Minimizzazione degli Stati in una macchina a stati finiti

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Minimizzazione degli Stati in una macchina a stati finiti"

Transcript

1 Rti Loih Sintsi i rti squnzili sinron Minimizzzion li Stti in un mhin stti initi Proimnto: Spiih Dirmm li stti Tll li stti Minimizzzion li stti Coii li stti Tll ll trnsizioni Slt lmnti i mmori Tll ll itzioni Sintsi ll rti omintori (nxt stt - output) Mhin Stti Finiti Mhin Stti Finiti M: <S,I,O,δ,λ,s 0 > S: insim li stti I: lto i inrsso A B C B C A C B A A B C B C A C B C Out insim i tutti i possiili simoli i inrsso O: lto i usit δ: unzion i stto prossimo δ: SxI S λ: unzion i usit λ: SxI O (mhin i Mly) λ: S O (mhin i Moor) s 0 : stto inizil 1 A C 0 Mly B A 1 C 0 Moor B 0

2 Motivzion Oittivo Elmnti i mmori nssri pr mmorizzr lo stto: N lo 2 S Possono sistr stti rionnti Eliminzion rionnz Diminuzion l numro i lmnti i mmori Rti omintori più smplii Iniviuzion i un mhin minim quivlnt Eliminzion li stti non riuniili (llo stto inizil) Intiizion Stti quivlnti (pr l mhin ompltmnt spiit) Stti omptiili (pr l mhin non ompltmnt spiit) Stto Irriuniil Dinizioni Non sist lun squnz i trnsizion h porti llo stto inizil (I) llo stto onsirto (Q) Dti: I : squnz i inrsso {i 1, i 2, i 3,..., i N } U : squnz i usit ssoit I s i, s j u stti nrii Gli stti s i s j sono inistinuiili (s i s j ) s: I Q A Lo stto Q è irriuniil I Q A U = L(s i,i) = U' = L(s j,i) I ioè s pr qulunqu squnz i inrsso l usit nrt prtno s i s j sono l stss C B C B Proprità: Rilssiv: s i s i Simmtri:s i s j s j s i Trnsitiv: s i s j s i s k s i s k

3 Prtizion li stti Eliminzion i stti è un rlzion i quivlnz inu un prtizion sull'insim S P = {p 0, p 1,..., p r } u stti s i s j pprtnono llo stsso loo p k s solo s s i s j un mhin stti initi è minim s non h stti istinti quivlnti M: <S,I,O,δ,λ,s 0 > M': <P,I,O,δ',λ',p 0 > S 6 Du stti inistinuiili sono quivlnti possono ssr sostituiti un sinolo stto S 5 S 4 S 4 S 5 S 5 S 6 S 6 S 4 ' ' S 4 P: prtizion inott su S ll rlzion Rol i Pull-Unr Rol i Pull-Unr Dinizion i inistinuiilità Dopo vr sminto tutt l oppi i stti, pr oni s i s j Si vono onsirr tutt l squnz i inrsso s i s j Diiil ppliilità Rol i Pull-Unr prhé sist lmno un inrsso pr ui l usit sono ivrs prhé sist un inrsso h port stti sussivi istinuiili Du stti s i s j sono inistinuiili s solo s: λ(s i, i) = λ(s j, i) i I (l usit sono uuli pr tutti i simoli i inrsso) oppur s i s j prhé pr oni inrsso ipnono : δ(s i, i) δ(s j, i) i I (li stti sussivi sono inistinuiili pr tutti i simoli i inrsso) L rol è riorsiv oppi i ui è stt provt l inistinuiilità l oppi in sm (s i, s j ) oppur Dipnono un'ltr oppi i stti i ui non si è nor provt l istinuiilità Itrr inhé tutt l oppi i stti non sono risolt

4 Esmpio Rol i Pull-Unr S 4 S 4 hnno l stss usit s li stti sussivi sono inistinuiili, S 4 hnno l stss usit s li stti sussivi sono inistinuiili, S 4 L'inistinuiilità tr ipn qull tr S 4 ( vivrs). Possimo onlur h: S 4 mhin quivlnt [ (, ) 1 ' ; ' ; (,S 4 ) 4 ' ] L rlzioni i inistinuiilità si intiino on l Tll ll Implizioni Mtt in rlzion oni oppi i stti È trinolr mn ll ionl prinipl (simmtri rilssività) Oni lmnto ll tll ontin: Il simolo i quivlnz () o i non quivlnz () oppur L oppi i stti ui si rimn l vrii s non è nor possiil ir 1 ' ' 4 ' 4 '/ ' 1 ' ' 1 ' ', Rol i Pull-Unr Rol i Pull-Unr - smpio Pr oni oppi i stti S i, S j S è mrt om quivlnt: non è rihist ltr vrii S si rimn un'ltr oppi S p, S q s S p, S q sono quivlnti, S i, S j sono quivlnti s S p, S q sono non quivlnti, S i, S j sono non quivlnti s S p, S q ipnono un'ltr oppi, riptr il proimnto itrtivmnt Anlisi ll oppi i stti: L'nlisi trmin quno ultriori liminzioni non sono possiili L oppi rimnnti sono quivlnti -: - è inistinuiil s lo è - -: - è istinuiil -: - è istinuiil -: - è inistinuiil s lo è - -: - è istinuiil -: - è inistinuiil s lo è - -: - è inistinuiil -: - è inistinuiil s lo è -

5 Rol i Pull-Unr - smpio Rol i Pull-Unr - smpio Anlisi ll oppi i stti: -: - è inistinuiil s lo è - -: - è istinuiil -: - è istinuiil -: - è inistinuiil s lo è - -: - è istinuiil -: - è inistinuiil s lo è - -: - è inistinuiil -: - è inistinuiil s lo è - Stti quivlnti: : {,,} : {,} : {} : {} Nuov tll li stti: Rol i Pull-Unr smpio 2 Rol i Pull-Unr Pr un FSM ompltmnt spiit, l'oritmo i Pull-Unr Dtrmin in mnir stt l FSM minim quivlnt L prtizion in lssi i stti quivlnti è uni

6 Mhin non ompltmnt spiit Mhin non ompltmnt spiit Pr lun oniurzioni i inrssi stto orrnt non sono spiit l usit /o lo stto uturo Dinizion s i s j sono omptiili (s i s j ) s ssunti om stti inizili nno luoo squnz i usit intih, mno i onizioni i inirnz, pr oni possiil squnz i inrsso L omptiilità è un rlzion mno ort i qull i inistinuiilità: Non vl l proprità trnsitiv smpio Rol i Pull-Unr sts: /x /x /x li stti s i s j sono omptiili s solo s: λ(s i, i) = λ(s j, i) i I ovunqu sono ntrmi spiiti δ(s i, i) δ(s j, i) i I ovunqu sono ntrmi spiiti L inizion è riorsiv Rol i Pull-Unr sts Rol i Pull-Unr sts Anh l rlzioni i omptiilità si intiino on l Tll ll Implizioni Oni lmnto ll tll ontin: s in lmno un olonn vi sono usit ivrs (stti inomptiili) /x /x /x /x S i S j s l usit sono tutt uuli m i nomi li stti uturi (S i, S j ) sono ivrsi non oiniono on qulli ll oppi i stti in sm ltrimnti (stti omptiili) Si vono vriir i vinoli h isnono ll'imposizion ll usit non spiit smpio: s si slono ntrm l usit nllo stto pri 0, in qusto so prò vivrs

7 Rol i Pull-Unr sts Rol i Pull-Unr sts /x /x /x /x non può ssr liminto nh s prhé nllo stto l'usit non è spiit (quini non è tto h si ) /x /x /x /x Vinoli: : s : s : s : s : s, : s, : s Rol i Pull-Unr sts Gro i omptiilità /x /x /x /x I noi orrisponono li stti I noi n i n j sono ollti s li stti orrisponnti sono omptiili I noi n i n j sono ollti s l loro omptiilità ipn ll omptiilità l loro stto sussivo Vinoli: Su oni ro sono riportti i vinoli sull omptiilità li stti sussivi : s : s : s : s : s, : s, : s

8 Gro i omptiilità Gro i omptiilità I noi orrisponono li stti Clss i omptiilità I noi n i n j sono ollti s li stti orrisponnti sono omptiili Insim i stti oppi omptiili I noi n i n j sono ollti s l loro omptiilità ipn ll omptiilità l loro stto sussivo È un poliono omplto sul ro i omptiilità L lssi i omptiilità non sono nssrimnt isiunt Su oni ro sono riportti i vinoli sull omptiilità li stti sussivi l omptiilità tr u stti (noi) sussist solo s tutti i vinoli vnono ttti utilizzti Esmpi i lssi i omptiilità:,,,,,,,,... Gro i omptiilità Gro i omptiilità Clss i mssim omptiilità Insim hiuso i lssi i omptiilità Clss i omptiilità non ontnut in nssun ltr lss Sul ro è un poliono omplto non ontnuto in nssun ltro poliono Insim i lssi i omptiilità i ui vinoli sono ontnuti in lmno un lss ll'insim Grntito h tutti i vinoli sino rispttti Esmpi i lssi i mssim omptiilità:,,,,,, NO: il vinolo non è ontnuto in nssun lss i omptiilità OK

9 Gro i omptiilità Minimizzzion Stti Coprtur ll Tll li Stti Insim i lssi i omptiilità pr ui oni stto ll Tll li Stti è ontnuto in lmno un lss i omptiilità Trovr il più piolo insim hiuso i lssi i omptiilità h opr l'insim i stti su ui l mhin è init Esmpi: {{,,}, {,,}, {,,}} {{,}, {,}, {,,}, {,,}} L'insim i tutt l lssi i mssim omptiilità è hiuso opr l'insim li stti ll mhin S si ssoi uno stto oni lss i mssim omptiilità si ottin un nuov mhin on un numro i stti Possiilmnt minor i qullo i prtnz Non nssrimnt minimo Esmpio oprtur Aloritmo Clssi i mssim omptiilità non isiunt Coprtur mmissiil: A={,,} B={,,} C={,,} Non minim Conivision i stti tr ivrs lssi non è possiil rlizzr l mhin minim ssoino un nuovo stto un lss il num. i lssi i mx omptiilità è un limit suprior l numro i stti ll mhin minim Lirtà i ssnmnto pr l onizioni non spiit l mhin minim non è uni Aloritmi uristii 1. Inizilizzr un list L vuot 2. Finhè il ro non è vuoto:. Iniviur orinr l lssi i mssim omptiilità prsnti sul ro pr imnsion. Iniviur l lss i omptiilità mssim i imnsion mssim prsnt sul ro. Insrir nll list L tutti i vinoli prsnti nll lss i omptiilità onsirt. Eliminr ll list L l ro i vinoli soistti ll lss onsirt. Eliminr l ro tutti i noi ( i rltivi rhi) pprtnnti ll lss i omptiilità onsirt h non pprtnono nssun vinolo prsnt nll list L /o nl ro 3. L lssi osì iniviut ormno un prtizion i omptiilità (insim i lssi i omptiilità hiuso)

10 Aloritmo - Esmpio Aloritmo - Esmpio ro L = {} lssi i mssim omptiilità: lss slziont: vinoli nll lss slziont: L = {} Coprtur iniviut: {, } Aloritmo - Esmpio Aloritmo Esmpio 2 /x /x /x /x /x -/x -/x /x /x -/x -/x -/x -/x sono inomptiili sono inomptiili sono inomptiili sono inomptiili Coprtur iniviut: {, } = {} = {} sono inomptiili sono inomptiili sono inomptiili sono inomptiili sono inomptiili sono inomptiili

11 Aloritmo Esmpio 2 Aloritmo Esmpio /x -/x -/x /x /x -/x -/x -/x -/x /x -/x -/x /x /x -/x -/x -/x -/x sono inomptiili sono inomptiili sono inomptiili sono inomptiili sono inomptiili sono inomptiili sono inomptiili sono inomptiili sono inomptiili sono inomptiili Aloritmo Esmpio 2 Aloritmo Esmpio /x -/x -/x /x /x -/x -/x -/x -/x /x /x 11 -/x /x -/x -/x /x /x -/x -/x -/x -/x /x /x 11 -/x Coprtur iniviut: {,,, } = {} = {} = {} = {} L lssi non sono isiunt: lo stto pprtin si h Al momnto ll rlizzzion ll mhin minim si v stilir l orrisponnz oni volt h ompr om prossimo stto Coprtur iniviut: {,,, } = {} = {} = {} = {}

12 Coii li stti Coii li stti Numro i oiih possiili: Coii i lunhzz minim 2 ( N ) S! S pr 3 stti, oiiti on 2 it, si hnno 24 possiili oiih pr 4 stti, oiiti on 2 it, si hnno 24 possiili oiih pr 5 stti, oiiti on 3 it, si hnno 6720 possiili oiih pr 6 stti, oiiti on 3 it, si hnno possiili oiih pr 7 stti, oiiti on 3 it, si hnno possiili oiih pr 8 stti, oiiti on 3 it, si hnno possiili oiih pr 9 stti, oiiti on 4 it, si hnno possiili oiih Sintsi u livlli ll unzioni δ λ Flip-lop i tipo D Oittivo: minimizzr l loi omintori Anlisi sustiv non prtiil mtoi uristii Coii li stti Ruls o thum Stti s i s j h prità i inrssi hnno li stssi stti prossimi: oiih inti smpliizion i δ Stti s i s j h prità i inrssi hnno l stss usit: oiih inti smpliizion i λ Stti s j s k tli h s j = δ(s i, i ) s k = δ(s i, i ) on Hmmin(i, i )=1 oiih inti smpliizion i δ

Minimizzazione degli Stati in una Rete Sequenziale Sincrona

Minimizzazione degli Stati in una Rete Sequenziale Sincrona Minimizzzion gli Stti in un Rt Squnzil Sinron Murizio Plsi Murizio Plsi 1 Sintsi i Rti Squnzili Sinron Il proimnto gnrl i sintsi si svolg ni sgunti pssi: 1. Rlizzzion l igrmm gli stti prtir ll spifih l

Dettagli

Macchine non completamente specificate. Sintesi Sequenziale Sincrona Sintesi Comportamentale di Reti Sequenziali Sincrone

Macchine non completamente specificate. Sintesi Sequenziale Sincrona Sintesi Comportamentale di Reti Sequenziali Sincrone Mhin non ompltmnt spifit Sintsi Squnzil Sinron Sintsi Comportmntl i Rti Squnzili Sinron Riuzion l numro gli stti pr Mhin Non Compltmnt Spifit Comptiilità Vrsion l 5/12/02 Sono mhin in ui pr lun onfigurzioni

Dettagli

Macchine non completamente specificate. Sintesi Sequenziale Sincrona Sintesi Comportamentale di Reti Sequenziali Sincrone

Macchine non completamente specificate. Sintesi Sequenziale Sincrona Sintesi Comportamentale di Reti Sequenziali Sincrone Sintsi Squnzil Sinron Sintsi Comportmntl i Rti Squnzili Sinron Riuzion l numro gli stti pr Mhin Non Compltmnt Spiit Comptiilità Vrsion l 13/01/05 (Frrni( Antol) Mhin non ompltmnt spiit Sono mhin in ui

Dettagli

Circuiti Sequenziali Macchine Non Completamente Specificate

Circuiti Sequenziali Macchine Non Completamente Specificate CEFRIEL Consorzio pr l Formzion l Rir in Inggnri ll Informzion Politnio i Milno Ciruiti Squnzili Mhin Non Compltmnt Spifit Introuzion Comptiilità Riuzion l numro gli stti Mtoo gnrl FSM non ompltmnt spifit

Dettagli

Minimizzazione degli Stati in una Rete Sequenziale Sincrona

Minimizzazione degli Stati in una Rete Sequenziale Sincrona Minimizzzion gli Stti in un Rt Squnzil Sinron Murizio Plsi Murizio Plsi 1 Sintsi i Rti Squnzili Sinron Il proimnto gnrl i sintsi si svolg ni sgunti pssi: 1. Rlizzzion l igrmm gli stti prtir ll spifih l

Dettagli

RACCORDI PER APPLICAZIONI SPECIALI GIUNTI ECCENTRICI E CONICI

RACCORDI PER APPLICAZIONI SPECIALI GIUNTI ECCENTRICI E CONICI RACCORDI PER APPLICAZIONI SPECIALI GIUNTI ECCENTRICI E CONICI 2 L soluzion dimnsionl ottiml pr signz prtiolri Rordi on snz ihir Innsti on snz ihir Clssi sondo nssità Dimtro di usit vriil Collgmnto l fondo

Dettagli

Elettronica dei Sistemi Digitali Sintesi di porte logiche combinatorie fully CMOS

Elettronica dei Sistemi Digitali Sintesi di porte logiche combinatorie fully CMOS Elttroni di Sistmi Digitli Sintsi di port logih omintori full CMOS Vlntino Lirli Diprtimnto di Tnologi dll Informzion Univrsità di Milno, 26013 Crm -mil: lirli@dti.unimi.it http://www.dti.unimi.it/ lirli

Dettagli

Grandezze, funzioni empiriche e matematiche. 1 Stabilisci se le seguenti affermazioni sono vere o false.

Grandezze, funzioni empiriche e matematiche. 1 Stabilisci se le seguenti affermazioni sono vere o false. Grnzz unzioni Grnzz, unzioni mpirih mtmtih Grnzz irttmnt invrsmnt proporzionli Applizioni ll proporzionlità Grnzz, unzioni mpirih mtmtih Stilisi s l sunti rmzioni so vr o ls. SZ. I Un rnzz è vriil s ssum

Dettagli

Sistemi lineari COGNOME... NOME... Classe... Data...

Sistemi lineari COGNOME... NOME... Classe... Data... Cpitolo Sistmi linri Risoluzion grfi lgri rifi pr l lss prim COGNOME............................... NOME............................. Clss.................................... Dt...............................

Dettagli

PROVINCIA DI TORINO SERVIZIO LOGISTICA PROGETTO DEFINITIVO-ESECUTIVO

PROVINCIA DI TORINO SERVIZIO LOGISTICA PROGETTO DEFINITIVO-ESECUTIVO ALLEGATO: N. 1 PROVINCIA DI TORINO SERVIZIO LOGISTICA PROGETTO DEFINITIVO-ESECUTIVO MANUTENZIONE ORDINARIA E RIPARATIVA DEGLI EDIFICI PATRIMONIALI DESTINATI AD UFFICI DELLA PROVINCIA. IMPIANTI ELETTRICI

Dettagli

Sintesi. Sintesi Sequenziale Sincrona Sintesi comportamentale di reti sequenziali sincrone. Riduzione del numero degli stati

Sintesi. Sintesi Sequenziale Sincrona Sintesi comportamentale di reti sequenziali sincrone. Riduzione del numero degli stati Sintsi Squnzial Sinrona Sintsi omportamntal i rti squnziali sinron Riuzion l numro li stati pr Mahin Compltamnt Spiiat Inistinuiilità & Equivalnza Irraiuniilità vrsion l 12/12/2004 Sintsi La sintsi si

Dettagli

Matematica 15 settembre 2009

Matematica 15 settembre 2009 Nom: Mtriol: Mtmti 5 sttmbr 2009 Non sono mmss loltrii. Pr l domnd rispost multipl, rispondr brrndo o rhindo hirmnt un un sol lttr. Pr l ltr domnd srivr l soluzion on svolgimnto ngli spzi prdisposti..

Dettagli

INTEGRALI. 1. Integrali indefiniti

INTEGRALI. 1. Integrali indefiniti INTEGRALI. Intgrli indiniti Si un unzion ontinu in [, ]. Un unzion F dinit ontinu in [, ], drivil in ], [, disi primitiv di in [, ] s F, ], [. Tormi. S F è un primitiv di in [, ] llor nh G F, on R, è un

Dettagli

The cost of the material maintenance is averaged over the last 3 years.

The cost of the material maintenance is averaged over the last 3 years. Anlisi i osti i un Diprtimnto 11 TABLE 4 Dprition n mintnn osts (unit: ITL) Ctgory Y Prio Inrs vlu Annul vlu 1 Furnitur 5 1.1.90{31.12.95 219 311 127 43 862 225 2 Lirry 5 1.1.90{31.12.95 542 832 793 108

Dettagli

Informatica 3. Informatica 3. LEZIONE 25: Algoritmi sui grafi. Lezione 25 - Modulo 1. Problema. Notazioni per il percorso più breve

Informatica 3. Informatica 3. LEZIONE 25: Algoritmi sui grafi. Lezione 25 - Modulo 1. Problema. Notazioni per il percorso più breve Informti Informti LZION : lgoritmi sui grfi Lzion - Moulo Moulo : Prolm l prorso più rv Moulo : Spnning tr osto minimo Prolm l prorso più rv Politnio i Milno - Prof. Sr omi Politnio i Milno - Prof. Sr

Dettagli

Sintesi Sequenziale Sincrona Sintesi Comportamentale di Reti Sequenziali Sincrone

Sintesi Sequenziale Sincrona Sintesi Comportamentale di Reti Sequenziali Sincrone Sintesi Sequenzile Sinron Sintesi Comportmentle di Reti Sequenzili Sinrone Riduzione del numero degli stti per Mhine Non Completmente Speifite Comptiilità Versione del 9/12/03 Mhine non ompletmente speifite

Dettagli

6) Nel 1991 Carl Lewis ha stabilito il record del mondo dei 100 m percorrendoli in 9,86 s. Qual è la velocità media in km/h?

6) Nel 1991 Carl Lewis ha stabilito il record del mondo dei 100 m percorrendoli in 9,86 s. Qual è la velocità media in km/h? 1) L unità l SI pr l tmprtur l mss sono, rispttivmnt gri grmmi klvin kilogrmmi Clsius milligrmmi Clsius kilogrmmi klvin grmmi 2) Qul mtril ffon nll olio ( = 0,94 g/m 3 )? ghiio ( = 0,92 g/m 3 ) sughro

Dettagli

Test di autovalutazione

Test di autovalutazione UNITÀ LE FRAZIONI Tst Tst i utolutzion 0 0 0 0 0 0 0 0 0 0 00 n Il mio puntggio, in ntsimi, è n Risponi ogni qusito sgnno un sol ll ltrnti. n Conront l tu rispost on l soluzioni. n Color, prtno sinistr,

Dettagli

Studio di funzione. Pertanto nello studio di tali funzioni si esamino:

Studio di funzione. Pertanto nello studio di tali funzioni si esamino: Prof. Emnul ANDRISANI Studio di funzion Funzioni rzionli intr n n o... n n Crttristich: sono funzioni continu drivbili in tutto il cmpo rl D R quindi non sistono sintoti vrticli D R quindi non sistono

Dettagli

Corso di ordinamento - Sessione suppletiva - a.s. 2009-2010

Corso di ordinamento - Sessione suppletiva - a.s. 2009-2010 Corso di ordinmnto - Sssion suppltiv -.s. 9- PROBLEMA ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO SESSIONE SUPPLETIA Tm di: MATEMATICA. s. 9- Dt un circonrnz di cntro O rggio unitrio, si prndno

Dettagli

La rappresentazione per elencazione consiste nell elencare tutte le coppie ordinate che verificano la relazione

La rappresentazione per elencazione consiste nell elencare tutte le coppie ordinate che verificano la relazione RELAZIONI E FUNZIONI Relzioni inrie Dti ue insiemi non vuoti e (he possono eventulmente oiniere), si ie relzione tr e un qulsisi legge he ssoi elementi elementi. L insieme A è etto insieme i prtenz. L

Dettagli

a b }. L insieme Q è pertanto l insieme delle frazioni.

a b }. L insieme Q è pertanto l insieme delle frazioni. I1. Insimisti I1.1 Insimi Il ontto i insim è un ontto primitivo, prtnto non n vin t un finizion rigoros. Si può ir, intuitivmnt, h un insim è un ollzion i oggtti pr ui vlgono lun proprità: Un lmnto i un

Dettagli

SICUREZZA SUL LAVORO SAFETY AT WORK SICUREZZA SUL LAVORO SAFETY AT WORK R 290 31 R 290 31

SICUREZZA SUL LAVORO SAFETY AT WORK SICUREZZA SUL LAVORO SAFETY AT WORK R 290 31 R 290 31 SICUREZZA SUL LAVORO SAFETY AT WORK R 290 31 R 290 31 Sgnli i siurzz pr fontnll o i mrgnz pr l ontminzion UNI 7546/3. Symols for sfty signs-ys wshing - mrgny showr. 332 Normtiv in mtri i tutl ll slut siurzz

Dettagli

Informatica II. Capitolo 5. Alberi. E' una generalizzazione della struttura sequenza

Informatica II. Capitolo 5. Alberi. E' una generalizzazione della struttura sequenza Alri Informtic II Cpitolo 5 Alri E' un gnrlizzzion dll struttur squnz Si rilss il rquisito di linrità: ogni lmnto (nodo) h un solo prdcssor m può vr più succssori. Il numro di succssori (figli) può ssr

Dettagli

Aquauno Video 2 Plus

Aquauno Video 2 Plus Collgr il progrmmtor l ruintto. Aquuno Vio 2 Plus Pg. 1 Gui ll utilizzo 3 START STOP RESET CANCEL 3 4 5 6 3 4 5 6 3 4 5 6 lik! Pr Aquuno Vio 2 (o.): 8454-8428 Pr Aquuno Vio 2 Plus (o.): 8412 Aprir il moulo

Dettagli

ELENCO PREZZI AREE VERDI

ELENCO PREZZI AREE VERDI ALLEGATO B) AL CAPITOLATO SPECIALE D APPALTO ELENCO PREZZI AREE VERDI MANO D OPERA I przzi ll no opr pplir sono qulli i sguito lnti sunti l Przzirio ll Assoizion Itlin Costruttori l Vr (www.ssovr.it) Dsrizion

Dettagli

SPERIMENTAZIONE PROGETTO TELELAVORO CUSTOMER SERVICES

SPERIMENTAZIONE PROGETTO TELELAVORO CUSTOMER SERVICES 1 SPERIMENTAZIONE PROGETTO TELELAVORO CUSTOMER SERVICES 21 Luglio 2008 2 SPERIMENTAZIONE TELELAVORO Contct Cntr coinvolti: Rom (2 prson) Npoli (8 prson) Srvizi gstiti in tllvoro: 186 Rom Off Lin Npoli

Dettagli

MACCHINE TRACCIALINEE ED ACCESSORI

MACCHINE TRACCIALINEE ED ACCESSORI MHIN TRILIN D SSORI D M PR SGNLTI ORIZZONTL G G N H I L F F ON MISURTOR STRDL INORPORTO FIGUR QT'. 2400MTRMT000 MHIN TRILIN 2400MTRMT0002 MHIN TRILIN 2400MTRMT0003 MHIN TRILIN D 2400MTRPM0005 PISTOL MNUL

Dettagli

Esercizi di Algebra Lineare - Fogli 1-2 Corso di Laurea in Matematica 2 ottobre 2016

Esercizi di Algebra Lineare - Fogli 1-2 Corso di Laurea in Matematica 2 ottobre 2016 Esrizi i Algr Linr - Fogli 1-2 Corso i Lur in Mtmti 2 ottor 2016 1. Logi tori lmntr gli insimi Esrizio 1.1 Ngr un ssrzion. Espliitr l ngzion ll sgunti ssrzioni: (P ) ogni stunt i qust ul minornn, oppur

Dettagli

ISTRUZIONI DI MONTAGGIO per controtelai SP

ISTRUZIONI DI MONTAGGIO per controtelai SP ISTRUZIONI DI MONTAGGIO pr ontrotli SP 100-125 Controtli vrsion rtonsso INCASTRO NOMENCLATURA: ontrotlio, inrio rrmnt Controtli pr port somprs i m l SET i ALLARGAMENTO pr SP 125 Montnti vrtili ntriori

Dettagli

+ poligoni e l equivalenza di figure piane + triangoli + quadrilateri

+ poligoni e l equivalenza di figure piane + triangoli + quadrilateri + poligoni + poligoni l quivlnz i figur pin + tringoli + quriltri + poligoni l quivlnz i figur pin 1 Stilisi s l sgunti ffrmzioni sono vr o fls. SEZ. E In un poligono i lti sono onsutivi u u. L somm gli

Dettagli

Relazioni e funzioni. Relazioni

Relazioni e funzioni. Relazioni Relzioni e unzioni Relzioni Deinizione: dti due insiemi A e B, si deinise un relzione R tr A e B un orrispondenz stilit d un proposizione tr un elemento A e B, in tl so si die he è in relzione on e si

Dettagli

Studio di funzione. R.Argiolas

Studio di funzione. R.Argiolas Studio di unzion R.Argiolas Introduzion Prsntiamo lo studio dl graico di alcun unzioni svolt durant l srcitazioni dl corso di analisi matmatica I assgnat nll prov scritt. Ringrazio anticipatamnt tutti

Dettagli

j Verso la scuola superiore Geometria euclidea e analitica

j Verso la scuola superiore Geometria euclidea e analitica j rso l suol suprior Gomtri uli nliti Ossrv l spzzt stilisi quli ll sgunti rmzioni sono vr quli ls. B D G E B è onsutivo B. DE è onsutivo G. B è onsutivo D. B è int D. B è onsutivo D. E è onsutivo G. Il

Dettagli

COTA NSW SONDAGGIO CLIENTI 2016

COTA NSW SONDAGGIO CLIENTI 2016 COTA NSW SONDAGGIO CLIENTI 2016 Prlimo i om trsorrr il tuo tmpo. Complti il sonio prtipi ll strzion pr vinr un ip. Grzi pr il tmpo ito ompilr il nostro sonio su om trsorr il suo tmpo. L ssiurimo h tutt

Dettagli

Totti, 37 anni da leggenda. Un monumento vivente. Scritto da Redazione Venerdì 27 Settembre 2013 08:39 - VALERIA META

Totti, 37 anni da leggenda. Un monumento vivente. Scritto da Redazione Venerdì 27 Settembre 2013 08:39 - VALERIA META 37 nni d lggnd Un monumnto vivnt Scritto d Rdzion VALERIA META Scrivrlo sull fccit Sn Pitro potv ffttivmnt smbrr irrivrnt pr qunto l omonimo inquino dl Vticno si si mostrto prson ll mno Così gli uguri

Dettagli

Strategie di Monitoraggio della Piattaforma Java per Sistemi

Strategie di Monitoraggio della Piattaforma Java per Sistemi strumnti pr la il rnginring tsi di laura la Anno Accadmico 24-25 rlator Ch.mo Prof. Stfano Russo corrlator Ing. Salvator Orlando candidato Giuspp Scafuti Matr. 534-953 la strumnti pr il rnginring Architttura

Dettagli

La statistica nei test Invalsi

La statistica nei test Invalsi L sttisti nei test Invlsi 1) Osserv il grfio seguente he rppresent l distriuzione perentule di fmiglie per numero di omponenti, in se l ensimento 2001.. Qul è l perentule di fmiglie on 2 omponenti? Rispost:..%.

Dettagli

Corso di Analisi: Algebra di Base 5^ Lezione Logaritmi. Proprietà dei logaritmi Equazioni logaritmiche. Disequazioni logaritmiche. Allegato Esercizi.

Corso di Analisi: Algebra di Base 5^ Lezione Logaritmi. Proprietà dei logaritmi Equazioni logaritmiche. Disequazioni logaritmiche. Allegato Esercizi. Corso di Anlisi: Algbr di Bs ^ Lzion Logritmi. Proprità di ritmi Equzioni ritmih. Disquzioni ritmih. Allgto Esrizi. LOGARITMI : Pr ritmo intndimo un sprssion lttrl indint un vlor numrio. Dfinizion : Si

Dettagli

] + [ ] [ ] def. ] e [ ], si ha subito:

] + [ ] [ ] def. ] e [ ], si ha subito: OPE OPERAZIONI BINARIE Definizione di operzione inri Dto un insieme A non vuoto, si him operzione (inri) su A ogni pplizione di A in A In generle, un'operzione su A viene indit on il simolo Se (x, y) è

Dettagli

Elenco ufficiale delle località con il numero postale d avviamento e il perimetro Informazioni sul prodotto

Elenco ufficiale delle località con il numero postale d avviamento e il perimetro Informazioni sul prodotto Dipartimnto fdral dlla difsa, dlla protzion dlla popolazion dllo sport DDPS Uffiio fdral di topografia swisstopo Elno uffiial dll loalità on il numro postal d avviamnto il primtro Informazioni sul prodotto

Dettagli

Funzione esponenziale e logaritmo. Proprietà di esponenziale e logaritmo.

Funzione esponenziale e logaritmo. Proprietà di esponenziale e logaritmo. Funzion sponnzil ritmo. Proprità di sponnzil ritmo. 6. Funzion sponnzil ritmo. Proprità di sponnzil ritmo. Funzion sponnzil f ( ) fissto f : ( + ) è l bs dll funzion sponnzil d è fisst è l sponnt dll funzion

Dettagli

PROGRAMMA DI RIPASSO ESTIVO

PROGRAMMA DI RIPASSO ESTIVO ISTITUTO TECNICO PER IL TURISMO EUROSCUOLA ISTITUTO TECNICO PER GEOMETRI BIANCHI SCUOLE PARITARIE PROGRAMMA DI RIPASSO ESTIVO CLASSI MATERIA PROF. QUARTA TURISMO Matmatica Andra Brnsco Làvor ANNO SCOLASTICO

Dettagli

Politecnico di Milano Facoltà di Ingegneria dell Automazione INFORMATICA INDUSTRIALE Appello COGNOME E NOME. 11 febbraio 2008 RIGA COLONNA MATRICOLA

Politecnico di Milano Facoltà di Ingegneria dell Automazione INFORMATICA INDUSTRIALE Appello COGNOME E NOME. 11 febbraio 2008 RIGA COLONNA MATRICOLA Politecnico i Milno Fcoltà i Ingegneri ell Automzione INFORMATICA INDUSTRIALE Appello COGNOME E NOME ebbrio 2008 RIGA COLONNA MATRICOLA Il presente plico pinzto, composto i quttro ogli (ronte/retro)eve

Dettagli

SPOSTAMENTO E RETTIFICA DI CONFINE

SPOSTAMENTO E RETTIFICA DI CONFINE SPOSEO E REIFI I OFIE Lo SPOSEO si qundo un confin ià rttilino vin sostituito con un ltro smpr rttilino L REIFI si qundo un confin polionl o curvilino vin sostituito con un ltro rttilino. SPOSEO REIFI

Dettagli

CHIARA ZUCCHELLI. Florenzi, arriva il premio: contratto fino al 2016 e stipendio aumentato. Scritto da Redazione Giovedì 04 Ottobre 2012 07:31 -

CHIARA ZUCCHELLI. Florenzi, arriva il premio: contratto fino al 2016 e stipendio aumentato. Scritto da Redazione Giovedì 04 Ottobre 2012 07:31 - Flornzi rriv il prmio: contrtto fino l 2016 stipno umntto CHIARA ZUCCHELLI Il prmio più mritto rrivto Com nnuncito si d Sbtini si dl suo gnt Alssndro Lucci rrivto il rinnovo dl contrtto Alssndro Flornzi

Dettagli

ELABORAZIONE di DATI SPERIMENTALI

ELABORAZIONE di DATI SPERIMENTALI ELABORAZIONE DATI SPERIMENTALI Prof. Giovnn CATANIA Prof. Rit DONATI Dr. Tibrio T DI CORCIA L stribuzion norml o gusn com modlità borzion dti sprimntli qtittivmnt numro I N T R O D U Z I O N E Un Un dll

Dettagli

COMBINAZIONI DI CARICO SOLAI

COMBINAZIONI DI CARICO SOLAI COMBINAZIONI DI CARICO SOLAI (ppunti di Mrio Zfonte in fse di elorzione) Ai fini delle verifihe degli stti limite, seondo unto indito dll normtiv, in generle le ondizioni di rio d onsiderre, sono uelle

Dettagli

Modelli dei Sistemi di Produzione Modelli e Algoritmi della Logistica

Modelli dei Sistemi di Produzione Modelli e Algoritmi della Logistica Modlli di Sistmi di Produzion Modlli Algoritmi dll Logisti 000- Prolm dl ommsso viggitor: EURISTICHE CARLO MANNINO Spinz Univrsità di Rom Diprtimnto di Informti Sistmisti Euristih pr il TSP simmtrio Considrimo

Dettagli

Ulteriori esercizi svolti

Ulteriori esercizi svolti Ultriori srcizi svolti Effttuar uno studio qualitativo dll sgunti funzioni ) 4 f ( ) ) ( + ) f ( ) + 3) f ( ) con particolar rifrimnto ai sgunti asptti: a) trova il dominio di f b) indica quali sono gli

Dettagli

Per tutte le condizioni economiche e contrattuali dei prodotti si rimanda al relativo Foglio Informativo

Per tutte le condizioni economiche e contrattuali dei prodotti si rimanda al relativo Foglio Informativo Foglio Comparativo sull tipologi mutuo ipotcario/fonario pr l acquisto dll abitazion principal (sposizioni trasparnza ai snsi dll art. 2 comma 5 D.L. 29.11.2008 n. 185) Pr tutt l conzioni conomich contrattuali

Dettagli

Diagrammi di Influenza (Influence Diagrams: ID)

Diagrammi di Influenza (Influence Diagrams: ID) Digrmmi di Influnz (Influnc Digrms: ID) Linguggio pr l rpprsntzion grfic di prolmi dcisionli Crttristich vntggi prmttono un rpprsntzion dll struttur gnrl dl prolm, st su un pproccio visul prmttono di formlizzr

Dettagli

Costruiamo un aquilone SLED

Costruiamo un aquilone SLED Costruimo un quon SLED Sgnr sul sgmnto cod du rifrimnti 3 cm dgli spigoli (vrso l'trno) poi sul bordo ntrior dll du li 11 cm dgli spigoli (vrso l'strno); qusto punto si dvono pplicr l du mnich sul bordo

Dettagli

Bar Pasticceria Gelateria

Bar Pasticceria Gelateria Br Pstiri Gltri BRETELLE FASHION STREET Un st lgnt, prtio trny. Lo stil inononiil ll rtll ll ultim mo in tssuto nim rsistnt ll lt prstzioni pr un shion strt inimitil. Un look qullo ll rtll inroit sull

Dettagli

L insieme N e l insieme Z Le cifre e i numeri Le quattro operazioni e le potenze in N Le espressioni La misura e i problemi

L insieme N e l insieme Z Le cifre e i numeri Le quattro operazioni e le potenze in N Le espressioni La misura e i problemi L nsm N l nsm Z L r numr L quttro oprzon l potnz n N L sprsson L msur prolm L r numr 1 Stls s l sunt rmzon sono vr o ls. SEZ. A l m n o p q 39 è un numro spr. 112 è un numro pr. In 79, 9 è un r. 10 è un

Dettagli

Teoria dell integrazione secondo Riemann per funzioni. reali di una variabile reale.

Teoria dell integrazione secondo Riemann per funzioni. reali di una variabile reale. Capitolo 2 Toria dll intgrazion scondo Rimann pr funzioni rali di una variabil ral Esistono vari tori dll intgrazion; tutt hanno com comun antnato il mtodo di saustion utilizzato dai Grci pr calcolar l

Dettagli

a e Tutte le donne del mondo sono produttrici di cibo. Più della metà di loro

a e Tutte le donne del mondo sono produttrici di cibo. Più della metà di loro Rubric: Lvoro slut Slut lvoro dll donn nl sttor grolimntr: risultti di un indgin sul cmpo Irn Figà-Tlmnc* Tutt l donn dl mondo sono produttrici di cibo. Più dll mtà di loro (53%) sono nch lvortrici dl

Dettagli

Grazie per aver scelto un telecomando Meliconi.

Grazie per aver scelto un telecomando Meliconi. IT I Grazi pr avr sclto un tlcomando Mliconi. Consrvar il prsnt librtto pr futur consultazioni. Il tlcomando Facil 1 è stato studiato pr comandar un tlvisor. Grazi alla sua ampia banca dati è in grado

Dettagli

Crisi occupazionale, ammortizzatori sociali e riforma pensionistica Elisabetta Pedrazzoli* La riforma previdenziale Legge n. 214 del 22 dicembre 2011

Crisi occupazionale, ammortizzatori sociali e riforma pensionistica Elisabetta Pedrazzoli* La riforma previdenziale Legge n. 214 del 22 dicembre 2011 Tmi Crisi occupzionl, mmortizztori socili riform pnsionistic Elisbtt Pdrzzoli* Prmss L ttul situzion conomic è crttrizzt dl prdurr di un fort crisi con tutt l consgunz ch ciò comport sui livlli occupzionli.

Dettagli

Pesatura Obiettivo. N Capitolo Peg Fonte risorse Ammontare risorse. Indicatori di risultato (Efficacia - Efficienza - Tempo)

Pesatura Obiettivo. N Capitolo Peg Fonte risorse Ammontare risorse. Indicatori di risultato (Efficacia - Efficienza - Tempo) Oittivo: srizion sintti Oittivo n. 1 Costruzion iplntzion l Pino ll Prorn sono l isposizioni introott l D.Ls. 150/2009, inlità prsuir, olità, lin ui i ttuzion Vriili L'oittivo h il in i rniontr i ittini

Dettagli

Corso di Modellistica dei Sistemi Biologici A.A. 2008/09. Cinetiche di Reazione

Corso di Modellistica dei Sistemi Biologici A.A. 2008/09. Cinetiche di Reazione Coro di Modlliti di Sitmi Biologii A.A. 8/9 Cintih di Rzion Dont: ing. Crlo Contino Lb. di Biomtroni E-mil: rlo.ontino@uniz.it Tl: 96-69-45 URL: http://bioinggnri.uniz.it http://wpg.unin.it/ron Univrità

Dettagli

a è detta PARTE LETTERALE

a è detta PARTE LETTERALE I MONOMI Si die MONOMIO un espressione letterle in ui le unihe operzioni presenti sino il prodotto e l divisione. Esempio è detto COEFFICIENTE del monomio e è dett PARTE LETTERALE Un monomio si die ridotto

Dettagli

Ellisse. L ellisse è il luogo geometrico dei punti del piano tali che la somma delle distanze da due punti fissi. definizione. P semidistanza focale

Ellisse. L ellisse è il luogo geometrico dei punti del piano tali che la somma delle distanze da due punti fissi. definizione. P semidistanza focale Elliss dfinizion L lliss è il luogo gomtrio di punti dl pino tli h l somm dll distnz d du punti fissi F1 F2 dtti fuohi è ostnt, ioè: smiss mggior smiss minor P smidistnz fol F 2 smidistnz fol F 1 F 2 smiss

Dettagli

ESERCIZI IN PIÙ ESERCIZI DI FINE CAPITOLO

ESERCIZI IN PIÙ ESERCIZI DI FINE CAPITOLO L RLZIONI L FUNZIONI serizi in più SRIZI IN PIÙ SRIZI I FIN PITOLO TST Nell insieme ell figur, l relzione rppresentt goe ell o elle proprietà: TST L relzione «essere isenente i», efinit nell insieme egli

Dettagli

ANTON FILIPPO FERRARI

ANTON FILIPPO FERRARI ANTON FILIPPO FERRARI L Rom lo h prticmnt prso C è un ccordo mssim vnno dfiniti i dttgli in pr tic l controprtit tcnich Ngli ultimi du nni molti tifosi itlini in prticolr qulli dll Uns lo hnno conosciuto

Dettagli

l apparecchio dalla confezione e controllare i componenti

l apparecchio dalla confezione e controllare i componenti Gui i instllzion rpi Inizio MFC-J6510DW MFC-J6710DW Lggr nzitutto l Opusolo su Siurzz rstrizioni lgli prim i onfigurr l pprhio. Quini, lggr l prsnt Gui i instllzion rpi pr onfigurr instllr orrttmnt il

Dettagli

13 - LA PROGRAMMAZIONE DELL'ALLENAMENTO

13 - LA PROGRAMMAZIONE DELL'ALLENAMENTO 132 13 - LA PROGRAMMAZIONE DELL'ALLENAMENTO La prparazion complta dl calciator si ralizza sottoponndo il suo organismo, la sua prsonalità la sua potnzialità motoria, ad una gran quantità di stimoli ch

Dettagli

A.A.2009/10 Fisica 1 1

A.A.2009/10 Fisica 1 1 Mhine termihe e frigoriferi Un mhin termi è un mhin he, grzie un sequenz i trsformzioni termoinmihe i un t sostnz, proue lvoro he può essere utilizzto. Un mhin solitmente lvor su i un ilo i trsformzioni

Dettagli

Tecniche per la ricerca delle primitive delle funzioni continue

Tecniche per la ricerca delle primitive delle funzioni continue Capitolo 4 Tcnich pr la ricrca dll primitiv dll funzioni continu Nl paragrafo.7 abbiamo dato la dfinizion di primitiva di una funzion f avnt pr dominio un intrvallo I; abbiamo visto ch s F 0 è una primitiva

Dettagli

Opuscolo sui sistemi. Totogoal

Opuscolo sui sistemi. Totogoal Opuscolo sui sistmi Totogoal Più info Conoscnz calcistich pr vincr Jackpot alti Informazioni dttagliat costantmnt aggiornat sul Totogoal, sui programmi Toto sui risultati rpribili su Tltxt, a partir dalla

Dettagli

Appunti sulle disequazioni frazionarie

Appunti sulle disequazioni frazionarie ppunti sull disquazioni frazionari Sono utili l sgunti dfinizioni Una disquazion fratta o frazionaria è una disquazion nlla qual l incognita compar in qualch suo dnominator. Una disquazion razional è una

Dettagli

CONOSCENZE. 1. La derivata di una funzione y = f (x)

CONOSCENZE. 1. La derivata di una funzione y = f (x) ESAME D STATO ESEMP D QUEST D MATEMATCA PER LA TERZA PROVA CONOSCENZE. La drivata di una funzion y f (), in un punto intrno al suo dominio, : il it, s sist d è finito, dl rapporto incrmntal pr h, f ( h)

Dettagli

Droga, il punto del comando provinciale dell'arma Mercoledì 06 Agosto 2014 16:59

Droga, il punto del comando provinciale dell'arma Mercoledì 06 Agosto 2014 16:59 Drog, il pto comndo provcil l'arm Mrcoldì 06 Agosto 2014 16:59 REGGIO CALABRIA 6 go. - Costnt d cssnt è il controllo trritorio l zion rprssiv svolt i Crbiri nll provci Rggio Clbri nl consto ll produzion

Dettagli

Matematica. Indice lezione. (Esercitazioni) dott. Francesco Giannino dott. Valeria Monetti. Funzione esponenziale

Matematica. Indice lezione. (Esercitazioni) dott. Francesco Giannino dott. Valeria Monetti. Funzione esponenziale Mtmtic (Esrcitzioni) Equzioni Disquzioni sponnzili - ritmich dott. Frncsco Ginnino dott. Vlri Montti Indic lzion Funzion sponnzil Equzioni disquzioni sponnzili Funzion ritmo Equzioni disquzioni ritmich

Dettagli

MODELLI DEI SISTEMI ELETTROMECCANICI

MODELLI DEI SISTEMI ELETTROMECCANICI Ing Mrigrzi Dotoli Controlli Autotici NO (9 CFU) Modlli di Sisti Elttroccnici MODELLI DEI SISTEMI ELETTROMECCANICI Nl sguito ci occupio dll odllzion di sisti ibridi ch cobinno sisti lttrici con sisti ccnici,

Dettagli

Scuole Italiane all'estero ESAMI DI STATO DI LICEO SCIENTIFICO Sessione SECONDA PROVA SCRITTA Tema di Matematica

Scuole Italiane all'estero ESAMI DI STATO DI LICEO SCIENTIFICO Sessione SECONDA PROVA SCRITTA Tema di Matematica Sssion ordinri Estro Scuol Itlin llestro ESAMI DI STATO DI LICEO SCIENTIFICO Sssion SECONDA PROVA SCRITTA Tm di Mtmtic PROBLEMA E ssnto un cilindro quiltro Q il cui rio di bs misur. ) Si dtrmini il cono

Dettagli

VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA. Scuola Secondaria di Primo Grado Classe Prima. Scuola... Classe... Alunno...

VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA. Scuola Secondaria di Primo Grado Classe Prima. Scuola... Classe... Alunno... VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA Suol Seonri i Primo Gro Clsse Prim Suol..........................................................................................................................................

Dettagli

GEODESIA: PROPRIETA GEOMETRICHE DELL ELLISSOIDE

GEODESIA: PROPRIETA GEOMETRICHE DELL ELLISSOIDE GEODESIA: PROPRIETA GEOMETRICHE DELL ELLISSOIDE PROPRIETA GEOMETRICHE DELL ELLISSOIDE Al fin di stbilir un gomtri sull llissoid di rotzion è ncssrio non solo dfinir l quzioni dll curv idon d individur

Dettagli

Italienisch. Kompetenzaufbau

Italienisch. Kompetenzaufbau tlinish Komptnzuu Elmnt s Komptnzuus Witr normtionn zu n Elmntn s Komptnzuus sin im Kpitl Ürlik un Anlitun zu inn. mprssum Hrusr: Dutshshwizr Erzihunsirktorn-Konrnz (D-EDK) D-EDK Gshätsstll, Zntrlstrss

Dettagli

Heating Modulis Ramp RTS

Heating Modulis Ramp RTS www.somfy.om Rf. 5066A PT ES EN DE NL FR Hting Moulis Rmp RTS 5066X00_HMR_Rmp_RTS.in 9/04/09 8::9 Gui ll instllzion Hting Moulis Rmp RTS. Introuzion 7. Avvrtnz 7. Siurzz rsponsilità 7. Instllzion 8. Contnuto

Dettagli

Algebra + numeri relativi +l calcolo letterale Equazioni, disequazioni, problemi

Algebra + numeri relativi +l calcolo letterale Equazioni, disequazioni, problemi Algr + numri rltivi +l lolo lttrl Equzioni, isquzioni, prolmi + numri rltivi Rpprsnt on un numro rltivo l sgunti grnzz. SEZ. O g Altituin i 00 m sul livllo l mr. Trzo pino i un prhggio sottrrno. Prit i

Dettagli

e una funzione g ε S f tali che = sup g : g S f tale che h ε f < ε/2; analogamente, per

e una funzione g ε S f tali che = sup g : g S f tale che h ε f < ε/2; analogamente, per C.13 ntgrl di Rimnn Prmttimo il sgunt risultto. Lmm C.13.1 Si f un funzion limitt su = [, b]. Allor f è intgrbil s solo s pr ogni ε > 0 sistono un funzion h ε S + f un funzion g ε S f tli h h ε g ε < ε.

Dettagli

Regolamento per il controllo della pubblicità

Regolamento per il controllo della pubblicità Rgolamnto pr il controllo dlla Rgolamnto pr il controllo dlla pu bbliciià. Introduzion: Qusto Rgolamnto vin applicato pr il controllo dlla pubbliciti su: Indumnti d quipaggiamnto di ginnasti, giudici diuignti;

Dettagli

An italian story. La creatività dei miei gioielli è fortemente legata alle. The inspiration behind the creation of my jewels is

An italian story. La creatività dei miei gioielli è fortemente legata alle. The inspiration behind the creation of my jewels is An itlin story L rtività i mii gioilli è ortmnt lgt ll mi origini ll ntur l mio trritorio. Ho smpr ruto nll qulità ni sgrti ll gioillri itlin. Il mrhio Mro Bigo oniug trizion sign ontmporno port vnti on

Dettagli

Elettronica dei Sistemi Digitali Disegno del layout di porte logiche combinatorie CMOS

Elettronica dei Sistemi Digitali Disegno del layout di porte logiche combinatorie CMOS Elettroni ei Sistemi Digitli Disegno el lout i porte logihe omintorie CMOS Vlentino Lierli Diprtimento i Tenologie ell Informzione Università i Milno, 26013 Crem e-mil: lierli@ti.unimi.it http://www.ti.unimi.it/

Dettagli

SESSIONE ORDINARIA 2012 CORSI SPERIMENTALI

SESSIONE ORDINARIA 2012 CORSI SPERIMENTALI PROBLEMA SESSIONE ORDINARIA 0 CORSI SPERIMENTALI Sia ( x) ln ( x) ln x sia ( x) ln ( x) ln x.. Si dtrmino i domini di di.. Si disnino, nl mdsimo sistma di assi cartsiani ortoonali Oxy, i raici di di..

Dettagli

1 Derivate parziali 1. 2 Regole di derivazione 5. 3 Derivabilità e continuità 7. 4 Differenziabilità 7. 5 Derivate seconde e teorema di Schwarz 8

1 Derivate parziali 1. 2 Regole di derivazione 5. 3 Derivabilità e continuità 7. 4 Differenziabilità 7. 5 Derivate seconde e teorema di Schwarz 8 UNIVR Facoltà di Economia Sd di Vicnza Corso di Matmatica Drivat dll funzioni di più variabili Indic Drivat parziali Rgol di drivazion 5 3 Drivabilità continuità 7 4 Diffrnziabilità 7 5 Drivat scond torma

Dettagli

1) La probabilità di ciascun evento elementare è non negativa. 2) La somma delle probabilità di tutti gli eventi elementari vale 1.

1) La probabilità di ciascun evento elementare è non negativa. 2) La somma delle probabilità di tutti gli eventi elementari vale 1. CAPITOLO SECONDO CALCOLO DELLE PROBABILITÀ Spazi di probabilità, vnti smplici d vnti composti Indichiamo con S lo spazio dgli vnti. Esso è un insim, i cui lmnti sono dtti vnti. Nl lancio di un dado, lo

Dettagli

CORSO DI TOPOGRAFIA A - A.A. 2006-2007 ESERCITAZIONI - 09.05.07 ALLEGATO al file Esercizi di geodesia. r a. Z c. nella quale

CORSO DI TOPOGRAFIA A - A.A. 2006-2007 ESERCITAZIONI - 09.05.07 ALLEGATO al file Esercizi di geodesia. r a. Z c. nella quale CORSO DI TOPOGRAFIA A - A.A. 6-7 ESERCITAZIONI - 9.5.7 ALLEGATO l fil Esrcizi di godsi Ellissoid trrstr Fin dll scond mtà dl VII scolo (su propost di Nwton) l suprfici più dtt ssr ssunt com suprfici di

Dettagli

1 Il concetto di funzione 1. 2 Funzione composta 4. 3 Funzione inversa 6. 4 Restrizione e prolungamento di una funzione 8

1 Il concetto di funzione 1. 2 Funzione composta 4. 3 Funzione inversa 6. 4 Restrizione e prolungamento di una funzione 8 UNIVR Facoltà di Economia Sd di Vicnza Corso di Matmatica 1 Funzioni Indic 1 Il conctto di funzion 1 Funzion composta 4 3 Funzion invrsa 6 4 Rstrizion prolungamnto di una funzion 8 5 Soluzioni dgli srcizi

Dettagli

Esercizi per il corso di Calcolatori Elettronici. svolti da Mauro IACOVIELLO & Fabio LAUDANI

Esercizi per il corso di Calcolatori Elettronici. svolti da Mauro IACOVIELLO & Fabio LAUDANI Eserizi per il orso i loltori Elettronii svolti Muro OVELLO & Fio LUDN Prte seon : Mhine stti finiti ESERZO : Mhin i Mely Si t l seguente mhin i Mely, sintetizzre un iruito he l implementi, utilizzno un

Dettagli

SUPERFICIE CONVENZIONALE VENDIBILE

SUPERFICIE CONVENZIONALE VENDIBILE CATASTO (*) Utilizza suprfici catastal (si COMPRAVENDITA DI IMMOBILI RESIDENZIALI UNIFAMILIARI NORMA UNI 10750 (**) Utilizza suprfici convnzional vndibil (si MERCATO DI MODENA (***) (si R/2 A/7 Abitazioni

Dettagli

ESERCIZI PARTE I SOLUZIONI

ESERCIZI PARTE I SOLUZIONI UNIVR Facoltà di Economia Corso di Matmatica finanziaria 008/09 ESERCIZI PARTE I SOLUZIONI Domini di funzioni di du variabili Esrcizio a f, = log +. L unica condizion di sistnza è data dalla disquazion

Dettagli

ITALMOBILIARE SOCIETA PER AZIONI

ITALMOBILIARE SOCIETA PER AZIONI ITALMOBILIARE SOCIETA PER AZIONI COMUNICATO STAMPA Informazioni rlativ ai piani di stock option di ITALMOBILIARE S.p.A. ITALCEMENTI S.p.A. già sottoposti alla dcision di rispttivi organi comptnti antcdntmnt

Dettagli

UTILIZZO TASTI E FUNZIONI

UTILIZZO TASTI E FUNZIONI wb Grazi pr avr sclto un tlcomando Mliconi. Consrvar il prsnt librtto pr futur consultazioni. Il tlcomando Facil wb è stato studiato pr comandar un tlvisor. Grazi alla sua ampia banca dati è in grado di

Dettagli

Descrizione VENEZIA 60 VENEZIA 80 VENEZIA 100

Descrizione VENEZIA 60 VENEZIA 80 VENEZIA 100 F O N T N M U R O M O. V N Z I H L G I F odice od. graniglia od. graniglia ls grigio martellinata lavata VNZI 4900 49003 49004... VNZI 80 49 493 494 VNZI 0 4920 49203 49204... F G H I L VNZI 52 1 1,5 /

Dettagli

Barriere all entrata e modello del Prezzo Limite Economia industriale Università Bicocca

Barriere all entrata e modello del Prezzo Limite Economia industriale Università Bicocca Brriere ll entrt e modello del Prezzo imite onomi industrile Università Bio Christin Grvgli - Giugno 006 Brriere ll entrt definizioni Condizioni he permettono lle imprese opernti in un industri di elevre

Dettagli

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito.

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito. Integrli de niti. Il problem di clcolre l re di un regione pin delimitt d gr ci di funzioni si può risolvere usndo l integrle de nito. L integrle de nito st l problem del clcolo di ree come l equzione

Dettagli

IL MOTO NELLA ZONA INSATURA

IL MOTO NELLA ZONA INSATURA L ritnzion dll umidità L suprfii d 1 4 rpprsntno l sussiv fsi di drnggio gio dll qu d un mzzo poroso. Al rsr dl drnggio l qu l si ritir ngli spzi intrstizili on suprfii urvtur ur rsnt d umntndo il rio

Dettagli

INTEGRALI DOPPI Esercizi svolti

INTEGRALI DOPPI Esercizi svolti INTEGRLI OPPI Esrcizi svolti. Calcolar i sgunti intgrali doppi: a b c d f g h i j k y d dy, {, y :, y }; d dy, {, y :, y }; + y + y d dy, {, y :, y }; y d dy, {, y :, y }; y d dy, {, y :, y + }; + y d

Dettagli