alernao Sinusoidali PAS? Risposa: Sono rei lineari in cui i generaori hanno dipendenza dal

Dettagli

Generazione di corrente alternata - alternatore

Generazione di corrente alternata - alternatore . la forza eleromorice può essere indoa: a)..; b)..; c) variando l angolo ra B e la normale alla superficie del circuio θ( (roazione di spire o bobine) ezione Generazione di correne alernaa - alernaore

Dettagli

Circuiti del I ordine

Circuiti del I ordine ircuii del I ordine 9 Un circuio è deo del I ordine se coniene un solo elemeno dinamico, condensaore o induore, e per il reso è cosiuio da componeni elerici di ipo algebrico privi di memoria, ovvero generaori

Dettagli

Esercizi aggiuntivi Unità A1

Esercizi aggiuntivi Unità A1 Esercizi aggiunivi Unià A Esercizi svoli Esercizio A Concei inroduivi Daa la grandezza impulsiva periodica la cui forma d onda è rappresenaa nella figura A., calcolarne il valore medio nel periodo, il

Dettagli

Esercitazioni di Elettrotecnica: circuiti in regime sinusoidale

Esercitazioni di Elettrotecnica: circuiti in regime sinusoidale Esercizi inroduivi ES Esprimere la correne i ( in ermini di fasore nei segueni re casi: a) = sin( ω ) b) = 0sin( ω π) c) = 8sin( ω + π / ) isulao: a) = ep( j) b) = 0 c) = 8 j ES aluare (in coordinae caresiane

Dettagli

*5$1'(==(3(5,2',&+( W GW

*5$1'(==(3(5,2',&+( W GW *51'((3(5'&+( 3UQFSDOGQ]RQ Una grandezza empodipendene D) si definisce SURGFD quando ad uguali inervalli T assume valori uguali cioè quando vale la relazione (con n inero qualsiasi): ( ) D( Q) D + (1)

Dettagli

Circuiti in regime sinusoidale

Circuiti in regime sinusoidale ircuii in regime sinusoidale Pare www.die.ing.unibo.i/pers/masri/didaica.hm versione del 3-3-4 Poenza assorbia da un bipolo in regime sinusoidale v i cos cos Poenza isananea assorbia dal bipolo p v i cos

Dettagli

Corso di laurea in Ingegneria Meccatronica CONTROLLI AUTOMATICI E CA - 03 FUNZIONE DI TRASFERIMENTO

Corso di laurea in Ingegneria Meccatronica CONTROLLI AUTOMATICI E CA - 03 FUNZIONE DI TRASFERIMENTO Auomaion Roboics and Sysem CONTROL Corso di laurea in Ingegneria Meccaronica CONTROLLI AUTOMATICI E AZIONAMENTI ELETTRICI CA - 03 FUNZIONE DI TRASFERIMENTO Universià degli Sudi di Modena e Reggio Emilia

Dettagli

Tipo 1 Compiti A01 A03 A05 A07 A09 A11 A13 A15 A17 A19 A21 A23 A25 A27 A29 A31 A33 A35 A37 A39 A41 A43

Tipo 1 Compiti A01 A03 A05 A07 A09 A11 A13 A15 A17 A19 A21 A23 A25 A27 A29 A31 A33 A35 A37 A39 A41 A43 Tipo 1 ompii A01 A0 A05 A07 A09 A11 A1 A15 A17 A19 A1 A A5 A7 A9 A1 A A5 A7 A9 A41 A4 Es. 1: (Esempio di risoluzione) 1. Scelo come riferimeno il nodo E, le incognie sono le ensioni di nodo V A V B e V

Dettagli

Circuiti in regime sinusoidale

Circuiti in regime sinusoidale ircuii in regime sinusoidale are www.die.ing.unibo.i/pers/masri/didaica.hm versione del 3--5 oenza assorbia da un bipolo in regime sinusoidale v i cos cos oenza assorbia dal bipolo p v i cos cos cos cos

Dettagli

Circuiti in regime periodico non sinusoidale

Circuiti in regime periodico non sinusoidale Circuii in regime periodico non sinusoidale www.die.ing.unibo.i/pers/masri/didaica.hm (versione del -3-7 Funzioni periodiche i dice che una funzione y( è periodica se esise un > ale che per ogni e per

Dettagli

SISTEMI POLIFASI. Appunti a cura dell Ing. Alessandro Serafini Tutore del corso di ELETTROTECNICA per Meccanici, Chimici e Biomedici

SISTEMI POLIFASI. Appunti a cura dell Ing. Alessandro Serafini Tutore del corso di ELETTROTECNICA per Meccanici, Chimici e Biomedici SST POLFAS Appuni a cura dell ng. Alessandro Serafini Tuore del corso di LTTROTCNCA per eccanici, Chimici e Biomedici A. A. 5/ 6 B. lima aggiornameno 9//7 Sisemi polifasi Sisemi polifasi:direo e inverso

Dettagli

La verifica dei prerequisiti può essere effettuata con il seguente esercizio. 2. Determinare la parte reale e la parte immaginaria del numero

La verifica dei prerequisiti può essere effettuata con il seguente esercizio. 2. Determinare la parte reale e la parte immaginaria del numero 4 UNTÀ DDATTA. 4. EFA DE PEEQUST a verifica dei prerequisii può essere effeuaa con il seguene esercizio. Deerminare il modulo e l argomeno del numero + ( 4 )( ) SO.: + ( 4 )( ) + 6 + 8 + 4 6 + 9 arg 9

Dettagli

0.0.1 Esercizio Q1, tema d esame del 10 settembre 2009, prof. Dario d Amore Testo R 3

0.0.1 Esercizio Q1, tema d esame del 10 settembre 2009, prof. Dario d Amore Testo R 3 1 0.0.1 Esercizio Q1, ema d esame del 10 seembre 2009, prof. Dario d more 0.0.1.1 Teso E1 Il circuio di figura opera in regime sazionario. Sapendo che R 1 = 2 kω, = 4 kω, = 2 kω, = 2 kω E=12 V, =3 m Deerminare,

Dettagli

Segnali e Sistemi. Proprietà dei sistemi ed operatori

Segnali e Sistemi. Proprietà dei sistemi ed operatori Segnali e Sisemi Un segnale è una qualsiasi grandezza che evolve nel empo. Sono funzioni che hanno come dominio il empo e codominio l insieme di ui i valori che può assumere la grandezza I sisemi rasformano

Dettagli

Università degli Studi di Cassino - FACOLTÀ DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA GESTIONALE

Università degli Studi di Cassino - FACOLTÀ DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA GESTIONALE Universià degli Sudi di assino - FOTÀ DI GGNI OSO DI U GGNI GSTION TTOTNI - prova scria del // SIZIO I - on riferimeno al seguene circuio, operane in regime sinusoidale, calcolare:. il circuio equivalene

Dettagli

Esercitazioni di Elettrotecnica: circuiti in evoluzione dinamica

Esercitazioni di Elettrotecnica: circuiti in evoluzione dinamica Uniersià degli Sudi di assino serciazioni di leroecnica: circuii in eoluzione dinamica nonio Maffucci er seembre ircuii dinamici del primo ordine S onsiderao il seguene circuio che o all isane laora in

Dettagli

CONTROLLI AUTOMATICI Ingegneria Meccatronica

CONTROLLI AUTOMATICI Ingegneria Meccatronica CONTROLLI AUTOMATICI Ingegneria Meccaronica TRASFORMATE DI LAPLACE Prof. Cesare Fanuzzi Ing. Crisian Secchi e-mail: cesare.fanuzzi@unimore.i, crisian.secchi@unimore.i hp://www.auomazione.ingre.unimore.i

Dettagli

TRASFORMATE DI LAPLACE

TRASFORMATE DI LAPLACE CONTROLLI AUTOMATICI Ingegneria della Gesione Indusriale e della Inegrazione di Impresa hp://www.auomazione.ingre.unimore.i/pages/corsi/conrolliauomaicigesionale.hm Trasformae di Laplace Gli esempi visi

Dettagli

Equazioni differenziali lineari

Equazioni differenziali lineari 0.0. 2. Equazioni differenziali lineari Da un puno di visa dinamico, i sisemi lineari sazionari sono descrii da equazioni differenziali ordinarie lineari a coefficieni cosani: a n d n y d n + a n d n y

Dettagli

Corso di Geometria e Algebra Lineare: Geometria Lineare. 6^ Lezione

Corso di Geometria e Algebra Lineare: Geometria Lineare. 6^ Lezione Corso di Geomeria e Algebra Lineare: Geomeria Lineare 6^ Lezione Luoghi geomerici del piano. Rea. Equazione caresiana. Equazione esplicia. Forme paricolari dell equazione della rea. Equazione segmenaria

Dettagli

Equazioni Differenziali (5)

Equazioni Differenziali (5) Equazioni Differenziali (5) Daa un equazione differenziale lineare omogenea y n + a n 1 ()y n 1 + a 0 ()y = 0, (1) se i coefficieni a i non dipendono da, abbiamo viso che le soluzioni si possono deerminare

Dettagli

L impedenza. RIASSUNTO Richiamo: algebra dei numeri complessi I FASORI Derivate e integrali Esempio: circuito RC. Il concetto di impedenza :

L impedenza. RIASSUNTO Richiamo: algebra dei numeri complessi I FASORI Derivate e integrali Esempio: circuito RC. Il concetto di impedenza : L impedena RASSUNTO Richiamo: algebra dei numeri complessi FASOR Derivae e inegrali Esempio: circuio RC Transiene Soluione saionaria l conceo di impedena : Resisena: Z R R nduana: Z L ω L Capacia : Z C

Dettagli

Grandezze scalari e vettoriali

Grandezze scalari e vettoriali Grandezze scalari e veoriali Esempio veore sposameno: Esisono due ipi di grandezze fisiche. a)grandezze scalari specificae da un valore numerico (posiivo negaivo o nullo) e (nel caso di grandezze dimensionae)

Dettagli

STABILITÀ DI SISTEMI DINAMICI STABILITÀ INGRESSO-USCITA (BIBO)

STABILITÀ DI SISTEMI DINAMICI STABILITÀ INGRESSO-USCITA (BIBO) 3 Capiolo STABILITÀ DI SISTEMI DINAMICI STABILITÀ INGRESSO-USCITA (BIBO) Un generico sisema è deo sabile se, ecciao da una qualsiasi funzione di enraa ale da essere sempre limiaa, risponde con una uscia

Dettagli

PROVA SCRITTA DI AUTOMATICA I (Prof. Bittanti, BIO A-K) 25 Settembre 2006 Cognome Nome Matricola. y=x 2 =i L

PROVA SCRITTA DI AUTOMATICA I (Prof. Bittanti, BIO A-K) 25 Settembre 2006 Cognome Nome Matricola. y=x 2 =i L .9.8.7.6.5.4.3.. - 3 4 5 6 7 8 9 PROVA SCRITTA DI AUTOMATICA I (Prof. Biani, BIO A-K) 5 Seembre 6 Cognome Nome Maricola............ Verificare che il fascicolo sia cosiuio da 9 pagine. La chiarezza e precisione

Dettagli

SEGNALI E SISTEMI (a.a ) Prof. M. Pavon Esercizi risolti 6 Attenzione: u(t) = 1l(t)

SEGNALI E SISTEMI (a.a ) Prof. M. Pavon Esercizi risolti 6 Attenzione: u(t) = 1l(t) SEGNALI E SISTEMI (a.a. 9-) Prof. M. Pavon Esercizi risoli 6 Aenzione: u() = l(). Si deermini il periodo fondamenale T e i coefficieni di Fourier a k del segnale a empo coninuo sen + 4 cos + cos(6 π 4

Dettagli

Corso di Elettrotecnica 1 - Cod N Diploma Universitario Teledidattico in Ingegneria Informatica ed Automatica Polo Tecnologico di Alessandria

Corso di Elettrotecnica 1 - Cod N Diploma Universitario Teledidattico in Ingegneria Informatica ed Automatica Polo Tecnologico di Alessandria Schede di leroecnica Corso di leroecnica 1 - Cod. 9 N Diploma Universiario Teledidaico in Ingegneria Informaica ed Auomaica Polo Tecnologico di Alessandria A cura di uca FAIS Scheda N 7 ei in Correne Coninua:

Dettagli

Esercizi Scheda N Fisica II. Esercizi con soluzione svolta

Esercizi Scheda N Fisica II. Esercizi con soluzione svolta Poliecnico di Torino etem Esercizi Scheda N. 0 45 Fisica II Esercizi con soluzione svola Esercizio 0. Si consideri il circuio V R T R T V I V 0 Vols R 5 Ω R 0 Ω µf sapendo che per 0 T on T off 5 µs T off

Dettagli

APPUNTI INTEGRATIVI Provvisori circa: Risposta in Frequenza: Introduzione ai Filtri Passivi e Attivi. Filtri del I ordine

APPUNTI INTEGRATIVI Provvisori circa: Risposta in Frequenza: Introduzione ai Filtri Passivi e Attivi. Filtri del I ordine APPUNTI INTEGRATIVI Provvisori circa: Risposa in Frequenza: Inroduzione ai Filri Passivi e Aivi Filri del I ordine. Passa-Basso Consideriamo la funzione di ree: Trasferimeno in ensione ai capi di un condensaore

Dettagli

Esercizi & Domande per il Compito di Elettrotecnica del 28 gennaio 2003

Esercizi & Domande per il Compito di Elettrotecnica del 28 gennaio 2003 Esercizi & Domande per il Compio di Eleroecnica del 8 gennaio 3 ESECZO 5 Ω -j4 Ω 4 Ω j3 Ω,5 Troare l equialene di Noron del circuio in figura SVOLGMENTO Ω 5 -j4 Ω 4 Ω j3 Ω,5 4 + j3 4 + j3 5 5 4 + j3 +

Dettagli

Esercitazioni di Elettrotecnica: circuiti in evoluzione dinamica

Esercitazioni di Elettrotecnica: circuiti in evoluzione dinamica Maffucci: ircuii in eoluzione dinamica er- Uniersià degli Sudi di assino serciazioni di leroecnica: circuii in eoluzione dinamica nonio Maffucci maffucci@unicasi er oobre Maffucci: ircuii in eoluzione

Dettagli

Caratterizzazione degli autovalori (cfr. Lez. VII, punto 2). Gli autovalori di A sono le radici del polinomio caratteristico det(a λi) di A.

Caratterizzazione degli autovalori (cfr. Lez. VII, punto 2). Gli autovalori di A sono le radici del polinomio caratteristico det(a λi) di A. Esercizi III Priima di dare la risoluzione dei segueni esercizi su auoveori, auovalori, diagonalizzabilià e diagonalizzazione, ricordiamo alcune definizioni, eoremi e fai su queso argomeno Sia A una marice

Dettagli

Fondamenti di Automatica Test di autovalutazione n.1 (test di ingresso) può anche essere rappresentato come

Fondamenti di Automatica Test di autovalutazione n.1 (test di ingresso) può anche essere rappresentato come Fondameni di Auomaica Tes di auovaluazione n. (es di ingresso). Il numero complesso [a] 2 j2 3 [b] 2 3 j2 [c] 8 3 j [d] 2 + j2 3 /6 4e jπ può anche essere rappresenao come 2. L argomeno, espresso in radiani,

Dettagli

GEOMETRIA svolgimento di uno scritto del 12 Gennaio 2011

GEOMETRIA svolgimento di uno scritto del 12 Gennaio 2011 GEOMETRIA svolgimeno di uno scrio del Gennaio ) Trovare una base per lo spaio delle soluioni del seguene sisema omogeneo: + + 9 + 6. Il sisema può essere scrio in forma mariciale nel modo seguene : 9 6

Dettagli

Volume FISICA. Elementi di teoria ed applicazioni. Fisica 1

Volume FISICA. Elementi di teoria ed applicazioni. Fisica 1 Volume FISICA Elemeni di eoria ed applicazioni Fisica ELEMENTI DI TEORIA ED APPLICAZIONI Fisica CUES Cooperaiva Universiaria Edirice Salerniana Via Pone Don Melillo Universià di Salerno Fisciano (SA)

Dettagli

25.2. Osservazione. Siccome F(x, y, z) = 0 è un equazione e non un identità, una superficie non contiene tutti gli 3 punti dello spazio.

25.2. Osservazione. Siccome F(x, y, z) = 0 è un equazione e non un identità, una superficie non contiene tutti gli 3 punti dello spazio. . Cono e cilindro.. Definiione. Diremo superficie il luogo geomerico dei puni dello spaio le cui coordinae soddisfano un equaione del ipo F che viene dea equaione caresiana della superficie. Se F è un

Dettagli

Geometria analitica del piano pag 1 Adolfo Scimone

Geometria analitica del piano pag 1 Adolfo Scimone Geomeria analiica del piano pag Adolfo Scimone GEOMETRIA ANALITICA Lo scopo della geomeria analiica è quello di individuare i puni di una rea, di un piano, dello spazio, o più in generale gli eni geomerici

Dettagli

T.E. del 5 febbraio Risultati. Autore: Dino Ghilardi

T.E. del 5 febbraio Risultati. Autore: Dino Ghilardi T.E. del 5 febbraio 2018. Risulai Auore: Dino Ghilardi 7 febbraio 2018 1 0.1 E1, T.E. del 05-02-2018, prof D Amore 0.1.1 Teso 0.1.2 Soluzione Puno 1: calcolo dell induanza. Riluanza di un ronco: R T =

Dettagli

Soluzioni degli esercizi di Analisi Matematica I

Soluzioni degli esercizi di Analisi Matematica I Sapienza - Universià di Roma - Corso di Laurea in Ingegneria Eleroecnica Soluzioni degli esercizi di Analisi Maemaica I A.A. 6 7 - Docene: Luca Baaglia Lezione del Dicembre 6 Argomeno: Equazioni differenziali,

Dettagli

APPUNTI INTEGRATIVI Provvisori circa: Risposta in Frequenza: Introduzione ai Filtri Passivi e Attivi. Filtri del I ordine

APPUNTI INTEGRATIVI Provvisori circa: Risposta in Frequenza: Introduzione ai Filtri Passivi e Attivi. Filtri del I ordine APPUNTI INTEGATIVI Provvisori circa: isposa in Frequenza: Inroduzione ai Filri Passivi e Aivi Filri del I ordine. Passa-Basso Consideriamo la funzione di ree: Trasferimeno in ensione ai capi di un condensaore

Dettagli

Programma della lezione

Programma della lezione Programma della lezione /4. numeri complessi: richiami. Resisenze, condensaori e induanze in regime alernao (AC) 3. Reaanza e impedenza 4. Rappresenazione polare di volaggi, correni e impedenze in AC 5.

Dettagli

Fondamenti di Automatica Test di autovalutazione. può anche essere rappresentato come

Fondamenti di Automatica Test di autovalutazione. può anche essere rappresentato come Fondameni di Auomaica Tes di auovaluazione PARTE A A. Il numero complesso [a] 2 j2 3 [b] 2 3 j2 [c] 8 3 j [d] 2 + j2 3 /6 4e jπ può anche essere rappresenao come A2. L argomeno, espresso in radiani, del

Dettagli

Interruttore ideale. + v(t) i(t) t = t 0. i(t) = 0 v(t) = 0. i(t) v(t) v(t) = 0 i(t) = 0. Per t > t 0. interruttore di chiusura

Interruttore ideale. + v(t) i(t) t = t 0. i(t) = 0 v(t) = 0. i(t) v(t) v(t) = 0 i(t) = 0. Per t > t 0. interruttore di chiusura Inerruore ideale inerruore di chiusura { i() = 0 v() = 0 inerruore di aperura { v() = 0 i() = 0 per < 0 per > 0 per < 0 per > 0 v() i() = 0 v() i() = 0 Esempio: inerruore ideale di aperura Per < 0, i()

Dettagli

Geometria analitica del piano pag 7 Adolfo Scimone. Rette in posizioni particolari rispetto al sistema di riferimento

Geometria analitica del piano pag 7 Adolfo Scimone. Rette in posizioni particolari rispetto al sistema di riferimento Geomeria analiica del piano pag 7 Adolfo Scimone Ree in posizioni paricolari rispeo al sisema di riferimeno L'equazione affine di una rea a + + c = 0 può assumere forme paricolari in relazione alla posizione

Dettagli

Filtri. RIASSUNTO: Sviluppo in serie di Fourier Esempi:

Filtri. RIASSUNTO: Sviluppo in serie di Fourier Esempi: Filri RIASSUNTO: Sviluppo in serie di Fourier Esempi: Onda quadra Onda riangolare Segnali non peridiodici Trasformaa di Fourier Filri lineari sazionari: funzione di rasferimeno T() Definizione: il decibel

Dettagli

Nome: Nr. Mat. Firma:

Nome: Nr. Mat. Firma: Fondameni di Conrolli Auomaici Prova Parziale 8 Aprile 2 - A.A. 2/ Nome: Nr. Ma. Firma: a) Deerminare la rasformaa di Laplace X i (s) dei segueni segnali emporali x i (): x () = 4 + 2 e +5 cos(3 6), x

Dettagli

Teoria dei Segnali. La Convoluzione (esercizi) parte prima

Teoria dei Segnali. La Convoluzione (esercizi) parte prima Teoria dei Segnali La Convoluzione (esercizi) pare prima 1 Si ricorda che la convoluzione ra due segnali x() e y(), reali o complessi, indicaa simbolicamene come: C xy () = x() * y() è daa indifferenemene

Dettagli

UNITA 3. LE EQUAZIONI GONIOMETRICHE.

UNITA 3. LE EQUAZIONI GONIOMETRICHE. UNITA. LE EQUAZIONI GONIOMETRICHE.. Generalià sulle equazioni goniomeriche.. Equazioni goniomeriche elemenari con seno, eno, angene e coangene.. Alri ipi di equazioni goniomeriche elemenari.. Le funzioni

Dettagli

UNITA 3. LE EQUAZIONI GONIOMETRICHE.

UNITA 3. LE EQUAZIONI GONIOMETRICHE. UNITA. LE EQUAZIONI GONIOMETRICHE.. Generalià sulle equazioni goniomeriche.. Equazioni goniomeriche elemenari con seno, coseno, angene e coangene.. Alri ipi di equazioni goniomeriche elemenari.. Le funzioni

Dettagli

PROVA SCRITTA DI AUTOMATICA I (Prof. Bittanti, BIO A-K) 10 Settembre 2008 Cognome Nome Matricola

PROVA SCRITTA DI AUTOMATICA I (Prof. Bittanti, BIO A-K) 10 Settembre 2008 Cognome Nome Matricola PROVA SCRITTA DI AUTOMATICA I (Prof. Biani, BIO A-K) Seembre 8 Cognome Nome Maricola............ Verificare che il fascicolo sia cosiuio da 9 pagine. Scrivere le rispose ai singoli esercizi negli spazi

Dettagli

Equazioni differenziali lineari

Equazioni differenziali lineari 0.0. 2. Equazioni differenziali lineari Da un puno di visa dinamico, i sisemi lineari sazionari sono descrii da equazioni differenziali ordinarie lineari a coefficieni cosani: a n d n y d n +a n d n y

Dettagli

(studio del moto dei corpi) Cinematica: descrizione del moto. Dinamica: descrizione del moto in funzione della forza

(studio del moto dei corpi) Cinematica: descrizione del moto. Dinamica: descrizione del moto in funzione della forza MECCANICA (sudio del moo dei corpi) Cinemaica: descrizione del moo Dinamica: descrizione del moo in funzione della forza CINEMATICA del puno maeriale oo in una dimensione x 2 x 1 2 1 disanza percorsa empo

Dettagli

Ci domandiamo allora se e sempre possibile rappresentare una funzione in questo modo.

Ci domandiamo allora se e sempre possibile rappresentare una funzione in questo modo. 1. Serie di Fourier I problemi al bordo associai ad equazioni differenziali si sanno risolvere con il meodo di separazione delle variabili solano se il dao iniziale si rappresena nella forma fx = a cosx

Dettagli

Sistemi Lineari e Tempo-Invarianti (SLI) Risposta impulsiva e al gradino

Sistemi Lineari e Tempo-Invarianti (SLI) Risposta impulsiva e al gradino Sisemi Lineari e Tempo-Invariani (SLI) Risposa impulsiva e al gradino by hp://www.oasiech.i Con sisema SLI si inende un sisema lineare e empo invariane, rispeo alla seguene figura: Lineare: si ha quando

Dettagli

Lezione 0. Richiami di teoria dei sistemi (a tempo continuo e a tempo discreto) F. Previdi - Controlli Automatici - Lez. 0 1

Lezione 0. Richiami di teoria dei sistemi (a tempo continuo e a tempo discreto) F. Previdi - Controlli Automatici - Lez. 0 1 Lezione 0. Richiami di eoria dei sisemi (a empo conino e a empo discreo) F. Previdi - Conrolli Aomaici - Lez. 0 Sisemi a empo conino C. Rappresenazione di sao C. Eqilibrio C3. Sisemi LTI SISO C4. Eqilibrio

Dettagli

Lezione 7. Esercizi sui. circuiti dinamici del I ordine

Lezione 7. Esercizi sui. circuiti dinamici del I ordine Lezione 7 Esercizi sui circuii dinamici del I ordine Lezioni di Eleroecnica per sudeni di Ingegneria Gesionale ideae e scrie da Lorenza ori con il conribuo di Vincenzo Paolo Loschiavo Eleroecnica per gesionali

Dettagli

22 Reti in regime variabile aperiodico

22 Reti in regime variabile aperiodico Analisi in evoluzione coninua leroecnica ei in regime variabile aperiodico Nei regimi variabili aperiodici ensioni e correni non assumono andameni di ipo presabilio (come nei regimi sazionario e periodico)!

Dettagli

Cinematica moto armonico. Appunti di Fisica. Prof. Calogero Contrino

Cinematica moto armonico. Appunti di Fisica. Prof. Calogero Contrino 2006 Cinemaica moo armonico Appuni di Fisica Prof. Calogero Conrino : definizione Il moo di un puno maeriale P è deo armonico se soddisfa le segueni condizioni: La raieoria è un segmeno. Le posizioni occupae

Dettagli

Esercizio 1 [punti 4] Si tracci il grafico dei segnali a. x 1 (t) = x( t + 2), t R, b. x 2 (t) = x( t 1), t R, sapendo che x(t) =

Esercizio 1 [punti 4] Si tracci il grafico dei segnali a. x 1 (t) = x( t + 2), t R, b. x 2 (t) = x( t 1), t R, sapendo che x(t) = Esercizio [puni 4] Prova scria di SEGNALI E SISTEMI 5 seembre 2003 Proff. L. Finesso, M. Pavon e S. Pinzoni (a.a. 2002-2003) Teso e Soluzione (redaa da L. Finesso) Si racci il grafico dei segnali a. x

Dettagli

Cinematica del punto materiale 1. La definizione di cinematica.

Cinematica del punto materiale 1. La definizione di cinematica. Cinemaica del puno maeriale 1. La definizione di cinemaica. 2. Posizione e Sposameno 3. Equazione oraria del moo 4. Traieoria 5. Moo in una dimensione. 6. Velocià media e velocià isananea. 7. Moo reilineo

Dettagli

CAMPO ROTANTE DI GALILEO FERRARIS.doc pag. 1 di 5

CAMPO ROTANTE DI GALILEO FERRARIS.doc pag. 1 di 5 CAPO ROANE DI GALILEO FERRARIS. È noo che un solenoide percorso da correne elerica dà origine nel suo inerno a un campo magneico che ha come direzione quella del suo asse come mosrao in fig.. Se esso e

Dettagli

Fisica Generale Modulo di Fisica II A.A Ingegneria Meccanica - Edile - Informatica Esercitazione 7 CIRCUITI IN REGIME SINUSOIDALE

Fisica Generale Modulo di Fisica II A.A Ingegneria Meccanica - Edile - Informatica Esercitazione 7 CIRCUITI IN REGIME SINUSOIDALE Fisica Generale Modulo di Fisica II A.A. 7-8 Ingegneria Meccanica - Edile - Informaica Eserciazione 7 CICUII I EGIME SIUSOIDALE Fa. Un generaore di correne alernaa con volaggio massimo di 4 e frequenza

Dettagli

), dove K è una costante positiva della quale si richiede l unità di

), dove K è una costante positiva della quale si richiede l unità di Simulazione di prova scria di MATEMATICA-FISICA - MIUR -..019 PROBLEMA 1 - soluzione con la calcolarice grafica TI-Nspire CX della Texas Insrumens Soluzione a cura di: Formaori T Ialia - Teachers Teaching

Dettagli

f v, lim allora x, y x, y e analogamente se 0,1 Osserviamo che la derivata direzionale esiste per ogni punto x y e ogni vettore,2 0,0 cos 2 1

f v, lim allora x, y x, y e analogamente se 0,1 Osserviamo che la derivata direzionale esiste per ogni punto x y e ogni vettore,2 0,0 cos 2 1 DERIVATA DIREZIONALE La definizione di derivaa direzionale è y, lim,, f v y v f y v, v Se v, allora, y, y e analogamene se,, y, y f, y y Calcolare la derivaa direzionale della funzione dove v allora dom

Dettagli

Il segnale sinusoidale (tratto da: Segnali elettrici, a cura del Dott. M.Scalia, Ing. F.Guidi, Dott. M.Sperini)

Il segnale sinusoidale (tratto da: Segnali elettrici, a cura del Dott. M.Scalia, Ing. F.Guidi, Dott. M.Sperini) Il segnale sinusoidale (rao da: Segnali elerici, a cura del Do..Scalia, Ing. F.Guidi, Do..Sperini). Inroduzione Fenomeni oscillaori sono preseni in forma empirica nel mondo della fisica: ra gli esempi

Dettagli

ed interpretare geometricamente il risultato ottenuto. Esprimere, per t 2, l integrale

ed interpretare geometricamente il risultato ottenuto. Esprimere, per t 2, l integrale Fisica Prova d esempio per l esame (MIUR, aprile 019) Problema 1 Due fili reilinei paralleli vincolai a rimanere nella loro posizione, disani 1 m l uno dall alro e di lunghezza indefinia, sono percorsi

Dettagli

Linea guida raccomandata per la valutazione della vita residua di componenti esercìti in regime di scorrimento viscoso

Linea guida raccomandata per la valutazione della vita residua di componenti esercìti in regime di scorrimento viscoso ISPESL Linea guida raccomandaa per la valuazione della via residua di componeni esercìi in regime di scorrimeno viscoso Calcolo della frazione di via consumaa per scorrimeno viscoso Sezione 2 LG v. 1 Nella

Dettagli

Equazioni differenziali lineari

Equazioni differenziali lineari 0.0. 2. Equazioni differenziali lineari Da un puno di visa dinamico, i sisemi lineari sazionari sono descrii da equazioni differenziali ordinarie lineari a coefficieni cosani: a n d n y d n +a n d n y

Dettagli

Lezione 1. Introduzione alle proprietà strutturali. F. Previdi - Controlli Automatici - Lez. 1 1

Lezione 1. Introduzione alle proprietà strutturali. F. Previdi - Controlli Automatici - Lez. 1 1 ezione. Inroduzione alle proprieà sruurali F. Previdi - Conrolli Auomaici - ez. F. Previdi - Conrolli Auomaici - ez. k x k y k u k x k x z G z z z z z z Qual è il «significao» di quesa cancellazione? Esempio:

Dettagli

Corso di Fondamenti di Telecomunicazioni

Corso di Fondamenti di Telecomunicazioni Corso di Fondameni di elecomunicazioni - SEGNALI E SPERI Prof. Mario Barbera [pare ] Sruura della lezione Proprieà dei segnali Valore medio, valore efficace, poenza, energia rasformaa di Fourier e speri

Dettagli

Corso di Laurea in Disegno Industriale. Lezione 6 Novembre 2002 Derivate successive, derivate parziali e derivate di vettori. F.

Corso di Laurea in Disegno Industriale. Lezione 6 Novembre 2002 Derivate successive, derivate parziali e derivate di vettori. F. Corso di Laurea in Disegno Indusriale Corso di Meodi Numerici per il Design Lezione 6 Novembre Derivae successive, derivae parziali e derivae di veori F. Caliò I5 5 Derivazioni ripeue Derivaa della derivaa

Dettagli

Controlli Automatici L

Controlli Automatici L Segnali e rasformae - Corso di Laurea in Ingegneria Meccanica Segnali e rasformae DEIS-Universià di Bologna el. 5 93 Email: crossi@deis.unibo.i URL: www-lar.deis.unibo.i/~crossi Segnali e rasformae - Segnali

Dettagli

La risposta di un sistema lineare viscoso a un grado di libertà sollecitato da carichi periodici. Prof. Adolfo Santini - Dinamica delle Strutture 1

La risposta di un sistema lineare viscoso a un grado di libertà sollecitato da carichi periodici. Prof. Adolfo Santini - Dinamica delle Strutture 1 La risposa di un sisema lineare viscoso a un grado di liberà solleciao da carichi periodici Prof. Adolfo Sanini - Dinamica delle Sruure 1 Inroduzione 1/ Un carico p() si dice periodico quando assume indefiniamene

Dettagli

SISTEMI DINAMICI DEL PRIMO ORDINE

SISTEMI DINAMICI DEL PRIMO ORDINE SISTEMI DINAMICI DEL PRIMO ORDINE I sisemi dinamici del primo ordine sono sisemi dinamici SISO rappresenai da equazioni differenziali lineari e a coefficieni cosani del primo ordine (n=): dy() dx() a +

Dettagli

RISPOSTA NEL DOMINIO DEL TEMPO

RISPOSTA NEL DOMINIO DEL TEMPO RISPOSTA NEL DOMINIO DEL TEMPO Nel dominio del empo le variabili sono esaminae secondo la loro evoluzione emporale. Normalmene si esamina la risposa del sisema a un segnale di prova canonico, cioè si sollecia

Dettagli

Circuito RC. Una resistenza R collegata ad una sorgente di tensione in una maglia circuitale limita il flusso di carica => V = RI

Circuito RC. Una resistenza R collegata ad una sorgente di tensione in una maglia circuitale limita il flusso di carica => V = RI Circuio Una resisenza R collegaa ad una sorgene di ensione in una maglia circuiale limia il flusso di carica => V = RI Un condensaore collegao ad una sorgene di ensione in una maglia circuiale immagazzina

Dettagli

Elettronica delle Telecomunicazioni Esercizi cap. 3: Anelli ad aggancio di fase

Elettronica delle Telecomunicazioni Esercizi cap. 3: Anelli ad aggancio di fase 3. Effeo della variazioni di parameri del PLL - A Un PLL uilizza come demodulaore di fase un moliplicaore analogico, e il livello dei segnali sinusoidale di ingresso (Vi) e locale (Vo) è ale da manenere

Dettagli

1) Determinare la soluzione massimale del problema di Cauchy. 2) Determinare la soluzione massimale del problema di Cauchy.

1) Determinare la soluzione massimale del problema di Cauchy. 2) Determinare la soluzione massimale del problema di Cauchy. Capiolo 3 Equazioni differenziali Esercizi ) Deerminare la soluzione massimale del problema di Cauchy y ()= y() 4 3 y()= ) Deerminare la soluzione massimale del problema di Cauchy y ()= 4 + 6 y()+ 8 (

Dettagli

Capitolo 8 Il regime periodico e il regime alternativo sinusoidale

Capitolo 8 Il regime periodico e il regime alternativo sinusoidale Capiolo 8 Il regime periodico e il regime alernaivo sinusoidale Capiolo 8 Il regime periodico e il regime alernaivo sinusoidale 8.1 Definizioni 8.1.1 Periodo, frequenza, pulsazione Una grandezza si dice

Dettagli

SISTEMI A TEMPO DISCRETO. x t + = f x( t ),u( t ) = Ax( t ) + Bu( t ), x( t ) = x R y(t) = η x(t),u(t) = Cx(t) + Du(t)

SISTEMI A TEMPO DISCRETO. x t + = f x( t ),u( t ) = Ax( t ) + Bu( t ), x( t ) = x R y(t) = η x(t),u(t) = Cx(t) + Du(t) Assumiamo la variabile emporale discrea; sia f lineare. Si consideri la seguene rappresenazione implicia: 1 x f x,u Ax Bu, x x R y η x,u Cx Du n 1 1 Rappresenazioni equivaleni Si consideri la rasformazione:

Dettagli

Laboratorio di Fisica I: laurea in Ottica e Optometria

Laboratorio di Fisica I: laurea in Ottica e Optometria Laboraorio di Fisica I: laurea in Oica e Opomeria Misura del empo caraerisico di carica e scarica di un condensaore araverso una resisenza Descrizione Si vuole cosruire un circuio in serie collegando generaore

Dettagli

Analisi Matematica 1 Ingegneria Informatica Gruppo 4, canale 6. Argomenti 19 ottobre 2017

Analisi Matematica 1 Ingegneria Informatica Gruppo 4, canale 6. Argomenti 19 ottobre 2017 Analisi Maemaica Ingegneria Informaica Gruppo 4, canale 6 Argomeni 9 oobre 207. Esercizio. Da p://www.ma.unip.i/~moni/a_ing_205/appuni2.pf (Maeriali iaici Successioni numerice.) suiare il capiolo 3 fino

Dettagli

Fisica Generale Modulo di Fisica II A.A Ingegneria Meccanica Edile - Informatica Esercitazione 4 CIRCUITI ELETTRICI

Fisica Generale Modulo di Fisica II A.A Ingegneria Meccanica Edile - Informatica Esercitazione 4 CIRCUITI ELETTRICI Fisica Generale Modulo di Fisica II A.A. 6-7 Ingegneria Meccanica Edile - Informaica Eserciazione IUITI ELETTII b. Nel circuio della figura si ha 5, e 3 3 e nella resisenza passa una correne di A.Il volaggio

Dettagli

Corso di ELETTRONICA INDUSTRIALE

Corso di ELETTRONICA INDUSTRIALE Corso di EETTRONCA NDUSTRAE Converiore BuckBoos Boos Converiore innalzaore/abbassaore (Buck / Boos) Converiore innalzaore/abbassaore (Buck / Boos) S D C U i i o U o U i Converiore innalzaore/abbassaore

Dettagli

Esercizi & Domande per il Compito di Elettrotecnica del 1 giugno 2004

Esercizi & Domande per il Compito di Elettrotecnica del 1 giugno 2004 Eercizi & Domande per il Compio di Eleroecnica del giugno Eercizio N Η Ω Solgimeno Deerminare i parameri z della ree due pore in figura: [ Z] Z Z Η Ω x X ω ω Z Z Z Z H Ω Z Z La ree non è reciproca come

Dettagli

Soluzione. Le componenti del gradiente sono le derivate parziali della funzione: cos y 0 (x 0, y 0 ) domf =R 2. sin y 0 (x x 0 ) + e x 0

Soluzione. Le componenti del gradiente sono le derivate parziali della funzione: cos y 0 (x 0, y 0 ) domf =R 2. sin y 0 (x x 0 ) + e x 0 Gradiene e piano angene Definizione 1 Sia f : A R 2 R, f derivabile in (x 0, y 0 ) A). Definiamo il veore gradiene di f in (x 0, y 0 ): f(x 0, y 0 ) = (f x (x 0, y 0 ), f y (x 0, y 0 )). Definiamo il piano

Dettagli

Esercizi. 1, v 2 = 1. , v 3 = si determini un vettore non nullo appartenente a span{v 1, v 2 } span{v 3, v 4 }

Esercizi. 1, v 2 = 1. , v 3 = si determini un vettore non nullo appartenente a span{v 1, v 2 } span{v 3, v 4 } Esercizi Spazi veoriali. Nello spazio veoriale R 3 si considerino i veori v, v, v 3 si deermini un veore non nullo apparenene a span{v, v } span{v 3, v 4 }, v 4. Si deermini per quali valori del paramero

Dettagli

Principi di ingegneria elettrica. Reti in regime sinusoidale. Lezione 13 a. Impedenza Ammettenza

Principi di ingegneria elettrica. Reti in regime sinusoidale. Lezione 13 a. Impedenza Ammettenza Principi di ingegneria elettrica Lezione 3 a Reti in regime sinusoidale mpedenza Ammettenza Legge di Ohm simbolica n un circuito lineare comprendente anche elementi dinamici (induttori e condensatori)

Dettagli

Regime lentamente. variabile. Corso di. Teoria dei Circuiti. Corso di. Università degli Studi di Pavia. Facoltà di Ingegneria

Regime lentamente. variabile. Corso di. Teoria dei Circuiti. Corso di. Università degli Studi di Pavia. Facoltà di Ingegneria Universià degli Sudi di Pavia Facolà di Ingegneria Corso di Corso di Teoria dei Circuii Regime lenamene variabile Diparimeno di Ingegneria Elerica www.unipv.i/elecric/cad Regime lenamene variabile v(),

Dettagli

Soluzione degli esercizi del Capitolo 3

Soluzione degli esercizi del Capitolo 3 Soluzione degli esercizi del Capiolo Soluzione dell Esercizio. Ricordando dal Paragrafo A.6 dell Appendice A che è facile oenere ẋ () d d ( (e A e A x + Ae (e A A x + ( A e A( ) x + Ax () + Bu () d ( e

Dettagli

SOLUZIONI SCRITTO DI ANALISI MATEMATICA II - 24/06/08. C.L. in Matematica e Matematica per le Applicazioni

SOLUZIONI SCRITTO DI ANALISI MATEMATICA II - 24/06/08. C.L. in Matematica e Matematica per le Applicazioni SOLUZIONI SCRITTO DI ANALISI MATEMATICA II - 4/06/08 C.L. in Maemaica e Maemaica per le Applicazioni Prof. K. R. Payne e Do. M. Calanchi, C. Tarsi, L. Vesely Soluzione esercizio. (a) Sia f definia da f(x)

Dettagli

Il Corso di Fisica per Scienze Biologiche

Il Corso di Fisica per Scienze Biologiche Il Corso di Fisica per Scienze Biologiche Ø Prof. Ailio Sanocchia Ø Ufficio presso il Diparimeno di Fisica (Quino Piano) Tel. 075-585 708 Ø E-mail: ailio.sanocchia@pg.infn.i Ø Web: hp://www.fisica.unipg.i/~ailio.sanocchia

Dettagli