Luca Lussardi - Universit` a Cattolica del Sacro Cuore Dalla citt` a ideale alle cellule: l ubiquit` a della matematica

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Luca Lussardi - Universit` a Cattolica del Sacro Cuore Dalla citt` a ideale alle cellule: l ubiquit` a della matematica"

Transcript

1

2 Lo studio della matematica costituisce un educazione formativa della mente. La matematica sviluppa tutte le facoltà dell ingegno, affina in particolare le facoltà logiche, educa e rende più retta l intuizione, insegna a ragionare, a parlare con precisione e a non accontentarsi di sole vuote parole.

3 Dalla città ideale alle cellule: l ubiquità della matematica Luca Lussardi Università Cattolica del Sacro Cuore Brescia ITAS G. Pastori - Brescia 10 marzo 2015

4 L inizio di una storia Sbarcarono là dove grandi mura vedrai e di Cartagine l arce che sorge; e tanto terreno comprarono chiamandolo Birsa, dal nome di ciò che avevan fatto, quanto del luogo potessero cingere con pelle taurina tagliata. Virgilio, Eneide, libro I, versi

5 Ricostruzione dell antica Cartagine (800 a.c. circa)

6 Il problema di Didone

7 Il problema di Didone Tra tutte le figure piane di perimetro assegnato

8 Il problema di Didone Tra tutte le figure piane di perimetro assegnato trovare quella che racchiude area massima

9 La natura massimizza e minimizza

10 La natura massimizza e minimizza

11 La soluzione di Steiner (1838) al problema di Didone

12 La soluzione di Steiner (1838) al problema di Didone La soluzione del problema di Didone è il cerchio

13 given perimeter. La soluzione di Steiner (1838) al problema di Didone La soluzione del problema di Didone è il cerchio F I d l t La soluzione deve essere convessa

14 the same N th of ne fig So suppose that F is convex, an equal area and equal perimeters.

15 the same No N th of ne fig Posso ragionare su metà figura e ribaltare per simmetria So suppose that F is convex, an equal area and equal perimeters.

16 C A B B A C Steiner s idea was and BC, andto change. Thus, H i bounded by AB a the analogous regi the area and shap rigid shapes that triangle with base altitude is maxim

17 B B C C A Ogni angolo al vertice B deve essere retto: A C trian Steiner s ideaaltit was and BC, Aandto not change. B Thus, H i bounded by AB a the analogous regi the area and shap rigid shapes that triangle with base altitude is maxim

18 B B C C A Ogni angolo al vertice B deve essere retto: A A triangolo = 1 2 b c sin α C trian Steiner s ideaaltit was and BC, Aandto not change. B Thus, H i bounded by AB a the analogous regi the area and shap rigid shapes that triangle with base altitude is maxim

19 La soluzione di Steiner è corretta? Occhio alla logica!

20 La soluzione di Steiner è corretta? Occhio alla logica! Sostanzialmente sì,

21 La soluzione di Steiner è corretta? Occhio alla logica! Sostanzialmente sì, ma è incompleta:

22 La soluzione di Steiner è corretta? Occhio alla logica! Sostanzialmente sì, ma è incompleta: abbiamo infatti dimostrato solo che

23 La soluzione di Steiner è corretta? Occhio alla logica! Sostanzialmente sì, ma è incompleta: abbiamo infatti dimostrato solo che se una soluzione esiste

24 La soluzione di Steiner è corretta? Occhio alla logica! Sostanzialmente sì, ma è incompleta: abbiamo infatti dimostrato solo che se una soluzione esiste allora è il cerchio

25 La soluzione di Steiner è corretta? Occhio alla logica! Problemi: Sostanzialmente sì, ma è incompleta: abbiamo infatti dimostrato solo che se una soluzione esiste allora è il cerchio

26 La soluzione di Steiner è corretta? Occhio alla logica! Problemi: Sostanzialmente sì, ma è incompleta: abbiamo infatti dimostrato solo che se una soluzione esiste allora è il cerchio Come dimostrare che una soluzione al problema di Didone deve esistere?

27 La soluzione di Steiner è corretta? Occhio alla logica! Problemi: Sostanzialmente sì, ma è incompleta: abbiamo infatti dimostrato solo che se una soluzione esiste allora è il cerchio Come dimostrare che una soluzione al problema di Didone deve esistere? Potrebbe anche non esistere una soluzione?

28 La soluzione di Steiner è corretta? Occhio alla logica! Problemi: Sostanzialmente sì, ma è incompleta: abbiamo infatti dimostrato solo che se una soluzione esiste allora è il cerchio Come dimostrare che una soluzione al problema di Didone deve esistere? Potrebbe anche non esistere una soluzione? In matematica è fondamentale avere anche dimostrazioni astratte di esistenza

29 Das ist nicht Mathematik. Das ist Theologie

30 Das ist nicht Mathematik. Das ist Theologie Numeri razionali:

31 Das ist nicht Mathematik. Das ist Theologie Numeri razionali: 1, 2, 3,...,

32 Das ist nicht Mathematik. Das ist Theologie Numeri razionali: 1, 2, 3,..., 1, 2, 3,...,

33 Das ist nicht Mathematik. Das ist Theologie Numeri razionali: 1, 2, 3,..., 1, 2, 3,..., 1 2, 2 3, 15 8,...

34 Das ist nicht Mathematik. Das ist Theologie Numeri razionali: 1, 2, 3,..., 1, 2, 3,..., 1 2, 2 3, 15 8,... Numeri irrazionali:

35 Das ist nicht Mathematik. Das ist Theologie Numeri razionali: 1, 2, 3,..., 1, 2, 3,..., 1 2, 2 3, 15 8,... Numeri irrazionali: 2, 3, 3 3 2, 5...,

36 Das ist nicht Mathematik. Das ist Theologie Numeri razionali: 1, 2, 3,..., 1, 2, 3,..., 1 2, 2 3, 15 8,... Numeri irrazionali: 2, 3, 3 2,..., π, e,

37 Das ist nicht Mathematik. Das ist Theologie Numeri razionali: 1, 2, 3,..., 1, 2, 3,..., 1 2, 2 3, 15 8,... Numeri irrazionali: 2, 3, 3 2,..., π, e,... Esistono due numeri irrazionali a, b tali per cui a b è razionale? 3 5

38 Das ist nicht Mathematik. Das ist Theologie Numeri razionali: 1, 2, 3,..., 1, 2, 3,..., 1 2, 2 3, 15 8,... Numeri irrazionali: 2, 3, 3 2,..., π, e,... Esistono due numeri irrazionali a, b tali per cui a b è razionale? Consideriamo il numero irrazionale

39 Das ist nicht Mathematik. Das ist Theologie Numeri razionali: 1, 2, 3,..., 1, 2, 3,..., 1 2, 2 3, 15 8,... Numeri irrazionali: 2, 3, 3 2,..., π, e,... Esistono due numeri irrazionali a, b tali per cui a b è razionale? Consideriamo il numero irrazionale 2. Si possono presentare due casi: 3 5

40 Das ist nicht Mathematik. Das ist Theologie Numeri razionali: 1, 2, 3,..., 1, 2, 3,..., 1 2, 2 3, 15 8,... Numeri irrazionali: 2, 3, 3 2,..., π, e,... Esistono due numeri irrazionali a, b tali per cui a b è razionale? Consideriamo il numero irrazionale 2. Si possono presentare due casi: 2 2 è razionale. 3 5

41 Das ist nicht Mathematik. Das ist Theologie Numeri razionali: 1, 2, 3,..., 1, 2, 3,..., 1 2, 2 3, 15 8,... Numeri irrazionali: 2, 3, 3 2,..., π, e,... Esistono due numeri irrazionali a, b tali per cui a b è razionale? Consideriamo il numero irrazionale 2. Si possono presentare due casi: 2 2 è razionale. Ho risolto il problema: 3 5

42 Das ist nicht Mathematik. Das ist Theologie Numeri razionali: 1, 2, 3,..., 1, 2, 3,..., 1 2, 2 3, 15 8,... Numeri irrazionali: 2, 3, 3 2,..., π, e,... Esistono due numeri irrazionali a, b tali per cui a b è razionale? Consideriamo il numero irrazionale 2. Si possono presentare due casi: 2 2 è razionale. Ho risolto il problema: a = b =

43 Das ist nicht Mathematik. Das ist Theologie Numeri razionali: 1, 2, 3,..., 1, 2, 3,..., 1 2, 2 3, 15 8,... Numeri irrazionali: 2, 3, 3 2,..., π, e,... Esistono due numeri irrazionali a, b tali per cui a b è razionale? Consideriamo il numero irrazionale 2. Si possono presentare due casi: 2 2 è razionale. Ho risolto il problema: a = b = è irrazionale. 3 5

44 Das ist nicht Mathematik. Das ist Theologie Numeri razionali: 1, 2, 3,..., 1, 2, 3,..., 1 2, 2 3, 15 8,... Numeri irrazionali: 2, 3, 3 2,..., π, e,... Esistono due numeri irrazionali a, b tali per cui a b è razionale? Consideriamo il numero irrazionale 2. Si possono presentare due casi: 2 2 è razionale. Ho risolto il problema: a = b = è irrazionale. Ho risolto il problema: 3 5

45 Das ist nicht Mathematik. Das ist Theologie Numeri razionali: 1, 2, 3,..., 1, 2, 3,..., 1 2, 2 3, 15 8,... Numeri irrazionali: 2, 3, 3 2,..., π, e,... Esistono due numeri irrazionali a, b tali per cui a b è razionale? Consideriamo il numero irrazionale 2. Si possono presentare due casi: 2 2 è razionale. Ho risolto il problema: a = b = è irrazionale. Ho risolto il problema: pongo a = 2 2 e b = 2, allora 3 5

46 Das ist nicht Mathematik. Das ist Theologie Numeri razionali: 1, 2, 3,..., 1, 2, 3,..., 1 2, 2 3, 15 8,... Numeri irrazionali: 2, 3, 3 2,..., π, e,... Esistono due numeri irrazionali a, b tali per cui a b è razionale? Consideriamo il numero irrazionale 2. Si possono presentare due casi: 2 2 è razionale. Ho risolto il problema: a = b = è irrazionale. Ho risolto il problema: pongo a = 2 2 e b = 2, allora a b = 3 5

47 Das ist nicht Mathematik. Das ist Theologie Numeri razionali: 1, 2, 3,..., 1, 2, 3,..., 1 2, 2 3, 15 8,... Numeri irrazionali: 2, 3, 3 2,..., π, e,... Esistono due numeri irrazionali a, b tali per cui a b è razionale? Consideriamo il numero irrazionale 2. Si possono presentare due casi: 2 2 è razionale. Ho risolto il problema: a = b = è irrazionale. Ho risolto il problema: pongo a = 2 2 e b = 2, allora a b = ( 2 2) 2 = 3 5

48 Das ist nicht Mathematik. Das ist Theologie Numeri razionali: 1, 2, 3,..., 1, 2, 3,..., 1 2, 2 3, 15 8,... Numeri irrazionali: 2, 3, 3 2,..., π, e,... Esistono due numeri irrazionali a, b tali per cui a b è razionale? Consideriamo il numero irrazionale 2. Si possono presentare due casi: 2 2 è razionale. Ho risolto il problema: a = b = è irrazionale. Ho risolto il problema: pongo a = 2 2 e b = 2, allora 3 5 a b = ( 2 2) 2 = =

49 Das ist nicht Mathematik. Das ist Theologie Numeri razionali: 1, 2, 3,..., 1, 2, 3,..., 1 2, 2 3, 15 8,... Numeri irrazionali: 2, 3, 3 2,..., π, e,... Esistono due numeri irrazionali a, b tali per cui a b è razionale? Consideriamo il numero irrazionale 2. Si possono presentare due casi: 2 2 è razionale. Ho risolto il problema: a = b = è irrazionale. Ho risolto il problema: pongo a = 2 2 e b = 2, allora che è razionale! a b = ( 2 2) 2 = = 2 2 = 2 3 5

50 Un problema simile che non ha soluzione

51 Un problema simile che non ha soluzione Variante del problema di Didone:

52 Un problema simile che non ha soluzione Variante del problema di Didone: Tra tutte le figure piane di perimetro assegnato

53 Un problema simile che non ha soluzione Variante del problema di Didone: Tra tutte le figure piane di perimetro assegnato trovare quella di area minima

54 Un problema simile che non ha soluzione Variante del problema di Didone: Tra tutte le figure piane di perimetro assegnato trovare quella di area minima Se pretendiamo di avere come soluzione una figura piana che ha una certa estensione (area positiva)

55 Un problema simile che non ha soluzione Variante del problema di Didone: Tra tutte le figure piane di perimetro assegnato trovare quella di area minima Se pretendiamo di avere come soluzione una figura piana che ha una certa estensione (area positiva) allora questo nuovo problema non ha una soluzione.

56 Un problema simile che non ha soluzione Variante del problema di Didone: Tra tutte le figure piane di perimetro assegnato trovare quella di area minima Se pretendiamo di avere come soluzione una figura piana che ha una certa estensione (area positiva) allora questo nuovo problema non ha una soluzione. Fissiamo ad esempio 2p = 8 cm.

57 Un problema simile che non ha soluzione Variante del problema di Didone: Tra tutte le figure piane di perimetro assegnato trovare quella di area minima Se pretendiamo di avere come soluzione una figura piana che ha una certa estensione (area positiva) allora questo nuovo problema non ha una soluzione. Fissiamo ad esempio 2p = 8 cm.

58 Un problema simile che non ha soluzione Variante del problema di Didone: Tra tutte le figure piane di perimetro assegnato trovare quella di area minima Se pretendiamo di avere come soluzione una figura piana che ha una certa estensione (area positiva) allora questo nuovo problema non ha una soluzione. Fissiamo ad esempio 2p = 8 cm.

59 Un problema simile che non ha soluzione Variante del problema di Didone: Tra tutte le figure piane di perimetro assegnato trovare quella di area minima Se pretendiamo di avere come soluzione una figura piana che ha una certa estensione (area positiva) allora questo nuovo problema non ha una soluzione. Fissiamo ad esempio 2p = 8 cm

60 Un problema simile che non ha soluzione Variante del problema di Didone: Tra tutte le figure piane di perimetro assegnato trovare quella di area minima Se pretendiamo di avere come soluzione una figura piana che ha una certa estensione (area positiva) allora questo nuovo problema non ha una soluzione. Fissiamo ad esempio 2p = 8 cm L area può diventare arbitrariamente piccola

61 Un altro problema che non ha soluzione

62 Un altro problema che non ha soluzione Un altra variante del problema di Didone:

63 Un altro problema che non ha soluzione Un altra variante del problema di Didone: Tra tutte le figure piane di area assegnata

64 Un altro problema che non ha soluzione Un altra variante del problema di Didone: Tra tutte le figure piane di area assegnata trovare quella di perimetro massimo

65 Un altro problema che non ha soluzione Un altra variante del problema di Didone: Tra tutte le figure piane di area assegnata trovare quella di perimetro massimo Anche questo problema non ha una soluzione.

66 Un altro problema che non ha soluzione Un altra variante del problema di Didone: Tra tutte le figure piane di area assegnata trovare quella di perimetro massimo Anche questo problema non ha una soluzione. Fissiamo ad esempio A = 3 cm 2.

67 Un altro problema che non ha soluzione Un altra variante del problema di Didone: Tra tutte le figure piane di area assegnata trovare quella di perimetro massimo Anche questo problema non ha una soluzione. Fissiamo ad esempio A = 3 cm 2.

68 Un altro problema che non ha soluzione Un altra variante del problema di Didone: Tra tutte le figure piane di area assegnata trovare quella di perimetro massimo Anche questo problema non ha una soluzione. Fissiamo ad esempio A = 3 cm 2.

69 Un altro problema che non ha soluzione Un altra variante del problema di Didone: Tra tutte le figure piane di area assegnata trovare quella di perimetro massimo Anche questo problema non ha una soluzione. Fissiamo ad esempio A = 3 cm

70 Un altro problema che non ha soluzione Un altra variante del problema di Didone: Tra tutte le figure piane di area assegnata trovare quella di perimetro massimo Anche questo problema non ha una soluzione. Fissiamo ad esempio A = 3 cm Il perimetro può diventare arbitrariamente grande,

71 Un altro problema che non ha soluzione Un altra variante del problema di Didone: Tra tutte le figure piane di area assegnata trovare quella di perimetro massimo Anche questo problema non ha una soluzione. Fissiamo ad esempio A = 3 cm Il perimetro può diventare arbitrariamente grande, quindi non c è un perimetro massimo

72 L ultima variante: la geometria delle api

73 L ultima variante: la geometria delle api Tra tutte le figure piane che racchiudono un area assegnata

74 L ultima variante: la geometria delle api Tra tutte le figure piane che racchiudono un area assegnata trovare quella di perimetro minimo

75 L ultima variante: la geometria delle api Tra tutte le figure piane che racchiudono un area assegnata trovare quella di perimetro minimo

76 Le api preferiscono non lasciare spazi vuoti tra le celle

77 Le api preferiscono non lasciare spazi vuoti tra le celle Per far le celle tutte uguali e regolari le api cercano di coprire completamente il piano con poligoni regolari:

78 Le api preferiscono non lasciare spazi vuoti tra le celle Per far le celle tutte uguali e regolari le api cercano di coprire completamente il piano con poligoni regolari: tassellazione regolare del piano.

79 Le api preferiscono non lasciare spazi vuoti tra le celle Per far le celle tutte uguali e regolari le api cercano di coprire completamente il piano con poligoni regolari: tassellazione regolare del piano.

80 Le api preferiscono non lasciare spazi vuoti tra le celle Per far le celle tutte uguali e regolari le api cercano di coprire completamente il piano con poligoni regolari: tassellazione regolare del piano.

81 Le api preferiscono non lasciare spazi vuoti tra le celle Per far le celle tutte uguali e regolari le api cercano di coprire completamente il piano con poligoni regolari: tassellazione regolare del piano.

82 Le api preferiscono non lasciare spazi vuoti tra le celle Per far le celle tutte uguali e regolari le api cercano di coprire completamente il piano con poligoni regolari: tassellazione regolare del piano. Ci sono altre tassellazioni regolari del piano?

83 Le api preferiscono non lasciare spazi vuoti tra le celle Per far le celle tutte uguali e regolari le api cercano di coprire completamente il piano con poligoni regolari: tassellazione regolare del piano. Ci sono altre tassellazioni regolari del piano? no!

84 Tasselliamo con poligoni regolari di p lati ciascuno:

85 Tasselliamo con poligoni regolari di p lati ciascuno:

86 Tasselliamo con poligoni regolari di p lati ciascuno: In ogni vertice si incontrano q poligoni:

87 Tasselliamo con poligoni regolari di p lati ciascuno: In ogni vertice si incontrano q poligoni: ) q ( = 360 p

88 Tasselliamo con poligoni regolari di p lati ciascuno: In ogni vertice si incontrano q poligoni: ) q ( = ovvero p p + 1 q = 1 2

89 Tasselliamo con poligoni regolari di p lati ciascuno: In ogni vertice si incontrano q poligoni: ) q ( = ovvero p p + 1 q = 1 2 Tre sole possibilità:

90 Tasselliamo con poligoni regolari di p lati ciascuno: In ogni vertice si incontrano q poligoni: ) q ( = ovvero p p + 1 q = 1 2 Tre sole possibilità: p = 3 e q = 6,

91 Tasselliamo con poligoni regolari di p lati ciascuno: In ogni vertice si incontrano q poligoni: ) q ( = ovvero p p + 1 q = 1 2 Tre sole possibilità: p = 3 e q = 6, p = q = 4,

92 Tasselliamo con poligoni regolari di p lati ciascuno: In ogni vertice si incontrano q poligoni: ) q ( = ovvero p p + 1 q = 1 2 Tre sole possibilità: p = 3 e q = 6, p = q = 4, p = 6 e q = 3.

93 Tasselliamo con poligoni regolari di p lati ciascuno: In ogni vertice si incontrano q poligoni: ) q ( = ovvero p p + 1 q = 1 2 Tre sole possibilità: p = 3 e q = 6, p = q = 4, p = 6 e q = 3. Conclusione: le api scelgono le celle esagonali.

94 Scegliendo celle circolari?

95 Scegliendo celle circolari?

96 Scegliendo celle circolari? Lo spreco è circa il 9%

97 Scegliendo celle circolari? Lo spreco è circa il 9% I 6 esagoni esterni formano gratis il perimetro dell esagono interno:

98 Scegliendo celle circolari? Lo spreco è circa il 9% I 6 esagoni esterni formano gratis il perimetro dell esagono interno: 7 circonferenze sono 7 circonferenze,

99 Scegliendo celle circolari? Lo spreco è circa il 9% I 6 esagoni esterni formano gratis il perimetro dell esagono interno: 7 circonferenze sono 7 circonferenze, ma 7 perimetri esagonali sono in realtà ottenuti con 5 perimetri esagonali

100 Il miracolo della matematica

101 Il miracolo della matematica Abracadabra...

102 Il miracolo della matematica Abracadabra... La disuguaglianza isoperimetrica area perimetro2 4π

103 E ora tante cose si spiegano...

104 E ora tante cose si spiegano... Per il cerchio di raggio r si ha

105 E ora tante cose si spiegano... Per il cerchio di raggio r si ha πr 2 = A

106 E ora tante cose si spiegano... Per il cerchio di raggio r si ha πr 2 = A dis. isoper. (2πr) 2 4π

107 E ora tante cose si spiegano... Per il cerchio di raggio r si ha πr 2 = A dis. isoper. (2πr) 2 4π = 4π2 r 2 4π

108 E ora tante cose si spiegano... Per il cerchio di raggio r si ha πr 2 = A dis. isoper. (2πr) 2 4π = 4π2 r 2 4π = πr 2

109 E ora tante cose si spiegano... Per il cerchio di raggio r si ha πr 2 = A dis. isoper. (2πr) 2 4π = 4π2 r 2 4π = πr 2 A (2p)2 4π diventa A = (2p)2 4π

110 E ora tante cose si spiegano... Per il cerchio di raggio r si ha πr 2 = A dis. isoper. (2πr) 2 4π = 4π2 r 2 4π = πr 2 A (2p)2 4π diventa A = (2p)2 4π Tra tutte le figure piane di perimetro assegnato, il cerchio include area massima

111 E ora tante cose si spiegano... Per il cerchio di raggio r si ha πr 2 = A dis. isoper. (2πr) 2 4π = 4π2 r 2 4π = πr 2 A (2p)2 4π diventa A = (2p)2 4π Tra tutte le figure piane di perimetro assegnato, il cerchio include area massima Tra tutte le figure piane di area assegnata, il cerchio ha perimetro minimo: 2p 2 πa

112 E ora tante cose si spiegano... Per il cerchio di raggio r si ha πr 2 = A dis. isoper. (2πr) 2 4π = 4π2 r 2 4π = πr 2 A (2p)2 4π diventa A = (2p)2 4π Tra tutte le figure piane di perimetro assegnato, il cerchio include area massima Tra tutte le figure piane di area assegnata, il cerchio ha perimetro minimo: 2p 2 πa Se fisso l area non ho una limitazione da sopra per il perimetro

113 E ora tante cose si spiegano... Per il cerchio di raggio r si ha πr 2 = A dis. isoper. (2πr) 2 4π = 4π2 r 2 4π = πr 2 A (2p)2 4π diventa A = (2p)2 4π Tra tutte le figure piane di perimetro assegnato, il cerchio include area massima Tra tutte le figure piane di area assegnata, il cerchio ha perimetro minimo: 2p 2 πa Se fisso l area non ho una limitazione da sopra per il perimetro Se fisso il perimetro non ho una limitazione da sotto per l area

114 Un applicazione curiosa della disuguaglianza isoperimetrica

115 Un applicazione curiosa della disuguaglianza isoperimetrica

116 Un applicazione curiosa della disuguaglianza isoperimetrica

117 Un applicazione curiosa della disuguaglianza isoperimetrica I distributori automatici funzionano necessariamente con monete circolari?

118 Il triangolo di Reuleaux

119 Il triangolo di Reuleaux È una figura a spessore costante, ma non è un cerchio

120 Il triangolo di Reuleaux È una figura a spessore costante, ma non è un cerchio

121 50 pence e 20 pence inglesi: sono eptagoni a spessore costante

122 Il cerchio di raggio r è una figura convessa e ha spessore costante d = 2r,

123 Il cerchio di raggio r è una figura convessa e ha spessore costante d = 2r, dunque 2p = 2πr = πd.

124 Il cerchio di raggio r è una figura convessa e ha spessore costante d = 2r, dunque 2p = 2πr = πd. Nel 1860 il matematico francese Barbier dimostra che ogni figura convessa di spessore costante d ha perimetro 2p = πd.

125 Il cerchio di raggio r è una figura convessa e ha spessore costante d = 2r, dunque 2p = 2πr = πd. Nel 1860 il matematico francese Barbier dimostra che ogni figura convessa di spessore costante d ha perimetro 2p = πd. Fissare lo spessore implica fissare il perimetro

126 Il cerchio di raggio r è una figura convessa e ha spessore costante d = 2r, dunque 2p = 2πr = πd. Nel 1860 il matematico francese Barbier dimostra che ogni figura convessa di spessore costante d ha perimetro 2p = πd. Fissare lo spessore implica fissare il perimetro quindi tra tutte le figure convesse di spessore costante d il cerchio massimizza l area ovvero

127 Il cerchio di raggio r è una figura convessa e ha spessore costante d = 2r, dunque 2p = 2πr = πd. Nel 1860 il matematico francese Barbier dimostra che ogni figura convessa di spessore costante d ha perimetro 2p = πd. Fissare lo spessore implica fissare il perimetro quindi tra tutte le figure convesse di spessore costante d il cerchio massimizza l area ovvero produrre monete circolari vuol dire spendere il massimo possibile in materiale di produzione.

128 Il cerchio di raggio r è una figura convessa e ha spessore costante d = 2r, dunque 2p = 2πr = πd. Nel 1860 il matematico francese Barbier dimostra che ogni figura convessa di spessore costante d ha perimetro 2p = πd. Fissare lo spessore implica fissare il perimetro quindi tra tutte le figure convesse di spessore costante d il cerchio massimizza l area ovvero produrre monete circolari vuol dire spendere il massimo possibile in materiale di produzione. Ma anche gli inglesi non sono i più furbi...

129 Il cerchio di raggio r è una figura convessa e ha spessore costante d = 2r, dunque 2p = 2πr = πd. Nel 1860 il matematico francese Barbier dimostra che ogni figura convessa di spessore costante d ha perimetro 2p = πd. Fissare lo spessore implica fissare il perimetro quindi tra tutte le figure convesse di spessore costante d il cerchio massimizza l area ovvero produrre monete circolari vuol dire spendere il massimo possibile in materiale di produzione. Ma anche gli inglesi non sono i più furbi poiché nel 1915 i matematici Blaschke e Lebesgue dimostrano che tra tutte le figure convesse di assegnato spessore costante, il triangolo di Reuleaux ha area minima.

130 Un altra applicazione del triangolo di Reuleaux

131 Un altra applicazione del triangolo di Reuleaux

132 Da 2D a 3D: le bolle di sapone Gli stessi problemi possono essere posti in 3D,

133 Da 2D a 3D: le bolle di sapone Gli stessi problemi possono essere posti in 3D, e vale ancora la disuguaglianza isoperimetrica, da cui: Tra tutti i solidi che hanno bordo di area fissata la sfera è quella che massimizza il volume

134 Da 2D a 3D: le bolle di sapone Gli stessi problemi possono essere posti in 3D, e vale ancora la disuguaglianza isoperimetrica, da cui: Tra tutti i solidi che hanno bordo di area fissata la sfera è quella che massimizza il volume Tra tutti i solidi che hanno volume fissato la sfera è quella che minimizza l area del bordo

135 Da 2D a 3D: le bolle di sapone Gli stessi problemi possono essere posti in 3D, e vale ancora la disuguaglianza isoperimetrica, da cui: Tra tutti i solidi che hanno bordo di area fissata la sfera è quella che massimizza il volume Tra tutti i solidi che hanno volume fissato la sfera è quella che minimizza l area del bordo

136 Una variante delle bolle di sapone: le superfici minime Un problema simile alle bolle di sapone:

137 Una variante delle bolle di sapone: le superfici minime Un problema simile alle bolle di sapone: data una curva chiusa nello spazio,

138 Una variante delle bolle di sapone: le superfici minime Un problema simile alle bolle di sapone: data una curva chiusa nello spazio, trovare una superficie che ha la curva assegnata come bordo

139 Una variante delle bolle di sapone: le superfici minime Un problema simile alle bolle di sapone: data una curva chiusa nello spazio, trovare una superficie che ha la curva assegnata come bordo e che ha area minima.

140 Una variante delle bolle di sapone: le superfici minime Un problema simile alle bolle di sapone: data una curva chiusa nello spazio, trovare una superficie che ha la curva assegnata come bordo e che ha area minima.

141 Come mai questi problemi sono così difficili?

142 Come mai questi problemi sono così difficili? Semplifichiamo un po il problema di Didone:

143 Come mai questi problemi sono così difficili? Semplifichiamo un po il problema di Didone: Tra tutti i rettangoli di perimetro assegnato trovare quello che ha area massima

144 Come mai questi problemi sono così difficili? Semplifichiamo un po il problema di Didone: Tra tutti i rettangoli di perimetro assegnato trovare quello che ha area massima Questo nuovo problema è decisamente più semplice:

145 Come mai questi problemi sono così difficili? Semplifichiamo un po il problema di Didone: Tra tutti i rettangoli di perimetro assegnato trovare quello che ha area massima Questo nuovo problema è decisamente più semplice: infatti, se denotiamo con x, y le lunghezze dei lati del generico rettangolo di semiperimetro fissato p,

146 Come mai questi problemi sono così difficili? Semplifichiamo un po il problema di Didone: Tra tutti i rettangoli di perimetro assegnato trovare quello che ha area massima Questo nuovo problema è decisamente più semplice: infatti, se denotiamo con x, y le lunghezze dei lati del generico rettangolo di semiperimetro fissato p, abbiamo x + y = p, p > 0 fissato,

147 Come mai questi problemi sono così difficili? Semplifichiamo un po il problema di Didone: Tra tutti i rettangoli di perimetro assegnato trovare quello che ha area massima Questo nuovo problema è decisamente più semplice: infatti, se denotiamo con x, y le lunghezze dei lati del generico rettangolo di semiperimetro fissato p, abbiamo x + y = p, p > 0 fissato, che fornisce y = p x.

148 Come mai questi problemi sono così difficili? Semplifichiamo un po il problema di Didone: Tra tutti i rettangoli di perimetro assegnato trovare quello che ha area massima Questo nuovo problema è decisamente più semplice: infatti, se denotiamo con x, y le lunghezze dei lati del generico rettangolo di semiperimetro fissato p, abbiamo x + y = p, p > 0 fissato, che fornisce y = p x. Dobbiamo massimizzare la quantità xy

149 Come mai questi problemi sono così difficili? Semplifichiamo un po il problema di Didone: Tra tutti i rettangoli di perimetro assegnato trovare quello che ha area massima Questo nuovo problema è decisamente più semplice: infatti, se denotiamo con x, y le lunghezze dei lati del generico rettangolo di semiperimetro fissato p, abbiamo x + y = p, p > 0 fissato, che fornisce y = p x. Dobbiamo massimizzare la quantità xy = x(p x)

150 Come mai questi problemi sono così difficili? Semplifichiamo un po il problema di Didone: Tra tutti i rettangoli di perimetro assegnato trovare quello che ha area massima Questo nuovo problema è decisamente più semplice: infatti, se denotiamo con x, y le lunghezze dei lati del generico rettangolo di semiperimetro fissato p, abbiamo x + y = p, p > 0 fissato, che fornisce y = p x. Dobbiamo massimizzare la quantità xy = x(p x) = px x 2, al variare di x [0, p].

151 Analizziamo il grafico della funzione A(x) := px x 2, al variare di x [0, p] :

152 Analizziamo il grafico della funzione A(x) := px x 2, al variare di x [0, p] :

153 Analizziamo il grafico della funzione A(x) := px x 2, al variare di x [0, p] : Notiamo che A assume massimo per x = p/2,

154 Analizziamo il grafico della funzione A(x) := px x 2, al variare di x [0, p] : Notiamo che A assume massimo per x = p/2, che vuol dire y = p/2:

155 Analizziamo il grafico della funzione A(x) := px x 2, al variare di x [0, p] : Notiamo che A assume massimo per x = p/2, che vuol dire y = p/2: la soluzione è il quadrato di perimetro 2p.

156 Come mai quest ultimo problema è elementare?

157 Come mai quest ultimo problema è elementare? Ce lo potevamo aspettare:

158 Come mai quest ultimo problema è elementare? Ce lo potevamo aspettare: abbiamo infatti ridotto la classe delle figure ammissibili.

159 Come mai quest ultimo problema è elementare? Ce lo potevamo aspettare: abbiamo infatti ridotto la classe delle figure ammissibili. Il problema appena descritto ha però una particolarità dal punto di vista matematico:

160 Come mai quest ultimo problema è elementare? Ce lo potevamo aspettare: abbiamo infatti ridotto la classe delle figure ammissibili. Il problema appena descritto ha però una particolarità dal punto di vista matematico: richiede la massimizzazione di una funzione di una variabile reale, nella fattispecie A(x) = px x 2.

161 Il caso dei triangoli

162 Il caso dei triangoli Una variante del problema del rettangolo di area massima potrebbe essere il seguente:

163 Il caso dei triangoli Una variante del problema del rettangolo di area massima potrebbe essere il seguente: Tra tutti i triangoli di perimetro assegnato trovare quello che ha area massima

164 Il caso dei triangoli Una variante del problema del rettangolo di area massima potrebbe essere il seguente: Tra tutti i triangoli di perimetro assegnato trovare quello che ha area massima Se denotiamo con p il semiperimetro del triangolo,

165 Il caso dei triangoli Una variante del problema del rettangolo di area massima potrebbe essere il seguente: Tra tutti i triangoli di perimetro assegnato trovare quello che ha area massima Se denotiamo con p il semiperimetro del triangolo, per la formula di Erone l area vale A(x, y, z) = p(p x)(p y)(p z), x, y, z lati del triangolo.

166 Il caso dei triangoli Una variante del problema del rettangolo di area massima potrebbe essere il seguente: Tra tutti i triangoli di perimetro assegnato trovare quello che ha area massima Se denotiamo con p il semiperimetro del triangolo, per la formula di Erone l area vale A(x, y, z) = p(p x)(p y)(p z), x, y, z lati del triangolo. Bisogna quindi massimizzare la funzione A(x, y, z) sapendo che:

167 Il caso dei triangoli Una variante del problema del rettangolo di area massima potrebbe essere il seguente: Tra tutti i triangoli di perimetro assegnato trovare quello che ha area massima Se denotiamo con p il semiperimetro del triangolo, per la formula di Erone l area vale A(x, y, z) = p(p x)(p y)(p z), x, y, z lati del triangolo. Bisogna quindi massimizzare la funzione A(x, y, z) sapendo che: x, y, z sono le misure dei lati di un triangolo;

168 Il caso dei triangoli Una variante del problema del rettangolo di area massima potrebbe essere il seguente: Tra tutti i triangoli di perimetro assegnato trovare quello che ha area massima Se denotiamo con p il semiperimetro del triangolo, per la formula di Erone l area vale A(x, y, z) = p(p x)(p y)(p z), x, y, z lati del triangolo. Bisogna quindi massimizzare la funzione A(x, y, z) sapendo che: x, y, z sono le misure dei lati di un triangolo; 2p = x + y + z.

169 Il problema della massimizzazione di A(x, y, z), sotto le condizioni date, si risolve facilmente, per esempio, col calcolo differenziale.

170 Il problema della massimizzazione di A(x, y, z), sotto le condizioni date, si risolve facilmente, per esempio, col calcolo differenziale. Anche il problema dei triangoli ha però una particolarità dal punto di vista matematico, che lo rende trattabile con strumenti ancora elementari, come il calcolo differenziale:

171 Il problema della massimizzazione di A(x, y, z), sotto le condizioni date, si risolve facilmente, per esempio, col calcolo differenziale. Anche il problema dei triangoli ha però una particolarità dal punto di vista matematico, che lo rende trattabile con strumenti ancora elementari, come il calcolo differenziale: richiede la massimizzazione di una funzione di tre variabili reali: A(x, y, z) = p(p x)(p y)(p z).

172 Il problema della massimizzazione di A(x, y, z), sotto le condizioni date, si risolve facilmente, per esempio, col calcolo differenziale. Anche il problema dei triangoli ha però una particolarità dal punto di vista matematico, che lo rende trattabile con strumenti ancora elementari, come il calcolo differenziale: richiede la massimizzazione di una funzione di tre variabili reali: A(x, y, z) = p(p x)(p y)(p z). La filosofia generale è che possiamo risolvere problemi di massimo/minimo con strumenti elementari, come il calcolo differenziale, se

173 Il problema della massimizzazione di A(x, y, z), sotto le condizioni date, si risolve facilmente, per esempio, col calcolo differenziale. Anche il problema dei triangoli ha però una particolarità dal punto di vista matematico, che lo rende trattabile con strumenti ancora elementari, come il calcolo differenziale: richiede la massimizzazione di una funzione di tre variabili reali: A(x, y, z) = p(p x)(p y)(p z). La filosofia generale è che possiamo risolvere problemi di massimo/minimo con strumenti elementari, come il calcolo differenziale, se si richiede la massimizzazione/minimizzazione di una funzione di un numero finito variabili reali.

174 La dimensione infinita: il Calcolo delle Variazioni

175 La dimensione infinita: il Calcolo delle Variazioni Rifacciamo ora delle osservazioni su alcuni dei problemi precedenti:

176 La dimensione infinita: il Calcolo delle Variazioni Rifacciamo ora delle osservazioni su alcuni dei problemi precedenti: Il problema delle determinazione del rettangolo di area massima tra tutti i rettangoli di perimetro assegnato richiede la massimizzazione di una funzione di una variabile reale:

177 La dimensione infinita: il Calcolo delle Variazioni Rifacciamo ora delle osservazioni su alcuni dei problemi precedenti: Il problema delle determinazione del rettangolo di area massima tra tutti i rettangoli di perimetro assegnato richiede la massimizzazione di una funzione di una variabile reale: diciamo che il problema ha dimensione 1;

178 La dimensione infinita: il Calcolo delle Variazioni Rifacciamo ora delle osservazioni su alcuni dei problemi precedenti: Il problema delle determinazione del rettangolo di area massima tra tutti i rettangoli di perimetro assegnato richiede la massimizzazione di una funzione di una variabile reale: diciamo che il problema ha dimensione 1; Il problema delle determinazione del triangolo di area massima tra tutti i triangoli di perimetro assegnato richiede la massimizzazione di una funzione di tre variabili reali:

179 La dimensione infinita: il Calcolo delle Variazioni Rifacciamo ora delle osservazioni su alcuni dei problemi precedenti: Il problema delle determinazione del rettangolo di area massima tra tutti i rettangoli di perimetro assegnato richiede la massimizzazione di una funzione di una variabile reale: diciamo che il problema ha dimensione 1; Il problema delle determinazione del triangolo di area massima tra tutti i triangoli di perimetro assegnato richiede la massimizzazione di una funzione di tre variabili reali: diciamo che il problema ha dimensione 3;

180 La dimensione infinita: il Calcolo delle Variazioni Rifacciamo ora delle osservazioni su alcuni dei problemi precedenti: Il problema delle determinazione del rettangolo di area massima tra tutti i rettangoli di perimetro assegnato richiede la massimizzazione di una funzione di una variabile reale: diciamo che il problema ha dimensione 1; Il problema delle determinazione del triangolo di area massima tra tutti i triangoli di perimetro assegnato richiede la massimizzazione di una funzione di tre variabili reali: diciamo che il problema ha dimensione 3; Non è difficile risolvere i problemi di dimensione finita.

181 La dimensione infinita: il Calcolo delle Variazioni Rifacciamo ora delle osservazioni su alcuni dei problemi precedenti: Il problema delle determinazione del rettangolo di area massima tra tutti i rettangoli di perimetro assegnato richiede la massimizzazione di una funzione di una variabile reale: diciamo che il problema ha dimensione 1; Il problema delle determinazione del triangolo di area massima tra tutti i triangoli di perimetro assegnato richiede la massimizzazione di una funzione di tre variabili reali: diciamo che il problema ha dimensione 3; Non è difficile risolvere i problemi di dimensione finita. Ebbene:

182 La dimensione infinita: il Calcolo delle Variazioni Rifacciamo ora delle osservazioni su alcuni dei problemi precedenti: Il problema delle determinazione del rettangolo di area massima tra tutti i rettangoli di perimetro assegnato richiede la massimizzazione di una funzione di una variabile reale: diciamo che il problema ha dimensione 1; Il problema delle determinazione del triangolo di area massima tra tutti i triangoli di perimetro assegnato richiede la massimizzazione di una funzione di tre variabili reali: diciamo che il problema ha dimensione 3; Non è difficile risolvere i problemi di dimensione finita. Ebbene: Il problema di Didone è un problema di dimensione finita?

183 La dimensione infinita: il Calcolo delle Variazioni Rifacciamo ora delle osservazioni su alcuni dei problemi precedenti: Il problema delle determinazione del rettangolo di area massima tra tutti i rettangoli di perimetro assegnato richiede la massimizzazione di una funzione di una variabile reale: diciamo che il problema ha dimensione 1; Il problema delle determinazione del triangolo di area massima tra tutti i triangoli di perimetro assegnato richiede la massimizzazione di una funzione di tre variabili reali: diciamo che il problema ha dimensione 3; Non è difficile risolvere i problemi di dimensione finita. Ebbene: Il problema di Didone è un problema di dimensione finita? NO!!

184 Il caso dei rettangoli: la variabile x può assumere infiniti valori, ma è una variabile.

185 Il caso dei triangoli: le variabili x, y, z possono assumere infiniti valori ciascuna, ma sono tre variabili.

186 I problema di Didone è un problema di massimo in cui la variabile indipendente è una curva e non una lista finita di numeri reali:

187 I problema di Didone è un problema di massimo in cui la variabile indipendente è una curva e non una lista finita di numeri reali: Per ognuno degli infiniti valori che può assumere la variabile indipendente ho a disposizione infiniti valori per la variabile dipendente.

188 I problema di Didone è un problema di massimo in cui la variabile indipendente è una curva e non una lista finita di numeri reali: Per ognuno degli infiniti valori che può assumere la variabile indipendente ho a disposizione infiniti valori per la variabile dipendente. Il Calcolo delle Variazioni risolve problemi di massimo/minimo nei casi di dimensione infinita, come il caso del problema di Didone,

189 I problema di Didone è un problema di massimo in cui la variabile indipendente è una curva e non una lista finita di numeri reali: Per ognuno degli infiniti valori che può assumere la variabile indipendente ho a disposizione infiniti valori per la variabile dipendente. Il Calcolo delle Variazioni risolve problemi di massimo/minimo nei casi di dimensione infinita, come il caso del problema di Didone, ma non è più elementare come il calcolo differenziale.

190 Altri problemi risolti dal Calcolo delle Variazioni

191 Altri problemi risolti dal Calcolo delle Variazioni Catenaria Qual è la curva formata da una fune appesa a due estremi?

192 Altri problemi risolti dal Calcolo delle Variazioni Catenaria Qual è la curva formata da una fune appesa a due estremi? È sostanzialmente il grafico della funzione y = ex +e x 2 (= cosh x).

193 Brachistocrona Qual è la curva lungo la quale un grave impiega il tempo minimo per scendere da un punto A ad un punto B?

194 Brachistocrona Qual è la curva lungo la quale un grave impiega il tempo minimo per scendere da un punto A ad un punto B? È un arco di cicloide.

195 La bella Elena della matematica

196 La bella Elena della matematica La cicloide come curva descritta da rotolamento senza strisciamento:

197 La bella Elena della matematica La cicloide come curva descritta da rotolamento senza strisciamento: La cicloide è anche la curva tautocrona:

198 Data una curva γ posso sempre costruire la sua evoluta:

199 Data una curva γ posso sempre costruire la sua evoluta: Cosa è l evoluta della cicloide?

200 Data una curva γ posso sempre costruire la sua evoluta: Cosa è l evoluta della cicloide? È ancora una cicloide!

201 Sappiamo costruire un orologio a pendolo perfetto:

202 Sappiamo costruire un orologio a pendolo perfetto:

203 Una variante del problema di Didone in biologia

204 While this interesting combination of properties is clearly related to the chemical makeup of the lipids most importantly, the hydrophobic character of the Una variante tails quantitative del problema and detailed di Didone understanding inofbiologia the phenomenon is still lacking. Here we focus on a simple question that has already been alluded to above: how can we understand the stability of these planar structures, and their pseudo-solid behaviour, if they are constructed from independent, non-bound molecules? This is the main question behind the analysis of this paper. Fig. 1. Lipid molecules aggregate into macroscopically surface-like structures Nel 1973 Wolfgang Helfrich propone un modello matematico per studiare la flessione delle membrane cellulari e quindi per determinarne la forma

205 L energia immagazzinata dalla membrana quando questa si flette è proporzionale a quanto la membrana si curva;

206 L energia immagazzinata dalla membrana quando questa si flette è proporzionale a quanto la membrana si curva; Helfrich propone allora la seguente variante del problema isoperimetrico 3D:

207 L energia immagazzinata dalla membrana quando questa si flette è proporzionale a quanto la membrana si curva; Helfrich propone allora la seguente variante del problema isoperimetrico 3D: Tra tutti i solidi di volume fissato e di area del bordo fissata

208 L energia immagazzinata dalla membrana quando questa si flette è proporzionale a quanto la membrana si curva; Helfrich propone allora la seguente variante del problema isoperimetrico 3D: Tra tutti i solidi di volume fissato e di area del bordo fissata trovare quello che curva il meno possibile

209 Un bel problema, anche se non lo risolvi, ti fa compagnia se ci pensi ogni tanto Ennio De Giorgi ( )

Rettangoli isoperimetrici

Rettangoli isoperimetrici Bruno Jannamorelli Rettangoli isoperimetrici Questo rettangolo ha lo stesso perimetro di quello precedente. E l area? È la stessa? Il problema di Didone Venere ad Enea: Poi giunsero nei luoghi dove adesso

Dettagli

a. 10 4 b. 10-15 c. 10 25 d. 10-4 a. 4,375 10-7 b. 3,625 10-6 c. 4,375 10 2 d. nessuno dei precedenti valori a. 10-5 b. 10 +5 c. 10 +15 d.

a. 10 4 b. 10-15 c. 10 25 d. 10-4 a. 4,375 10-7 b. 3,625 10-6 c. 4,375 10 2 d. nessuno dei precedenti valori a. 10-5 b. 10 +5 c. 10 +15 d. 1) Il valore di 5 10 20 è: a. 10 4 b. 10-15 c. 10 25 d. 10-4 2) Il valore del rapporto (2,8 10-4 ) / (6,4 10 2 ) è: a. 4,375 10-7 b. 3,625 10-6 c. 4,375 10 2 d. nessuno dei precedenti valori 3) La quantità

Dettagli

Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 2014

Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 2014 Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 14 Problema 1 Punto a) Osserviamo che g (x) = f(x) e pertanto g () = f() = in quanto Γ è tangente all asse delle ascisse,

Dettagli

a) Si descriva, internamente al triangolo, con centro in B e raggio x, l arco di circonferenza di π π

a) Si descriva, internamente al triangolo, con centro in B e raggio x, l arco di circonferenza di π π PROBLEMA Il triangolo rettangolo ABC ha l ipotenusa AB = a e l angolo CAB =. a) Si descriva, internamente al triangolo, con centro in B e raggio, l arco di circonferenza di estremi P e Q rispettivamente

Dettagli

ESAME DI STATO 2002 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO

ESAME DI STATO 2002 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO ARCHIMEDE 4/ 97 ESAME DI STATO SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO Il candidato risolva uno dei due problemi e 5 dei quesiti in cui si articola il questionario. PROBLEMA In un

Dettagli

RETTE, PIANI, SFERE, CIRCONFERENZE

RETTE, PIANI, SFERE, CIRCONFERENZE RETTE, PIANI, SFERE, CIRCONFERENZE 1. Esercizi Esercizio 1. Dati i punti A(1, 0, 1) e B(, 1, 1) trovare (1) la loro distanza; () il punto medio del segmento AB; (3) la retta AB sia in forma parametrica,

Dettagli

Trasformazioni Geometriche 1 Roberto Petroni, 2011

Trasformazioni Geometriche 1 Roberto Petroni, 2011 1 Trasformazioni Geometriche 1 Roberto etroni, 2011 Trasformazioni Geometriche sul piano euclideo 1) Introduzione Def: si dice trasformazione geometrica una corrispondenza biunivoca che associa ad ogni

Dettagli

Kangourou Italia Gara del 19 marzo 2015 Categoria Student Per studenti di quarta e quinta della secondaria di secondo grado

Kangourou Italia Gara del 19 marzo 2015 Categoria Student Per studenti di quarta e quinta della secondaria di secondo grado Kangourou Italia Gara del 19 marzo 2015 Categoria Student Per studenti di quarta e quinta della secondaria di secondo grado I quesiti dal N. 1 al N. 10 valgono 3 punti ciascuno 1. Angela è nata nel 1997,

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 004 Il candidato risolva uno dei due problemi e 5 dei 10 quesiti in cui si articola il questionario. PROBLEMA 1 Sia f la funzione definita da: f

Dettagli

Maturità Scientifica PNI, sessione ordinaria 2000-2001

Maturità Scientifica PNI, sessione ordinaria 2000-2001 Matematica per la nuova maturità scientifica A. Bernardo M. Pedone Maturità Scientifica PNI, sessione ordinaria 000-00 Problema Sia AB un segmento di lunghezza a e il suo punto medio. Fissato un conveniente

Dettagli

esame di stato 2014 seconda prova scritta per i licei scientifici di ordinamento

esame di stato 2014 seconda prova scritta per i licei scientifici di ordinamento ARTICOLO Archimede 4 4 esame di stato 4 seconda prova scritta per i licei scientifici di ordinamento Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. PROBLEMA Nella figura

Dettagli

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:...

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:... Ministero della Pubblica Istruzione Rilevazione degli apprendimenti Anno Scolastico 2006 2007 PROVA DI MATEMATICA Scuola Secondaria di II grado Classe Terza Tipo A Codici Scuola:..... Classe:.. Studente:.

Dettagli

Amministrazione, finanza e marketing - Turismo Ministero dell Istruzione, dell Università e della Ricerca PROGRAMMAZIONE DISCIPLINARE PER U. di A.

Amministrazione, finanza e marketing - Turismo Ministero dell Istruzione, dell Università e della Ricerca PROGRAMMAZIONE DISCIPLINARE PER U. di A. UdA n. 1 Titolo: Disequazioni algebriche Saper esprimere in linguaggio matematico disuguaglianze e disequazioni Risolvere problemi mediante l uso di disequazioni algebriche Le disequazioni I principi delle

Dettagli

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:...

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:... Ministero della Pubblica Istruzione Rilevazione degli apprendimenti Anno Scolastico 2006 2007 PROVA DI MATEMATICA Scuola Secondaria di II grado Classe Terza Tipo A Codici Scuola:..... Classe:.. Studente:.

Dettagli

esame di stato 2012 seconda prova scritta per il liceo scientifico di ordinamento

esame di stato 2012 seconda prova scritta per il liceo scientifico di ordinamento RTICL rchimede 4 esame di stato seconda prova scritta per il liceo scientifico di ordinamento Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario PRBLEM Siano f e g le funzioni

Dettagli

CS. Cinematica dei sistemi

CS. Cinematica dei sistemi CS. Cinematica dei sistemi Dopo aver esaminato la cinematica del punto e del corpo rigido, che sono gli schemi più semplificati con cui si possa rappresentare un corpo, ci occupiamo ora dei sistemi vincolati.

Dettagli

EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE

EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE 1. EQUAZIONI Definizione: un equazione è un uguaglianza tra due espressioni letterali (cioè in cui compaiono numeri, lettere

Dettagli

f : A A = f (A) In altre parole f è una funzione che associa a un punto del piano un altro punto del piano e che si può invertire.

f : A A = f (A) In altre parole f è una funzione che associa a un punto del piano un altro punto del piano e che si può invertire. Consideriamo l insieme P dei punti del piano e una f funzione biiettiva da P in P: f : { P P A A = f (A) In altre parole f è una funzione che associa a un punto del piano un altro punto del piano e che

Dettagli

ESAME DI STATO 2010 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO

ESAME DI STATO 2010 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO Archimede ESAME DI STATO SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO ARTICOLO Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. Sia ABCD un quadrato di

Dettagli

DERIVATE DELLE FUNZIONI. esercizi proposti dal Prof. Gianluigi Trivia

DERIVATE DELLE FUNZIONI. esercizi proposti dal Prof. Gianluigi Trivia DERIVATE DELLE FUNZIONI esercizi proposti dal Prof. Gianluigi Trivia Incremento della variabile indipendente e della funzione. Se, sono due valori della variabile indipendente, y f ) e y f ) le corrispondenti

Dettagli

Geometria nel piano complesso

Geometria nel piano complesso Geometria nel piano complesso Giorgio Ottaviani Contents Un introduzione formale del piano complesso 2 Il teorema di Napoleone 5 L inversione circolare 6 4 Le trasformazioni di Möbius 7 5 Il birapporto

Dettagli

LE TRASFORMAZIONI GEOMETRICHE NEL PIANO

LE TRASFORMAZIONI GEOMETRICHE NEL PIANO LE TRASFORMAZIONI GEOMETRICHE NEL PIANO Una trasformazione geometrica è una funzione che fa corrispondere a ogni punto del piano un altro punto del piano stesso Si può pensare come MOVIMENTO di punti e

Dettagli

Terne pitagoriche e teorema di Pitagora, numeri e triangoli. Riccardo Ricci: Dipartimento di Matematica U.Dini ricci@math.unif.it

Terne pitagoriche e teorema di Pitagora, numeri e triangoli. Riccardo Ricci: Dipartimento di Matematica U.Dini ricci@math.unif.it 3 4 5 Terne pitagoriche e teorema di Pitagora, numeri e triangoli Riccardo Ricci: Dipartimento di Matematica U.Dini ricci@math.unif.it Qualche osservazione preliminare sul Teorema di Pitagora e le terne

Dettagli

Funzioni di più variabili. Ottimizzazione libera e vincolata

Funzioni di più variabili. Ottimizzazione libera e vincolata libera e vincolata Generalità. Limiti e continuità per funzioni di 2 o Piano tangente. Derivate successive Formula di Taylor libera vincolata Lo ordinario è in corrispondenza biunivoca con i vettori di

Dettagli

Soluzione Punto 1 Si calcoli in funzione di x la differenza d(x) fra il volume del cono avente altezza AP e base il

Soluzione Punto 1 Si calcoli in funzione di x la differenza d(x) fra il volume del cono avente altezza AP e base il Matematica per la nuova maturità scientifica A. Bernardo M. Pedone 74 PROBLEMA Considerata una sfera di diametro AB, lungo, per un punto P di tale diametro si conduca il piano α perpendicolare ad esso

Dettagli

Argomento interdisciplinare

Argomento interdisciplinare 1 Argomento interdisciplinare Tecnologia-Matematica Libro consigliato: Disegno Laboratorio - IL MANUALE DI TECNOLOGIA _G.ARDUINO_LATTES studiare da pag.19.da 154 a 162 Unità aggiornata: 7/2012 2 Sono corpi

Dettagli

esame di stato 2013 seconda prova scritta per il liceo scientifico di ordinamento

esame di stato 2013 seconda prova scritta per il liceo scientifico di ordinamento Archimede esame di stato seconda prova scritta per il liceo scientifico di ordinamento ARTICOLO Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. PROBLEMA La funzione f

Dettagli

ISTITUTO COMPRENSIVO N 1 LANCIANO - SCUOLA SECONDARIA DI PRIMO GRADO CURRICOLO VERTICALE - Classe Prima MATEMATICA a.s. 2014/2015

ISTITUTO COMPRENSIVO N 1 LANCIANO - SCUOLA SECONDARIA DI PRIMO GRADO CURRICOLO VERTICALE - Classe Prima MATEMATICA a.s. 2014/2015 NUMERI. SPAZIO E FIGURE. RELAZIONI, FUNZIONI, MISURE, DATI E PREVISIONI Le sociali e ISTITUTO COMPRENSIVO N 1 LANCIANO - SCUOLA SECONDARIA DI PRIMO GRADO CURRICOLO VERTICALE - Classe Prima MATEMATICA procedure

Dettagli

Nel triangolo disegnato a lato, qual è la misura, in gradi e primi sessagesimali, di α?

Nel triangolo disegnato a lato, qual è la misura, in gradi e primi sessagesimali, di α? QUESITO 1 Nel triangolo disegnato a lato, qual è la misura, in gradi e primi sessagesimali, di α? Applicando il Teorema dei seni si può determinare il valore di senza indeterminazione, in quanto dalla

Dettagli

LA MATEMATICA PER LE ALTRE DISCIPLINE. Prerequisiti e sviluppi universitari G. ACCASCINA, G. ANICHINI, G. ANZELLOTTI, F. ROSSO, V. VILLANI, R.

LA MATEMATICA PER LE ALTRE DISCIPLINE. Prerequisiti e sviluppi universitari G. ACCASCINA, G. ANICHINI, G. ANZELLOTTI, F. ROSSO, V. VILLANI, R. LA MATEMATICA PER LE ALTRE DISCIPLINE Prerequisiti e sviluppi universitari a cura di G. ACCASCINA, G. ANICHINI, G. ANZELLOTTI, F. ROSSO, V. VILLANI, R. ZAN Unione Matematica Italiana 2006 Ho continuato

Dettagli

ELEMENTI DI GEOMETRIA ANALITICA: LA RETTA.

ELEMENTI DI GEOMETRIA ANALITICA: LA RETTA. ELEMENTI DI GEOMETRIA ANALITICA: LA RETTA. Prerequisiti I radicali Risoluzione di sistemi di equazioni di primo e secondo grado. Classificazione e dominio delle funzioni algebriche Obiettivi minimi Saper

Dettagli

C è solo un acca tra pi e phi ing. Rosario Turco, prof. Maria Colonnese

C è solo un acca tra pi e phi ing. Rosario Turco, prof. Maria Colonnese C è solo un acca tra pi e phi ing. Rosario Turco, prof. Maria Colonnese Introduzione Nell articolo vengono mostrate vari possibili legami tra la costante di Archimede (pi greco) e la sezione aurea (phi).

Dettagli

PROGRAMMA DI FISICA ( CLASSE I SEZ. E) ( anno scol. 2013/2014)

PROGRAMMA DI FISICA ( CLASSE I SEZ. E) ( anno scol. 2013/2014) PROGRAMMA DI FISICA ( CLASSE I SEZ. E) ( anno scol. 2013/2014) Le grandezze fisiche. Metodo sperimentale di Galilei. Concetto di grandezza fisica e della sua misura. Il Sistema internazionale di Unità

Dettagli

LE FUNZIONI MATEMATICHE

LE FUNZIONI MATEMATICHE ALGEBRA LE FUNZIONI MATEMATICHE E IL PIANO CARTESIANO PREREQUISITI l l l l l conoscere il concetto di insieme conoscere il concetto di relazione disporre i dati in una tabella rappresentare i dati mediante

Dettagli

Indice generale. Modulo 1 Algebra 2

Indice generale. Modulo 1 Algebra 2 Indice generale Modulo 1 Algebra 2 Capitolo 1 Scomposizione in fattori. Equazioni di grado superiore al primo 1.1 La scomposizione in fattori 2 1.2 Raccoglimento a fattor comune 3 1.3 Raccoglimenti successivi

Dettagli

Le trasformazioni geometriche

Le trasformazioni geometriche Le trasformazioni geometriche Le trasformazioni geometriche Le trasformazioni affini del piano o affinità Le similitudini Le isometrie Le traslazioni Le rotazioni Le simmetrie assiale e centrale Le omotetie

Dettagli

Rette e piani con le matrici e i determinanti

Rette e piani con le matrici e i determinanti CAPITOLO Rette e piani con le matrici e i determinanti Esercizio.. Stabilire se i punti A(, ), B(, ) e C(, ) sono allineati. Esercizio.. Stabilire se i punti A(,,), B(,,), C(,, ) e D(4,,0) sono complanari.

Dettagli

Esponenziali elogaritmi

Esponenziali elogaritmi Esponenziali elogaritmi Potenze ad esponente reale Ricordiamo che per un qualsiasi numero razionale m n prendere n>0) si pone a m n = n a m (in cui si può sempre a patto che a sia un numero reale positivo.

Dettagli

IL GIOCO DEL 15. OVVERO: 1000$ PER SPOSTARE DUE BLOCCHETTI

IL GIOCO DEL 15. OVVERO: 1000$ PER SPOSTARE DUE BLOCCHETTI IL GIOCO DEL. OVVERO: 000$ PER SPOSTARE DUE BLOCCHETTI EMANUELE DELUCCHI, GIOVANNI GAIFFI, LUDOVICO PERNAZZA Molti fra i lettori si saranno divertiti a giocare al gioco del, uno dei più celebri fra i giochi

Dettagli

Funzioni in più variabili

Funzioni in più variabili Funzioni in più variabili Corso di Analisi 1 di Andrea Centomo 27 gennaio 2011 Indichiamo con R n, n 1, l insieme delle n-uple ordinate di numeri reali R n4{(x 1, x 2,,x n ), x i R, i =1,,n}. Dato X R

Dettagli

PROVA DI MATEMATICA - Scuola Primaria - Classe Quinta

PROVA DI MATEMATICA - Scuola Primaria - Classe Quinta Rilevazione degli apprendimenti PROVA DI MATEMATICA - Scuola Primaria - Classe Quinta Anno Scolastico 2011 2012 PROVA DI MATEMATICA Scuola Primaria Classe Quinta Spazio per l etichetta autoadesiva ISTRUZIONI

Dettagli

Appunti di Analisi Matematica 1. Docente:Fabio Camilli. SAPIENZA, Università di Roma A.A. 2014/15. http://www.dmmm.uniroma1.it/~fabio.

Appunti di Analisi Matematica 1. Docente:Fabio Camilli. SAPIENZA, Università di Roma A.A. 2014/15. http://www.dmmm.uniroma1.it/~fabio. Appunti di Analisi Matematica Docente:Fabio Camilli SAPIENZA, Università di Roma A.A. 4/5 http://www.dmmm.uniroma.it/~fabio.camilli/ (Versione del 9 luglio 5) Note scritte in collaborazione con il prof.

Dettagli

Servizio Nazionale di Valutazione a.s. 2013/14 Guida alla lettura Prova di Matematica Classe seconda Scuola secondaria di II grado

Servizio Nazionale di Valutazione a.s. 2013/14 Guida alla lettura Prova di Matematica Classe seconda Scuola secondaria di II grado Servizio Nazionale di Valutazione a.s. 2013/14 Guida alla lettura Prova di Matematica Classe seconda Scuola secondaria di II grado I quesiti sono distribuiti negli ambiti secondo la tabella seguente Ambito

Dettagli

1. Limite finito di una funzione in un punto

1. Limite finito di una funzione in un punto . Limite finito di una funzione in un punto Consideriamo la funzione: f ( ) = il cui dominio risulta essere R {}, e quindi il valore di f ( ) non è calcolabile in =. Quest affermazione tuttavia non esaurisce

Dettagli

Istituto Istruzione Superiore Liceo Scientifico Ghilarza Anno Scolastico 2013/2014 PROGRAMMA DI MATEMATICA E FISICA

Istituto Istruzione Superiore Liceo Scientifico Ghilarza Anno Scolastico 2013/2014 PROGRAMMA DI MATEMATICA E FISICA PROGRAMMA DI MATEMATICA E FISICA Classe VA scientifico MATEMATICA MODULO 1 ESPONENZIALI E LOGARITMI 1. Potenze con esponente reale; 2. La funzione esponenziale: proprietà e grafico; 3. Definizione di logaritmo;

Dettagli

Funzione reale di variabile reale

Funzione reale di variabile reale Funzione reale di variabile reale Siano A e B due sottoinsiemi non vuoti di. Si chiama funzione reale di variabile reale, di A in B, una qualsiasi legge che faccia corrispondere, a ogni elemento A x A

Dettagli

Problema n. 1: CURVA NORD

Problema n. 1: CURVA NORD Problema n. 1: CURVA NORD Sei il responsabile della gestione del settore Curva Nord dell impianto sportivo della tua città e devi organizzare tutti i servizi relativi all ingresso e all uscita degli spettatori,

Dettagli

Potenziale Elettrico. r A. Superfici Equipotenziali. independenza dal cammino. 4pe 0 r. Fisica II CdL Chimica

Potenziale Elettrico. r A. Superfici Equipotenziali. independenza dal cammino. 4pe 0 r. Fisica II CdL Chimica Potenziale Elettrico Q V 4pe 0 R Q 4pe 0 r C R R R r r B q B r A A independenza dal cammino Superfici Equipotenziali Due modi per analizzare i problemi Con le forze o i campi (vettori) per determinare

Dettagli

Esercizi svolti sui numeri complessi

Esercizi svolti sui numeri complessi Francesco Daddi - ottobre 009 Esercizio 1 Risolvere l equazione z 1 + i = 1. Soluzione. Moltiplichiamo entrambi i membri per 1 + i in definitiva la soluzione è z 1 + i 1 + i = 1 1 + i z = 1 1 i. : z =

Dettagli

Come si indica un punto? Un punto si indica (distingue) con una lettera maiuscola dell alfabeto italiano.

Come si indica un punto? Un punto si indica (distingue) con una lettera maiuscola dell alfabeto italiano. Il punto Il punto è un elemento geometrico fondamentale privo di dimensioni ed occupa solo una posizione. Come si indica un punto? Un punto si indica (distingue) con una lettera maiuscola dell alfabeto

Dettagli

SCUOLA PRIMARIA DI MONTE VIDON COMBATTE CLASSE V INS. VIRGILI MARIA LETIZIA

SCUOLA PRIMARIA DI MONTE VIDON COMBATTE CLASSE V INS. VIRGILI MARIA LETIZIA SCUOLA PRIMARIA DI MONTE VIDON COMBATTE CLASSE V INS. VIRGILI MARIA LETIZIA Regoli di Nepero Moltiplicazioni In tabella Moltiplicazione a gelosia Moltiplicazioni Con i numeri arabi Regoli di Genaille Moltiplicazione

Dettagli

Le origini delle coniche: da Euclide ad Apollonio

Le origini delle coniche: da Euclide ad Apollonio Corso di Storia ed epistemologia della matematica Prof. Lucio Benaglia Le origini delle coniche: da Euclide ad Apollonio Specializzando: Stefano Adriani Matricola 56152 Relatore: prof. Lucio Benaglia Anno

Dettagli

Si sa che la via più breve tra due punti è la linea retta. Ma vi siete mai chiesti, Qual è la via più breve tra tre punti? o tra quattro punti?

Si sa che la via più breve tra due punti è la linea retta. Ma vi siete mai chiesti, Qual è la via più breve tra tre punti? o tra quattro punti? Dov'è Moriart? Cerchiamo la via più breve con Mathcad Potete determinare la distanza più breve da tre punti e trovare Moriart? Si sa che la via più breve tra due punti è la linea retta. Ma vi siete mai

Dettagli

SIMULAZIONE DI PROVA D ESAME CORSO DI ORDINAMENTO

SIMULAZIONE DI PROVA D ESAME CORSO DI ORDINAMENTO SIMULAZINE DI PRVA D ESAME CRS DI RDINAMENT Risolvi uno dei due problemi e 5 dei quesiti del questionario. PRBLEMA Considera la famiglia di funzioni k ln f k () se k se e la funzione g() ln se. se. Determina

Dettagli

Livellazione Geometrica Strumenti per la misura dei dislivelli

Livellazione Geometrica Strumenti per la misura dei dislivelli Università degli studi di Brescia Facoltà di Ingegneria Corso di Topografia A Nuovo Ordinamento Livellazione Geometrica Strumenti per la misura dei dislivelli Nota bene: Questo documento rappresenta unicamente

Dettagli

Equazione della Circonferenza - Grafico di una Circonferenza - Intersezione tra Circonferenza e Retta

Equazione della Circonferenza - Grafico di una Circonferenza - Intersezione tra Circonferenza e Retta Equazione della Circonferenza - Grafico di una Circonferenza - Intersezione tra Circonferenza e Retta Francesco Zumbo www.francescozumbo.it http://it.geocities.com/zumbof/ Questi appunti vogliono essere

Dettagli

Data Alignment and (Geo)Referencing (sometimes Registration process)

Data Alignment and (Geo)Referencing (sometimes Registration process) Data Alignment and (Geo)Referencing (sometimes Registration process) All data aquired from a scan position are refered to an intrinsic reference system (even if more than one scan has been performed) Data

Dettagli

Qualche cenno storico e una finestra sulle medie. 1,41421356 23730950 48801688 72420969 80785696 718753 76 2=1,414213562

Qualche cenno storico e una finestra sulle medie. 1,41421356 23730950 48801688 72420969 80785696 718753 76 2=1,414213562 mathematica [mentis] rubrica di cultura matematica a cura del CIRPU resp. scient. Prof. Italo Di Feo La radice 2 di Qualche cenno storico e una finestra sulle medie. 1,41421356 23730950 48801688 72420969

Dettagli

QUADERNI DI DIDATTICA

QUADERNI DI DIDATTICA Department of Applied Mathematics, University of Venice QUADERNI DI DIDATTICA Tatiana Bassetto, Marco Corazza, Riccardo Gusso, Martina Nardon Esercizi sulle funzioni di più variabili reali con applicazioni

Dettagli

LA FUNZIONE ESPONENZIALE E IL LOGARITMO

LA FUNZIONE ESPONENZIALE E IL LOGARITMO LA FUNZIONE ESPONENZIALE E IL LOGARITMO APPUNTI PER IL CORSO DI ANALISI MATEMATICA I G. MAUCERI Indice 1. Introduzione 1 2. La funzione esponenziale 2 3. Il numero e di Nepero 9 4. L irrazionalità di e

Dettagli

NUMERI COMPLESSI. Esercizi svolti., e) i 34, f) i 7. 10 i

NUMERI COMPLESSI. Esercizi svolti., e) i 34, f) i 7. 10 i NUMERI COMPLESSI Esercizi svolti 1. Calcolare le seguenti potenze di i: a) i, b) i, c) i 4, d) 1 i, e) i 4, f) i 7. Semplificare le seguenti espressioni: a) ( i) i(1 ( 1 i), b) ( + i)( i) 5 + 1 ) 10 i,

Dettagli

Parte 2. Determinante e matrice inversa

Parte 2. Determinante e matrice inversa Parte. Determinante e matrice inversa A. Savo Appunti del Corso di Geometria 013-14 Indice delle sezioni 1 Determinante di una matrice, 1 Teorema di Cramer (caso particolare), 3 3 Determinante di una matrice

Dettagli

ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE

ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE Sia I un intervallo di R e siano a = inf(i) R { } e b = sup(i) R {+ }; i punti di I diversi dagli estremi a e b, ( e quindi appartenenti all intervallo aperto

Dettagli

Esercitazioni di Excel

Esercitazioni di Excel Esercitazioni di Excel A cura dei proff. A. Khaleghi ed A. Piergiovanni. Queste esercitazioni hanno lo scopo di permettere agli studenti di familiarizzare con alcuni comandi specifici di Excel, che sono

Dettagli

Da una a più variabili: derivate

Da una a più variabili: derivate Da una a più variabili: derivate ( ) 5 gennaio 2011 Scopo di questo articolo è di evidenziare le analogie e le differenze, relativamente al calcolo differenziale, fra le funzioni di una variabile reale

Dettagli

CURVE DI LIVELLO. Per avere informazioni sull andamento di una funzione f : D IR n IR può essere utile considerare i suoi insiemi di livello.

CURVE DI LIVELLO. Per avere informazioni sull andamento di una funzione f : D IR n IR può essere utile considerare i suoi insiemi di livello. CURVE DI LIVELLO Per avere informazioni sull andamento di una funzione f : D IR n IR può essere utile considerare i suoi insiemi di livello. Definizione. Si chiama insieme di livello k della funzione f

Dettagli

PROVA DI MATEMATICA - Scuola Secondaria di I grado - Classe Prima

PROVA DI MATEMATICA - Scuola Secondaria di I grado - Classe Prima PROVA DI MATEMATICA - Scuola Secondaria di I grado - Classe Prima Rilevazione degli apprendimenti Anno Scolastico 2011 2012 PROVA DI MATEMATICA Scuola Secondaria di I grado Classe Prima Spazio per l etichetta

Dettagli

Convessità e derivabilità

Convessità e derivabilità Convessità e derivabilità Definizione 1 (convessità per funzioni derivabili) Sia f : (a, b) R derivabile su (a, b). Diremo che f è convessa o concava su (a, b) se per ogni 0 (a,b) il grafico di f sta tutto

Dettagli

Fuoco, direttrice ed equazione di una parabola traslata. Bruna Cavallaro, Treccani scuola

Fuoco, direttrice ed equazione di una parabola traslata. Bruna Cavallaro, Treccani scuola Fuoco, direttrice ed equazione di una parabola traslata Bruna Cavallaro, Treccani scuola 1 Traslare parabole con fuoco e direttrice Su un piano Oxy disegno una parabola, con fuoco e direttrice. poi traslo

Dettagli

Le soluzioni dei quesiti sono in fondo alla prova

Le soluzioni dei quesiti sono in fondo alla prova SCUOLA MEDIA STATALE GIULIANO DA SANGALLO Via Giuliano da Sangallo,11-Corso Duca di Genova,135-00121 Roma Tel/fax 06/5691345-e.mail:scuola.sangallo@libero.it SELEZIONE INTERNA PER LA MARATONA DI MATEMATICA

Dettagli

IV-1 Funzioni reali di più variabili

IV-1 Funzioni reali di più variabili IV- FUNZIONI REALI DI PIÙ VARIABILI INSIEMI IN R N IV- Funzioni reali di più variabili Indice Insiemi in R n. Simmetrie degli insiemi............................................ 4 2 Funzioni da R n a R

Dettagli

Integrali di superficie: esercizi svolti

Integrali di superficie: esercizi svolti Integrali di superficie: esercizi svolti Gli esercizi contrassegnati con il simbolo * presentano un grado di difficoltà maggiore. Esercizio. Calcolare i seguenti integrali superficiali sulle superfici

Dettagli

MATEMATICA. { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un numero x ed un numero y che risolvano entrambe le equazioni.

MATEMATICA. { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un numero x ed un numero y che risolvano entrambe le equazioni. MATEMATICA. Sistemi lineari in due equazioni due incognite. Date due equazioni lineari nelle due incognite x, y come ad esempio { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un

Dettagli

Appunti sulle disequazioni

Appunti sulle disequazioni Premessa Istituto d Istruzione Superiore A. Tilgher Ercolano (Na) Appunti sulle disequazioni Questa breve trattazione non vuole costituire una guida completa ed esauriente sull argomento, ma vuole fornire

Dettagli

FIGURE GEOMETRICHE SIMILI

FIGURE GEOMETRICHE SIMILI FIGUE GEOMETICHE SIMILI Nel linguaggio comune si dice che due oggetti sono simili quando si «assomigliano». Così si dicono simili due cani della stessa razza, i fiori della stessa pianta, gli abiti dello

Dettagli

SWISS Technology by Leica Geosystems. Leica Disto TM D3 Il multi-funzione per interni

SWISS Technology by Leica Geosystems. Leica Disto TM D3 Il multi-funzione per interni SWISS Technology by Leica Geosystems Leica Disto TM D Il multi-funzione per interni Misurare distanze e inclinazioni In modo semplice, rapido ed affidabile Leica DISTO D si contraddistingue per le numerose

Dettagli

1 Numeri Complessi, Formula di Eulero, Decomposizioni Notevoli,... ecc.

1 Numeri Complessi, Formula di Eulero, Decomposizioni Notevoli,... ecc. Classi Numeriche 1 1 Numeri Complessi, Formula di Eulero, Decomposizioni Notevoli,... ecc. In questo breve capitolo richiamiamo le definizioni delle classi numeriche fondamentali, già note al lettore,

Dettagli

1) IL MOMENTO DI UNA FORZA

1) IL MOMENTO DI UNA FORZA 1) IL MOMENTO DI UNA FORZA Nell ambito dello studio dei sistemi di forze, diamo una definizione di momento: il momento è un ente statico che provoca la rotazione dei corpi. Le forze producono momenti se

Dettagli

I numeri complessi. Mario Spagnuolo Corso di Laurea in Fisica - Facoltà di Scienze - Università Federico II di Napoli

I numeri complessi. Mario Spagnuolo Corso di Laurea in Fisica - Facoltà di Scienze - Università Federico II di Napoli I numeri complessi Mario Spagnuolo Corso di Laurea in Fisica - Facoltà di Scienze - Università Federico II di Napoli 1 Introduzione Studiare i numeri complessi può sembrare inutile ed avulso dalla realtà;

Dettagli

Liceo Scientifico G. Galilei Trebisacce

Liceo Scientifico G. Galilei Trebisacce Liceo Scientifico G. Galilei Trebisacce Anno Scolastico 2011-2012 Prova di Matematica : Relazioni + Geometria Alunno: Classe: 1 C 05.06.2012 prof. Mimmo Corrado 1. Dati gli insiemi =2,3,5,7 e =2,4,6, rappresenta

Dettagli

Equazioni differenziali ordinarie

Equazioni differenziali ordinarie Capitolo 2 Equazioni differenziali ordinarie 2.1 Formulazione del problema In questa sezione formuleremo matematicamente il problema delle equazioni differenziali ordinarie e faremo alcune osservazioni

Dettagli

(V) (FX) Z 6 è un campo rispetto alle usuali operazioni di somma e prodotto.

(V) (FX) Z 6 è un campo rispetto alle usuali operazioni di somma e prodotto. 29 giugno 2009 - PROVA D ESAME - Geometria e Algebra T NOME: MATRICOLA: a=, b=, c= Sostituire ai parametri a, b, c rispettivamente la terzultima, penultima e ultima cifra del proprio numero di matricola

Dettagli

6. Moto in due dimensioni

6. Moto in due dimensioni 6. Moto in due dimensioni 1 Vettori er descriere il moto in un piano, in analogia con quanto abbiamo fatto per il caso del moto in una dimensione, è utile usare una coppia di assi cartesiani, come illustrato

Dettagli

QUADERNI DI MATEMATICA RICREATIVA

QUADERNI DI MATEMATICA RICREATIVA Carmelo Di Stefano QUADERNI DI MATEMATICA RICREATIVA Vol. Geometria Simbologia = Indica il fatto che due oggetti geometrici (Segmenti, poligoni, ) sono isometrici, ossia sono sovrapponibili mediante un

Dettagli

I motori elettrici più diffusi

I motori elettrici più diffusi I motori elettrici più diffusi Corrente continua Trifase ad induzione Altri Motori: Monofase Rotore avvolto (Collettore) Sincroni AC Servomotori Passo Passo Motore in Corrente Continua Gli avvolgimenti

Dettagli

F U N Z I O N I. E LORO RAPPRESENTAZIONE GRAFICA di Carmine De Fusco 1 (ANCHE CON IL PROGRAMMA PER PC "DERIVE")

F U N Z I O N I. E LORO RAPPRESENTAZIONE GRAFICA di Carmine De Fusco 1 (ANCHE CON IL PROGRAMMA PER PC DERIVE) F U N Z I O N I E LORO RAPPRESENTAZIONE GRAFICA di Carmine De Fusco 1 (ANCHE CON IL PROGRAMMA PER PC "DERIVE") I N D I C E Funzioni...pag. 2 Funzioni del tipo = Kx... 4 Funzioni crescenti e decrescenti...10

Dettagli

TIP AND TRICKS 01 DEFINIZIONE DEI PARAMETRI DI UNA LASTRA ORTOTROPA EQUIVALENTE A UNA VOLTA MURARIA

TIP AND TRICKS 01 DEFINIZIONE DEI PARAMETRI DI UNA LASTRA ORTOTROPA EQUIVALENTE A UNA VOLTA MURARIA TIP AND TRICKS 01 DEFINIZIONE DEI PARAMETRI DI UNA LASTRA ORTOTROPA EQUIVALENTE A UNA VOLTA MURARIA TECNICA DI DEFINIZIONE DELLE PROPRIETA' DI UNA LASTRA ORTOTROPA EQUIVALENTE A UNA VOLTA MURARIA Descrizione

Dettagli

LA CORRETTA SCELTA DI UN IMPIANTO PER LA TEMPRA AD INDUZIONE Come calcolare la potenza necessaria

LA CORRETTA SCELTA DI UN IMPIANTO PER LA TEMPRA AD INDUZIONE Come calcolare la potenza necessaria LA CORRETTA SCELTA DI UN IMPIANTO PER LA TEMPRA AD INDUZIONE Come calcolare la potenza necessaria Quale frequenza di lavoro scegliere Geometria del pezzo da trattare e sue caratteristiche elettromagnetiche

Dettagli

TIMSS 2007 Quadro di riferimento di matematica. dal volume: "TIMSS 2007 Assessment Frameworks"

TIMSS 2007 Quadro di riferimento di matematica. dal volume: TIMSS 2007 Assessment Frameworks Capitolo Uno TIMSS 2007 Quadro di riferimento di matematica dal volume: "TIMSS 2007 Assessment Frameworks" a cura di Anna Maria Caputo, Cristiano Zicchi Copyright 2005 IEA International Association for

Dettagli

LE ISOMETRIE: OSSERVA, COSTRUISCI E SCOPRI

LE ISOMETRIE: OSSERVA, COSTRUISCI E SCOPRI LE ISOMETRIE: OSSERVA, COSTRUISCI E SCOPRI Biennio scuola secondaria di 2 o grado Paola Nanetti Maria Cristina Silla 37 38 Indice 1. Note sul percorso: presentazione, bibliografia 2. Introduzione a Cabri

Dettagli

Risposta: L area del triangolo è dove sono le misure di due lati e è l ampiezza dell angolo tra essi compreso ;

Risposta: L area del triangolo è dove sono le misure di due lati e è l ampiezza dell angolo tra essi compreso ; 1. Un triangolo ha area 3 e due lati che misurano 2 e 3. Qual è la misura del terzo lato? : L area del triangolo è dove sono le misure di due lati e è l ampiezza dell angolo tra essi compreso ; nel nostro

Dettagli

CHIMICA ORGANICA: IBRIDAZIONE & RISONANZA IBRIDIZZAZIONE. un atomo compie all atto di formazione di un composto al fine di formare un maggior

CHIMICA ORGANICA: IBRIDAZIONE & RISONANZA IBRIDIZZAZIONE. un atomo compie all atto di formazione di un composto al fine di formare un maggior CHIMICA ORGANICA: IBRIDAZIONE & RISONANZA IBRIDIZZAZIONE L ibridizzazione o ibridazione è una ricombinazione dei propri orbitali atomici che un atomo compie all atto di formazione di un composto al fine

Dettagli

Svolgimento della prova

Svolgimento della prova Svolgimento della prova D1. Il seguente grafico rappresenta la distribuzione dei lavoratori precari in Italia suddivisi per età nell anno 2012. a. Quanti sono in totale i precari? A. Circa due milioni

Dettagli

Unità Didattica N 28 Punti notevoli di un triangolo

Unità Didattica N 28 Punti notevoli di un triangolo 68 Unità Didattica N 8 Punti notevoli di un triangolo Unità Didattica N 8 Punti notevoli di un triangolo 0) ircocentro 0) Incentro 03) Baricentro 04) Ortocentro Pagina 68 di 73 Unità Didattica N 8 Punti

Dettagli

73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90-91 69 92 93 94-95 96-97 98-99

73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90-91 69 92 93 94-95 96-97 98-99 Bravissimo/a! Sei arrivato/a alla fine della parte di italiano... Adesso perché non ripassi un po di matematica? A settembre sarai un bolide nelle operazioni, nel risolvere i problemi e in geometria! matematica

Dettagli

La scelta razionale del consumatore (Frank - Capitolo 3)

La scelta razionale del consumatore (Frank - Capitolo 3) La scelta razionale del consumatore (Frank - Capitolo 3) L'INSIEME OPPORTUNITÁ E IL VINCOLO DI BILANCIO Un paniere di beni rappresenta una combinazione di beni o servizi Il vincolo di bilancio o retta

Dettagli

Seminario Tecnico Piacenza 31/01/2013

Seminario Tecnico Piacenza 31/01/2013 Seminario Tecnico Piacenza 31/01/2013 Misure di prevenzione e protezione collettive e individuali in riferimento al rischio di caduta dall alto nei cantieri edili A cura dei Tec. Prev. Mara Italia, Marco

Dettagli

Esercitazioni di Meccanica Applicata alle Macchine

Esercitazioni di Meccanica Applicata alle Macchine Università degli Studi di Roma La Sapienza Facoltà di Ingegneria Dipartimento di Meccanica ed Aeronautica Corso di Laurea Triennale in Ingegneria Meccanica Esercitazioni di Meccanica Applicata alle Macchine

Dettagli

SERIE TK20 MANUALE DI ASSEMBLAGGIO Italiano

SERIE TK20 MANUALE DI ASSEMBLAGGIO Italiano SERIE MANUALE DI ASSEMBLAGGIO Italiano PAG. 1 ESPLOSO ANTA MOBILE VISTA LATO AUTOMATISMO PAG. 2 MONTAGGIO GUARNIZIONE SU VETRO (ANTA MOBILE E ANTA FISSA) Attrezzi e materiali da utilizzare per il montaggio:

Dettagli

Prof. Caterina Rizzi Dipartimento di Ingegneria Industriale

Prof. Caterina Rizzi Dipartimento di Ingegneria Industriale RUOLO DELLA MODELLAZIONE GEOMETRICA E LIVELLI DI MODELLAZIONE PARTE 2 Prof. Caterina Rizzi... IN QUESTA LEZIONE Modelli 2D/3D Modelli 3D/3D Dimensione delle primitive di modellazione Dimensione dell oggettoy

Dettagli