Macchine non completamente specificate. Sintesi Sequenziale Sincrona Sintesi Comportamentale di Reti Sequenziali Sincrone

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Macchine non completamente specificate. Sintesi Sequenziale Sincrona Sintesi Comportamentale di Reti Sequenziali Sincrone"

Transcript

1 Sintsi Squnzil Sinron Sintsi Comportmntl i Rti Squnzili Sinron Riuzion l numro gli stti pr Mhin Non Compltmnt Spiit Comptiilità Vrsion l 13/01/05 (Frrni( Antol) Mhin non ompltmnt spiit Sono mhin in ui pr lun onigurzioni gli ingrssi llo stto prsnt non sono spiiti gli stti prossimi /o l onigurzioni 'usit. A smpio /0 /0 /0 /0 /- -/- /1 /1 /- /- L riuzion l numro gli stti in mhin non ompltmnt spiit è rionott ll iniviuzion i un mhin minim h opr (omptiil on) qull t Il mtoo i riuzion è simil qullo pr mhin ompltmnt spiit m si s sull proprità i omptiilità tr stti, inv h su qull i inistinguiilità Mhin non ompltmnt spiit: squnz i ingrsso ppliil stti omptiili Mhin non ompltmnt spiit: omptiilità Dt un mhin non ompltmnt spiit: un squnz i ingrsso si i ppliil prtir uno stto s i s: l unzion stto prossimo δ è spiit pr ogni simolo 'ingrsso ll squnz, trnn l più l'ultimo Du stti s i s j i un mhin M si iono omptiili s prtno s i s j usno ogni possiil squnz i ingrsso ppliil I α si ottngono l stss squnz 'usit ovunqu qust sino spiit L omptiilità tr s i s j si ini on: s i s j L omptiilità è un rlzion mno ort i qull i inistinguiilità. Vlgono l proprità rilssiv simmtri m Non vl l proprità trnsitiv ioè s s i s j s j s k può non ssr s i s k. Quini l omptiilità non è un rlzion i quivlnz A smpio, s i s j s j s k m s i s k. : s i - squnz i usit: s j - squnz i usit: s k - squnz i usit: vlori 'usit ivrsi

2 Riuzion l numro gli stti: stti omptiili L rgol i Pull - Ungr è stt sts pr trttr il so ll mhin non ompltmnt spiit Du stti sono omptiili s solo s, pr ogni simolo i ingrsso i α vlgono ntrm l sgunti rlzioni: 1. λ ( s i, i α ) = λ (s j, i α ) I vlori i usit sono intii s mu spiiti s uno o ntrmi non sono spiiti l'uguglinz si ritin soistt 2. δ ( s i, i α ) δ ( s j, i α ) gli stti prossimi sono omptiili s mu spiiti s uno o ntrmi non sono spiiti l omptiilità si ritin soistt Riuzion l numro gli stti: omptiilità rgol i Pull-Ungr Poihé gli insimi S I hnno rinlità init, l nlisi i tutt l oppi i stti può portr un ll tr onizioni 1. s i s j : stti non omptiili S i simoli 'usit sono ivrsi /o S gli stti prossimi sono già stti vriiti om non omptiili 2. s i s j : stti omptiili S i simoli 'usit sono uguli S gli stti prossimi sono già stti vriiti om omptiili 3. omptiilità oniziont: insim i oppi i stti h vono ssr omptiili inhè l oppi in oggtto si omptiil Riuzion l numro gli stti: tll ll implizioni Riuzion l numro gli stti: Esmpio L rlzioni i omptiilità si intiino on l Tll ll Implizioni h vin ostruit om nl so ll inistinguiilità L nlisi ll tll onsnt i propgr l inomptiilità, m non i risolvr i vinoli i omptiilità oniziont. Quini l trmin ll nlisi, ogni lmnto ontin: Il simolo i non omptiilità, s gli stti orrisponnti non sono omptiili Il simolo i omptiilità, s gli stti orrisponnti sono omptiili L oppi i stti h vono ssr omptiili inhè l oppi in oggtto si omptiil (vinoli) Poihé l rlzion i omptiilità non è trnsitiv, non si può onlur h tutt l omptiilità sono soistt. I vinoli vnno mntnuti pr l ostruzion ll lssi i omptiilità L lssi i omptiilità si ostruisono sminno il gro ll omptiilità, h riport l omptiilità oniziont qull inoniziont Tll gli stti /0 /0 /0 /0 /- /- /1 /1 /- /- Tll ll implizioni x x Gro ll omptiilità,,,,,,

3 Riuzion l numro gli stti: lssi i omptiilità Riuzion l numro gli stti: lssi i omptiilità - smpio Clss i omptiilità: Insim i stti omptiili r i loro oppi Sul gro i omptiilità un lss i omptiilità è rpprsntt un sottogro omplto Clss i omptiilità prim: Clss i omptiilità pr l qul non sist lun ltr lss i omptiilità h l riopr h i un insim i vinoli in ss inluso, o l limit oinint Clss i mssim omptiilità: Clss i omptiilità non ontnut in lun ltr lss Un lss i mssim omptiilità è iniviut sul gro un sottogro omplto non ontnuto in nssun ltro sottogro L lssi i mssim omptiilità non gnrno un prtizion tr gli stti (non sono isgiunt): uno stto può pprtnr più i un lss L lssi i mssim omptiilità sono ovvimnt lssi i omptiilità prim,,,,,, Clssi i omptiilità:,,,,,,,,,,,,,, Clssi i mssim omptiilità:,, Riuzion l numro gli stti: lssi i omptiilità prim - smpio Riuzion l numro gli stti: Insim hiuso i lssi i omptiilità {,,} : {()} {,,} : {(,);(,)} {,} : {(,);(,);(,);(,)} {,} : ø {,} : {(,)} {,} : {(,);(,)} {,} : {(,);(,)} {} : {(,)} {} : ø {} : ø {} : ø,, non sono lssi i omptiilità prim Insim hiuso i lssi i omptiilità: Pr ogni lss ll insim v vlr l sgunt rlzion: pr ogni simolo i ingrsso, t un lss ll insim, un simolo i ingrsso, l insim gli stti uturi rltivi è ontnuto in un stss lss (lmno) ll insim (ioè tutti i vinoli sono rispttti) Insim (), (): hiuso () on 0 vo in (), on 1 in (): OK () on 0 vo in (), on 1 in (): OK,,,, Insim (), (): NON hiuso () on 0 vo in (), on 1 in (): OK () on 0 vo in () (): KO, on 1 in () (): KO,,,,,,,,

4 Riuzion l numro gli stti: oprtur ll mhin Riuzion l numro gli stti: ostruzion ll tll gli stti ll mhin riott Dt un mhin M il suo insim i lssi i omptiilità, l mhin M il ui insim gli stti è ostituito un insim hiuso ll lssi i omptiilità i M, h inlu tutti gli stti i M, opr M Pr ostruzion, il omportmnto i M è omptiil on qullo i M ioè, Prtno un qulsisi stto i M, n sist uno in M tl h Pr ogni squnz i ingrsso ppliil ntrmi, l squnz i usit sono intih ogni volt h l usit i M è spiit Il prolm ll minimizzzion l numro i stti i un mhin non ompltmnt spiit quivl quini : Trovr il più piolo insim hiuso i lssi i omptiilità h oprono tutti gli stti ll mhin Un volt intiit l oprtur trmit l lssi i omptiilità, l ostruzion ll tll gli stti ll mhin riott vvin nl moo sgunt Gli stti ll mhin riott sono l lssi i omptiilità iniviut Pr ogni lss i omptiilità: s, pr lmno uno gli stti ll lss, lo stto prossimo è spiito, llor l lss i omptiilità h lo ontin srà lo stto prossimo ll mhin riott Poihè l insim ll lssi h ostituisono l oprtur può ssr non isgiunto, uno stto ll mhin originri può ssr prsnt in più lssi i oprtur. Nll ostruzion ll tll gli stti ll mhin riott è ritrrio sglir l lss ui pprtin s, pr lmno uno gli stti originri h ostituisono lo stto prossimo ll mhin riott, l usit è spiit, llor qust usit srà l usit ssoit llo stto prossimo nll mhin riott in ogni ltro so si mntngono l onizioni non spiit Tll gli stti ll mhin riott Riuzion l numro gli stti: iniviuzion i un insim hiuso i lssi i omptiilità Sull s i: Tll gli stti ll mhin inizil Insim hiuso ll lssi i omptiilità Si trmin l nuov tll gli stti orrisponnt ll mhin riott Tll gli stti /0 /0 /0 /0 /- /- /1 /1 /- /- s0 = {,,} s1 = {} Tll gli stti riott s0 s1/0 s0/0 s1 s0/1 s0/1 A us ll mnnz i isgiunzion tr l lssi i mssim omptiilità, pr trovr l mhin omptiil minim (h può nh ssr non uni) è nssrio riorrr lgoritmi i oprtur sustivi Si onsirno nl sguito tr tnih, non sustiv, h onsntono i intiir un insim, possiilmnt riotto, hiuso i lssi h opr l mhin t 1. Uso irtto ll lssi i mssim omptiilità 2. Euristi on lssi i mssim omptiilità (h può gnrr soluzioni non mmissiili) 3. Euristi on lssi i omptiilità prim

5 Riuzion l numro gli stti: 1) uso irtto ll lssi i mssim omptiilità L'insim i tutt l lssi i mssim omptiilità è hiuso opr l insim S gli stti Assoino un nuovo stto un lss i mssim omptiilità si ottin un nuov mhin on un numro i stti: Possiilmnt minor i qullo ll mhin i prtnz Non nssrimnt minimo Il numro i lssi i mssim omptiilità è il limit suprior l numro gli stti riotto Riuzion l numro gli stti: rir ll lssi i mssim omptiilità L inizion ll lssi i mssim omptiilità può vvnir iniviuno irttmnt sul gro tutti i più grni sottogri omplti,,,,;,,,,,;,,,;,, Clssi i mssim omptiilità: {,,} : {()} {,,} : {(,);(,)} {,} : {(,);(,);(,);(,)} Un oprtur mmissiil è t ll insim ll lssi i mssim omptiilità: tl oprtur non è nssrimnt minim Riuzion l numro gli stti: rir ll lssi i mssim omptiilità Rir ll lssi i mssim omptiilità Alro i omptiili mssimi pr olonn Esistono ivrsi lgoritmi spiii pr l iniviuzion i tutt l lssi i mssim omptiilità h utilizzno l tll ll implizioni onsirno tutt sol l inomptiilità. Costruzion ll unzion pr il tst i omptiilità Costruzion, pr olonn (o pr righ), ll lro i omptiili mssimi Prmss: L ri ll lro è ostituit tutti gli stti ll mhin (lnti sono l orin prsnt nll tll ll implizioni) Ogni noo è ostituito un lno i stti possiilmnt omptiili Ogni stto ll mhin gnr un livllo nll lro I noi i un rto livllo sono ostituiti un lno i stti pr i quli l omptiilità è già stt vriit pr tutti gli stti in lno orrisponnti i livlli ll lro l momnto ostruito S un noo è ostituito stti tutti già nlizzti, trnn l più l ultimo, llor l nlisi rltiv qul noo è trmint il noo è un ogli ll lro S un noo è ostituito un insim i stti già omprsi in un ltro noo llo stsso livllo o i un noo ogli, il noo può ssr liminto

6 L ostruzion ll lro vvin sono qust lin gui Rir ll lssi i mssim omptiilità Alro i omptiili mssimi pr olonn Dll ri vngono ostruiti 2 nuovi noi, rivnti ll sm l primo stto sinistr ll lno h ostituis l ri stss Il noo sinistr è ostituito tutti gli stti ll ri trnn lo stto orrnt (ll inizio il primo stto ll lno) Il noo str ontin lo stto in sm, ioè il primo (qulli prnti, s sistono) tutti i sussivi sso omptiili (rivti ll olonn orrisponnt llo stto in sm, nll tll ll implizioni h riport l sol inomptiilità) Trmint l gnrzion i noi i un livllo, si pss sminr lo stto sussivo ll lno ostruno quini un nuovo livllo ll lro A ogni livllo ggiunto nll lro si smin uno stto si ostruisono u sotto-lri pr ogni noo già prsnt, smpr sono l molità sinistr-str Il proimnto trmin, quno si sono sminti tutti gli stti, trnn l ultimo ll lno i prtnz L ogli ll lro rpprsntno i omptiili mssimi Clssi i omptiilità mssim Esmpio i rivzion ll lro x x Clssi i mssim omptiilità: {,,}, {,,}, {,} Riuzion l numro gli stti: 2) uristi on lssi i mssim omptiilità Euristi on lssi i mssim omptiilità Rir i un insim hiuso i lssi i omptiilità h oprono l mhin stti non ompltmnt spiit L lgoritmo gry proposto è smpli lvor sul gro i omptiilità Prt onsirno tutt l lssi i mssim omptiilità onsnt i trovr un oprtur ll mhin stti trmit un insim i lssi i omptiilità (non nssrimnt tutt mssim) i rinlità non suprior l numro i lssi i mssim omptiilità L hiusur gli insimi iniviuti pr l oprtur è grntit solo s i vinoli i omptiilità inizili soisno un opportun sprssion logi Lvorno snz l vrii ll sprssion inizil (vrsion mostrt), l lgoritmo può iniviur soluzioni non mmissiili prhé non hius Euristi on lssi i mssim omptiilità 1. Inizilizzr un list L1 vuot 2. Finhè il gro non è vuoto:. Iniviur orinr l lssi i mssim omptiilità prsnti sul gro pr imnsion. Iniviur l lss i omptiilità mssim i imnsion mssim prsnt sul gro. Insrir nll list L1 tutti i vinoli prsnti nll lss i omptiilità onsirt. Eliminr ll list L1 l gro i vinoli soistti ll lss onsirt. Eliminr l gro tutti i noi ( i rltivi rhi) pprtnnti ll lss i omptiilità onsirt h non pprtngono nssun vinolo prsnt nll list L1 /o nl gro 3. L lssi osì iniviut ormno un insim i lssi i omptiilità hiuso? 4. S sì, è stt iniviut un soluzion mmissiil. S no, il proimnto vin riptuto oprno un ivrs slt (inizil)

7 Algoritmo i rir - Esmpio Algoritmo i rir Esmpio (ont( ont.) Gro i prtnz Psso 1,,, Psso 1 ) ) ) ),,, L1=, L1=,,, Gro i prtnz Psso 2 Psso 2 ) ) ) ), L1= L1=,,,, ) ) Algoritmo i rir Esmpio (ont( ont.) Riuzion l numro gli stti: 3) uristi on lssi i omptiilità prim Gro i prtnz Psso 3 Psso 3 ) ) ) ) ) L1= L1= vuot gro vuoto Coprtur iniviut,, E hius? Si! E è ostituit un insim i rinlità inrior risptto qullo ostituito tutt l lssi i mssim omptiilità Euristi on lssi i omptiilità prim Rir i un insim hiuso i lssi i omptiilità h oprono l mhin stti non ompltmnt spiit L lgoritmo gry proposto us un unzion osto pr guir nll slt lvor onsirno tutt l lssi i omptiilità prim Consnt i trovr un oprtur ll mhin stti trmit un insim hiuso i lssi i omptiilità prim i rinlità non suprior l numro i lssi i mssim omptiilità Pr grntir l hiusur gli insimi iniviuti pr l oprtur, l lgoritmo prv un psso prliminr pr l trsormzion i vinoli i omptiilità initi ll tll ll implizioni

8 Euristi on lssi i omptiilità prim Funzion i osto (= niio nll slt i un lss): Bnii: Numro i stti oprti ll lss i omptiilità (+) Numro i vinoli risolti ll slt ll lss in ltr lssi già slt(+) Costi: Numro i vinoli introotti ll slt ll lss i omptiilità (-) Vinoli: Trmit l tll gli stti, l oppi i vinoli vngono trsormt in rggruppmnti i stti omptiili, pr grntir l hiusur ll oprtur Algoritmo: Prtno ll list ll lssi i omptiilità prim, si itr il sgunt prosso: Si lol il vlor ll unzion i osto pr ogni lss i oprtur Si sgli un tr l lssi vlor mggior Si liminno i vinoli risolti ipnnti ll slt tt, liminno si qulli h non sono più tli prhé oprti ll lss slt, si qulli oprti i vinoli ll lss slt Il prosso trmin quno tutti gli stti sono stti oprti tutti i vinoli ll lssi slt sono soistti Clssi : Vinoli {,,} : {()} {,,} : {(,);(,)} >> {(,,)} {,} : {(,);(,);(,);(,)}>>{(,);(,,)} {,} : ø {,} : {(,)} {,} : {(,);(,)} {,} : {(,);(,)} {} : {(,)} {} {} {} Euristi on lssi i omptiilità prim psso prliminr: trsormzion vinoli : ø : ø : ø /0 /0 /0 /0 /- /- /1 /1 /- / Euristi on lssi i omptiilità prim psso 1: lolo osti slt lss {,,} : {()} = +2 {,,} : {(,,)} = +2 {,} : {(,);{,,}} = +1 {,} : ø = +2 {,} : {(,)} = +1 {,} : {(,);(,)} = 0 {,} : {(,);(,)} = 0 {} : {(,)} = +1 {} : ø = +1 {} : ø = +1 {} : ø = +1 Coprtur l psso 1: C = {(,,)} Euristi on lssi i omptiilità prim psso 1: liminzion vinoli lssi Si liminno i vinoli risolti ll lss slt qulli risolti i vinoli ll lss slt Si liminno l lssi riomprs nll lss slt ni suoi vinoli {,,} : {()} slt l psso 1 {,,} : {(,,)} = +2 {,} : {(,);{,,}} = +1 {,} : ø = +2 {,} : {(,)} = +1 {,} : {(,);(,)} = 0 {,} : {(,);(,)} = 0 {} : {(,)} = +1 {} : ø = +1 {} : ø = +1 {} : ø =

9 Euristi on lssi i omptiilità prim psso 2: lolo osti slt lss Euristi on lssi i omptiilità prim psso 2: liminzion vinoli lssi {,,} : {()} slt l psso 1 {,,} : {(,,)} = +1 {,} : {(,);{,,}} = +1 {,} : ø {,} : {(,)} = +1 {,} : {(,);(,)} = 0 {,} : {(,);(,)} = 0 {} : {(,)} = +3 {} : ø {} : ø {} : ø Coprtur l psso 2: C = {(,,); ()} {,,} : {()} slt l psso 1 {,,} : {(,,)} = +1 {,} : {(,);{,,}} = +1 {,} : ø {,} : {(,)} = +1 {,} : {(,);(,)} = 0 {,} : {(,);(,)} = 0 {} : {(,)} slt l psso 2 {} : ø {} : ø {} : ø Sono stti oprti tutti gli stti soistti tutti i vinoli ll lssi slt. L oprtur inl è: C = {(,,); ()} Tll gli stti ll mhin riott Sull s i: Tll gli stti ll mhin inizil Insim hiuso ll lssi i omptiilità Si trmin l nuov tll gli stti orrisponnt ll mhin riott Tll gli stti Tll gli stti riott /0 /0 /0 /0 /- /- /1 /1 /- /- s0 = {,,} s1 = {} s0 s1/0 s0/0 s1 s0/1 s0/1-35 -

Macchine non completamente specificate. Sintesi Sequenziale Sincrona Sintesi Comportamentale di Reti Sequenziali Sincrone

Macchine non completamente specificate. Sintesi Sequenziale Sincrona Sintesi Comportamentale di Reti Sequenziali Sincrone Mhin non ompltmnt spifit Sintsi Squnzil Sinron Sintsi Comportmntl i Rti Squnzili Sinron Riuzion l numro gli stti pr Mhin Non Compltmnt Spifit Comptiilità Vrsion l 5/12/02 Sono mhin in ui pr lun onfigurzioni

Dettagli

Circuiti Sequenziali Macchine Non Completamente Specificate

Circuiti Sequenziali Macchine Non Completamente Specificate CEFRIEL Consorzio pr l Formzion l Rir in Inggnri ll Informzion Politnio i Milno Ciruiti Squnzili Mhin Non Compltmnt Spifit Introuzion Comptiilità Riuzion l numro gli stti Mtoo gnrl FSM non ompltmnt spifit

Dettagli

Minimizzazione degli Stati in una macchina a stati finiti

Minimizzazione degli Stati in una macchina a stati finiti Rti Loih Sintsi i rti squnzili sinron Minimizzzion li Stti in un mhin stti initi Proimnto: Spiih Dirmm li stti Tll li stti Minimizzzion li stti Coii li stti Tll ll trnsizioni Slt lmnti i mmori Tll ll itzioni

Dettagli

Minimizzazione degli Stati in una Rete Sequenziale Sincrona

Minimizzazione degli Stati in una Rete Sequenziale Sincrona Minimizzzion gli Stti in un Rt Squnzil Sinron Murizio Plsi Murizio Plsi 1 Sintsi i Rti Squnzili Sinron Il proimnto gnrl i sintsi si svolg ni sgunti pssi: 1. Rlizzzion l igrmm gli stti prtir ll spifih l

Dettagli

Minimizzazione degli Stati in una Rete Sequenziale Sincrona

Minimizzazione degli Stati in una Rete Sequenziale Sincrona Minimizzzion gli Stti in un Rt Squnzil Sinron Murizio Plsi Murizio Plsi 1 Sintsi i Rti Squnzili Sinron Il proimnto gnrl i sintsi si svolg ni sgunti pssi: 1. Rlizzzion l igrmm gli stti prtir ll spifih l

Dettagli

Sintesi Sequenziale Sincrona Sintesi Comportamentale di Reti Sequenziali Sincrone

Sintesi Sequenziale Sincrona Sintesi Comportamentale di Reti Sequenziali Sincrone Sintesi Sequenzile Sinron Sintesi Comportmentle di Reti Sequenzili Sinrone Riduzione del numero degli stti per Mhine Non Completmente Speifite Comptiilità Versione del 9/12/03 Mhine non ompletmente speifite

Dettagli

Sistemi lineari COGNOME... NOME... Classe... Data...

Sistemi lineari COGNOME... NOME... Classe... Data... Cpitolo Sistmi linri Risoluzion grfi lgri rifi pr l lss prim COGNOME............................... NOME............................. Clss.................................... Dt...............................

Dettagli

INTEGRALI. 1. Integrali indefiniti

INTEGRALI. 1. Integrali indefiniti INTEGRALI. Intgrli indiniti Si un unzion ontinu in [, ]. Un unzion F dinit ontinu in [, ], drivil in ], [, disi primitiv di in [, ] s F, ], [. Tormi. S F è un primitiv di in [, ] llor nh G F, on R, è un

Dettagli

Informatica 3. Informatica 3. LEZIONE 25: Algoritmi sui grafi. Lezione 25 - Modulo 1. Problema. Notazioni per il percorso più breve

Informatica 3. Informatica 3. LEZIONE 25: Algoritmi sui grafi. Lezione 25 - Modulo 1. Problema. Notazioni per il percorso più breve Informti Informti LZION : lgoritmi sui grfi Lzion - Moulo Moulo : Prolm l prorso più rv Moulo : Spnning tr osto minimo Prolm l prorso più rv Politnio i Milno - Prof. Sr omi Politnio i Milno - Prof. Sr

Dettagli

The cost of the material maintenance is averaged over the last 3 years.

The cost of the material maintenance is averaged over the last 3 years. Anlisi i osti i un Diprtimnto 11 TABLE 4 Dprition n mintnn osts (unit: ITL) Ctgory Y Prio Inrs vlu Annul vlu 1 Furnitur 5 1.1.90{31.12.95 219 311 127 43 862 225 2 Lirry 5 1.1.90{31.12.95 542 832 793 108

Dettagli

RACCORDI PER APPLICAZIONI SPECIALI GIUNTI ECCENTRICI E CONICI

RACCORDI PER APPLICAZIONI SPECIALI GIUNTI ECCENTRICI E CONICI RACCORDI PER APPLICAZIONI SPECIALI GIUNTI ECCENTRICI E CONICI 2 L soluzion dimnsionl ottiml pr signz prtiolri Rordi on snz ihir Innsti on snz ihir Clssi sondo nssità Dimtro di usit vriil Collgmnto l fondo

Dettagli

Matematica 15 settembre 2009

Matematica 15 settembre 2009 Nom: Mtriol: Mtmti 5 sttmbr 2009 Non sono mmss loltrii. Pr l domnd rispost multipl, rispondr brrndo o rhindo hirmnt un un sol lttr. Pr l ltr domnd srivr l soluzion on svolgimnto ngli spzi prdisposti..

Dettagli

Grandezze, funzioni empiriche e matematiche. 1 Stabilisci se le seguenti affermazioni sono vere o false.

Grandezze, funzioni empiriche e matematiche. 1 Stabilisci se le seguenti affermazioni sono vere o false. Grnzz unzioni Grnzz, unzioni mpirih mtmtih Grnzz irttmnt invrsmnt proporzionli Applizioni ll proporzionlità Grnzz, unzioni mpirih mtmtih Stilisi s l sunti rmzioni so vr o ls. SZ. I Un rnzz è vriil s ssum

Dettagli

Test di autovalutazione

Test di autovalutazione UNITÀ LE FRAZIONI Tst Tst i utolutzion 0 0 0 0 0 0 0 0 0 0 00 n Il mio puntggio, in ntsimi, è n Risponi ogni qusito sgnno un sol ll ltrnti. n Conront l tu rispost on l soluzioni. n Color, prtno sinistr,

Dettagli

6) Nel 1991 Carl Lewis ha stabilito il record del mondo dei 100 m percorrendoli in 9,86 s. Qual è la velocità media in km/h?

6) Nel 1991 Carl Lewis ha stabilito il record del mondo dei 100 m percorrendoli in 9,86 s. Qual è la velocità media in km/h? 1) L unità l SI pr l tmprtur l mss sono, rispttivmnt gri grmmi klvin kilogrmmi Clsius milligrmmi Clsius kilogrmmi klvin grmmi 2) Qul mtril ffon nll olio ( = 0,94 g/m 3 )? ghiio ( = 0,92 g/m 3 ) sughro

Dettagli

Studio di funzione. Pertanto nello studio di tali funzioni si esamino:

Studio di funzione. Pertanto nello studio di tali funzioni si esamino: Prof. Emnul ANDRISANI Studio di funzion Funzioni rzionli intr n n o... n n Crttristich: sono funzioni continu drivbili in tutto il cmpo rl D R quindi non sistono sintoti vrticli D R quindi non sistono

Dettagli

Elettronica dei Sistemi Digitali Sintesi di porte logiche combinatorie fully CMOS

Elettronica dei Sistemi Digitali Sintesi di porte logiche combinatorie fully CMOS Elttroni di Sistmi Digitli Sintsi di port logih omintori full CMOS Vlntino Lirli Diprtimnto di Tnologi dll Informzion Univrsità di Milno, 26013 Crm -mil: lirli@dti.unimi.it http://www.dti.unimi.it/ lirli

Dettagli

a b }. L insieme Q è pertanto l insieme delle frazioni.

a b }. L insieme Q è pertanto l insieme delle frazioni. I1. Insimisti I1.1 Insimi Il ontto i insim è un ontto primitivo, prtnto non n vin t un finizion rigoros. Si può ir, intuitivmnt, h un insim è un ollzion i oggtti pr ui vlgono lun proprità: Un lmnto i un

Dettagli

PROVINCIA DI TORINO SERVIZIO LOGISTICA PROGETTO DEFINITIVO-ESECUTIVO

PROVINCIA DI TORINO SERVIZIO LOGISTICA PROGETTO DEFINITIVO-ESECUTIVO ALLEGATO: N. 1 PROVINCIA DI TORINO SERVIZIO LOGISTICA PROGETTO DEFINITIVO-ESECUTIVO MANUTENZIONE ORDINARIA E RIPARATIVA DEGLI EDIFICI PATRIMONIALI DESTINATI AD UFFICI DELLA PROVINCIA. IMPIANTI ELETTRICI

Dettagli

ELENCO PREZZI AREE VERDI

ELENCO PREZZI AREE VERDI ALLEGATO B) AL CAPITOLATO SPECIALE D APPALTO ELENCO PREZZI AREE VERDI MANO D OPERA I przzi ll no opr pplir sono qulli i sguito lnti sunti l Przzirio ll Assoizion Itlin Costruttori l Vr (www.ssovr.it) Dsrizion

Dettagli

Corso di ordinamento - Sessione suppletiva - a.s. 2009-2010

Corso di ordinamento - Sessione suppletiva - a.s. 2009-2010 Corso di ordinmnto - Sssion suppltiv -.s. 9- PROBLEMA ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO SESSIONE SUPPLETIA Tm di: MATEMATICA. s. 9- Dt un circonrnz di cntro O rggio unitrio, si prndno

Dettagli

La rappresentazione per elencazione consiste nell elencare tutte le coppie ordinate che verificano la relazione

La rappresentazione per elencazione consiste nell elencare tutte le coppie ordinate che verificano la relazione RELAZIONI E FUNZIONI Relzioni inrie Dti ue insiemi non vuoti e (he possono eventulmente oiniere), si ie relzione tr e un qulsisi legge he ssoi elementi elementi. L insieme A è etto insieme i prtenz. L

Dettagli

Aquauno Video 2 Plus

Aquauno Video 2 Plus Collgr il progrmmtor l ruintto. Aquuno Vio 2 Plus Pg. 1 Gui ll utilizzo 3 START STOP RESET CANCEL 3 4 5 6 3 4 5 6 3 4 5 6 lik! Pr Aquuno Vio 2 (o.): 8454-8428 Pr Aquuno Vio 2 Plus (o.): 8412 Aprir il moulo

Dettagli

Informatica II. Capitolo 5. Alberi. E' una generalizzazione della struttura sequenza

Informatica II. Capitolo 5. Alberi. E' una generalizzazione della struttura sequenza Alri Informtic II Cpitolo 5 Alri E' un gnrlizzzion dll struttur squnz Si rilss il rquisito di linrità: ogni lmnto (nodo) h un solo prdcssor m può vr più succssori. Il numro di succssori (figli) può ssr

Dettagli

Esercizi di Algebra Lineare - Fogli 1-2 Corso di Laurea in Matematica 2 ottobre 2016

Esercizi di Algebra Lineare - Fogli 1-2 Corso di Laurea in Matematica 2 ottobre 2016 Esrizi i Algr Linr - Fogli 1-2 Corso i Lur in Mtmti 2 ottor 2016 1. Logi tori lmntr gli insimi Esrizio 1.1 Ngr un ssrzion. Espliitr l ngzion ll sgunti ssrzioni: (P ) ogni stunt i qust ul minornn, oppur

Dettagli

! è l'insieme A degli attributi di ! $ B IL PROBLEMA DELLE VISTE MATERIALIZZATE: PROBLEMI IL PROBLEMA DELLE VISTE MATERIALIZZATE

! è l'insieme A degli attributi di ! $ B IL PROBLEMA DELLE VISTE MATERIALIZZATE: PROBLEMI IL PROBLEMA DELLE VISTE MATERIALIZZATE IL PROBLEMA DELLE VISTE MATERIALIZZATE IL PROBLEMA DELLE VISTE MATERIALIZZATE: PROBLEMI Le viste nei DBMS relzionli Utilità elle viste mterilizzte per l'eseuzione i interrogzioni Venite(ProutI, NegozioI,

Dettagli

Diagrammi di Influenza (Influence Diagrams: ID)

Diagrammi di Influenza (Influence Diagrams: ID) Digrmmi di Influnz (Influnc Digrms: ID) Linguggio pr l rpprsntzion grfic di prolmi dcisionli Crttristich vntggi prmttono un rpprsntzion dll struttur gnrl dl prolm, st su un pproccio visul prmttono di formlizzr

Dettagli

Modelli dei Sistemi di Produzione Modelli e Algoritmi della Logistica

Modelli dei Sistemi di Produzione Modelli e Algoritmi della Logistica Modlli di Sistmi di Produzion Modlli Algoritmi dll Logisti 000- Prolm dl ommsso viggitor: EURISTICHE CARLO MANNINO Spinz Univrsità di Rom Diprtimnto di Informti Sistmisti Euristih pr il TSP simmtrio Considrimo

Dettagli

SICUREZZA SUL LAVORO SAFETY AT WORK SICUREZZA SUL LAVORO SAFETY AT WORK R 290 31 R 290 31

SICUREZZA SUL LAVORO SAFETY AT WORK SICUREZZA SUL LAVORO SAFETY AT WORK R 290 31 R 290 31 SICUREZZA SUL LAVORO SAFETY AT WORK R 290 31 R 290 31 Sgnli i siurzz pr fontnll o i mrgnz pr l ontminzion UNI 7546/3. Symols for sfty signs-ys wshing - mrgny showr. 332 Normtiv in mtri i tutl ll slut siurzz

Dettagli

Funzione esponenziale e logaritmo. Proprietà di esponenziale e logaritmo.

Funzione esponenziale e logaritmo. Proprietà di esponenziale e logaritmo. Funzion sponnzil ritmo. Proprità di sponnzil ritmo. 6. Funzion sponnzil ritmo. Proprità di sponnzil ritmo. Funzion sponnzil f ( ) fissto f : ( + ) è l bs dll funzion sponnzil d è fisst è l sponnt dll funzion

Dettagli

Sintesi. Sintesi Sequenziale Sincrona Sintesi comportamentale di reti sequenziali sincrone. Riduzione del numero degli stati

Sintesi. Sintesi Sequenziale Sincrona Sintesi comportamentale di reti sequenziali sincrone. Riduzione del numero degli stati Sintsi Squnzial Sinrona Sintsi omportamntal i rti squnziali sinron Riuzion l numro li stati pr Mahin Compltamnt Spiiat Inistinuiilità & Equivalnza Irraiuniilità vrsion l 12/12/2004 Sintsi La sintsi si

Dettagli

GEODESIA: PROPRIETA GEOMETRICHE DELL ELLISSOIDE

GEODESIA: PROPRIETA GEOMETRICHE DELL ELLISSOIDE GEODESIA: PROPRIETA GEOMETRICHE DELL ELLISSOIDE PROPRIETA GEOMETRICHE DELL ELLISSOIDE Al fin di stbilir un gomtri sull llissoid di rotzion è ncssrio non solo dfinir l quzioni dll curv idon d individur

Dettagli

PROGRAMMA DI RIPASSO ESTIVO

PROGRAMMA DI RIPASSO ESTIVO ISTITUTO TECNICO PER IL TURISMO EUROSCUOLA ISTITUTO TECNICO PER GEOMETRI BIANCHI SCUOLE PARITARIE PROGRAMMA DI RIPASSO ESTIVO CLASSI MATERIA PROF. QUARTA TURISMO Matmatica Andra Brnsco Làvor ANNO SCOLASTICO

Dettagli

j Verso la scuola superiore Geometria euclidea e analitica

j Verso la scuola superiore Geometria euclidea e analitica j rso l suol suprior Gomtri uli nliti Ossrv l spzzt stilisi quli ll sgunti rmzioni sono vr quli ls. B D G E B è onsutivo B. DE è onsutivo G. B è onsutivo D. B è int D. B è onsutivo D. E è onsutivo G. Il

Dettagli

COTA NSW SONDAGGIO CLIENTI 2016

COTA NSW SONDAGGIO CLIENTI 2016 COTA NSW SONDAGGIO CLIENTI 2016 Prlimo i om trsorrr il tuo tmpo. Complti il sonio prtipi ll strzion pr vinr un ip. Grzi pr il tmpo ito ompilr il nostro sonio su om trsorr il suo tmpo. L ssiurimo h tutt

Dettagli

Ellisse. L ellisse è il luogo geometrico dei punti del piano tali che la somma delle distanze da due punti fissi. definizione. P semidistanza focale

Ellisse. L ellisse è il luogo geometrico dei punti del piano tali che la somma delle distanze da due punti fissi. definizione. P semidistanza focale Elliss dfinizion L lliss è il luogo gomtrio di punti dl pino tli h l somm dll distnz d du punti fissi F1 F2 dtti fuohi è ostnt, ioè: smiss mggior smiss minor P smidistnz fol F 2 smidistnz fol F 1 F 2 smiss

Dettagli

Trasformazioni geometriche +sometrie Omotetia e similitudine Teoremi di Euclide e teorema di Talete

Trasformazioni geometriche +sometrie Omotetia e similitudine Teoremi di Euclide e teorema di Talete Trsormzioni gomtrih +somtri Omotti similituin Tormi i Euli torm i Tlt +somtri Stilisi s l sgunti rmzioni sono vr o ls. SEZ. N g h i l pplino un isomtri un igur, ss si orm. L simmtri ntrl è un prtiolr rotzion.

Dettagli

Tecniche per la ricerca delle primitive delle funzioni continue

Tecniche per la ricerca delle primitive delle funzioni continue Capitolo 4 Tcnich pr la ricrca dll primitiv dll funzioni continu Nl paragrafo.7 abbiamo dato la dfinizion di primitiva di una funzion f avnt pr dominio un intrvallo I; abbiamo visto ch s F 0 è una primitiva

Dettagli

Totti, 37 anni da leggenda. Un monumento vivente. Scritto da Redazione Venerdì 27 Settembre 2013 08:39 - VALERIA META

Totti, 37 anni da leggenda. Un monumento vivente. Scritto da Redazione Venerdì 27 Settembre 2013 08:39 - VALERIA META 37 nni d lggnd Un monumnto vivnt Scritto d Rdzion VALERIA META Scrivrlo sull fccit Sn Pitro potv ffttivmnt smbrr irrivrnt pr qunto l omonimo inquino dl Vticno si si mostrto prson ll mno Così gli uguri

Dettagli

Modelli equivalenti del BJT

Modelli equivalenti del BJT Modll ulnt dl JT Pr lo studo dll pplczon crcutl dl JT, s è rso opportuno formulr d modll ulnt dl dsposto ch srssro rpprsntr n modo connnt l suo comportmnto ll ntrno d crcut. A scond dl tpo d pplczon (mplfczon

Dettagli

Algebra + numeri relativi +l calcolo letterale Equazioni, disequazioni, problemi

Algebra + numeri relativi +l calcolo letterale Equazioni, disequazioni, problemi Algr + numri rltivi +l lolo lttrl Equzioni, isquzioni, prolmi + numri rltivi Rpprsnt on un numro rltivo l sgunti grnzz. SEZ. O g Altituin i 00 m sul livllo l mr. Trzo pino i un prhggio sottrrno. Prit i

Dettagli

ESERCIZI IN PIÙ ESERCIZI DI FINE CAPITOLO

ESERCIZI IN PIÙ ESERCIZI DI FINE CAPITOLO L RLZIONI L FUNZIONI serizi in più SRIZI IN PIÙ SRIZI I FIN PITOLO TST Nell insieme ell figur, l relzione rppresentt goe ell o elle proprietà: TST L relzione «essere isenente i», efinit nell insieme egli

Dettagli

Studio di funzione. R.Argiolas

Studio di funzione. R.Argiolas Studio di unzion R.Argiolas Introduzion Prsntiamo lo studio dl graico di alcun unzioni svolt durant l srcitazioni dl corso di analisi matmatica I assgnat nll prov scritt. Ringrazio anticipatamnt tutti

Dettagli

FUNZIONI A DUE VARIABILI RICERCA DEI PUNTI DI MASSIMO E MINIMO

FUNZIONI A DUE VARIABILI RICERCA DEI PUNTI DI MASSIMO E MINIMO Pg. Pro. Muro D Ettorr UNZIONI A DUE VARIABILI RICERCA DEI PUNTI DI MASSIMO E MINIMO PREMESSE DERIVATE PARZIALI DI UNA UNZIONE A DUE O PIU VARIABILI Dt un unzon d n vrbl z=... n s dc drvt przl l unzon

Dettagli

1 Derivate parziali 1. 2 Regole di derivazione 5. 3 Derivabilità e continuità 7. 4 Differenziabilità 7. 5 Derivate seconde e teorema di Schwarz 8

1 Derivate parziali 1. 2 Regole di derivazione 5. 3 Derivabilità e continuità 7. 4 Differenziabilità 7. 5 Derivate seconde e teorema di Schwarz 8 UNIVR Facoltà di Economia Sd di Vicnza Corso di Matmatica Drivat dll funzioni di più variabili Indic Drivat parziali Rgol di drivazion 5 3 Drivabilità continuità 7 4 Diffrnziabilità 7 5 Drivat scond torma

Dettagli

Elenco ufficiale delle località con il numero postale d avviamento e il perimetro Informazioni sul prodotto

Elenco ufficiale delle località con il numero postale d avviamento e il perimetro Informazioni sul prodotto Dipartimnto fdral dlla difsa, dlla protzion dlla popolazion dllo sport DDPS Uffiio fdral di topografia swisstopo Elno uffiial dll loalità on il numro postal d avviamnto il primtro Informazioni sul prodotto

Dettagli

SPERIMENTAZIONE PROGETTO TELELAVORO CUSTOMER SERVICES

SPERIMENTAZIONE PROGETTO TELELAVORO CUSTOMER SERVICES 1 SPERIMENTAZIONE PROGETTO TELELAVORO CUSTOMER SERVICES 21 Luglio 2008 2 SPERIMENTAZIONE TELELAVORO Contct Cntr coinvolti: Rom (2 prson) Npoli (8 prson) Srvizi gstiti in tllvoro: 186 Rom Off Lin Npoli

Dettagli

ISTRUZIONI DI MONTAGGIO per controtelai SP

ISTRUZIONI DI MONTAGGIO per controtelai SP ISTRUZIONI DI MONTAGGIO pr ontrotli SP 100-125 Controtli vrsion rtonsso INCASTRO NOMENCLATURA: ontrotlio, inrio rrmnt Controtli pr port somprs i m l SET i ALLARGAMENTO pr SP 125 Montnti vrtili ntriori

Dettagli

+ poligoni e l equivalenza di figure piane + triangoli + quadrilateri

+ poligoni e l equivalenza di figure piane + triangoli + quadrilateri + poligoni + poligoni l quivlnz i figur pin + tringoli + quriltri + poligoni l quivlnz i figur pin 1 Stilisi s l sgunti ffrmzioni sono vr o fls. SEZ. E In un poligono i lti sono onsutivi u u. L somm gli

Dettagli

SPOSTAMENTO E RETTIFICA DI CONFINE

SPOSTAMENTO E RETTIFICA DI CONFINE SPOSEO E REIFI I OFIE Lo SPOSEO si qundo un confin ià rttilino vin sostituito con un ltro smpr rttilino L REIFI si qundo un confin polionl o curvilino vin sostituito con un ltro rttilino. SPOSEO REIFI

Dettagli

Test di autovalutazione

Test di autovalutazione Tst i utovlutzion 0 10 20 0 0 0 60 70 80 90 100 n Il mio puntggio, in ntsimi, è n Risponi ogni qusito sgnno un sol ll ltntiv. n Confont l tu ispost on l soluzioni. n Colo, ptno sinist, tnt sll qunt sono

Dettagli

La Formazione in Bilancio delle Unità Previsionali di Base

La Formazione in Bilancio delle Unità Previsionali di Base La Formazion in Bilancio dll Unità Prvisionali di Bas Con la Lgg 3 april 1997, n. 94 sono stat introdott l Unità Prvisionali di Bas (di sguito anch solo UPB), ch rapprsntano un di aggrgazion di capitoli

Dettagli

PROGETTO PER IL LABORATORIO DI ASD A.A. 2014/15 VERSIONE 1.1

PROGETTO PER IL LABORATORIO DI ASD A.A. 2014/15 VERSIONE 1.1 PROGETTO PER IL LABORATORIO DI ASD A.A. 2014/15 VERSIONE 1.1 ALBERTO POLICRITI ALBERTO.POLICRITI@UNIUD.IT Sommario. Sopo dl progtto di laoratorio è vriiar h lo studnt sia in grado di disgnar, analizzar

Dettagli

Corso di Analisi: Algebra di Base 5^ Lezione Logaritmi. Proprietà dei logaritmi Equazioni logaritmiche. Disequazioni logaritmiche. Allegato Esercizi.

Corso di Analisi: Algebra di Base 5^ Lezione Logaritmi. Proprietà dei logaritmi Equazioni logaritmiche. Disequazioni logaritmiche. Allegato Esercizi. Corso di Anlisi: Algbr di Bs ^ Lzion Logritmi. Proprità di ritmi Equzioni ritmih. Disquzioni ritmih. Allgto Esrizi. LOGARITMI : Pr ritmo intndimo un sprssion lttrl indint un vlor numrio. Dfinizion : Si

Dettagli

Componenti per l elaborazione binaria dell informazione. Sommario. Sommario. Approfondimento del corso di reti logiche. M. Favalli.

Componenti per l elaborazione binaria dell informazione. Sommario. Sommario. Approfondimento del corso di reti logiche. M. Favalli. Sommrio Componenti per l elorzione inri ell informzione Approfonimento el orso i reti logihe M. Fvlli Engineering Deprtment in Ferrr Porte logihe 2 Il livello swith 3 Aspetti tenologii 4 Reti logihe omintorie

Dettagli

Opuscolo sui sistemi. Totogoal

Opuscolo sui sistemi. Totogoal Opuscolo sui sistmi Totogoal Più info Conoscnz calcistich pr vincr Jackpot alti Informazioni dttagliat costantmnt aggiornat sul Totogoal, sui programmi Toto sui risultati rpribili su Tltxt, a partir dalla

Dettagli

l apparecchio dalla confezione e controllare i componenti

l apparecchio dalla confezione e controllare i componenti Gui i instllzion rpi Inizio MFC-J6510DW MFC-J6710DW Lggr nzitutto l Opusolo su Siurzz rstrizioni lgli prim i onfigurr l pprhio. Quini, lggr l prsnt Gui i instllzion rpi pr onfigurr instllr orrttmnt il

Dettagli

SIMT-POS 042 GESTIONE INDICATORI E MIGLIORAMENTO CONTINUO SIMT

SIMT-POS 042 GESTIONE INDICATORI E MIGLIORAMENTO CONTINUO SIMT 1 Prima Stsura Data: 14-08-2014 Rdattori: Gasbarri, Rizzo SIMT-POS 042 GESTIONE INDICATORI E MIGLIORAMENTO CONTINUO SIMT Indic 1 SCOPO... 2 2 CAMPO D APPLICAZIONE... 2 3 DOCUMENTI DI RIFERIMENTO... 2 4

Dettagli

Bar Pasticceria Gelateria

Bar Pasticceria Gelateria Br Pstiri Gltri BRETELLE FASHION STREET Un st lgnt, prtio trny. Lo stil inononiil ll rtll ll ultim mo in tssuto nim rsistnt ll lt prstzioni pr un shion strt inimitil. Un look qullo ll rtll inroit sull

Dettagli

Appunti sulle disequazioni frazionarie

Appunti sulle disequazioni frazionarie ppunti sull disquazioni frazionari Sono utili l sgunti dfinizioni Una disquazion fratta o frazionaria è una disquazion nlla qual l incognita compar in qualch suo dnominator. Una disquazion razional è una

Dettagli

Matematica. Indice lezione. (Esercitazioni) dott. Francesco Giannino dott. Valeria Monetti. Funzione esponenziale

Matematica. Indice lezione. (Esercitazioni) dott. Francesco Giannino dott. Valeria Monetti. Funzione esponenziale Mtmtic (Esrcitzioni) Equzioni Disquzioni sponnzili - ritmich dott. Frncsco Ginnino dott. Vlri Montti Indic lzion Funzion sponnzil Equzioni disquzioni sponnzili Funzion ritmo Equzioni disquzioni ritmich

Dettagli

e una funzione g ε S f tali che = sup g : g S f tale che h ε f < ε/2; analogamente, per

e una funzione g ε S f tali che = sup g : g S f tale che h ε f < ε/2; analogamente, per C.13 ntgrl di Rimnn Prmttimo il sgunt risultto. Lmm C.13.1 Si f un funzion limitt su = [, b]. Allor f è intgrbil s solo s pr ogni ε > 0 sistono un funzion h ε S + f un funzion g ε S f tli h h ε g ε < ε.

Dettagli

L ELLISSOIDE TERRESTRE

L ELLISSOIDE TERRESTRE L ELLISSOIDE TERRESTRE Fin dll scond mtà dl XVII scolo (su propost di Nwton) l suprfici più dtt ssr ssunt com suprfici di rifrimnto pr l Trr è stt individut in un ELLISSOIDE DI ROTAZIONE. E l suprfici

Dettagli

VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA. Scuola Secondaria di Primo Grado Classe Prima. Scuola... Classe... Alunno...

VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA. Scuola Secondaria di Primo Grado Classe Prima. Scuola... Classe... Alunno... VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA Suol Seonri i Primo Gro Clsse Prim Suol..........................................................................................................................................

Dettagli

Relazioni e funzioni. Relazioni

Relazioni e funzioni. Relazioni Relzioni e unzioni Relzioni Deinizione: dti due insiemi A e B, si deinise un relzione R tr A e B un orrispondenz stilit d un proposizione tr un elemento A e B, in tl so si die he è in relzione on e si

Dettagli

MODELLI DEI SISTEMI ELETTROMECCANICI

MODELLI DEI SISTEMI ELETTROMECCANICI Ing Mrigrzi Dotoli Controlli Autotici NO (9 CFU) Modlli di Sisti Elttroccnici MODELLI DEI SISTEMI ELETTROMECCANICI Nl sguito ci occupio dll odllzion di sisti ibridi ch cobinno sisti lttrici con sisti ccnici,

Dettagli

Pesatura Obiettivo. N Capitolo Peg Fonte risorse Ammontare risorse. Indicatori di risultato (Efficacia - Efficienza - Tempo)

Pesatura Obiettivo. N Capitolo Peg Fonte risorse Ammontare risorse. Indicatori di risultato (Efficacia - Efficienza - Tempo) Oittivo: srizion sintti Oittivo n. 1 Costruzion iplntzion l Pino ll Prorn sono l isposizioni introott l D.Ls. 150/2009, inlità prsuir, olità, lin ui i ttuzion Vriili L'oittivo h il in i rniontr i ittini

Dettagli

ESERCIZI PARTE I SOLUZIONI

ESERCIZI PARTE I SOLUZIONI UNIVR Facoltà di Economia Corso di Matmatica finanziaria 008/09 ESERCIZI PARTE I SOLUZIONI Domini di funzioni di du variabili Esrcizio a f, = log +. L unica condizion di sistnza è data dalla disquazion

Dettagli

A.A.2009/10 Fisica 1 1

A.A.2009/10 Fisica 1 1 Mhine termihe e frigoriferi Un mhin termi è un mhin he, grzie un sequenz i trsformzioni termoinmihe i un t sostnz, proue lvoro he può essere utilizzto. Un mhin solitmente lvor su i un ilo i trsformzioni

Dettagli

Politecnico di Milano Facoltà di Ingegneria dell Automazione INFORMATICA INDUSTRIALE Appello COGNOME E NOME. 11 febbraio 2008 RIGA COLONNA MATRICOLA

Politecnico di Milano Facoltà di Ingegneria dell Automazione INFORMATICA INDUSTRIALE Appello COGNOME E NOME. 11 febbraio 2008 RIGA COLONNA MATRICOLA Politecnico i Milno Fcoltà i Ingegneri ell Automzione INFORMATICA INDUSTRIALE Appello COGNOME E NOME ebbrio 2008 RIGA COLONNA MATRICOLA Il presente plico pinzto, composto i quttro ogli (ronte/retro)eve

Dettagli

INTEGRALI DOPPI Esercizi svolti

INTEGRALI DOPPI Esercizi svolti INTEGRLI OPPI Esrcizi svolti. Calcolar i sgunti intgrali doppi: a b c d f g h i j k y d dy, {, y :, y }; d dy, {, y :, y }; + y + y d dy, {, y :, y }; y d dy, {, y :, y }; y d dy, {, y :, y + }; + y d

Dettagli

Corso di Fisica Tecnica (ING-IND/11). 1 anno laurea specialistica in architettura: indirizzo città Docente: Antonio Carbonari

Corso di Fisica Tecnica (ING-IND/11). 1 anno laurea specialistica in architettura: indirizzo città Docente: Antonio Carbonari Corso di Fisic cnic (ING-IND/). nno lur spcilistic in rchitttur: indirizzo città Docnt: Antonio Crbonri Cpitolo I Il sistm città l uso pproprito dll nrgi.. Introduzion Un insdimnto urbno è un sistm strmmnt

Dettagli

Crisi occupazionale, ammortizzatori sociali e riforma pensionistica Elisabetta Pedrazzoli* La riforma previdenziale Legge n. 214 del 22 dicembre 2011

Crisi occupazionale, ammortizzatori sociali e riforma pensionistica Elisabetta Pedrazzoli* La riforma previdenziale Legge n. 214 del 22 dicembre 2011 Tmi Crisi occupzionl, mmortizztori socili riform pnsionistic Elisbtt Pdrzzoli* Prmss L ttul situzion conomic è crttrizzt dl prdurr di un fort crisi con tutt l consgunz ch ciò comport sui livlli occupzionli.

Dettagli

Teoria dell integrazione secondo Riemann per funzioni. reali di una variabile reale.

Teoria dell integrazione secondo Riemann per funzioni. reali di una variabile reale. Capitolo 2 Toria dll intgrazion scondo Rimann pr funzioni rali di una variabil ral Esistono vari tori dll intgrazion; tutt hanno com comun antnato il mtodo di saustion utilizzato dai Grci pr calcolar l

Dettagli

Il modello relazionale. Il Modello Relazionale. Il modello relazionale. Relazione. Dominio. Esempio

Il modello relazionale. Il Modello Relazionale. Il modello relazionale. Relazione. Dominio. Esempio Il Moello elzionle Proposto E. F. o nel 1970 per vorire l inipenenz ei ti e reso isponiile ome moello logio in DM reli nel 1981 si s sul onetto mtemtio i relzione, questo ornise l moello un se teori he

Dettagli

La popolazione in età da 0 a 2 anni residente nel comune di Bologna

La popolazione in età da 0 a 2 anni residente nel comune di Bologna Sttor Programmazion, Controlli La popolazion in tà da 0 a 2 anni rsidnt nl comun di Bologna Maggio 2007 La prsnt nota è stata ralizzata da un gruppo di dirignti funzionari dl Sttor Programmazion, Controlli

Dettagli

Funzioni lineari e affini. Funzioni lineari e affini /2

Funzioni lineari e affini. Funzioni lineari e affini /2 Funzioni linari aini In du variabili l unzioni linari sono dl tipo a b l unzioni aini sono dl tipo a b c Il graico di una unzion linar è un piano passant pr l origin il graico di una unzion ain è un piano.

Dettagli

Ulteriori esercizi svolti

Ulteriori esercizi svolti Ultriori srcizi svolti Effttuar uno studio qualitativo dll sgunti funzioni ) 4 f ( ) ) ( + ) f ( ) + 3) f ( ) con particolar rifrimnto ai sgunti asptti: a) trova il dominio di f b) indica quali sono gli

Dettagli

Heating Modulis Ramp RTS

Heating Modulis Ramp RTS www.somfy.om Rf. 5066A PT ES EN DE NL FR Hting Moulis Rmp RTS 5066X00_HMR_Rmp_RTS.in 9/04/09 8::9 Gui ll instllzion Hting Moulis Rmp RTS. Introuzion 7. Avvrtnz 7. Siurzz rsponsilità 7. Instllzion 8. Contnuto

Dettagli

Accessori dei GENERATORI di VAPORE. Valvola di sicurezza a molla 3

Accessori dei GENERATORI di VAPORE. Valvola di sicurezza a molla 3 Corso di IMPIEGO INDUSTRIALE dll ENERGIA L nrgi, fonti, trsforzioni i d si finli Ipinti por I gnrtori di por Ipinti trbogs Cicli cobinti cognrzion Il rcto dll nrgi 1 Corso di IMPIEGO INDUSTRIALE dll ENERGIA

Dettagli

Successioni numeriche

Successioni numeriche 08//05 uccssioi umrich uccssioi umrich Dfiizio U succssio è u fuzio ch d ogi umro turl ssoci u umro rl 0 : 0 : Es. 08//05 uccssioi umrich Dfiizio Il it dll succssio ch ch covrg d ) si idic è il umro rl

Dettagli

1) La probabilità di ciascun evento elementare è non negativa. 2) La somma delle probabilità di tutti gli eventi elementari vale 1.

1) La probabilità di ciascun evento elementare è non negativa. 2) La somma delle probabilità di tutti gli eventi elementari vale 1. CAPITOLO SECONDO CALCOLO DELLE PROBABILITÀ Spazi di probabilità, vnti smplici d vnti composti Indichiamo con S lo spazio dgli vnti. Esso è un insim, i cui lmnti sono dtti vnti. Nl lancio di un dado, lo

Dettagli

= l. x 0. In realtà può aversi una casistica più amplia potendo sia x che f ( x) tendere ad un elemento dell insieme

= l. x 0. In realtà può aversi una casistica più amplia potendo sia x che f ( x) tendere ad un elemento dell insieme LIMITI DI FUNZINI. CNCETT DI LIMITE Esula dallo scopo di qusto libro la trattazion dlla toria sui iti. Tuttavia, pnsando di far cosa gradita allo studnt, ch dv possdr qusta nozion com background, ritniamo

Dettagli

] + [ ] [ ] def. ] e [ ], si ha subito:

] + [ ] [ ] def. ] e [ ], si ha subito: OPE OPERAZIONI BINARIE Definizione di operzione inri Dto un insieme A non vuoto, si him operzione (inri) su A ogni pplizione di A in A In generle, un'operzione su A viene indit on il simolo Se (x, y) è

Dettagli

Euristiche per il Problema del Commesso Viaggiatore

Euristiche per il Problema del Commesso Viaggiatore Spinz Univrsità di Rom - Diprtimnto di Inggnri Informti, Automti Gstionl Euristih pr il Problm dl Commsso Viggitor Rnto Bruni bruni@dis.unirom.it Il mtril prsntto è drivto d qullo di proff. A. Sssno C.

Dettagli

0 < a < 1 a > 1. In entrambi i casi la funzione y = a x si può studiare per punti e constatare che essa presenta i seguenti andamenti y.

0 < a < 1 a > 1. In entrambi i casi la funzione y = a x si può studiare per punti e constatare che essa presenta i seguenti andamenti y. INTRODUZIONE Ossrviamo, in primo luogo, ch l funzioni sponnziali sono dlla forma a con a costant positiva divrsa da (il caso a è banal pr cui non sarà oggtto dl nostro studio). Si possono allora vrificar

Dettagli

ANTON FILIPPO FERRARI

ANTON FILIPPO FERRARI ANTON FILIPPO FERRARI L Rom lo h prticmnt prso C è un ccordo mssim vnno dfiniti i dttgli in pr tic l controprtit tcnich Ngli ultimi du nni molti tifosi itlini in prticolr qulli dll Uns lo hnno conosciuto

Dettagli

Capitolo 7 - Predizione lineare

Capitolo 7 - Predizione lineare Appunti di lborzion numric di sgnli Cpitolo 7 - Prdizion linr Introduzion... rror mdio di prvision...3 Ossrvzion: prdizion linr com sbinctor dll squnz di ingrsso 5 Ortogonlità tr dti d rror...6 Vlor minimo

Dettagli

CORSO DI TOPOGRAFIA A - A.A. 2006-2007 ESERCITAZIONI - 09.05.07 ALLEGATO al file Esercizi di geodesia. r a. Z c. nella quale

CORSO DI TOPOGRAFIA A - A.A. 2006-2007 ESERCITAZIONI - 09.05.07 ALLEGATO al file Esercizi di geodesia. r a. Z c. nella quale CORSO DI TOPOGRAFIA A - A.A. 6-7 ESERCITAZIONI - 9.5.7 ALLEGATO l fil Esrcizi di godsi Ellissoid trrstr Fin dll scond mtà dl VII scolo (su propost di Nwton) l suprfici più dtt ssr ssunt com suprfici di

Dettagli

Per tutte le condizioni economiche e contrattuali dei prodotti si rimanda al relativo Foglio Informativo

Per tutte le condizioni economiche e contrattuali dei prodotti si rimanda al relativo Foglio Informativo Foglio Comparativo sull tipologi mutuo ipotcario/fonario pr l acquisto dll abitazion principal (sposizioni trasparnza ai snsi dll art. 2 comma 5 D.L. 29.11.2008 n. 185) Pr tutt l conzioni conomich contrattuali

Dettagli

la confezione e controllare i componenti Gruppo tamburo (compresa la cartuccia toner iniziale)

la confezione e controllare i componenti Gruppo tamburo (compresa la cartuccia toner iniziale) Guid di instllzion rpid Inizio MFC-8370DN MFC-8380DN Prim di potr utilizzr l pprcchio, lggr qust Guid di instllzion rpid pr l corrtt impostzion instllzion. Pr consntir un utilizzo immdito dll'pprcchio,

Dettagli

test Di chimica per l accesso alle Facoltà UNiVersitarie

test Di chimica per l accesso alle Facoltà UNiVersitarie tst i himia pr l asso all Faoltà UNiVrsitari il sistma priodio dgli lmnti il sistma priodio dgli lmnti 1. indiar qual di sgunti lmnti NoN è di transizion: a F zn as Cu Cr (Mdiina Chirurgia 2005) 2. indiar

Dettagli

2.2 L analisi dei dati: valutazioni generali

2.2 L analisi dei dati: valutazioni generali 2.2 L analisi di dati: valutazioni gnrali Di sguito (figur 7-) vngono riportat l informazioni più intrssanti rilvat analizzando globalmnt la banca dati dll tichtt raccolt. Considrando ch l tichtta nutrizional

Dettagli

Esercizi per il corso di Calcolatori Elettronici. svolti da Mauro IACOVIELLO & Fabio LAUDANI

Esercizi per il corso di Calcolatori Elettronici. svolti da Mauro IACOVIELLO & Fabio LAUDANI Eserizi per il orso i loltori Elettronii svolti Muro OVELLO & Fio LUDN Prte seon : Mhine stti finiti ESERZO : Mhin i Mely Si t l seguente mhin i Mely, sintetizzre un iruito he l implementi, utilizzno un

Dettagli

CLIMATIZZAZIONE DI AMBIENTI CONFINATI: FUNZIONE COMPENSATRICE DEGLI IMPIANTI

CLIMATIZZAZIONE DI AMBIENTI CONFINATI: FUNZIONE COMPENSATRICE DEGLI IMPIANTI Corso di Impinti Tcnici.. 2009/2010 Docnt: Prof. C. Istti CAPITOLO 4 : FUNZIONE COMPENSATRICE DEGLI IMPIANTI 4.1 Gnrlità Col trmin impinto di climtizzzion si intnd un dispositivo cpc di compnsr i flussi

Dettagli

F (r(t)), d dt r(t) dt

F (r(t)), d dt r(t) dt Cmpi vettorili Un cmpo vettorile è un funzione vlori vettorili F : A R, con A R n, ove in questo cso l imensione el ominio e el coominio è l stess. F ( 1, 2,..., n ) (f 1 ( 1, 2,..., n ), f 2 ( 1, 2,...,

Dettagli

Allegato 3 Elenco BAT ed esempio interventi efficientamento

Allegato 3 Elenco BAT ed esempio interventi efficientamento Allegto 3 Eleno BAT e esempio interventi effiientmento LINEE GUIDA per l onuzione ell ignosi energeti nel settore rtrio Pg. 1 i 6 Riepilogo BAT sul onsumo e sull effiienz energetii estrtte ll DECISIONE

Dettagli

CHIARA ZUCCHELLI. Florenzi, arriva il premio: contratto fino al 2016 e stipendio aumentato. Scritto da Redazione Giovedì 04 Ottobre 2012 07:31 -

CHIARA ZUCCHELLI. Florenzi, arriva il premio: contratto fino al 2016 e stipendio aumentato. Scritto da Redazione Giovedì 04 Ottobre 2012 07:31 - Flornzi rriv il prmio: contrtto fino l 2016 stipno umntto CHIARA ZUCCHELLI Il prmio più mritto rrivto Com nnuncito si d Sbtini si dl suo gnt Alssndro Lucci rrivto il rinnovo dl contrtto Alssndro Flornzi

Dettagli

Ambiguità D 11 = SS ( S S S ( S (S ) S ( S ((S )) S ( + S (( )) S (S (( )) (S) (S (( )) ( ) ( (( )) ( )

Ambiguità D 11 = SS ( S S S ( S (S ) S ( S ((S )) S ( + S (( )) S (S (( )) (S) (S (( )) ( ) ( (( )) ( ) Amiguità D 11 = ( ( ( ) ( (( )) ( (( )) ( (( )) () ( (( )) ( ) ( (( )) ( )! ( ) ( )! Un Grmmti si die migu se medesime stringhe sono generte d leri sintttii di differente struttur ovvero on due distinte

Dettagli

Procedura Operativa Standard. Internal Dealing. Rev. 0 In vigore dal 28 marzo 2012 COMITATO DI CONTROLLO INTERNO. Luogo Data Per ricevuta

Procedura Operativa Standard. Internal Dealing. Rev. 0 In vigore dal 28 marzo 2012 COMITATO DI CONTROLLO INTERNO. Luogo Data Per ricevuta REDATTO: APPROVATO: APPROVATO: INTERNAL AUDITOR COMITATO DI CONTROLLO INTERNO C.D.A. Luogo Data Pr ricvuta INDICE 1.0 SCOPO E AMBITO DI APPLICAZIONE 2.0 RIFERIMENTI NORMATIVI 3.0 DEFINIZIONI 4.0 RUOLI

Dettagli