Indice. 1 La statistica, i dati e altri concetti fondamentali

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Indice. 1 La statistica, i dati e altri concetti fondamentali ---------------------------------------------------- 3"

Transcript

1 LEZIONE ELEMENTI DI STATISTICA DESCRITTIVA PROF. CRISTIAN SIMONI

2 Indice 1 La statistica, i dati e altri concetti fondamentali Popolazione Campione Variabili (variabili quantitative, qualitative, casuali) Scale di misurazione Ordinare, raggruppare e rappresentare graficamente i dati Le tabelle L istogramma L aerogramma Poligono di frequenza Misure di tendenza centrale Media aritmetica Mediana Moda Quartile, decile e percentile Misure di dispersione Intervallo di variazione Deviazione standard o scarto quadratico medio o sigma ( ) Il coefficiente di variazione (CV) di 16

3 1 La statistica, i dati e altri concetti fondamentali Con il termine statistica intendiamo quella disciplina che si occupa della raccolta, dell organizzazione, della sintesi e dell analisi di dati. I dati sono pertanto il materiale di base della statistica, ossia delle cifre numeriche risultanti o da un conteggio o da una misura (ad es. la rilevazione della temperatura corporea di un paziente o il conteggio di pazienti dimessi dal nosocomio). Le fonti dei dati possono essere: 1. le rilevazioni periodiche (ad es. le informazioni periodiche sui pazienti); 2. le indagini, ovvero l ottenimento di nuovi dati attraverso specifici quesiti; 3. le strategie messe in campo dall operatore sanitario al fine di ottenere la massima collaborazione del paziente. 4. La letteratura già disponibile su un certo argomento o quesito analogo al nostro, al quale qualcuno abbia già dato risposta e conservato dati. Se prendiamo in considerazione esclusivamente gli aspetti di raccolta, organizzazione, sintesi e presentazione di dati di un collettivo, siamo di fronte ad una procedura di statistica descrittiva. Quando si studiano fenomeni per i quali non è possibile prendere in considerazione un numero elevato di individui, si procede estraendo casualmente un gruppo di essi (campione) e si cerca così di risalire alle caratteristiche del gruppo più grande: in questo caso siamo di fronte ad una procedura di statistica inferenziale. Gli strumenti della statistica sono utilizzati in molti campi, se tali strumenti sono impiegati nel campo medico, assumono la denominazione di biostatistica, ovvero la raccolta e l analisi dei dati provenienti dalle scienze biologiche e dalla medicina Popolazione Con popolazione in ambito statistico s intende un collettivo di elementi cui siamo interessati in un particolare momento. La popolazione è definita dalla nostra sfera d interesse e può essere di due tipologie: finita o infinita, a seconda se una popolazione di valori consiste in un numero fissato di valori o se la popolazione è costituita da una serie interminabile di valori. 3 di 16

4 1.2. Campione Poiché non è sempre possibile esaminare tutti coloro che compongono una data popolazione statistica, se ne analizza una parte di quest ultima. Il campione riflette dunque fedelmente, ma in numero ridotto, la popolazione presa in esame. Le tipologie di campioni che si possono estrarre da una popolazione sono molteplici, prendiamo in considerazione: il campionamento casuale semplice, il campionamento sistematico, il campionamento stratificato e il campionamento a grappoli. Quando un campione viene estratto da una popolazione in modo tale che ciascuno di tutti i possibili campioni (della medesima dimensione) abbiano la stessa probabilità di essere estratti, parliamo di campione casuale semplice. Casualità, dunque, non significa scelto a caso, ma possibilità uguali affinché ogni elemento della popolazione possa essere scelto (ad esempio il metodo di sorteggio di numeri rappresentanti ogni individuo del campione). Il campionamento sistematico è possibile quando siamo in possesso di elenchi completi di una popolazione, da cui estrarre il nostro campione. Si parte da un individuo qualsiasi della popolazione, scelto a caso, poi si aggiungono tutti gli individui che cadono in un intervallo, da noi stabilito, all interno dell elenco. Se stabiliamo dunque di scegliere un individuo ogni 10, partendo dalla posizione 3, ecco che il nostro campione sarà formato da tutti gli individui in posizione 13, 23, 33 etc, fino al raggiungimento del numero necessario, prefissato in precedenza, per comporre il campione stesso. Il campionamento stratificato. Poniamo il caso che nel nostro ospedale vi siano 500 pazienti di età diverse: bambini, adulti, anziani. Per creare un campione stratificato da questa popolazione dobbiamo innanzi tutto, oltre che definire delle classi, accertare che ogni individuo sia presente in una sola classe, affinché non compaia più di una volta. In un secondo momento procediamo estraendo, all interno di ciascuna classe, un campione casuale semplice. La somma di tutti i campioni casuali semplici, estratti dalle classi, vanno a comporre un campione stratificato (nel nostro esempio la somma dei tre campioni casuali estratti dalle classi: bambini, adulti e anziani). Se ci troviamo di fronte a delle classi con una distribuzione diversificata di individui, ad es.: 50 bambini, 200 adulti e 250 anziani, possiamo creare un campione stratificato proporzionale. Tale tipologia di campione stratificato consiste nel mantenere, appunto nel campione, le stesse proporzioni della popolazione totale (nel nostro esempio: 10% bambini, 40% adulti, 50% anziani). Il campione può essere però anche non proporzionale e dunque, in questo secondo caso, da ogni classe estraiamo lo stesso numero di individui che, nell esempio preso in esame in precedenza, 4 di 16

5 significa comporre il campione con 1/3 di dati provenienti dalla classe bambini, 1/3 da quella adulti e 1/3 da quella anziani. Concludiamo con il campionamento a grappoli (cluster). Anche in questo campionamento bisogna suddividere la popolazione in classi, ma, al contrario del campionamento stratificato, non si estraggono gli individui da più classi ma si prende in considerazione, come campione, direttamente una o più classi intere. Potremmo dividere, ad esempio, tutti i pazienti dell ospedale per reparto di degenza (poniamo che i reparti siano 10) e prelevare casualmente solo 3 classi, ossia tre soli reparti ospedalieri. I tre gruppi sorteggiati diventeranno così il nostro campione a grappoli Variabili (variabili quantitative, qualitative, casuali) Con variabile indichiamo la possibilità che una data caratteristica possa assumere valori diversi in soggetti diversi. La frequenza cardiaca o la pressione sistolica sono esempi di variabili, ossia caratteristiche che non sempre assumono gli stessi valori. Le variabili possono essere di diversa natura: sono variabili quantitative se forniscono informazioni sulla grandezza (ad. es. peso dei pazienti). Sono variabili qualitative quelle caratteristiche che non possono essere misurate come ad esempio le diagnosi dei malati. Le variabili qualitative dunque, più che con la misurazione, hanno a che fare con la classificazione o categorizzazione. Infine una variabile può essere casuale quando i valori sono generati da fattori casuali, non possono essere pertanto predetti (ad esempio numero ricoveri in una giornata) Scale di misurazione La misurazione è l attribuzione di un valore numerico ad un evento o ad un oggetto, secondo regole che consentono di rappresentare importanti proprietà degli eventi/oggetti stessi. Ai fini della misurazione possiamo utilizzare diversi tipi di scale. La scala può essere nominale, ossia consistente in una classificazione delle osservazioni effettuate in varie categorie: a es. uomo-donna; bambino-adulto. Trattasi del livello più basso di misurazione, con questa scala attribuiamo etichette alle varie classi. 5 di 16

6 H I A C F G B D L M N B Gli individui contenuti nell insieme hanno le stesse caratteristiche (proprietà transitiva della scala nominale, se A=B e B=C allora A=C e proprietà simmetrica: se A=B allora B=A). Quelli fuori invece non presentano le stesse caratteristiche e dunque sono esclusi. Vi è poi la scala ordinale: qui le osservazioni possono essere classificate in base ad un qualche criterio oltre che in base alla loro categoria. Ad es. un paziente, dopo una cura, può risultare: 1) non migliorato, 2) migliorato, 3) molto migliorato. La scala ordinale dunque ha lo scopo di classificare le osservazioni in modo progressivo (dal valore più basso a quello più alto) e permette di creare delle graduatorie. - + A B C D E F G H I L In questa scala le distanze non sono regolari, possiamo desumere semplicemente che il paziente I sia migliorato molto di più del paziente B. La scala ad intervalli: questa scala specifica non soltanto la posizione in graduatoria ma anche la distanza tra ciascuna delle modalità. Possiamo dunque ordinare le unità in relazione al fatto che possiedano in misura maggiore o minore una determinata caratteristica e possiamo, inoltre, indicare l'esatta distanza tra esse. Esempi classici sono la misurazione della temperatura in gradi Celsius o i battiti cardiaci al minuto. La scala ad intervalli non è dotata però di un cosiddetto zero assoluto ma esso è arbitrario, come appunto nel caso della misurazione della temperatura. A B C D E F 6 di 16

7 In questa scala BC=EF etc..; è possibile qui attribuire un valore quantitativo alla distanza tra due posizioni della scala. Se invece è possibile individuare uno zero assoluto, ci troviamo di fronte ad una scala a rapporti, attraverso la quale si può mettere a confronto quantità diverse calcolandone il rapporto ( ad esempio una certa rilevazione è di entità doppia rispetto ad un altra). La statura, il peso e la lunghezza sono misurate ad esempio con scale a rapporti di 6. In questa scala siamo in grado di dire ad esempio che 4 è il doppio di due o che 3 è la metà 7 di 16

8 2 Ordinare, raggruppare e rappresentare graficamente i dati Lo spoglio dei dati è sostanzialmente un operazione di conteggio il cui risultato è definito distribuzione statistica. I numeri ottenuti per ogni classificazione, che vanno a definire la distribuzione, sono detti frequenze. Con frequenza di un dato, dunque, s intende il numero di volte in cui il dato stesso compare. La frequenza è detta assoluta quando determina il numero di osservazioni che appartengono a una certa classe (frequenza assoluta della classe). Con frequenza relativa, invece, s intende il rapporto tra la frequenza assoluta e la totalità della popolazione statistica su cui si sta svolgendo l indagine (rapporto tra la sua frequenza n e la somma N di tutte le frequenze). Per calcolare la frequenza relativa bisogna dunque dividere ogni frequenza assoluta per la somma di tutte le frequenze; se poi moltiplichiamo per 100 ciascuna delle frequenze relative ottenute, troviamo le percentuali. Frequenze Frequenze Percentuali assolute relative Guariti 98 0, ,58 malati 39 0, ,53 Deceduti 53 0, ,89 Totale popolazione 190 1, ,00 Esempio di popolazione con frequenze riscontrate. 2.1 Le tabelle La tabella è una riproduzione semplificata del fenomeno osservato, che rende l informazione statistica sintetica e rapidamente leggibile. Se prendiamo in considerazione più di un dato carattere qualitativo, otteniamo una tabella di contingenza (o a doppia entrata). Quando ordiniamo i dati in tabelle, possiamo raggruppare un insieme di osservazioni selezionando dei gruppi d intervalli contigui (non sovrapponibili), in modo tale che ciascuna osservazione possa essere collocata in uno solo degli intervalli, detti anche classi. 8 di 16

9 [Fonte: Istituto tumori di Milano] 2.2 L istogramma Se vogliamo rappresentare graficamente la distribuzione di frequenze attraverso un istogramma, collochiamo sull asse delle ascisse (orizzontale) i valori della variabile; sull asse delle ordinate (verticale) invece rappresentiamo le frequenze assolute. Su ogni classe dell asse orizzontale collochiamo una barra rettangolare alta quanto l effettiva frequenza riscontrata peso pazienti frequenza 2.3 L aerogramma Si divide una circonferenza in settori, ciascuno dei quali ha un area proporzionale alla frequenza corrispondente in percentuale. 9 di 16

10 13% 13% 17% 1 Trim. 2 Trim. 3 Trim. 4 Trim. 57% 2.4 Poligono di frequenza È utile quando le classi da rappresentare sono molte. Sull asse orizzontale vengono rappresentati gli intervalli di classe; sull asse verticale invece rappresentiamo le frequenze. Per costruire un poligono di frequenza può essere necessario stabilire il valore centrale di ogni classe di valori e posizionarlo sull asse orizzontale, poi si deve segnare con un punto la frequenza di ogni classe stessa sull asse verticale. I vari punti vanno poi uniti in una linea che si conforma come spezzata. Si preferisce l istogramma al poligono di frequenza quando si vuole evidenziare bene il numero di casi che cadono in ogni intervallo di classe; mentre è preferibile il poligono di frequenza quando si vuole illustrare con maggior chiarezza l andamento dei dati. Tuttavia si possono sovrapporre entrambi per avere un quadro più preciso sulla distribuzione. 10 di 16

11 Causes of death - standardised death rate per inhabitants, males.in questo esempio, tratto dal sito ufficiale Eurostat, osserviamo le più comuni cause di morte in Europa. Sulle ordinate vi sono le frequenze relative a ciascuna causa di morte, mentre sulle ascisse gli anni dal 2000 al di 16

12 3 Misure di tendenza centrale 3.1 Media aritmetica Si calcola sommando tutti i valori di un campione o di una popolazione o di una semplice distribuzione di risultati, dividendo la somma ottenuta per il numero dei valori sommati. Vantaggi: l immediatezza e semplicità del calcolo; inoltre l unicità del dato che riassume un insieme di dati. Svantaggi: il limite principale è dovuto al fatto che nella media aritmetica i dati estremi influenzano la media stessa, ciò può risultare talvolta non opportuno e non rappresentativo dell insieme intero di dati. M( o )=(x 1 + x 2 + x 3 + x n )/n oppure Dove: = media del campione; = i-esima osservazione della variabile X; n = numero di osservazioni del campione; = sommatoria di tutti gli del campione. 3.2 Mediana Se prendiamo un insieme ordinato di dati (in ordine crescente o decrescente), la mediana è quel valore che divide in due parti uguali l insieme stesso. Se queste sono dispari la mediana è il valore centrale (ad esempio su 11 valori la mediana è rappresentato dal sesto valore). Nel caso i valori siano pari, la mediana è rappresentata dalla media aritmetica dei due valori centrali (se abbiamo 10 valori si procede alla media aritmetica tra il quinto e il sesto valore). La mediana presenta vantaggi analoghi alla media, ovvero l unicità del valore e la semplicità e, in più, non è influenzata dai valori estremi come la media di 16

13 3.3 Moda Con moda intendiamo quel valore che compare più frequentemente all interno del nostro campione. Può verificarsi tuttavia il caso in cui tutti i valori siano diversi e pertanto l insieme delle nostre osservazioni non hanno moda; oppure può verificarsi al contrario che vi sia più di un valore moda all interno delle nostre rilevazioni. L uso tipico della moda nell ambito sanitario consiste nella possibilità di rilevazione di quali diagnosi risultano più frequenti fra i ricoveri. La diagnosi maggiormente riscontrata in un gruppo di pazienti è detta diagnosi modale Quartile, decile e percentile A conclusione di questa sezione accenniamo a quei valori medi simili alla mediana. I Quartili dividono la serie ordinata in quattro parti contenenti ciascuna lo stesso numero di dati. Il primo quartile Q 1 è il valore che supera un quarto dei termini mentre il secondo quartile Q 2 è la mediana, ed infine, il terzo quartile Q 3 è il valore che supera tre quarti dei dati. I decili sono i valori che dividono l insieme dei dati in dieci parti uguali, mentre i percentili sono i novantanove valori che dividono l insieme in cento parti uguali. Il primo quartile è sul valore 7 (25% dei valori cumulati); il secondo sul 13 (50%); il terzo su circa il 21 e il quarto è rappresentato dal valore finale. 13 di 16

14 Punteggio Frequenza Frequ. relativa % Frequ. Cumulata 0 1 4,2% 4,2% 2 2 8,3% 12,5% 4 1 4,2% 16,7% 5 1 4,2% 20,8% 7 1 4,2% 25,0% = Q ,2% 29,2% ,2% 33,3% ,2% 37,5% ,3% 45,8% ,2% 50,0% =Q ,2% 54,2% ,2% 58,3% ,2% 62,5% ,7% 79,2% =Q ,2% 83,3% ,2% 87,5% ,2% 91,7% ,2% 95,8% ,2% 100,0% =Q4 14 di 16

15 4 Misure di dispersione Le rilevazioni possono assumere valori diversi: tale fenomeno è detto variabilità o dispersione. La variabilità può essere di dimensioni ridotte, quando i valori sono molto simili tra loro, o viceversa molto pronunciata nel caso in cui i dati siano tra loro molto diversi. La media, da sola, può non essere dunque sufficiente a descrivere la distribuzione di alcuni dati; pertanto è necessario fare riferimento ad operazioni più complesse come l intervallo di variazione (range), la deviazione standard e il coefficiente di variazione. 4.1 Intervallo di variazione Esso costituisce l indicatore più semplice della variabilità dei punteggi. Al punteggio massimo ottenuto si sottrae quello più basso. L IV o range, indica dunque la variabilità dei punteggi di una serie di misure. IV= valore più grande valore più piccolo Limiti: dal momento in cui vengono presi in considerazione solamente i valori più grandi e più piccoli si finisce per tralasciare i valori intermedi. 4.2 Deviazione standard o scarto quadratico medio o sigma ( ) Più i risultati si discostano dalla media, più è elevato il grado di variabilità dei dati. È necessario calcolare così una misura di variabilità che tenga conto della dispersione dei valori attorno alla loro media. Per calcolare la deviazione standard si sottrae il valore della media da ciascuno dei singoli valori di una distribuzione; si elevano poi al quadrato le differenze ottenute e si sommano tra loro. Tale somma dovrà essere poi divisa per il numero dei valori presenti nella distribuzione. Infine, dovrà essere calcolata la radice quadrata del risultato ottenuto. 15 di 16

16 Il valore della deviazione standard aumenta più i valori sono distanti dalla media; diminuisce più i valori della serie sono vicini alla media. 2 2 x M x M x M n n 2 Dove: = deviazione standard; = rappresenta un singolo valore della distribuzione; n= numero totale valori; M= media. Se il valore della deviazione standard è ridotto, ciò significa che i punteggi della distribuzione sono vicini alla media; se invece il suo valore è ampio, i punteggi si dimostreranno lontani dalla media. 4.3 Il coefficiente di variazione (CV) Per mettere a confronto due distribuzioni di dati, i cui valori delle deviazioni standard sono diversi, dobbiamo dividere i valori delle deviazioni standard (σ) stesse per le rispettive medie aritmetiche. 16 di 16

Un po di statistica. Christian Ferrari. Laboratorio di Matematica

Un po di statistica. Christian Ferrari. Laboratorio di Matematica Un po di statistica Christian Ferrari Laboratorio di Matematica 1 Introduzione La statistica è una parte della matematica applicata che si occupa della raccolta, dell analisi e dell interpretazione di

Dettagli

Università del Piemonte Orientale. Corsi di Laurea Triennale. Corso di Statistica e Biometria. Introduzione e Statistica descrittiva

Università del Piemonte Orientale. Corsi di Laurea Triennale. Corso di Statistica e Biometria. Introduzione e Statistica descrittiva Università del Piemonte Orientale Corsi di Laurea Triennale Corso di Statistica e Biometria Introduzione e Statistica descrittiva Corsi di Laurea Triennale Corso di Statistica e Biometria: Introduzione

Dettagli

STATISTICA DESCRITTIVA UNIVARIATA

STATISTICA DESCRITTIVA UNIVARIATA Capitolo zero: STATISTICA DESCRITTIVA UNIVARIATA La STATISTICA è la scienza che si occupa di fenomeni collettivi che richiedono lo studio di un grande numero di dati. Il termine STATISTICA deriva dalla

Dettagli

Come descrivere un fenomeno in ambito sanitario fondamenti di statistica descrittiva. Brugnaro Luca

Come descrivere un fenomeno in ambito sanitario fondamenti di statistica descrittiva. Brugnaro Luca Come descrivere un fenomeno in ambito sanitario fondamenti di statistica descrittiva Brugnaro Luca Progetto formativo complessivo Obiettivo: incrementare le competenze degli operatori sanitari nelle metodiche

Dettagli

Misure della dispersione o della variabilità

Misure della dispersione o della variabilità QUARTA UNITA Misure della dispersione o della variabilità Abbiamo visto che un punteggio di per sé non ha alcun significato e lo acquista solo quando è posto a confronto con altri punteggi o con una statistica.

Dettagli

ESERCIZI DI STATISTICA DESCRITTIVA

ESERCIZI DI STATISTICA DESCRITTIVA ESERCIZI DI STATISTICA DESCRITTIVA ES1 Data la seguente serie di dati su Sesso e Altezza di 8 pazienti, riempire opportunamente due tabelle per rappresentare le distribuzioni di frequenze dei due caratteri,

Dettagli

Statistica descrittiva: prime informazioni dai dati sperimentali

Statistica descrittiva: prime informazioni dai dati sperimentali SECONDO APPUNTAMENTO CON LA SPERIMENTAZIONE IN AGRICOLTURA Statistica descrittiva: prime informazioni dai dati sperimentali La statistica descrittiva rappresenta la base di partenza per le applicazioni

Dettagli

Indici (Statistiche) che esprimono le caratteristiche di simmetria e

Indici (Statistiche) che esprimono le caratteristiche di simmetria e Indici di sintesi Indici (Statistiche) Gran parte della analisi statistica consiste nel condensare complessi pattern di osservazioni in un indicatore che sia capace di riassumere una specifica caratteristica

Dettagli

VARIABILI E DISTRIBUZIONI DI FREQUENZA A.A. 2010/2011

VARIABILI E DISTRIBUZIONI DI FREQUENZA A.A. 2010/2011 VARIABILI E DISTRIBUZIONI DI FREQUENZA A.A. 2010/2011 1 RAPPRESENTARE I DATI: TABELLE E GRAFICI Un insieme di misure è detto serie statistica o serie dei dati 1) Una sua prima elementare elaborazione può

Dettagli

2. Un carattere misurato in un campione: elementi di statistica descrittiva e inferenziale

2. Un carattere misurato in un campione: elementi di statistica descrittiva e inferenziale BIOSTATISTICA 2. Un carattere misurato in un campione: elementi di statistica descrittiva e inferenziale Marta Blangiardo, Imperial College, London Department of Epidemiology and Public Health m.blangiardo@imperial.ac.uk

Dettagli

Corso di. Dott.ssa Donatella Cocca

Corso di. Dott.ssa Donatella Cocca Corso di Statistica medica e applicata Dott.ssa Donatella Cocca 1 a Lezione Cos'è la statistica? Come in tutta la ricerca scientifica sperimentale, anche nelle scienze mediche e biologiche è indispensabile

Dettagli

Il concetto di valore medio in generale

Il concetto di valore medio in generale Il concetto di valore medio in generale Nella statistica descrittiva si distinguono solitamente due tipi di medie: - le medie analitiche, che soddisfano ad una condizione di invarianza e si calcolano tenendo

Dettagli

CLASSIFICAZIONE DEI CARATTERI

CLASSIFICAZIONE DEI CARATTERI CLASSIFICAZIONE DEI CARATTERI Come abbiamo visto, su ogni unità statistica si rilevano una o più informazioni di interesse (caratteri). Il modo in cui un carattere si manifesta in un unità statistica è

Dettagli

UNIVERSITA DEGLI STUDI DI PERUGIA STATISTICA MEDICA. Prof.ssa Donatella Siepi donatella.siepi@unipg.it tel: 075 5853525

UNIVERSITA DEGLI STUDI DI PERUGIA STATISTICA MEDICA. Prof.ssa Donatella Siepi donatella.siepi@unipg.it tel: 075 5853525 UNIVERSITA DEGLI STUDI DI PERUGIA STATISTICA MEDICA Prof.ssa Donatella Siepi donatella.siepi@unipg.it tel: 075 5853525 2 LEZIONE Statistica descrittiva STATISTICA DESCRITTIVA Rilevazione dei dati Rappresentazione

Dettagli

Prova di autovalutazione Prof. Roberta Siciliano

Prova di autovalutazione Prof. Roberta Siciliano Prova di autovalutazione Prof. Roberta Siciliano Esercizio 1 Nella seguente tabella è riportata la distribuzione di frequenza dei prezzi per camera di alcuni agriturismi, situati nella regione Basilicata.

Dettagli

Grafici delle distribuzioni di frequenza

Grafici delle distribuzioni di frequenza Grafici delle distribuzioni di frequenza L osservazione del grafico può far notare irregolarità o comportamenti anomali non direttamente osservabili sui dati; ad esempio errori di misurazione 1) Diagramma

Dettagli

Elementi di Statistica

Elementi di Statistica Elementi di Statistica Contenuti Contenuti di Statistica nel corso di Data Base Elementi di statistica descrittiva: media, moda, mediana, indici di dispersione Introduzione alle variabili casuali e alle

Dettagli

1. L analisi statistica

1. L analisi statistica 1. L analisi statistica Di cosa parleremo La statistica è una scienza, strumentale ad altre, concernente la determinazione dei metodi scientifici da seguire per raccogliere, elaborare e valutare i dati

Dettagli

Esercitazione di riepilogo 23 Aprile 2013

Esercitazione di riepilogo 23 Aprile 2013 Esercitazione di riepilogo 23 Aprile 2013 Grafici Grafico a barre Servono principalmente per rappresentare variabili (caratteri) qualitative, quantitative e discrete. Grafico a settori circolari (torta)

Dettagli

LA STATISTICA E IL CALCOLO DELLE PROBABILITÀ

LA STATISTICA E IL CALCOLO DELLE PROBABILITÀ LA STATISTICA E IL CALCOLO DELLE PROBABILITÀ Prof. Francesco Tottoli Versione 3 del 20 febbraio 2012 DEFINIZIONE È una scienza giovane e rappresenta uno strumento essenziale per la scoperta di leggi e

Dettagli

ESERCIZIO N 4. Fatturato Supermercati [0;500) 340 [500;1000) 368 [1000;5000) 480 [5000;10000) 37 [10000;20000) 15 taglia = 1240

ESERCIZIO N 4. Fatturato Supermercati [0;500) 340 [500;1000) 368 [1000;5000) 480 [5000;10000) 37 [10000;20000) 15 taglia = 1240 ESERCIZIO N 4 Fatturato Supermercati [0;500) 340 [500;1000) 368 [1000;5000) 480 [5000;10000) 37 [10000;20000) 15 taglia = 1240 PUNTO a CALCOLO MODA E QUARTILI La moda rappresenta quell'elemento del campione

Dettagli

Lezione 1- Introduzione. Statistica medica e Biometria. Statistica medica-biostatistica. Prof. Enzo Ballone

Lezione 1- Introduzione. Statistica medica e Biometria. Statistica medica-biostatistica. Prof. Enzo Ballone Lezione 1- Introduzione Cattedra di Biostatistica Dipartimento di Scienze sperimentali e cliniche, Università degli Studi G. d Annunzio di Chieti Pescara Prof. Enzo Ballone Statistica medica e Biometria

Dettagli

Elementi di statistica. Giulia Simi (Università di Siena) Istituzione di matematica e fondamenti di Biostatistica Siena 2015-2016 1 / 1

Elementi di statistica. Giulia Simi (Università di Siena) Istituzione di matematica e fondamenti di Biostatistica Siena 2015-2016 1 / 1 Elementi di statistica Giulia Simi (Università di Siena) Istituzione di matematica e fondamenti di Biostatistica Siena 2015-2016 1 / 1 Statistica La statistica si può definire come: l insieme dei metodi

Dettagli

I punteggi zeta e la distribuzione normale

I punteggi zeta e la distribuzione normale QUINTA UNITA I punteggi zeta e la distribuzione normale I punteggi ottenuti attraverso una misurazione risultano di difficile interpretazione se presi in stessi. Affinché acquistino significato è necessario

Dettagli

CAPITOLO 10. Controllo di qualità. Strumenti per il controllo della qualità e la sua gestione

CAPITOLO 10. Controllo di qualità. Strumenti per il controllo della qualità e la sua gestione CAPITOLO 10 Controllo di qualità Strumenti per il controllo della qualità e la sua gestione STRUMENTI PER IL CONTROLLO E LA GESTIONE DELLA QUALITÀ - DIAGRAMMI CAUSA/EFFETTO - DIAGRAMMI A BARRE - ISTOGRAMMI

Dettagli

STATISTICA DESCRITTIVA. Le misure di tendenza centrale

STATISTICA DESCRITTIVA. Le misure di tendenza centrale STATISTICA DESCRITTIVA Le misure di tendenza centrale 1 OBIETTIVO Individuare un indice che rappresenti significativamente un insieme di dati statistici. 2 Esempio Nella tabella seguente sono riportati

Dettagli

Dr. Marco Vicentini marco.vicentini@unipd.it Anno Accademico 2010 2011 Rev 30/03/2011

Dr. Marco Vicentini marco.vicentini@unipd.it Anno Accademico 2010 2011 Rev 30/03/2011 Università degli Studi di Padova Facoltà di Psicologia, L4, Psicometria, Modulo B Dr. Marco Vicentini marco.vicentini@unipd.it Anno Accademico 2010 2011 Rev 30/03/2011 Statistica descrittiva e inferenziale

Dettagli

Elementi di statistica descrittiva I 31 Marzo 2009

Elementi di statistica descrittiva I 31 Marzo 2009 Il Concetti generali di Statistica) Corso Esperto in Logistica e Trasporti Elementi di Statistica applicata Elementi di statistica descrittiva I Marzo 009 Concetti Generali di Statistica F. Caliò franca.calio@polimi.it

Dettagli

Brugnaro Luca Boscaro Gianni (2009) 1

Brugnaro Luca Boscaro Gianni (2009) 1 STATISTICA PER LE PROFESSIONI SANITARIE - LIVELLO BASE Brugnaro Luca Boscaro Gianni (2009) 1 Perché la statistica Prendere decisioni Bibliografia non soddisfacente Richieste nuove conoscenze Raccolta delle

Dettagli

LABORATORIO-EXCEL N. 2-3 XLSTAT- Pro Versione 7 VARIABILI QUANTITATIVE

LABORATORIO-EXCEL N. 2-3 XLSTAT- Pro Versione 7 VARIABILI QUANTITATIVE LABORATORIO-EXCEL N. 2-3 XLSTAT- Pro Versione 7 VARIABILI QUANTITATIVE DESCRIZIONE DEI DATI DA ESAMINARE Sono stati raccolti i dati sul peso del polmone di topi normali e affetti da una patologia simile

Dettagli

Università del Piemonte Orientale. Corsi di Laurea Triennale di Area Tecnica. Corso di Statistica e Biometria. Statistica descrittiva

Università del Piemonte Orientale. Corsi di Laurea Triennale di Area Tecnica. Corso di Statistica e Biometria. Statistica descrittiva Università del Piemonte Orientale Corsi di Laurea Triennale di Area Tecnica Corso di Statistica e Biometria Statistica descrittiva 1 Statistica Funzioni Descrittiva Induttiva (inferenziale) Statistica

Dettagli

LABORATORIO EXCEL XLSTAT 2008 SCHEDE 2 e 3 VARIABILI QUANTITATIVE

LABORATORIO EXCEL XLSTAT 2008 SCHEDE 2 e 3 VARIABILI QUANTITATIVE Matematica e statistica: dai dati ai modelli alle scelte www.dima.unige/pls_statistica Responsabili scientifici M.P. Rogantin e E. Sasso (Dipartimento di Matematica Università di Genova) LABORATORIO EXCEL

Dettagli

Lezione 1. Concetti Fondamentali

Lezione 1. Concetti Fondamentali Lezione 1 Concetti Fondamentali 1 Sonetto di Trilussa Sai ched è la statistica? E E na cosa che serve pe fa un conto in generale de la gente che nasce, che sta male, che more, che va in carcere e che sposa.

Dettagli

Statistica Medica. Verranno presi in esame:

Statistica Medica. Verranno presi in esame: Statistica Medica Premessa: il seguente testo cerca di riassumere e rendere in forma comprensibile ai non esperti in matematica e statistica le nozioni e le procedure necessarie a svolgere gli esercizi

Dettagli

Lezione 1. Concetti Fondamentali

Lezione 1. Concetti Fondamentali Lezione 1 Concetti Fondamentali Sonetto di Trilussa Sai ched è la statistica? E na cosa che serve pe fa un conto in generale de la gente che nasce, che sta male, che more, che va in carcere e che sposa.

Dettagli

Elementi di Statistica descrittiva Parte I

Elementi di Statistica descrittiva Parte I Elementi di Statistica descrittiva Parte I Che cos è la statistica Metodo di studio di caratteri variabili, rilevabili su collettività. La statistica si occupa di caratteri (ossia aspetti osservabili)

Dettagli

CONTROLLI STATISTICI

CONTROLLI STATISTICI CONTROLLI STATISTICI Si definisce Statistica la disciplina che si occupa della raccolta, effettuata in modo scientifico, dei dati e delle informazioni, della loro classificazione, elaborazione e rappresentazione

Dettagli

Corso di Psicometria Progredito

Corso di Psicometria Progredito Corso di Psicometria Progredito 2.1 Statistica descrittiva (Richiami) Prima Parte Gianmarco Altoè Dipartimento di Pedagogia, Psicologia e Filosofia Università di Cagliari, Anno Accademico 2013-2014 Sommario

Dettagli

Statistica descrittiva univariata

Statistica descrittiva univariata Statistica descrittiva univariata Elementi di statistica 2 1 Tavola di dati Una tavola (o tabella) di dati è l insieme dei caratteri osservati nel corso di un esperimento o di un rilievo. Solitamente si

Dettagli

Statistica descrittiva

Statistica descrittiva Corso di Laurea in Ingegneria per l Ambiente ed il Territorio Corso di Costruzioni Idrauliche A.A. 2004-05 www.dica.unict.it/users/costruzioni Statistica descrittiva Ing. Antonino Cancelliere Dipartimento

Dettagli

INTERPRETAZIONE DEI RISULTATI DEL QUESTIONARIO I

INTERPRETAZIONE DEI RISULTATI DEL QUESTIONARIO I CeSe.Di. - Riorientamento nel primo anno delle superiori INTERPRETAZIONE DEI RISULTATI DEL QUESTIONARIO I dati Sezione 1 - AFFERMAZIONI GENERALI (10 item): affermazioni che afferiscono alle percezioni

Dettagli

STATISTICA E PROBABILITá

STATISTICA E PROBABILITá STATISTICA E PROBABILITá Statistica La statistica è una branca della matematica, che descrive un qualsiasi fenomeno basandosi sulla raccolta di informazioni, sottoforma di dati. Questi ultimi risultano

Dettagli

UNIVERSITA DEGLI STUDI DI BRESCIA-FACOLTA DI MEDICINA E CHIRURGIA CORSO DI LAUREA IN INFERMIERISTICA SEDE DI DESENZANO dg STATISTICA MEDICA

UNIVERSITA DEGLI STUDI DI BRESCIA-FACOLTA DI MEDICINA E CHIRURGIA CORSO DI LAUREA IN INFERMIERISTICA SEDE DI DESENZANO dg STATISTICA MEDICA Seconda Lezione DISTRIBUZIONE DI FREQUENZA Frequenza assoluta: è il numero puro di casi per quella modalità Frequenze relative: sono il rapporto tra la frequenza assoluta con cui si manifesta una modalità

Dettagli

Statistica. L. Freddi. L. Freddi Statistica

Statistica. L. Freddi. L. Freddi Statistica Statistica L. Freddi Statistica La statistica è un insieme di metodi e tecniche per: raccogliere informazioni su un fenomeno sintetizzare l informazione (elaborare i dati) generalizzare i risultati ottenuti

Dettagli

CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 1

CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 1 CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 1 Dott.ssa Antonella Costanzo a.costanzo@unicas.it Un breve riepilogo: caratteri, unità statistiche e collettivo UNITA STATISTICA: oggetto dell osservazione

Dettagli

8 Elementi di Statistica

8 Elementi di Statistica 8 Elementi di Statistica La conoscenza di alcuni elementi di statistica e di analisi degli errori è importante quando si vogliano realizzare delle osservazioni sperimentali significative, ed anche per

Dettagli

Relazioni statistiche: regressione e correlazione

Relazioni statistiche: regressione e correlazione Relazioni statistiche: regressione e correlazione È detto studio della connessione lo studio si occupa della ricerca di relazioni fra due variabili statistiche o fra una mutabile e una variabile statistica

Dettagli

TRACCIA DI STUDIO. Concetto di misura. Variabilità biologica

TRACCIA DI STUDIO. Concetto di misura. Variabilità biologica TRACCIA DI STUDIO Variabilità biologica In natura si osservano differenze non solo tra soggetti, ma anche in uno stesso individuo per svariati fattori endocrini, metabolici, emozionali, patologici, da

Dettagli

La Distribuzione Normale (Curva di Gauss)

La Distribuzione Normale (Curva di Gauss) 1 DISTRIBUZIONE NORMALE o CURVA DI GAUSS 1. E la più importante distribuzione statistica continua e trova numerose applicazioni nello studio dei fenomeni biologici. 2. Fu proposta da Gauss (1809) nell'ambito

Dettagli

Fonti e strumenti statistici per la comunicazione (prof.ssa I.Mingo) Esercizi (soluzioni e suggerimenti )

Fonti e strumenti statistici per la comunicazione (prof.ssa I.Mingo) Esercizi (soluzioni e suggerimenti ) Esercizio 1 Fonti e strumenti statistici per la comunicazione (prof.ssa I.Mingo) Esercizi (soluzioni e suggerimenti ) Qualitativo Sconnesso: Marca di Jeans preferita, Partito votato nelle ultime elezioni,

Dettagli

VARIABILI ALEATORIE MULTIPLE E TEOREMI ASSOCIATI. Dopo aver trattato delle distribuzioni di probabilità di una variabile aleatoria, che

VARIABILI ALEATORIE MULTIPLE E TEOREMI ASSOCIATI. Dopo aver trattato delle distribuzioni di probabilità di una variabile aleatoria, che VARIABILI ALATORI MULTIPL TORMI ASSOCIATI Fonti: Cicchitelli Dall Aglio Mood-Grabill. Moduli 6 9 0 del programma. VARIABILI ALATORI DOPPI Dopo aver trattato delle distribuzioni di probabilità di una variabile

Dettagli

Inferenza statistica. Statistica medica 1

Inferenza statistica. Statistica medica 1 Inferenza statistica L inferenza statistica è un insieme di metodi con cui si cerca di trarre una conclusione sulla popolazione sulla base di alcune informazioni ricavate da un campione estratto da quella

Dettagli

Codici Numerici. Modifica dell'informazione. Rappresentazione dei numeri.

Codici Numerici. Modifica dell'informazione. Rappresentazione dei numeri. Codici Numerici. Modifica dell'informazione. Rappresentazione dei numeri. A partire da questa lezione, ci occuperemo di come si riescono a codificare con sequenze binarie, quindi con sequenze di 0 e 1,

Dettagli

SMID a.a. 2004/2005 Corso di Metodi Statistici in Biomedicina Tassi di incidenza 9/2/2005

SMID a.a. 2004/2005 Corso di Metodi Statistici in Biomedicina Tassi di incidenza 9/2/2005 SMID a.a. 2004/2005 Corso di Metodi Statistici in Biomedicina Tassi di incidenza 9/2/2005 Ricerca epidemiologica Gli epidemiologi sono interessati a conoscere l incidenza delle malattie per prevedere i

Dettagli

ESAME DI STATISTICA Nome: Cognome: Matricola:

ESAME DI STATISTICA Nome: Cognome: Matricola: ESAME DI STATISTICA Nome: Cognome: Matricola: ISTRUZIONI: Per la prova è consentito esclusivamente l uso di una calcolatrice tascabile, delle tavole della normale e della t di Student. I risultati degli

Dettagli

TRACCIA DI STUDIO. Sintesi dei dati. aver eliminato una uguale percentuale di valori estremi sia in basso sia in alto.

TRACCIA DI STUDIO. Sintesi dei dati. aver eliminato una uguale percentuale di valori estremi sia in basso sia in alto. TRACCIA DI STUDIO Sintesi dei dati Per concentrare l inormazione di una serie di misure, è necessario identiicare un indice in grado di rappresentare correttamente la tendenza di un enomeno con una perdita

Dettagli

Il concetto di correlazione

Il concetto di correlazione SESTA UNITA Il concetto di correlazione Fino a questo momento ci siamo interessati alle varie statistiche che ci consentono di descrivere la distribuzione dei punteggi di una data variabile e di collegare

Dettagli

Serie numeriche e serie di potenze

Serie numeriche e serie di potenze Serie numeriche e serie di potenze Sommare un numero finito di numeri reali è senza dubbio un operazione che non può riservare molte sorprese Cosa succede però se ne sommiamo un numero infinito? Prima

Dettagli

Indici di dispersione

Indici di dispersione Indici di dispersione 1 Supponiamo di disporre di un insieme di misure e di cercare un solo valore che, meglio di ciascun altro, sia in grado di catturare le caratteristiche della distribuzione nel suo

Dettagli

Slide Cerbara parte1 5. Le distribuzioni teoriche

Slide Cerbara parte1 5. Le distribuzioni teoriche Slide Cerbara parte1 5 Le distribuzioni teoriche I fenomeni biologici, demografici, sociali ed economici, che sono il principale oggetto della statistica, non sono retti da leggi matematiche. Però dalle

Dettagli

RAPPRESENTAZIONE DEI DATI

RAPPRESENTAZIONE DEI DATI Rappresentazione dei Dati RAPPRESENTAZIONE DEI DATI Quando si dispone di un alto numero di misure della stessa grandezza fisica è opportuno organizzarle in modo da rendere evidente Quandoil si loro dispone

Dettagli

Metodi statistici per le ricerche di mercato

Metodi statistici per le ricerche di mercato Metodi statistici per le ricerche di mercato Prof.ssa Isabella Mingo A.A. 2013-2014 Facoltà di Scienze Politiche, Sociologia, Comunicazione Corso di laurea Magistrale in «Organizzazione e marketing per

Dettagli

I ESERCITAZIONE. Gruppo I 100 individui. Trattamento I Nuovo Farmaco. Osservazione degli effetti sul raffreddore. Assegnazione casuale

I ESERCITAZIONE. Gruppo I 100 individui. Trattamento I Nuovo Farmaco. Osservazione degli effetti sul raffreddore. Assegnazione casuale I ESERCITAZIONE ESERCIZIO 1 Si vuole testare un nuovo farmaco contro il raffreddore. Allo studio partecipano 200 soggetti sani della stessa età e dello stesso sesso e con caratteristiche simili. i) Che

Dettagli

PROBABILITA, VALORE ATTESO E VARIANZA DELLE QUANTITÁ ALEATORIE E LORO RELAZIONE CON I DATI OSSERVATI

PROBABILITA, VALORE ATTESO E VARIANZA DELLE QUANTITÁ ALEATORIE E LORO RELAZIONE CON I DATI OSSERVATI statistica, Università Cattaneo-Liuc, AA 006-007, lezione del 08.05.07 IDICE (lezione 08.05.07 PROBABILITA, VALORE ATTESO E VARIAZA DELLE QUATITÁ ALEATORIE E LORO RELAZIOE CO I DATI OSSERVATI 3.1 Valore

Dettagli

DATABASE SU EXCEL: I FILTRI

DATABASE SU EXCEL: I FILTRI DATABASE SU EXCEL: I FILTRI È possibile mettere in relazione i dati in base a determinati criteri di ricerca e creare un archivio di dati E necessario creare delle categorie di ordinamento in base alle

Dettagli

Lo scopo di questo capitolo è quello di introdurre le principali tecniche di descrizione dei dati.

Lo scopo di questo capitolo è quello di introdurre le principali tecniche di descrizione dei dati. Indice 1 Descriviamo i Dati 1 1.1 L Informazione in Statistica................... 1 1.2 Variabili Qualitative....................... 5 1.2.1 Distribuzioni di Frequenza................ 5 1.2.2 Rappresentazioni

Dettagli

La distribuzione Normale. La distribuzione Normale

La distribuzione Normale. La distribuzione Normale La Distribuzione Normale o Gaussiana è la distribuzione più importante ed utilizzata in tutta la statistica La curva delle frequenze della distribuzione Normale ha una forma caratteristica, simile ad una

Dettagli

ESERCITAZIONE. CdL Fisioterapia e Podologia. 25 novembre 2015

ESERCITAZIONE. CdL Fisioterapia e Podologia. 25 novembre 2015 ESERCITAZIONE CdL Fisioterapia e Podologia 25 novembre 2015 Epidemiologia Domanda 1 Le neoplasie gastriche sono: a. diminuite in tutta Europa b. diminuite fino agli anni 80, poi stabili c. aumentate in

Dettagli

Elementi di Psicometria con Laboratorio di SPSS 1

Elementi di Psicometria con Laboratorio di SPSS 1 Elementi di Psicometria con Laboratorio di SPSS 1 5-Indici di variabilità (vers. 1.0c, 20 ottobre 2015) Germano Rossi 1 germano.rossi@unimib.it 1 Dipartimento di Psicologia, Università di Milano-Bicocca

Dettagli

PRIMA PARTE STATISTICA DESCRITTIVA

PRIMA PARTE STATISTICA DESCRITTIVA PRIMA PARTE STATISTICA DESCRITTIVA 1 PRIMA UNITA Primi concetti elementari 1. Che cos è la statistica La statistica si occupa della raccolta, presentazione ed elaborazione delle informazioni, in genere

Dettagli

OCCUPATI SETTORE DI ATTIVITA' ECONOMICA

OCCUPATI SETTORE DI ATTIVITA' ECONOMICA ESERCIZIO 1 La tabella seguente contiene i dati relativi alla composizione degli occupati in Italia relativamente ai tre macrosettori di attività (agricoltura, industria e altre attività) negli anni 1971

Dettagli

Pivot è bello. Principali. misure di variabilità. Il contesto è di tipo matematico, in particolare riguarda l uso di dati numerici e delle loro

Pivot è bello. Principali. misure di variabilità. Il contesto è di tipo matematico, in particolare riguarda l uso di dati numerici e delle loro Pivot è bello Livello scolare: 1 biennio Abilità Conoscenze interessate Predisporre la struttura della Distribuzioni delle matrice dei dati grezzi con frequenze a seconda del riguardo a una rilevazione

Dettagli

ELEMENTI DI STATISTICA

ELEMENTI DI STATISTICA Dipartimento di Ingegneria Meccanica Chimica e dei Materiali PROGETTAZIONE E GESTIONE DEGLI IMPIANTI INDUSTRIALI Esercitazione 6 ORE ELEMENTI DI STATISTICA Prof. Ing. Maria Teresa Pilloni Anno Accademico

Dettagli

Università del Piemonte Orientale. Corsi di Laurea Triennale di area tecnica. Corso di Statistica Medica

Università del Piemonte Orientale. Corsi di Laurea Triennale di area tecnica. Corso di Statistica Medica Università del Piemonte Orientale Corsi di Laurea Triennale di area tecnica Corso di Statistica Medica Campionamento e distribuzione campionaria della media Corsi di laurea triennale di area tecnica -

Dettagli

Indice Statistiche Univariate Statistiche Bivariate

Indice Statistiche Univariate Statistiche Bivariate Indice 1 Statistiche Univariate 1 1.1 Importazione di un file.data.............................. 1 1.2 Medie e variabilità................................... 6 1.3 Distribuzioni di frequenze...............................

Dettagli

Valori medi e misure della tendenza centrale

Valori medi e misure della tendenza centrale TERZA UNITA Valori medi e misure della tendenza centrale Una delle maggiori cause di confusione presso l uomo della strada nonché di diffidenza verso la statistica, considerata più un arte che una scienza,

Dettagli

ELEMENTI DI STATISTICA PER IDROLOGIA

ELEMENTI DI STATISTICA PER IDROLOGIA Carlo Gregoretti Corso di Idraulica ed Idrologia Elementi di statist. per Idrolog.-7//4 ELEMETI DI STATISTICA PER IDROLOGIA Introduzione Una variabile si dice casuale quando assume valori che dipendono

Dettagli

Università del Piemonte Orientale. Corso di Laurea in Biotecnologie. Corso di Statistica Medica. Statistica Descrittiva

Università del Piemonte Orientale. Corso di Laurea in Biotecnologie. Corso di Statistica Medica. Statistica Descrittiva Università del Piemonte Orientale Corso di Laurea in Biotecnologie Corso di Statistica Medica Statistica Descrittiva Corso di laurea in biotecnologie - Statistica Medica Statistica descrittiva 1 I dati

Dettagli

CORSO DI STATISTICA La Misurazione, Scale di Misura, Errori di Misura

CORSO DI STATISTICA La Misurazione, Scale di Misura, Errori di Misura CORSO DI STATISTICA La Misurazione, Scale di Misura, Errori di Misura Bruno Mario Cesana Bruno M. Cesana 1 MISURAZIONE La figura 1.1 è tratta da: Bossi A. et al.: Introduzione alla Statistica Medica A

Dettagli

PROBLEMI DI SCELTA. Problemi di. Scelta. Modello Matematico. Effetti Differiti. A Carattere Continuo. A più variabili d azione (Programmazione

PROBLEMI DI SCELTA. Problemi di. Scelta. Modello Matematico. Effetti Differiti. A Carattere Continuo. A più variabili d azione (Programmazione 1 PROBLEMI DI SCELTA Problemi di Scelta Campo di Scelta Funzione Obiettivo Modello Matematico Scelte in condizioni di Certezza Scelte in condizioni di Incertezza Effetti Immediati Effetti Differiti Effetti

Dettagli

Analisi Statistica per le Imprese (6 CFU) - a.a. 2010-2011 Prof. L. Neri RICHIAMI DI STATISTICA DESCRITTIVA UNIVARIATA

Analisi Statistica per le Imprese (6 CFU) - a.a. 2010-2011 Prof. L. Neri RICHIAMI DI STATISTICA DESCRITTIVA UNIVARIATA Analisi Statistica per le Imprese (6 CFU) - a.a. 2010-2011 Prof. L. Neri RICHIAMI DI STATISTICA DESCRITTIVA UNIVARIATA 1 Distribuzione di frequenza Punto vendita e numero di addetti PUNTO VENDITA 1 2 3

Dettagli

Applicazioni del calcolo differenziale allo studio delle funzioni

Applicazioni del calcolo differenziale allo studio delle funzioni Capitolo 9 9.1 Crescenza e decrescenza in piccolo; massimi e minimi relativi Sia y = f(x) una funzione definita nell intervallo A; su di essa non facciamo, per ora, alcuna particolare ipotesi (né di continuità,

Dettagli

Teoria della Stima. Stima della Media e di una Porzione di Popolazione. Introduzione. Corso di Laurea in Scienze Motorie AA2002/03 - Analisi dei Dati

Teoria della Stima. Stima della Media e di una Porzione di Popolazione. Introduzione. Corso di Laurea in Scienze Motorie AA2002/03 - Analisi dei Dati Teoria della Stima. Stima della Media e di una Porzione di Popolazione Introduzione La proceduta in base alla quale ad uno o più parametri di popolazione si assegna il valore numerico calcolato dalle informazioni

Dettagli

Statistica (Prof. Capitanio) Slide n. 1. Materiale di supporto per le lezioni. Non sostituisce il libro di testo

Statistica (Prof. Capitanio) Slide n. 1. Materiale di supporto per le lezioni. Non sostituisce il libro di testo Statistica (Prof. Capitanio) Slide n. 1 Materiale di supporto per le lezioni. Non sostituisce il libro di testo MEDIA GEOMETRICA M g = x g = n n x i i=1 1 PROPRIETA 1) Identità di prodotto ( ) n n M =

Dettagli

l insieme delle misure effettuate costituisce il campione statistico

l insieme delle misure effettuate costituisce il campione statistico Statistica negli esperimenti reali si effettuano sempre un numero finito di misure, ( spesso molto limitato ) l insieme delle misure effettuate costituisce il campione statistico Statistica descrittiva

Dettagli

SPC e distribuzione normale con Access

SPC e distribuzione normale con Access SPC e distribuzione normale con Access In questo articolo esamineremo una applicazione Access per il calcolo e la rappresentazione grafica della distribuzione normale, collegata con tabelle di Clienti,

Dettagli

VARIANZA CAMPIONARIA E DEVIAZIONE STANDARD. Si definisce scarto quadratico medio o deviazione standard la radice quadrata della varianza.

VARIANZA CAMPIONARIA E DEVIAZIONE STANDARD. Si definisce scarto quadratico medio o deviazione standard la radice quadrata della varianza. VARIANZA CAMPIONARIA E DEVIAZIONE STANDARD Si definisce varianza campionaria l indice s 2 = 1 (x i x) 2 = 1 ( xi 2 n x 2) Si definisce scarto quadratico medio o deviazione standard la radice quadrata della

Dettagli

Metodi statistici per le ricerche di mercato

Metodi statistici per le ricerche di mercato Metodi statistici per le ricerche di mercato Prof.ssa Isabella Mingo A.A. 2014-2015 Facoltà di Scienze Politiche, Sociologia, Comunicazione Corso di laurea Magistrale in «Organizzazione e marketing per

Dettagli

METODOLOGIA STATISTICA E CLASSIFICAZIONE DEI DATI

METODOLOGIA STATISTICA E CLASSIFICAZIONE DEI DATI METODOLOGIA STATISTICA E CLASSIFICAZIONE DEI DATI 1.1 La Statistica La Statistica è la scienza che raccoglie, elabora ed interpreta i dati (informazioni) relativi ad un dato fenomeno oggetto di osservazione.

Dettagli

STATISTICA DESCRITTIVA - SCHEDA N. 1 VARIABILI QUALITATIVE

STATISTICA DESCRITTIVA - SCHEDA N. 1 VARIABILI QUALITATIVE Matematica e statistica: dai dati ai modelli alle scelte www.dima.unige/pls_statistica Responsabili scientifici M.P. Rogantin e E. Sasso (Dipartimento di Matematica Università di Genova) STATISTICA DESCRITTIVA

Dettagli

INDICI DI TENDENZA CENTRALE

INDICI DI TENDENZA CENTRALE INDICI DI TENDENZA CENTRALE NA Al fine di semplificare la lettura e l interpretazione di un fenomeno oggetto di un indagine statistica, i dati possono essere: organizzati in una insieme di dati statistici

Dettagli

Dai dati al modello teorico

Dai dati al modello teorico Dai dati al modello teorico Analisi descrittiva univariata in R 1 Un po di terminologia Popolazione: (insieme dei dispositivi che verranno messi in produzione) finito o infinito sul quale si desidera avere

Dettagli

Probabilità condizionata: p(a/b) che avvenga A, una volta accaduto B. Evento prodotto: Evento in cui si verifica sia A che B ; p(a&b) = p(a) x p(b/a)

Probabilità condizionata: p(a/b) che avvenga A, una volta accaduto B. Evento prodotto: Evento in cui si verifica sia A che B ; p(a&b) = p(a) x p(b/a) Probabilità condizionata: p(a/b) che avvenga A, una volta accaduto B Eventi indipendenti: un evento non influenza l altro Eventi disgiunti: il verificarsi di un evento esclude l altro Evento prodotto:

Dettagli

Cenni di statistica descrittiva

Cenni di statistica descrittiva Cenni di statistica descrittiva La statistica descrittiva è la disciplina nella quale si studiano le metodologie di cui si serve uno sperimentatore per raccogliere, rappresentare ed elaborare dei dati

Dettagli

SOMMARIO. 13.1 I radicali pag. 3. 13.2 I radicali aritmetici pag. 5. 13.3 Moltiplicazione e divisione fra radicali aritmetici pag.

SOMMARIO. 13.1 I radicali pag. 3. 13.2 I radicali aritmetici pag. 5. 13.3 Moltiplicazione e divisione fra radicali aritmetici pag. SOMMARIO CAPITOLO : I RADICALI. I radicali pag.. I radicali aritmetici pag.. Moltiplicazione e divisione fra radicali aritmetici pag.. Potenza di un radicale aritmetico pag.. Trasporto di un fattore esterno

Dettagli

Insegnamento di STATISTICA MEDICA

Insegnamento di STATISTICA MEDICA Università degli Studi di Padova Facoltà di Medicina e Chirurgia Corso di Laurea triennale Tecniche della Prevenzione PERCORSO STRAORDINARIO 2007/08 Docente:Dott.ssa Egle Perissinotto 1) Il processo di

Dettagli

Coordinate Cartesiane nel Piano

Coordinate Cartesiane nel Piano Coordinate Cartesiane nel Piano O = (0,0) origine degli assi ascissa, y ordinata sistemi monometrici: stessa unità di misura sui due assi, y sistemi dimetrici: unità di misura diverse sui due assi (spesso

Dettagli

[ Analisi della. concentrazione] di Luca Vanzulli. Pag. 1 di 1

[ Analisi della. concentrazione] di Luca Vanzulli. Pag. 1 di 1 [ Analisi della concentrazione] di Luca Vanzulli Pag. 1 di 1 LA CONCENTRAZIONE NELL ANALISI DELLE VENDITE L analisi periodica delle vendite rappresenta un preziosissimo indicatore per il monitoraggio del

Dettagli

LEZIONE 3. Ing. Andrea Ghedi AA 2009/2010. Ing. Andrea Ghedi AA 2009/2010

LEZIONE 3. Ing. Andrea Ghedi AA 2009/2010. Ing. Andrea Ghedi AA 2009/2010 LEZIONE 3 "Educare significa aiutare l'animo dell'uomo ad entrare nella totalità della realtà. Non si può però educare se non rivolgendosi alla libertà, la quale definisce il singolo, l'io. Quando uno

Dettagli

Dott.ssa Caterina Gurrieri

Dott.ssa Caterina Gurrieri Dott.ssa Caterina Gurrieri Le relazioni tra caratteri Data una tabella a doppia entrata, grande importanza riveste il misurare se e in che misura le variabili in essa riportata sono in qualche modo

Dettagli