Appello di Settembre (II)

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Appello di Settembre (II)"

Transcript

1 Appello di Settembre (II) 8 Settembre 22 Fondamenti di Automatica Ingegneria Gestionale Prof. Bruno Picasso Esercizio Sia dato il seguente sistema dinamico: { ẋ(t) = u(t)sin ( x(t) ) + u 3 (t) y(t) = e x(t).. Classificare tale sistema (È lineare/nonlineare? Qual è l ordine? Etc...) 2. Determinare l ingresso costante u(t) ū in corrispondenza del quale ȳ = è l uscita di equilibrio. Scrivere l espressione del sistema linearizzato attorno alla corrispondente coppia di equilibrio ( x, ū). 3. Per il sistema linearizzato determinato al punto precedente, calcolare la funzione di trasferimento G(s) dall ingresso δu(t) all uscita δy(t). Calcolare poi il movimento dell uscita δy(t) in corrispondenza dello stato iniziale δx() = 2 e dell ingresso δu(t) = e 2t, t. 4. Scrivere i comandi Matlab che occorrono per definire la forma di stato del sistema linearizzato. Esercizio 2 Sia dato il sistema dinamico descritto mediante lo schema a blocchi in Figura.. Calcolare la funzione di trasferimento T yw (s) dall ingresso w(t) all uscita y(t) e dire se il sistema retroazionato è asintoticamente stabile. 2. Posto w(t) = sca(t), calcolare lim t + y F (t) e lim t + y F (t). 3. Posto w(t) = e t, t, calcolare l uscita di regime y R (t). w - 2 s y s+2 s+ s Figura : Schema a blocchi del sistema considerato nell Esercizio 2.

2 db deg 2 2 Diagramma di Bode Modulo 2 2 Pulsazione [rad/s] (a) Diagramma di Bode Fase 2 2 Pulsazione [rad/s] (b) Figura 2: Con riferimento all Esercizio 3, diagrammi di Bode reali e asintotici di G(s). y o - k G(s) y Figura 3: Sistema retroazionato considerato nell Esercizio 3.4. Esercizio 3 In Figura 2 sono rappresentati i diagrammi di Bode della funzione di trasferimento G(s) di un sistema lineare Σ G a tempo continuo di ordine 2.. Scrivere l espressione di G(s) e specificarne il grado relativo. 2. Si dica, motivandolo, se è possibile applicare il Teorema della risposta armonica al sistema Σ G. Quindi, sulla base dei diagrammi in Figura 2 (cioè, senza fare conti), scrivere l espressione dell uscita di regime del sistema in corrispondenza dell ingresso u(t) = sin(.8t). 3. Tracciare il diagramma di Nyquist di G(s). 4. Si consideri adesso il sistema retroazionato come in Figura 3. Determinare un valore di k R tale che il sistema è asintoticamente stabile ed un k R tale che il sistema non è asintoticamente stabile. 2

3 y o - G(z) H(z) y Figura 4: Sistema retroazionato considerato nell Esercizio 4. Esercizio 4 Si consideri il sistema dinamico a tempo discreto rappresentato in Figura 4, dove G(z) = z α z e H(z) = 2 z 2 sono le funzioni di trasferimento di due sistemi Σ G e Σ H di ordine, e α R è un parametro costante.. Determinare l insieme dei valori di α tali che il sistema retroazionato è asintoticamente stabile. 2. Posto α = 2 e y o (k) = sca(k), determinare y F (), y F () e y F (2). 3. Posto α = 2, determinare l insieme P dei poli e l insieme A degli autovalori del sistema retroazionato. Si dica inoltre se tale sistema è asintoticamente stabile, semplicemente stabile oppure instabile. 3

4 Soluzioni SOLUZIONE ESERCIZIO..- Si tratta di un sistema a tempo continuo, non lineare, di ordine, SISO, strettamente proprio..2- Il sistema di equazioni che definisce gli equilibri di un sistema dinamico { ẋ(t) = f ( x(t), u(t) ) y(t) = g ( x(t), u(t) ) è { f( x, ū) = ȳ = g( x, ū). Nel caso considerato, essendo ȳ =, esso assume la seguente forma: { ūsin( x) + ū 3 = = e x. () (2) Dall equazione (2) si ricava x = che, sostituito nell equazione (), fornisce ū 3 =, da cui ū =. Posto δx(t) = x(t) x = x(t), δu(t) = u(t) ū = u(t) e δy(t) = y(t) ȳ = y(t), il sistema linearizzato prende la forma { δx(t) = df df dx ( x, ū)δx(t) + du ( x, ū)δu(t) δy(t) = dg dg dx ( x, ū)δx(t) + du ( x, ū)δu(t). df dx Si ha: x = e ū =, (x, u) = u cos(x); df du (x, u) = sin(x) + 3u2 ; dg { δx(t) = δx(t) + 3 δu(t) δy(t) = δx(t). dx (x, u) = ex e dg du (x, u) =, cosicché, sostituendo.3- Si ha G(s) = 3 s+. Il movimento libero dell uscita è dato da δy L (t) = 2e t, t. Per il calcolo del movimento forzato δy F (t) si può procedere in modo standard avvalendosi dei metodi basati sulla Trasformata di Laplace. La trasformata del segale d ingresso è U(s) = s+2, quindi la trasformata del segnale δy F è Y F (s) = G(s) U(s) = e quindi δy F (t) = L [ Y F (s) ] = 3e t 3e 2t, t. Infine,.4- Una possibile soluzione è la seguente: >> A=-; >> B=3; >> C=; >> D=; >> Sistema=ss(A,B,C,D) 3 (s + )(s + 2) = 3 s + 3 s + 2 δy(t) = δy L (t) + δy F (t) = e t 3e 2t, t. 4

5 w - G (s) G 2 (s) y Figura 5: Rielaborazione dello schema a blocchi del sistema considerato nell Esercizio 2. SOLUZIONE ESERCIZIO Il sistema in Figura è equivalente a quello in Figura 5, dove G (s) = 2 + s = 2s + s e G 2 (s) = s + (s + 2)(s ). Posto L(s) = G (s)g 2 (s) = (2s+)(s+) s(s+2)(s ), si ha quindi T yw (s) = = = 2s+ G (s) + L(s) = s + (2s+)(s+) 2s+ s (s 3 +s 2 2s)+(2s 2 +3s+) s(s+2)(s ) (2s + )(s + 2)(s ) s 3 + 3s 2 + s + s(s+2)(s ). = = Poiché sia nel calcolo di G (s) che in quello di L(s) non sono avvenute cancellazioni, allora numeratore e denominatore di T yw (s) non hanno fattori in comune, il sistema non ha parti nascoste e l analisi di asintotica stabilità può essere conclusa studiando il denominatore di T yw (s). A tal fine, costruiamo la tabella di Routh-Hurwitz associata al polinomio p cl (s) = s 3 + 3s 2 + s + : 3 2/3 da cui, essendo la prima colonna ben definita e con elementi tutti dello stesso segno, consegue che le radici di p cl (s) sono tutte a parte Reale negativa, ossia che il sistema retroazionato è asintoticamente stabile. In alternativa, si può analizzare l asintotica stabilità del sistema retroazionato per mezzo del Criterio di Nyquist. In questo esempio, tuttavia, tale approccio risulta laborioso in quanto, per il conteggio del numero di giri compiuti dal diagramma di Nyquist di L(s) attorno al punto -, è necessario calcolare il punto d intersezione fra il diagramma ed il semi-asse Reale negativo (ossia, il punto A in Figura 6). Ad ogni modo, come si vede dalla Figura 6, il diagramma di Nyquist di L(s) compie un giro in senso anti-orario attorno al punto (N=) e, poiché L(s) ha un polo a parte Reale positiva (P=), il Criterio di Nyquist permette di concludere che il sistema retroazionato considerato è asintoticamente stabile. Dunque, ricordando che in una funzione di trasferimento numeratore e denominatore non hanno fattori in comune, l espressione data per T yw(s) è esattamente la funzione di trasferimento richiesta. Si noti anche che, poiché è nota la fattorizzazione del numeratore di T yw(s), un modo alternativo per verificare che tale numeratore non ha fattori in comune con il denominatore consiste nel verificare che il denominatore non si annulla in corrispondenza delle radici del numeratore. In effetti, posto p cl (s) = s 3 + 3s 2 + s +, si ha p cl ( /2) = 9/8, p cl ( 2) = 3 e p cl () = 6. 5

6 Asse Immaginario Diagramma polare/nyquist A Asse Reale.5 Figura 6: Con riferimento all Esercizio 2, diagramma di Nyquist di L(s) = (2s+)(s+) s(s+2)(s ) (il diagramma va completato chiudendolo con una semi-circonferenza all infinito che si percorre in senso orario, dunque che giace nella parte sinistra del piano Complesso). Si noti invece che non è possibile applicare il Criterio di Bode a causa della presenza di un polo instabile nella funzione di anello L(s) Si ha Y F (s) = T yw (s)w(s) = (2s+)(s+2)(s ) (s 3 +3s 2 +s+)s : poiché si tratta di una funzione razionale strettamente propria, si può applicare il Teorema del valore iniziale. Quindi, lim y F(t) = lim s Y (2s + )(s + 2)(s ) F(s) = lim t + s s s 3 + 3s 2 = 2. + s + Poiché il sistema è asintoticamente stabile, in risposta ad un ingresso a scalino si ha lim y F(t) = T yw () = 2. t L uscita di regime di un sistema lineare asintoticamente stabile in risposta ad un ingresso esponenziale w(t) = e λt (λ, t ) è data da y R (t) = T yw (λ) e λt, t. Nel caso richiesto λ = e quindi y R (t) = T yw () e t, t. Si tratta dunque di un esempio in cui si manifesta la proprietà bloccante degli zeri. SOLUZIONE ESERCIZIO Il grado relativo di G(s) è in quanto, per ω +, il diagramma di Bode del modulo di G(s) ha pendenza - (cioè, diminuisce di 2 db per decade). Per determinare l espressione di G(s), si consideri dapprima il diagramma di Bode asintotico del modulo di G(s): poiché il sistema è di ordine 2, le due diminuzioni di pendenza del diagramma, che avvengono alle pulsazioni ω =.2 rad/s e ω 2 = 5 rad/s, individuano le pulsazioni naturali degli unici due poli del sistema (in particolare, si tratta di due poli Reali); inoltre, l aumento di pendenza che avviene alla pulsazione ω = rad/s, individua uno zero del sistema (si tratta di uno zero singolo e Reale in quanto il diagramma passa da pendenza - a pendenza ). Per determinare il segno dei poli e degli zeri, si analizza il diagramma di Bode asintotico della fase: entrambi i poli sono a parte Reale negativa in quanto, sia in corrispondenza di ω che di ω 2, la fase diminuisce di 9 ; anche lo zero è a parte Reale negativa perché, in corrispondenza di ω, la fase aumenta di 9. 6

7 Asse Immaginario Diagramma polare/nyquist Asse Reale 2 +s Figura 7: Con riferimento all Esercizio 3, diagramma di Nyquist di G(s) = ( ). )(+ 5 s +5s Infine, il guadagno di G(s) è positivo in quanto lim ω + ( G(jω) ) = e vale ( G() db = 2 db ). Riassumendo, + ω G(s) = s ( + ω s )( + ω 2 s ) = + s ( )( + 5s + 5 s) Poiché i poli di G(s) sono a parte Reale negativa, il sistema è asintoticamente stabile e si può dunque applicare il Teorema della risposta armonica. Da esso segue che y R (t) = G(.8j) sin (.8t + ( G(.8j) )) : dai diagrammi di Bode reali di G(s) riportati in Figura 2, si vede che G(.8j) db db ; e ( G(.8j) ) 45 π 4 rad cosicché y R (t) ( sin.8t π ) Il diagramma di Nyquist richiesto può essere facilmente dedotto dai diagrammi di Bode di G(s) ed è riportato in Figura Si può, ad esempio, impiegare il Criterio di Nyquist: poiché G(s) non ha poli a parte Reale positiva (P=), il sistema retroazionato rappresentato in Figura 3 è asintoticamente stabile se e solo se il diagramma di Nyquist di G(s) non compie giri attorno al punto /k (cosicché N=). Risulta allora evidente che qualunque valore di k > è tale che il sistema retroazionato è asintoticamente stabile e.g., k = e che l asintotica stabilità è persa per qualunque valore di k tale che < k < (in tal caso, infatti, N= ) e.g., k =. Osservazione: applicando il Criterio di Nyquist, è facile vedere che il sistema retroazionato è asintoticamente stabile se e solo se k >. SOLUZIONE ESERCIZIO Si ha L(z) = G(z)H(z) = 2(z α) z(z 2), quindi il polinomio caratteristico del sistema retroazionato è p cl (z) = z(z 2) + 2(z α) = z 2 2α. Le radici di p cl (z), ossia gli autovalori del sistema retroazionato, sono le radici Complesse di 2α ed esse 7

8 sono di modulo strettamente minore di se e solo se 2α <, ossia 2 < α < 2. In alternativa, si può applicare la trasformazione bilineare z = +s s al polinomio p cl(z). Si ha ( ) + s p cl = ( 2α)s2 + 2( + 2α)s + ( 2α) s ( s) 2 : imponendo che il polinomio a numeratore abbia grado 2 ( ossia, uguale al grado di p cl (z) ) e sia un polinomio con tutte le radici a parte Reale negativa, si ottengono i valori di α cercati. In tal caso, essendo il numeratore di grado 2, si può applicare la regola di Cartesio e si ha l asintotica stabilità se e solo se (S) : { 2α > + 2α > oppure (S2) : { 2α < + 2α <. Il sistema (S2) non ammette soluzioni, mentre la soluzione del sistema (S) è 2 < α < Per α = 2, la funzione di anello è L(z) = 2 z e la funzione di trasferimento dall ingresso yo (k) all uscita y(k) è T yy o(z) = G(z) z 2 + L(z) = z + 2 = z 2 z + 2. z Inoltre Y o (z) = z z, cosicchè Y F (z) = T yy o(z)y o (z) = Eseguendo la lunga divisione si ottiene: ossia, Y F (z) = 3z + 5z 2 +, da cui In alternativa, dall espressione (z 2)z (z + 2)(z ) = z2 2z z 2 + z 2. z 2 2z z 2 + z 2 z 2 +z 2 3z + 5z 2 + 3z +2 3z 3 +6z 5 6z y F () =, y F () = 3, y F (2) = 5. Y F (z) = T yy o(z)y o (z) = z 2 z + 2 Y o (z), si ottiene (z + 2)Y F (z) = (z 2)Y o (z) 8

9 e, mediante anti-trasformata Z, y F (k + ) + 2y F (k) = y o (k + ) 2y o (k), ossia y F (k) = 2y F (k ) + y o (k) 2y o (k ). Da cui, per k =, y F () = 2y F ( ) + y o () 2y o ( ) = + = per k =, y F () = 2y F () + y o () 2y o () = = 3 per k = 2, y F (2) = 2y F () + y o (2) 2y o () = = 5. (z 2)z (z+2)(z ) Un altra soluzione consiste nell eseguire l anti-trasformata Z di Y F (z) = (previa opportuna scomposizione di Heaviside) così da calcolare l espressione analitica di y F (k) e successivamente valutarla per k =,, Dall espressione data sopra per la funzione di trasferimento T yy o(z) del sistema, si deduce che l insieme dei poli del sistema retroazionato è P = { 2}. L ordine del sistema retroazionato è pari a 2, ossia è uguale alla somma degli ordini dei sotto-sistemi Σ G e Σ H : si ha dunque una parte nascosta. L autovalore nascosto è quello associato al fattore z 2 che si è cancellato nel calcolo della funzione di anello L(z). Quindi l insieme degli autovalori del sistema retroazionato è A = { 2, +2}. Il sistema, avendo due autovalori di modulo maggiore di, è instabile. 9

Appello di Febbraio. 17 Febbraio Fondamenti di Automatica Ingegneria Gestionale. Prof. Bruno Picasso

Appello di Febbraio. 17 Febbraio Fondamenti di Automatica Ingegneria Gestionale. Prof. Bruno Picasso Appello di Febbraio 7 Febbraio 22 Fondamenti di Automatica Ingegneria Gestionale Prof. Bruno Picasso Esercizio Sia dato il seguente sistema dinamico: { ẋt) 2ut)xt) + e ut) x 2 t) + u 2 t) yt) xt).. Determinare

Dettagli

AUTOMATICA I (Ingegneria Biomedica - Allievi da L a Z) Appello dell 8 luglio 2008: testo e soluzione

AUTOMATICA I (Ingegneria Biomedica - Allievi da L a Z) Appello dell 8 luglio 2008: testo e soluzione AUTOMATICA I (Ingegneria Biomedica - Allievi da L a Z) Appello dell 8 luglio 8: testo e soluzione Prof. Maria Prandini 1. Si consideri il sistema con ingresso u ed uscita y descritto dalle seguenti equazioni:

Dettagli

Fondamenti di Automatica Prof. Luca Bascetta. Primo prova intermedia 27 Aprile 2018

Fondamenti di Automatica Prof. Luca Bascetta. Primo prova intermedia 27 Aprile 2018 Fondamenti di Automatica Prof. Luca Bascetta Primo prova intermedia 27 Aprile 28 ESERCIZIO E assegnato il sistema dinamico, a tempo continuo, lineare e invariante con ingresso u(t) e uscita y(t): { ẋ(t)

Dettagli

AUTOMATICA I (Ingegneria Biomedica - Allievi da L a Z) Appello del 20 luglio 2006: testo e soluzione

AUTOMATICA I (Ingegneria Biomedica - Allievi da L a Z) Appello del 20 luglio 2006: testo e soluzione AUTOMATICA I (Ingegneria Biomedica - Allievi da L a Z) Appello del 2 luglio 26: testo e soluzione Prof. Maria Prandini 1. Si consideri il sistema lineare con ingresso u ed uscita y descritto dalle seguenti

Dettagli

INGEGNERIA DELLE TELECOMUNICAZIONI

INGEGNERIA DELLE TELECOMUNICAZIONI INGEGNERIA DELLE TELECOMUNICAZIONI FONDAMENTI DI AUTOMATICA Prof. Marcello Farina TEMA D ESAME E SOLUZIONI 26 luglio 213 Anno Accademico 212/213 ESERCIZIO 1 Si consideri il sistema descritto dalla equazione

Dettagli

ẋ 1 = x x 1 + u ẋ 2 = 2x 2 + 2u y = x 2

ẋ 1 = x x 1 + u ẋ 2 = 2x 2 + 2u y = x 2 Testo e soluzione dell appello del 2 settembre 2. Si consideri il sistema descritto dalle seguenti equazioni: ẋ = x 2 2 + 2x + u ẋ 2 = 2x 2 + 2u y = x 2. Determinare l espressione analitica del movimento

Dettagli

AUTOMATICA I (Ingegneria Biomedica - Allievi da L a Z) Appello del 4 luglio 2006: testo e soluzione

AUTOMATICA I (Ingegneria Biomedica - Allievi da L a Z) Appello del 4 luglio 2006: testo e soluzione AUTOMATICA I (Ingegneria Biomedica - Allievi da L a Z) Appello del 4 luglio 26: testo e soluzione Prof. Maria Prandini 1. Si consideri il sistema con ingresso u ed uscita y descritto dalle seguenti equazioni:

Dettagli

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2003/ luglio Soluzione

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2003/ luglio Soluzione PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 23/24 2 luglio 24 Esercizio In riferimento allo schema a blocchi in figura. s r y 2 s y K s2 Domanda.. Determinare una realizzazione in equazioni di stato

Dettagli

AUTOMATICA I (Ingegneria Biomedica - Allievi da L a Z) Appello del 10 settembre 2008: testo e soluzione. y = x 2. x 1 = 1 x 2 = 1

AUTOMATICA I (Ingegneria Biomedica - Allievi da L a Z) Appello del 10 settembre 2008: testo e soluzione. y = x 2. x 1 = 1 x 2 = 1 AUTOMATICA I (Ingegneria Biomedica - Allievi da L a Z) Appello del 1 settembre 28: testo e soluzione Prof. Maria Prandini 1. Si consideri il sistema non lineare descritto dalle seguenti equazioni: ẋ 1

Dettagli

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2003/ gennaio 2004

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2003/ gennaio 2004 PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2003/2004 4 gennaio 2004 nome e cognome: numero di matricola: Note: Scrivere le risposte negli spazi appositi. Non consegnare fogli aggiuntivi. La chiarezza

Dettagli

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2004/ settembre 2005 TESTO E SOLUZIONE

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2004/ settembre 2005 TESTO E SOLUZIONE PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 4/5 settembre 5 TESTO E Esercizio In riferimento allo schema a blocchi in figura. y y u - s5 sk y k s y 4 Domanda.. Determinare una realizzazione in equazioni

Dettagli

INGEGNERIA DELLE TELECOMUNICAZIONI

INGEGNERIA DELLE TELECOMUNICAZIONI INGEGNERIA DELLE TELECOMUNICAZIONI FONDAMENTI DI AUTOMATICA Prof. Marcello Farina TEMA D ESAME Prima prova in itinere 07 maggio 014 Anno Accademico 013/014 ESERCIZIO 1 Si consideri il sistema S descritto

Dettagli

1. Si individuino tutti i valori del parametro α per i quali il sistema assegnato è asintoticamente stabile.

1. Si individuino tutti i valori del parametro α per i quali il sistema assegnato è asintoticamente stabile. Appello di Fondamenti di Automatica (Gestionale) a.a. 2017-18 7 Settembre 2018 Prof. SILVIA STRADA Tempo a disposizione: 2 h. ESERCIZIO 1 Si consideri il sistema dinamico lineare invariante a tempo continuo

Dettagli

Esercizi di Fondamenti di Automatica

Esercizi di Fondamenti di Automatica Esercizi di Fondamenti di Automatica Bruno Picasso Esercizio Sia dato il sistema lineare { ẋ(t) = Ax(t), x R n x() = x.. Mostrare che se x è tale che Ax = λx, λ R, allora il corrispondente movimento dello

Dettagli

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2003/ giugno Soluzione

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2003/ giugno Soluzione PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 23/24 giugno 24 Esercizio In riferimento allo schema a blocchi in figura. y r s s s2 y 2 K s dove Domanda.. Determinare una realizzazione in equazioni di

Dettagli

Appello di Settembre (II)

Appello di Settembre (II) Appello di Settembre (II) 5 Settembre 3 Fondamenti di Automatica Ingegneria Gestionale Prof. Bruno Picasso Esercizio Un modello matematico per la descrizione del rollio di una barca (ossia delle rotazioni

Dettagli

INGEGNERIA INFORMATICA

INGEGNERIA INFORMATICA ESERCIZIO Si consideri il seguente sistema S. INGEGNERIA INFORMATICA FONDAMENTI DI AUTOMATICA 7/06/09 Prof. Marcello Farina TESTO DEGLI ESERCIZI E SOLUZIONI x = u (sin(πx)) A. Si scrivano le equazioni

Dettagli

Controlli Automatici - Parte A

Controlli Automatici - Parte A Cognome: Nome: N. Matr.: Ho seguito il corso con Prof Giarré Prof. Biagiotti Controlli Automatici - Parte A Ingegneria Meccanica e Ingegneria del Veicolo Compito del 12 gennaio 218 - Quiz Per ciascuno

Dettagli

B = Si studi, giustificando sinteticamente le proprie affermazioni, la stabilità del sistema. si A = G(s) = Y f (s) U(s) = 1.

B = Si studi, giustificando sinteticamente le proprie affermazioni, la stabilità del sistema. si A = G(s) = Y f (s) U(s) = 1. ESERCIZIO 1 Un sistema dinamico lineare invariante e a tempo continuo è descritto dall equazione differenziale che lega l ingresso all uscita:... y (t) + ÿ(t) + 4ẏ(t) + 4y(t) = u(t) 1. Si determinino le

Dettagli

Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec. Altro.

Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec. Altro. Controlli Automatici - Prima parte Aprile 8 - Esercizi Si risolvano i seguenti esercizi. Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec. Altro. a.) Calcolare la trasformata di Laplace X(s) dei seguenti

Dettagli

ESERCIZIO 1 Si consideri il sistema con ingresso u(t) ed uscita y(t) descritto dalle seguenti equazioni

ESERCIZIO 1 Si consideri il sistema con ingresso u(t) ed uscita y(t) descritto dalle seguenti equazioni ESERCIZIO 1 Si consideri il sistema con ingresso u(t) ed uscita y(t) descritto dalle seguenti equazioni ẋ 1 (t) x 1 (t) + 3x 2 (t) + u(t) ẋ 2 (t) 2u(t) y(t) x 1 (t) + x 2 (t) 1. Si classifichi il sistema

Dettagli

s + 6 s 3, b) i valori di K per i quali il sistema a ciclo chiuso risulta asintoticamente stabile;

s + 6 s 3, b) i valori di K per i quali il sistema a ciclo chiuso risulta asintoticamente stabile; 1 Esercizi svolti Esercizio 1. Con riferimento al sistema di figura, calcolare: ut) + K s s + 6 s 3 yt) a) la funzione di trasferimento a ciclo chiuso tra ut) e yt); b) i valori di K per i quali il sistema

Dettagli

FONDAMENTI DI AUTOMATICA I - Ingegneria Elettronica Appello del 15 luglio 2015

FONDAMENTI DI AUTOMATICA I - Ingegneria Elettronica Appello del 15 luglio 2015 FONDAMENTI DI AUTOMATICA I - Ingegneria Elettronica Appello del 15 luglio 2015 Prof.ssa Mara Tanelli 1. Si consideri il sistema dinamico non lineare con ingresso u ed uscita y descritto dalle seguenti

Dettagli

Cognome Nome Matricola Corso

Cognome Nome Matricola Corso Fondamenti di Controlli Automatici - A.A. 23/4 23 luglio 24 - Quiz di Teoria Cognome Nome Matricola Corso Per ciascuno dei test a soluzione multipla segnare con una crocetta tutte le affermazioni che si

Dettagli

COMPITO DI CONTROLLI AUTOMATICI 7 Febbraio 2013

COMPITO DI CONTROLLI AUTOMATICI 7 Febbraio 2013 COMPITO DI CONTROLLI AUTOMATICI 7 Febbraio 213 Esercizio 1. Si consideri il modello ingresso/uscita a tempo continuo avente la seguente funzione di trasferimento: G(s) = 1 1 (s.1)(s + 1) 2 s(s +.1) 2 (s

Dettagli

SOLUZIONE. Fondamenti di Automatica (CL Ing. Gestionale) a.a Prof. Silvia Strada Seconda prova intermedia 12 Febbraio 2015

SOLUZIONE. Fondamenti di Automatica (CL Ing. Gestionale) a.a Prof. Silvia Strada Seconda prova intermedia 12 Febbraio 2015 Politecnico di Milano Fondamenti di Automatica (CL Ing. Gestionale) a.a.24-5 Prof. Silvia Strada Seconda prova intermedia 2 Febbraio 25 SOLUZIONE ESERCIZIO punti: 8 su 32 Si consideri un sistema dinamico,

Dettagli

FONDAMENTI DI AUTOMATICA (Ingegneria Biomedica) Appello del 16 febbraio 2010: testo e soluzione. y = x 1

FONDAMENTI DI AUTOMATICA (Ingegneria Biomedica) Appello del 16 febbraio 2010: testo e soluzione. y = x 1 FONDAMENTI DI AUTOMATICA (Ingegneria Biomedica) Appello del 16 febbraio 21: testo e soluzione Prof. Maria Prandini 1. Si consideri il sistema descritto dalle seguenti equazioni: ẋ 1 = x 2 2 + x 1 ẋ 2 =

Dettagli

INGEGNERIA DELLE TELECOMUNICAZIONI

INGEGNERIA DELLE TELECOMUNICAZIONI INGEGNERIA DELLE TELECOMUNICAZIONI FONDAMENTI DI AUTOMATICA Prof. Marcello Farina TEMA D ESAME E SOLUZIONI 18 febbraio 2014 Anno Accademico 2012/2013 ESERCIZIO 1 Si consideri il sistema descritto dalle

Dettagli

Politecnico di Milano. Prof. SILVIA STRADA Cognomi LF - PO SOLUZIONE

Politecnico di Milano. Prof. SILVIA STRADA Cognomi LF - PO SOLUZIONE Politecnico di Milano Prof. SILVIA STRADA Cognomi LF - PO SOLUZIONE A.A. 25/6 Prima prova di Fondamenti di Automatica (CL Ing. Gestionale) 27 Novembre 25 ESERCIZIO punti: 8 su 32 Si consideri il sistema

Dettagli

Controlli Automatici L-A - Esercitazione

Controlli Automatici L-A - Esercitazione Controlli Automatici L-A - Esercitazione 1. Si consideri lo schema a blocchi di figura. d(t) K d x(t) e(t) R(s) u(t) G(s) y(t) - R(s) = K τs + 1 s + 1, G(s) = K d = 2 s(s 2 + 6s + ), a) Considerando gli

Dettagli

Controlli Automatici - Parte A

Controlli Automatici - Parte A Cognome: Nome: N. Matr.: Controlli Automatici - Parte A Ingegneria Meccanica e Ingegneria del Veicolo Compito del 8 giugno 217 - Quiz Per ciascuno dei seguenti quesiti, segnare con una crocetta le risposte

Dettagli

Nome: Nr. Mat. Firma: Info. Elet. Telec. Altro.

Nome: Nr. Mat. Firma: Info. Elet. Telec. Altro. Controlli Automatici A Compito Completo Dicembre 7 - Esercizi Compito A Nr. a = Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec. Altro. Negli esercizi che seguono, si sostituisca ad a il valore assegnato

Dettagli

INGEGNERIA INFORMATICA

INGEGNERIA INFORMATICA INGEGNERIA INFORMATICA FONDAMENTI DI AUTOMATICA 29/06/2017 Prof. Marcello Farina SOLUZIONI ESERCIZIO 1 Si consideri il sistema descritto dalle seguenti equazioni: A. Scrivere le equazioni del sistema linearizzato

Dettagli

Fondamenti di Automatica (CL Ing. Gestionale) a.a Prof. Silvia Strada 3 Luglio 2014

Fondamenti di Automatica (CL Ing. Gestionale) a.a Prof. Silvia Strada 3 Luglio 2014 Politecnico di Milano Fondamenti di Automatica (CL Ing. Gestionale) a.a.2013-14 Prof. Silvia Strada 3 Luglio 2014 Nome e Cognome:........................... Matricola........................... Firma............................................................................

Dettagli

Nome: Nr. Mat. Firma:

Nome: Nr. Mat. Firma: Fondamenti di Controlli Automatici - A.A. 6/7 Marzo 7 - Esercizi Compito B Nr. Nome: Nr. Mat. Firma: a) Determinare la trasformata di Laplace X i (s) dei seguenti segnali temporali x i (t): x (t) = sin(3

Dettagli

INGEGNERIA DELLE TELECOMUNICAZIONI

INGEGNERIA DELLE TELECOMUNICAZIONI INGEGNERIA DELLE TELECOMUNICAZIONI FONDAMENTI DI AUTOMATICA Prof. Marcello Farina TEMA D ESAME II prova in itinere 4 luglio 214 Anno Accademico 213/214 ESERCIZIO 1 Si consideri il sistema seguente Si ponga

Dettagli

COMPITO DI FONDAMENTI E APPLICAZIONI DI CONTROLLI AUTOMATICI 21 Febbraio 2012

COMPITO DI FONDAMENTI E APPLICAZIONI DI CONTROLLI AUTOMATICI 21 Febbraio 2012 COMPITO DI FONDAMENTI E APPLICAZIONI DI CONTROLLI AUTOMATICI 21 Febbraio 212 Esercizio 1. Si consideri il modello ingresso/uscita a tempo continuo avente la seguente funzione di trasferimento: G(s) = 1

Dettagli

Nome: Nr. Mat. Firma:

Nome: Nr. Mat. Firma: Fondamenti di Controlli Automatici - A.A. 1/13 1 giugno 13 - Domande Teoriche Nome: Nr. Mat. Firma: Per ciascuno dei test a soluzione multipla segnare con una crocetta tutte le affermazioni che si ritengono

Dettagli

Controlli Automatici - Parte A

Controlli Automatici - Parte A Cognome: Nome: N. Matr.: Ho seguito il corso con Prof Giarré Prof. Biagiotti Controlli Automatici - Parte A Ingegneria Meccanica e Ingegneria del Veicolo Compito del 9 gennaio 29 - Quiz Per ciascuno dei

Dettagli

Esercitazione 05: Trasformata di Laplace e funzione di trasferimento

Esercitazione 05: Trasformata di Laplace e funzione di trasferimento Esercitazione 05: Trasformata di Laplace e funzione di trasferimento 28 marzo 208 (3h) Fondamenti di Automatica Prof. M. Farina Responsabile delle esercitazioni: Enrico Terzi Queste dispense sono state

Dettagli

PROVA SCRITTA DI AUTOMATICA I (Prof. Bittanti, BIO A-K) 27 Gennaio 2009 Cognome Nome Matricola

PROVA SCRITTA DI AUTOMATICA I (Prof. Bittanti, BIO A-K) 27 Gennaio 2009 Cognome Nome Matricola PROVA SCRITTA DI AUTOMATICA I (Prof. Bittanti, BIO A-K) 7 Gennaio 9 Cognome Nome Matricola............ Verificare che il fascicolo sia costituito da 8 pagine. Scrivere le risposte ai singoli esercizi negli

Dettagli

Controlli Automatici - Parte A

Controlli Automatici - Parte A Cognome: Nome: N. Matr.: Ho seguito il corso con Prof Giarré Prof. Biagiotti Controlli Automatici - Parte A Ingegneria Meccanica e Ingegneria del Veicolo Compito del 1 febbraio 18 - Quiz Per ciascuno dei

Dettagli

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2013/ giugno 2014

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2013/ giugno 2014 PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2013/2014 30 giugno 2014 nome e cognome: numero di matricola: prova d esame da CFU : 6 CFU 9 CFU Note: Scrivere le risposte negli spazi appositi. Non consegnare

Dettagli

Modellazione e controllo di sistemi dinamici/ca2 25/06/2010

Modellazione e controllo di sistemi dinamici/ca2 25/06/2010 Modellazione e controllo di sistemi dinamici/ca2 25/6/21 a) Si considerino i due sistemi dinamici S1 e S2 con ingresso u e uscita y descritti rispettivamente da S1 : { ẋ = 4x + 8u y = x u S2 : G(s) = 5

Dettagli

FONDAMENTI DI AUTOMATICA 11 novembre 2018 Prima prova in itinere Cognome Nome Matricola

FONDAMENTI DI AUTOMATICA 11 novembre 2018 Prima prova in itinere Cognome Nome Matricola FONDAMENTI DI AUTOMATICA novembre 28 Prima prova in itinere Cognome Nome Matricola............ Verificare che il fascicolo sia costituito da 7 pagine compresi il foglio di carta semilogaritmica. Scrivere

Dettagli

Cognome Nome: Matricola: Corso di Laurea: Fondamenti di Controlli Automatici - A.A. 2011/12 20 settembre Domande Teoriche

Cognome Nome: Matricola: Corso di Laurea: Fondamenti di Controlli Automatici - A.A. 2011/12 20 settembre Domande Teoriche Fondamenti di Controlli Automatici - A.A. / settembre - Domande Teoriche Cognome Nome: Matricola: Corso di Laurea: Per ciascuno dei test a soluzione multipla segnare con una crocetta tutte le affermazioni

Dettagli

Nome: Nr. Mat. Firma:

Nome: Nr. Mat. Firma: Fondamenti di Controlli Automatici - A.A. 2009/10 6 Settembre 2010 - Esercizi Compito Nr. Nome: Nr. Mat. Firma: a) Determinare la trasformata di Laplace X i (s) dei seguenti segnali temporali x i (t):

Dettagli

Controlli Automatici - Parte A

Controlli Automatici - Parte A Cognome: Nome: N. Matr.: Ho seguito il corso con Prof Giarré Prof. Biagiotti Controlli Automatici - Parte A Ingegneria Meccanica e Ingegneria del Veicolo Compito del 3 luglio 19 - Quiz Per ciascuno dei

Dettagli

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2005/ febbraio 2006 TESTO E SOLUZIONE

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2005/ febbraio 2006 TESTO E SOLUZIONE PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 25/26 13 febbraio 26 TESTO E SOLUZIONE Esercizio 1 Si consideri il sistema lineare descritto dalle equazioni di stato seguenti: ẋ 1 (t) = 2x 1 (t) αx 2 (t)

Dettagli

Controlli Automatici - Parte A

Controlli Automatici - Parte A Cognome: Nome: N. Matr.: Ho seguito il corso con Prof Giarré Prof. Biagiotti Controlli Automatici - Parte A Ingegneria Meccanica e Ingegneria del Veicolo Compito del 5 settembre 218 - Quiz Per ciascuno

Dettagli

Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec. Altro.

Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec. Altro. Controlli Automatici A 22 Giugno 11 - Esercizi Si risolvano i seguenti esercizi. Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec. Altro. a.1) Calcolare la trasformata di Laplace X(s) dei seguenti segnali

Dettagli

Diagrammi asintotici di Bode: esercizi. Tracciare i diagrammi asintotici di Bode della seguente funzione G(s): s 2. s(s 30)(1+ s

Diagrammi asintotici di Bode: esercizi. Tracciare i diagrammi asintotici di Bode della seguente funzione G(s): s 2. s(s 30)(1+ s .. 3.2 1 Nyquist: Diagrammi asintotici di Bode: esercizi Tracciare i diagrammi asintotici di Bode della seguente funzione G(s): 6(s2 +.8s+4) s(s 3)(1+ s 2 )2. Pendenza iniziale: -2 db/dec. Pulsazioni critiche:

Dettagli

Controlli Automatici - Parte A

Controlli Automatici - Parte A Cognome: Nome: N. Matr.: Controlli Automatici - Parte A Ingegneria Meccanica e Ingegneria del Veicolo Compito del 2 febbraio 217 - Quiz Per ciascuno dei seguenti quesiti, segnare con una crocetta le risposte

Dettagli

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2011/ settembre 2012

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2011/ settembre 2012 PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2011/2012 10 settembre 2012 nome e cognome: numero di matricola: prova d esame da CFU : 6 CFU 9 CFU Note: Scrivere le risposte negli spazi appositi. Non consegnare

Dettagli

Cognome Nome Matricola Corso di Laurea

Cognome Nome Matricola Corso di Laurea Fondamenti di Controlli Automatici A.A. 213/14 7 gennaio 215 Quiz di Teoria Cognome Nome Matricola Corso di Laurea Per ciascuno dei test a soluzione multipla segnare con una crocetta tutte le affermazioni

Dettagli

Fondamenti di Automatica (CL Ing. Gestionale) a.a Prof. Silvia Strada Seconda prova intermedia 12 Febbraio 2015

Fondamenti di Automatica (CL Ing. Gestionale) a.a Prof. Silvia Strada Seconda prova intermedia 12 Febbraio 2015 Politecnico di Milano Fondamenti di Automatica (CL Ing. Gestionale) a.a.2014-15 Prof. Silvia Strada Seconda prova intermedia 12 Febbraio 2015 Nome e Cognome:........................... Matricola...........................

Dettagli

Teoria dei Sistemi s + 1 (s + 1)(s s + 100)

Teoria dei Sistemi s + 1 (s + 1)(s s + 100) Teoria dei Sistemi 03-07-2015 A Dato il sistema dinamico rappresentato dalla funzione di trasferimento 10s + 1 (s + 1)(s 2 + 16s + 100) A.1 Si disegnino i diagrammi di Bode, Nyquist e i luoghi delle radici.

Dettagli

Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec. Altro.

Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec. Altro. Controlli Automatici - Prima parte 18 Aprile 216 - Esercizi Si risolvano i seguenti esercizi. Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec. Altro. a.1) Calcolare la trasformata di Laplace X(s) dei seguenti

Dettagli

Fondamenti di Automatica per Ing. Elettrica

Fondamenti di Automatica per Ing. Elettrica 1 Fondamenti di Automatica per Ing. Elettrica Prof. Patrizio Colaneri 2 Esame del 22 Gennaio 2018 Cognome Nome Matricola Firma Durante la prova non è consentita la consultazione di libri, dispense e quaderni.

Dettagli

s +6 s 3 s 2 +(K 3)s +6K. 6(s +6) s 2 +3s +36. (1) i) Prima di tutto fattorizziamo opportunamente la funzione di trasferimento (1)

s +6 s 3 s 2 +(K 3)s +6K. 6(s +6) s 2 +3s +36. (1) i) Prima di tutto fattorizziamo opportunamente la funzione di trasferimento (1) Esercizio. Con riferimento al sistema di figura, calcolare: u(t) + K s s +6 s 3 y(t) a) la funzione di trasferimento a ciclo chiuso tra u(t) e y(t); b) i valori di K per i quali il sistema a ciclo chiuso

Dettagli

INGEGNERIA INFORMATICA

INGEGNERIA INFORMATICA INGEGNERIA INFORMATICA FONDAMENTI DI AUTOMATICA 09/02/2017 Prof. Marcello Farina SOLUZIONI Anno Accademico 2015/2016 ESERCIZIO 1 Si consideri il sistema a tempo discreto non lineare descritto dalle seguenti

Dettagli

Controlli Automatici - Parte A

Controlli Automatici - Parte A Cognome: Nome: N. Matr.: Ho seguito il corso con Prof Giarré Prof. Biagiotti Controlli Automatici - Parte A Ingegneria Meccanica e Ingegneria del Veicolo Compito del 13 febbraio 19 - Quiz Per ciascuno

Dettagli

Esercitazione 06: Sistemi interconnessi e funzioni di trasferimento

Esercitazione 06: Sistemi interconnessi e funzioni di trasferimento Esercitazione 06: Sistemi interconnessi e funzioni di trasferimento 20 aprile 2016 (3h) Alessandro Vittorio Papadopoulos alessandro.papadopoulos@polimi.it Fondamenti di Automatica Prof. M. Farina 1 Schema

Dettagli

Fondamenti di Automatica (CL Ing. Gestionale) a.a Prof. Silvia Strada 16 Luglio 2014

Fondamenti di Automatica (CL Ing. Gestionale) a.a Prof. Silvia Strada 16 Luglio 2014 Politecnico di Milano Fondamenti di Automatica (CL Ing. Gestionale) a.a.2013-14 Prof. Silvia Strada 16 Luglio 2014 Nome e Cognome:........................... Matricola........................... Firma............................................................................

Dettagli

COMPITO DI CONTROLLI AUTOMATICI Ingegneria dell Energia Elettrica e Aerospaziale 1 Febbraio 2016

COMPITO DI CONTROLLI AUTOMATICI Ingegneria dell Energia Elettrica e Aerospaziale 1 Febbraio 2016 COMPITO DI CONTROLLI AUTOMATICI Ingegneria dell Energia Elettrica e Aerospaziale 1 Febbraio 16 Esercizio 1. [11 punti] Si consideri il modello ingresso/uscita a tempo continuo avente la seguente funzione

Dettagli

y(t) Amplitude

y(t) Amplitude SOLUZIONI PROVA SCRITTA DI AUTOMATICA I (Prof. Bittanti, BIO A-K) 8 Luglio 7. Si considerino il seguente sistema dinamico lineare a coefficienti costanti: ut () Gs () y (t) s + 3 con Gs () =, e i diagrammi

Dettagli

COMPITO DI CONTROLLI AUTOMATICI - 7 CFU e 9 CFU 16 Febbraio 2010

COMPITO DI CONTROLLI AUTOMATICI - 7 CFU e 9 CFU 16 Febbraio 2010 COMPITO DI CONTROLLI AUTOMATICI - 7 CFU e 9 CFU 6 Febbraio Esercizio. Si consideri il modello ingresso/uscita a tempo continuo e causale descritto dalla seguente equazione differenziale: d 3 y(t) dt 3

Dettagli

Fondamenti di Controlli Automatici. 1 Temi d'esame. Politecnico di Torino CeTeM. Politecnico di Torino Pagina 1 di 25 Data ultima revisione 19/09/00

Fondamenti di Controlli Automatici. 1 Temi d'esame. Politecnico di Torino CeTeM. Politecnico di Torino Pagina 1 di 25 Data ultima revisione 19/09/00 etem Fondamenti di ontrolli Automatici Temi d'esame ATTENZONE: i temi d esame e gli esercizi proposti riguardano (per ora) solo la parte di analisi di sistemi di controllo; per quanto riguarda il progetto,

Dettagli

COMPITO A: soluzione

COMPITO A: soluzione PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA (PRIMA PARTE) A.A. 2005/2006 9 novembre 2005 nome e cognome: numero di matricola: Note: Scrivere le risposte negli spazi appositi. Non consegnare fogli aggiuntivi.

Dettagli

Fondamenti di Controlli Automatici

Fondamenti di Controlli Automatici Cognome: Nome: N. Matr.: Fondamenti di Controlli Automatici Ingegneria Meccanica Compito del 11 settembre 215 - Quiz Per ciascuno dei seguenti quesiti, segnare con una crocetta le risposte che si ritengono

Dettagli

Stabilità di sistemi di controllo con feedback. Fondamenti di Automatica Prof. Silvia Strada

Stabilità di sistemi di controllo con feedback. Fondamenti di Automatica Prof. Silvia Strada Stabilità di sistemi di controllo con feedback Fondamenti di Automatica Prof. Silvia Strada 1 Stabilità Hp: asintoticamente stabili tutte FdT attraverso cui i disturbi entrano nel sistema facciamo riferimento

Dettagli

Esame di FONDAMENTI DI AUTOMATICA (9 crediti) SOLUZIONE

Esame di FONDAMENTI DI AUTOMATICA (9 crediti) SOLUZIONE Esame di FONDAMENTI DI AUTOMATICA (9 crediti) Prova scritta 16 luglio 2014 SOLUZIONE ESERCIZIO 1. Dato il sistema con: si determinino gli autovalori della forma minima. Per determinare la forma minima

Dettagli

Controlli Automatici - Parte A

Controlli Automatici - Parte A Cognome: Nome: N. Matr.: Ho seguito il corso con Prof Giarré Prof. Biagiotti Controlli Automatici - Parte A Ingegneria Meccanica e Ingegneria del Veicolo Compito del 5 settembre 219 - Quiz Per ciascuno

Dettagli

Controlli Automatici - Parte A

Controlli Automatici - Parte A Cognome: Nome: N. Matr.: Ho seguito il corso con Prof Giarré Prof. Biagiotti Controlli Automatici - Parte A Ingegneria Meccanica e Ingegneria del Veicolo Compito del 9 giugno 28 - Quiz Per ciascuno dei

Dettagli

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2011/ gennaio 2013

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2011/ gennaio 2013 PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2011/2012 14 gennaio 2013 nome e cognome: numero di matricola: prova d esame da CFU : 6 CFU 9 CFU Note: Scrivere le risposte negli spazi appositi. Non consegnare

Dettagli

Fondamenti di Automatica (CL Ing. Gestionale) a.a Prof. Silvia Strada Appello del 24 Settembre 2015

Fondamenti di Automatica (CL Ing. Gestionale) a.a Prof. Silvia Strada Appello del 24 Settembre 2015 Politecnico di Milano Fondamenti di Automatica (CL Ing. Gestionale) a.a.2014-15 Prof. Silvia Strada Appello del 24 Settembre 2015 Nome e Cognome:........................... Matricola...........................

Dettagli

Controlli Automatici - Parte A

Controlli Automatici - Parte A Cognome: Nome: N. Matr.: Ho seguito il corso con Prof Giarré Prof. Biagiotti Controlli Automatici - Parte A Ingegneria Meccanica e Ingegneria del Veicolo Compito del 9 giugno 29 - Quiz Per ciascuno dei

Dettagli

INGEGNERIA INFORMATICA

INGEGNERIA INFORMATICA INGEGNERIA INFORMATICA FONDAMENTI DI AUTOMATICA 21/06/2018 Prof Marcello Farina TRACCIA DELLE SOLUZIONI ESERCIZIO 1 Si consideri il sistema descritto dalle seguenti equazioni: A Derivare e scrivere le

Dettagli

SISTEMI DIGITALI DI CONTROLLO

SISTEMI DIGITALI DI CONTROLLO Sistemi Digitali di Controllo A.A. 2009-2010 p. 1/27 SISTEMI DIGITALI DI CONTROLLO Prof. Alessandro De Luca DIS, Università di Roma La Sapienza deluca@dis.uniroma1.it Lucidi tratti dal libro C. Bonivento,

Dettagli

COMPITO DI CONTROLLI AUTOMATICI 20 Febbraio 2014

COMPITO DI CONTROLLI AUTOMATICI 20 Febbraio 2014 COMPITO DI CONTROLLI AUTOMATICI Febbraio 14 Esercizio 1. [11 punti] Si consideri il modello ingresso/uscita a tempo continuo avente la seguente funzione di trasferimento: G(s) = 1 3 s(s + 1)(s + 1) (s

Dettagli

u = quantità di proteina B, y = misura dell attività della proteina A

u = quantità di proteina B, y = misura dell attività della proteina A Esercizio [0 punti] Si vuole descrivere con un sistema dinamico a tempo continuo l evoluzione nel tempo della quantità di una proteina A. La produzione di tale proteina dipende dalla quantità di RNA messaggero

Dettagli

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2005/ giugno 2006 TESTO E SOLUZIONE

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2005/ giugno 2006 TESTO E SOLUZIONE PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 25/26 5 giugno 26 TESTO E SOLUZIONE Esercizio 1 Si consideri il sistema dinamico descritto dalle equazioni di stato ẋ 1 (t) = x 1 (t) + 2x 2 (t) + u(t) ẋ

Dettagli

Controlli Automatici - Parte A

Controlli Automatici - Parte A Cognome: Nome: N. Matr.: Controlli Automatici - Parte A Ingegneria Meccanica e Ingegneria del Veicolo Compito del 9 gennaio 217 - Quiz Per ciascuno dei seguenti quesiti, segnare con una crocetta le risposte

Dettagli

COMPITO DI CONTROLLI AUTOMATICI Corso di Laurea in Ingegneria dell Informazione 6 Settembre 2013

COMPITO DI CONTROLLI AUTOMATICI Corso di Laurea in Ingegneria dell Informazione 6 Settembre 2013 COMPITO DI CONTROLLI AUTOMATICI Corso di Laurea in Ingegneria dell Informazione 6 Settembre 213 Esercizio 1. [9. + 1 punti] Sia G(s) = (s 2 +1)(s+1) (s.1)(s 2 +.2s+1) la funzione di trasferimento di un

Dettagli

Fondamenti di Automatica - Ingegneria Gestionale (H-PO) Prof. Silvia Strada Prima prova in itinere del 25 Novembre 2016 Tempo a disposizione: 1.30 h.

Fondamenti di Automatica - Ingegneria Gestionale (H-PO) Prof. Silvia Strada Prima prova in itinere del 25 Novembre 2016 Tempo a disposizione: 1.30 h. Politecnico di Milano Fondamenti di Automatica - Ingegneria Gestionale (H-PO) Prof. Silvia Strada Prima prova in itinere del 25 Novembre 206 Tempo a disposizione:.30 h. Nome e Cognome................................................................................

Dettagli

PRIMA PROVA PARZIALE DI CONTROLLO DIGITALE A.A. 2005/ aprile 2006 TESTO E SOLUZIONE

PRIMA PROVA PARZIALE DI CONTROLLO DIGITALE A.A. 2005/ aprile 2006 TESTO E SOLUZIONE PRIMA PROVA PARZIALE DI CONTROLLO DIGITALE A.A. 2005/2006 2 aprile 2006 TESTO E SOLUZIONE Esercizio Assegnato il sistema dinamico, non lineare, tempo invariante x (k + ) = x (k) + x 2 (k) 2 + u(k) x 2

Dettagli

Cognome Nome Matricola Corso

Cognome Nome Matricola Corso Fondamenti di Controlli Automatici - A.A. 212/13 6 novembre 213 - Quiz di Teoria Cognome Nome Matricola Corso Per ciascuno dei test a soluzione multipla segnare con una crocetta tutte le affermazioni che

Dettagli

Stabilità dei sistemi di controllo. Fondamenti di Automatica Prof. Silvia Strada

Stabilità dei sistemi di controllo. Fondamenti di Automatica Prof. Silvia Strada Stabilità dei sistemi di controllo Fondamenti di Automatica Prof. Silvia Strada 1 Stabilità Nei sistemi dinamici LTI la stabilità non dipende dagli ingressi. Asintoticamente stabili tutte le FdT attraverso

Dettagli

Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec. Altro.

Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec. Altro. Controlli Automatici - Prima parte 7 Aprile 5 - Esercizi Si risolvano i seguenti esercizi. Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec. Altro. a.) Calcolare la trasformata di Laplace X(s) = L[x(t)] dei

Dettagli

ANALISI DEI SISTEMI DI CONTROLLO A TEMPO CONTINUO. Schema generale di controllo in retroazione. Margine di guadagno e margine di fase

ANALISI DEI SISTEMI DI CONTROLLO A TEMPO CONTINUO. Schema generale di controllo in retroazione. Margine di guadagno e margine di fase ANALISI DEI SISTEMI DI CONTROLLO A TEMPO CONTINUO Schema generale di controllo in retroazione Requisiti di un sistema di controllo Stabilità in condizioni nominali Margine di guadagno e margine di fase

Dettagli

Esercitazione 07: Esercitazione di ripasso per la prima prova in itinere

Esercitazione 07: Esercitazione di ripasso per la prima prova in itinere Esercitazione 07: Esercitazione di ripasso per la prima prova in itinere 29 aprile 2016 (2h) Prof. Marcello Farina marcello.farina@polimi.it Fondamenti di Automatica 1 Sistemi a tempo discreto Un azienda

Dettagli

Prova scritta di Controlli Automatici - Compito A

Prova scritta di Controlli Automatici - Compito A Prova scritta di Controlli Automatici Compito A 2 Aprile 2007 Domande a Risposta Multipla Per ognuna delle seguenti domande a risposta multipla, indicare quali sono le affermazioni vere. 1. Si considerino

Dettagli

FONDAMENTI DI AUTOMATICA. Prof. Maria Prandini

FONDAMENTI DI AUTOMATICA. Prof. Maria Prandini POLITECNICO DI MILANO FONDAMENTI DI AUTOMATICA Ingegneria Informatica e Ingegneria delle Telecomunicazioni Allievi da CM (incluso) a IM (escluso) Prof. Maria Prandini Anno Accademico 2017/18 Appello del

Dettagli

Fondamenti di Automatica Prof. Luca Bascetta. Soluzioni della seconda prova scritta intermedia 25 giugno 2018

Fondamenti di Automatica Prof. Luca Bascetta. Soluzioni della seconda prova scritta intermedia 25 giugno 2018 Fondamenti di Automatica Prof. Luca Bascetta Soluzioni della seconda prova scritta intermedia 25 giugno 28 ESERCIZIO Si consideri il sistema di controllo di figura, con y variabile controllata e y o riferimento:

Dettagli

Controlli Automatici - Parte A

Controlli Automatici - Parte A Cognome: Nome: N. Matr.: Ho seguito il corso con Prof Giarré Prof. Biagiotti Controlli Automatici - Parte A Ingegneria Meccanica e Ingegneria del Veicolo Compito del 17 luglio 18 - Quiz Per ciascuno dei

Dettagli

Fondamenti di Automatica (CL Ing. Gestionale) a.a Prof. Silvia Strada Prima prova intermedia 28 Novembre 2014

Fondamenti di Automatica (CL Ing. Gestionale) a.a Prof. Silvia Strada Prima prova intermedia 28 Novembre 2014 Politecnico di Milano Fondamenti di Automatica (CL Ing. Gestionale) a.a.2014-15 Prof. Silvia Strada Prima prova intermedia 28 Novembre 2014 Nome e Cognome:........................... Matricola...........................

Dettagli

COMPITO DI FONDAMENTI E APPLICAZIONI DI CONTROLLI AUTOMATICI 19 Luglio 2012

COMPITO DI FONDAMENTI E APPLICAZIONI DI CONTROLLI AUTOMATICI 19 Luglio 2012 COMPITO DI FONDAMENTI E APPLICAZIONI DI CONTROLLI AUTOMATICI 9 Luglio 22 Esercizio. Si consideri il modello ingresso/uscita a tempo continuo avente la seguente funzione di trasferimento: G(s) = (s + )

Dettagli

1 a PROVA PARZIALE DI FONDAMENTI DI AUTOMATICA A.A. 2004/ novembre Soluzione

1 a PROVA PARZIALE DI FONDAMENTI DI AUTOMATICA A.A. 2004/ novembre Soluzione a PROVA PARZIAE DI FONDAMENTI DI AUTOMATIA A.A. 24/25 9 novembre 24 Esercizio on riferimento alla funzione di trasferimento G(s) = 7s2 + 36s + 48 (s + 3)(s + 4) 2 Domanda.. Indicare i valori del guadagno,

Dettagli