Le calamite Magnetismo

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Le calamite Magnetismo"

Transcript

1 I s t i t u t o P r o f e s s i o n a l e d i S t a t o p e r l I n d u s t r i a e l A r t i g i a n a t o C A V O U R - M A R C O N I L o c. P i s c i l l e - V i a A s s i s a n a, 4 0 / d P E R U G I A - T e l / F a x / i p s i a p t i n. i t - P.E.C. pgri110005@pec.istruzione.it - sito internet: w w w. i p s i a p g. i t CLASSE 3E1 Anno scolastico 2012/2013 Laboratorio Tecnologico *********************************** Le calamite Magnetismo *********************************** Elettrotecnica 2012 Calamite - Magnetismo Pagina 1 di 12

2 Introduzione Tutti quanti conoscono l'esistenza delle calamite ed il loro comportamento, così come tutti sanno cosa sia una bussola e cosa faccia. Meno chiare sono le leggi che regolano tali fenomeni e la loro natura. Nei paragrafi seguenti introduciamo le basi teoriche del magnetismo e diamo una spiegazione esauriente a vari fenomeni ad esso legati. Il magnetismo in natura Le calamite Analizziamo il comportamento di una calamita: comunque io la posizioni essa è in grado di attirare molti oggetti metallici. Ma cosa succede se mettiamo vicine due calamite? Vedrete subito che a seconda di come le posizioniamo la forza che si esercita tra loro può essere tanto attrattiva quanto repulsiva. Come possiamo dare spiegazione di questo fenomeno? Per farlo è sufficiente dire che la calamita è dotata di due poli distinti che per convenzione chiameremo nord e sud. Poli uguali tenderanno a respingersi mentre poli opposti tenderanno ad attrarsi. Spezzando in due una calamita non è però possibile separare i due poli; si ottengono infatti due calamite differenti ognuna delle quali con due poli. La bussola Se osserviamo il comportamento di una bussola vicino ad una calamita vediamo che la bussola cambia la sua orientazione in funzione della posizione della calamita, comportandosi esattamente nello stesso modo della calamita. Se ne può dedurre che una bussola è una sorta di piccola calamita con un polo nord ed un polo sud. La bussola si orienta sempre parallelamente al campo magnetico in cui è immersa. La Terra genera un campo magnetico che fa ruotare le bussole fino a che non indicano la posizione del polo nord magnetico come in figura. Una bussola indica sempre la direzione del polo nord magnetico. Elettrotecnica 2012 Calamite - Magnetismo Pagina 2 di 12

3 Origine del magnetismo Il magnetismo è un fenomeno strettamente legato all'interazione elettrica, ed in particolare è legato al movimento delle cariche. Questo è stato dimostrato quando si è visto che il comportamento di una bussola viene influenzato quando si posiziona la bussola in prossimità di un filo conduttore percorso da corrente. Se la corrente elettrica è in grado di influenzare il comportamento di una bussola, allora vuol dire che essa emette un campo magnetico con il quale la bussola interagisce. Il campo magnetico Il vettore campo magnetico si genera con il movimento di una carica elettrica. L'unità di misura il campo magnetico è il Tesla. Sin dall'antichità si conoscono delle rocce magnetiche (magneti o calamite naturali) capaci di attirare il ferro, il cobalto, il nichel ed alcune leghe e di creare un campo magnetico. Anche la Terra ha un campo magnetico e per secoli i marinai si sono affidati ad esso tramite la bussola. Il campo magnetico è sempre dipolare: ha un polo nord ed un polo sud magnetico. Se si spezza una calamita si creano dei nuovi poli e quindi delle calamite più piccole. Alcune sostanze si magnetizzano in presenza di un campo magnetico, ma allontanate dal campo induttore perdono il loro magnetismo (magneti temporanei); invece altre sostanze lo conservano a lungo: magneti ad alta permanenza. Avrete sicuramente avuto a che fare con delle calamite (o magneti naturali). Esistono dei magnetini che generalmente si attaccano alla porta del frigorifero ed anche dei giochi magnetici. Cerchiamo di descrivere il comportamento e le proprietà delle calamite con piccoli esperimenti qualitativi. Procurati due calamite: tenendone ferma una, avvicina ad essa l'altra calamita. Che cosa accade? Avvicina ad una delle calamite alcuni piccoli oggetti di diversi materiali (un chiodo di ferro, un filo di rame, una gomma, un fermaglio d'acciaio, una moneta..). Che cosa accade per ciascuno di essi? Lascia per un po' di tempo un ago d'acciaio a contatto con una calamita (meglio se grossa). Cosa accade? Procurati della limatura di ferro e un cartoncino rigido di colore chiaro. Spargi un po' di limatura sul cartoncino in modo abbastanza uniforme e poi, mantenendo il cartoncino orizzontale, metti una calamita sotto di esso. Cosa accade alla limatura? Prova a muovere la calamita: cosa succede? Elettrotecnica 2012 Calamite - Magnetismo Pagina 3 di 12

4 Avvicinando due calamite tra di loro si avverte una forza attrattiva o repulsiva, a seconda delle estremità che vengono avvicinate. Ogni calamita presenta infatti due estremità (o due facce) con proprietà opposte, dove le forze risultano particolarmente intense: esse vengono chiamate polo nord e polo sud. Si manifesta una forza repulsiva tra due poli uguali ed una forza attrattiva tra due poli diversi, un po' come accade con le cariche elettriche positive e negative. Con un po' di attenzione è possibile far muovere, senza toccarla, una delle due calamite, manovrando opportunamente l'altra. Alcuni degli oggetti citati sono sempre attratti dalla calamita. Questi oggetti sono fatti di materiali ferromagnetici. Essi, particolarmente importanti nello studio del magnetismo, sono relativamente pochi: ferro, cobalto, nichel e le loro leghe (l'acciaio è una lega di ferro e carbone). Gli altri oggetti non sembrano reagire alla presenza della calamita (anche se alcuni ne risentono molto debolmente). L'ago tenuto a contatto della calamita diventa a sua volta un magnete, caratterizzato dalla presenza di un polo nord e di un polo sud ai suoi estremi. La zona di spazio circostante un magnete si chiama campo magnetico La limatura di ferro permette di visualizzare le linee di campo magnetico: esso infatti causa l'orientazione delle piccole scaglie di ferro che compongono la limatura. L'andamento delle linee del campo dipende dalla forma della calamita. I magneti naturali sono fatti di magnetite, un minerale di ferro le cui proprietà erano note fin dai Greci antichi (la Magnesia era infatti un regione della Grecia ricca di questo materiale). Che differenza puoi notare fra il comportamento dell'ambra (o di un altro corpo che si può caricare per strofinio) ed un magnete naturale? Come abbiamo visto, un magnete naturale attrae, senza bisogno di essere caricato, le sostanze ferromagnetiche. L'ambra invece ha bisogno di essere strofinata per acquistare una carica elettrica con la quale è in grado di attrarre oggetti leggeri fatti di qualunque materiale. Esiste un'altra fondamentale differenza tra cariche elettriche e poli magnetici: mentre è possibile avere una carica singola (positiva o negativa), i poli magnetici non possono essere separati. Elettrotecnica 2012 Calamite - Magnetismo Pagina 4 di 12

5 Esiste una famosa esperienza detta della calamita spezzata: spezzando in due una calamita a barra, non si ottiene un polo nord e un polo sud isolati, ma si ricreano due calamite, ognuna con polo nord e polo sud e questo fenomeno persiste qualsiasi sia il numero di pezzi in cui tagliamo la calamita originaria. La più semplice struttura magnetica esistente è un dipolo: non esistono monopoli magnetici! Comunque si spezzi in due una calamita, si ricrea sempre un dipolo magnetico con un polo nord e un polo sud La Terra funziona come un gigantesco magnete (con il polo sud magnetico che, per definizione, è quello vicino al nord geografico). La direzione e il verso delle linee di campo magnetico si determinano con un aghetto magnetico che si orienta sempre tangentalmente alle linee. Gli angoli che l'ago forma con i piani orizzontale e verticale in ogni punto della superficie terrestre, si dicono rispettivamente declinazione e inclinazione magnetica. Campo magnetico terrestre Il verso delle linee di campo va convenzionalmente dal polo nord magnetico (sud geografico) verso il polo sud magnetico (nord geografico), ma, come vedremo, esse non finiscono nei poli, ma continuano all'interno della Terra dal sud al nord magnetico. Il polo sud magnetico si trova nei pressi del polo nord geografico terrestre. Interazioni tra magneti e cariche elettriche L'esperienza di (Oersted) ha dimostrato che la corrente (cioè il moto di cariche elettriche) agisce su un ago di bussola tramite il campo magnetico che si produce nello spazio circostante. Per un principio di simmetria, spesso soddisfatto dalle leggi fisiche, ci si aspetta che un campo magnetico preesistente, Elettrotecnica 2012 Calamite - Magnetismo Pagina 5 di 12

6 prodotto per esempio da una calamita, possa a sua volta agire su cariche elettriche in moto o su una corrente. corrente < > campo magnetico Curiosità: In un tubo catodico ( esempio: cinescopio utilizzato nei vecchi televisori; Oscilloscopi ecc. ), un fascetto di elettroni viene sparato dal catodo verso uno schermo fluorescente. Se non ci sono campi elettrici o magnetici, il fascetto prosegue diritto e colpisce la parte centrale dello schermo, provocando un puntino fluorescente. Avvicina al tubo catodico, perpendicolarmente al fascio, una calamita a barra, prima dalla parte del polo nord, poi da quella del polo sud. Cosa succede? Avvicinando un polo del magnete al tubo catodico il fascio degli elettroni viene vistosamente spostato, ma, a differenza di quello che accade quando al tubo si avvicina una bacchetta elettricamente carica, gli elettroni non sono attratti o respinti dal magnete, ma deviati lateralmente, a seconda del polo che avviciniamo. Esiste quindi una forza magnetica (dovuta al campo magnetico della calamita), ma, ancora una volta, questa forza non è attrattiva o repulsiva, ma è una forza deviante. Una forza deviante cambia la direzione, ma non l'intensità della velocità degli elettroni. Essa è quindi una forza che non compie lavoro: l'energia cinetica delle cariche rimane invariata. Una corrente produce un campo magnetico Un filo percorso da corrente elettrica crea tutto intorno a sé un campo magnetico. Il campo prodotto è più intenso più vicini si è al filo e più forte è la corrente che passa nel filo, questa relazione è nota come legge di Biot e Savart. La direzione del campo magnetico è data dalla regola della mano destra: si impugna il filo, si dispone il pollice lungo il verso della corrente le altre dita danno la direzione del campo magnetico. B = k i / d Dove: B i d è il campo magnetico la corrente elettrica la distanza dal filo e k una costante Elettrotecnica 2012 Calamite - Magnetismo Pagina 6 di 12

7 che vale 2*10-7 T*m/A Se si piega un filo per formare una spira, il campo magnetico, nella parte interna si rinforza, perché si sovrappone, mentre nella parte esterna si indebolisci. Se il filo viene avvolto come un'elica, si crea una bobina o solenoide, che può avere nella parte interna un campo magnetico abbastanza forte. Forza elettromagnetica Se vicino ad un campo magnetico c'è un filo percorso da corrente, il filo verrà spinto da una forza in direzione perpendicolare al piano individuato dalla corrente e dal campo magnetico. Vedi figura. La forza elettromagnetica è detta anche forza di Lorenz; questo permette di creare dei motori elettrici. Induzione elettromagnetica Se si sposta un campo magnetico nelle vicinanze di un conduttore si induce in esso una corrente. Nella dinamo della bicicletta una calamita ruota vicino a dei fili elettrici producendo la corrente necessaria per accendere la lampadina. Anche spostando un conduttore in un campo magnetico si ottiene lo stesso effetto. La corrente prodotta dipende da quanto è intenso il campo magnetico della calamita e dalla velocità del movimento. Questo effetto scoperto da Faraday nel 1831 permette di ottenere energia elettrica dall'energia meccanica, da un lavoro. Praticamente tutte le centrali elettriche del mondo si basano su questo principio Le correnti alternate Una corrente continua circola sempre nello stesso senso in un circuito, partendo dal morsetto positivo ed entrando in quello negativo, mentre una corrente alternata cambia di verso periodicamente, perciò nelle correnti alternate non esiste un morsetto sempre positivo ed uno sempre negativo. Le centrali Elettrotecnica 2012 Calamite - Magnetismo Pagina 7 di 12

8 elettriche europee producono corrente alternata con una frequenza di 50 Hz, quelle americane a 60 Hz. Sinusoide a frequenza 50Hz VALORI: Picco Picco-Picco Efficace Medio = 300 Volt = 600 Volt = 212,7 Volt = 0 Volt Cosa vuol dire l'aggettivo efficace? Si dice valore efficace della tensione e della corrente di un'onda sinusoidale il valore equivalente che produce su di un resistore di resistenza R gli stessi effetti di riscaldamento della tensione continua. Dato cioè un resistore di valore R, se lo alimentiamo con tensione continua di 12V, oppure lo alimentiamo con tensione alternata avente valore efficace di 12V gli effetti sul riscaldamento del resistore sono equivalenti. Facciamo un esempio. Supponiamo di collegare alla rete elettrica di casa un resistore la cui resistenza sia di 100 ohm; il generatore V1 nello schema in basso rappresenta la rete elettrica di casa che ha una tensione alternata di 230V eff alla frequenza di 50Hz, mentre il resistore da 100 ohm è rappresentato dal simbolo contrassegnato R1. Analizzando la forma d'onda presente sul morsetto "A" Elettrotecnica 2012 Calamite - Magnetismo Pagina 8 di 12

9 ai capi del resistore, otteniamo una sinusoide il cui grafico ha in ascissa X il tempo trascorso ed in ordinata Y la tensione. Si noti come la tensione oscilli tra -325V e +325V in un tempo pari a 20ms, il periodo dell'onda sinusoidale a 50Hz. La tensione massima sul resistore (+325V), rappresentata nel grafico dal cursore "c", viene detta tensione di picco (V P ). La tensione efficace (Veff.) è rappresentata nel grafico dalla riga del cursore "d" ed ha un valore di 230V. La correlazione tra tensione efficace e tensione di picco è data dalle seguente relazione: V = V P / 2 V P x 0,707 (circa il 70% della V P) Viceversa, conoscendo il valore della tensione efficace, possiamo dire che la tensione di picco è circa il 41% superiore: V P = 2 V 1,414 V La corrente che scorre nel resistore R1 segue l'andamento della tensione, essendo legata ad essa dalla legge di Ohm: R = V / I ==> I = V / R I = V / R = V P / R 2) I P = V P / R = 2 V / R Anche la potenza viene calcolata in modo simile, distinguendo tra potenza efficace (detta anche apparente) e potenza di picco: P = V I = (V P / 2) (V P / R 2)) = 1/2 (V P ) 2 / R Elettrotecnica 2012 Calamite - Magnetismo Pagina 9 di 12

10 P P = V P I P = ( 2 V) ( 2 V / R) = 2 V 2 / R da queste ultime formule scaturisce questo interessante rapporto: P P = 2 P È bene dire che queste formule vanno bene solo nel caso di un carico resistivo come potrebbe essere una lampadina ad incandescenza. Nella normalità si ha a che fare con carichi non puramente resistivi, ma contenenti anche componenti induttive (induttori) e capacitive (condensatori). Pensiamo all'avvolgimento di un motore: esso potrebbe essere approssimato con il parallelo di un resistore, un induttore ed un condensatore. Il resistore poiché il fili dell'avvolgimento possiedono una certa resistenza, l'induttore poiché le spire dei fili creano un campo elettromagnetico ed il condensatore poiché i fili ravvicinati delle spire simulano una capacità. Generalizzando, in un qualsiasi apparato elettrico sono presenti, in misura più o meno marcata, le tre componenti resistiva, induttiva e capacitiva. LA CORRENTE INDOTTA Sappiamo che una corrente elettrica genera un campo magnetico. Al contrario, può un campo magnetico generare una corrente elettrica? Una semplice esperienza mette in luce che questo è possibile. Muoviamo rapidamente una calamita dentro una bobina collegata a una lampadina. Mentre la calamita si muove in su e in giù, la lampadina si accende: nel circuito circola una corrente. Invece, se la calamita è ferma, la lampadina non si accende; quindi nel circuito non c è corrente. La corrente non è creata da una pila o da una batteria, ma dal movimento della calamita. All interno della bobina, il campo magnetico della calamita diventa Elettrotecnica 2012 Calamite - Magnetismo Pagina 10 di 12

11 intenso quando la calamita è vicina e ritorna debole quando essa è lontana. Un campo magnetico che varia genera una corrente indotta. INDUZIONE ELETTROMAGNETICA (I campi magnetici creano corrente elettrica) aspetto qualitativo L'esperienza di Oersted, con la quale si dimostrava che le correnti elettriche generano campi magnetici, aveva indotto gli scienziati a chiedersi se fosse vero anche il contrario; cioè se fosse possibile ottenere correnti elettriche mediante un campo magnetico. Faraday nel 1831 scoprì con una serie di esperimenti che " in un circuito elettrico si generano correnti elettriche quando esso è immerso in un campo magnetico che varia nel tempo". Questo fenomeno si chiama induzione elettromagnetica; le correnti che esso genera sono dette correnti indotte. Esperienza. Il solenoide della figura solenoide composto da N spire è collegato ad un amperometro mediante un circuito che non contiene generatori; pertanto in questo circuito non dovrebbe circolare alcuna corrente. Inserendo un magnete nel solenoide l'amperometro segnala un passaggio di corrente che cessa quando il magnete viene fermato. Se il magnete viene estratto dal solenoide, si osserva ancora un passaggio di corrente ma in verso opposto. Il verso della corrente indotta si determina con la legge di Lenz. "La corrente indotta ha il verso tale da produrre un campo magnetico che tende ad opporsi alla variazione del campo magnetico che l'ha generata" Infatti la corrente che viene indotta nel solenoide durante l'introduzione del magnete produce un campo magnetico che tende a respingere il magnete verso l'esterno del solenoide. Al contrario, la corrente che viene indotta mentre si estrae il magnete produce un campo che attrae il magnete verso il solenoide. Gli stessi risultati di questa esperienza si ottengono: 1) Se si tiene fermo il magnete e si muove il solenoide. 2) Se si sostituisce il magnete con un solenoide (detto induttore) in movimento nel quale circola una corrente costante. 3) Se il magnete è sostituito da un solenoide fermo (induttore) nel quale circola una corrente variabile, prodotta, ad esempio, aprendo e chiudendo il circuito oppure alimentando il solenoide con una corrente alternata. 4) Se si fa ruotare il magnete o il solenoide. Si può far variare il campo magnetico all interno del circuito anche in altri modi. Per esempio, mettiamo vicino a questo circuito senza batteria (circuito indotto) un secondo circuito (circuito induttore), nel quale facciamo variare la corrente diminuendo o aumentando la sua resistenza con una resistenza variabile. Elettrotecnica 2012 Calamite - Magnetismo Pagina 11 di 12

12 Quando la resistenza è piccola, nel circuito induttore circola una corrente intensa, che genera un forte campo magnetico nella bobina del circuito indotto. Quando la resistenza è grande, il campo magnetico nella bobina del circuito indotto è piccolo. La variazione della corrente nel circuito induttore genera una corrente indotta nel circuito senza batteria, perché il campo magnetico che lo attraversa varia. Invece, se la corrente nel circuito induttore resta uguale, nell altro circuito non circola una corrente indotta, perché il campo magnetico che lo attraversa non varia. Elettrotecnica 2012 Calamite - Magnetismo Pagina 12 di 12

Lezione 18. Magnetismo WWW.SLIDETUBE.IT

Lezione 18. Magnetismo WWW.SLIDETUBE.IT Lezione 18 Magnetismo Cenni di magnetismo Già a Talete (600 a.c.) era noto che la magnetitite ed alcune altre pietre naturali (minerali di ferro, trovati a Magnesia in Asia Minore) avevano la proprietà

Dettagli

I poli magnetici isolati non esistono

I poli magnetici isolati non esistono Il campo magnetico Le prime osservazioni dei fenomeni magnetici risalgono all antichità Agli antichi greci era nota la proprietà della magnetite di attirare la limatura di ferro Un ago magnetico libero

Dettagli

IL CAMPO MAGNETICO. V Scientifico Prof.ssa Delfino M. G.

IL CAMPO MAGNETICO. V Scientifico Prof.ssa Delfino M. G. IL CAMPO MAGNETICO V Scientifico Prof.ssa Delfino M. G. UNITÀ - IL CAMPO MAGNETICO 1. Fenomeni magnetici 2. Calcolo del campo magnetico 3. Forze su conduttori percorsi da corrente 4. La forza di Lorentz

Dettagli

Questa proprietà, posseduta da alcuni corpi, viene definita MAGNETISMO.

Questa proprietà, posseduta da alcuni corpi, viene definita MAGNETISMO. MAGNETISMO Cos è il MAGNETISMO Sin dall'antichità era noto che un minerale di ferro, la magnetite, ha la proprietà di attirare il ferro. Questa proprietà, posseduta da alcuni corpi, viene definita MAGNETISMO.

Dettagli

Limature di ferro orientate secondo le linee del campo magnetico generato da una barra

Limature di ferro orientate secondo le linee del campo magnetico generato da una barra Magnetismo naturale Un magnete (o calamita) è un corpo che genera una forza su un altro magnete che può essere sia attrattiva che repulsiva. Intorno al magnete c è un campo magnetico. Il nome deriva dal

Dettagli

Induzione e.m. generazione di corrente dovuta al moto relativo del magnete rispetto alla spira. un campo magnetico variabile genera una corrente

Induzione e.m. generazione di corrente dovuta al moto relativo del magnete rispetto alla spira. un campo magnetico variabile genera una corrente Induzione e.m. generazione di corrente dovuta al moto relativo del magnete rispetto alla spira un campo magnetico variabile genera una corrente INDUZIONE ELETTROMAGNETICA - ESPERIENZA 1 magnete N S µ-amperometro

Dettagli

MAGNETISMO - prima parte. pina di vito 1

MAGNETISMO - prima parte. pina di vito 1 MAGNETISMO - prima parte 1 Magneti magneti naturali: magnetite (minerale del ferro Fe3O4) magneti artificiali: composti di Fe, Ni, Co poli magnetici: Nord e Sud I nomi dei poli magnetici derivano dall

Dettagli

GRANDEZZE ELETTRICHE E COMPONENTI

GRANDEZZE ELETTRICHE E COMPONENTI Capitolo3:Layout 1 17-10-2012 15:33 Pagina 73 CAPITOLO 3 GRANDEZZE ELETTRICHE E COMPONENTI OBIETTIVI Conoscere le grandezze fisiche necessarie alla trattazione dei circuiti elettrici Comprendere la necessità

Dettagli

Inizia presentazione

Inizia presentazione Inizia presentazione Che si misura in ampère può essere generata In simboli A da pile dal movimento di spire conduttrici all interno di campi magnetici come per esempio nelle dinamo e negli alternatori

Dettagli

Tesina di scienze. L Elettricità. Le forze elettriche

Tesina di scienze. L Elettricità. Le forze elettriche Tesina di scienze L Elettricità Le forze elettriche In natura esistono due forme di elettricità: quella negativa e quella positiva. Queste due energie si attraggono fra loro, mentre gli stessi tipi di

Dettagli

Energia potenziale elettrica e potenziale. In queste pagine R indicherà una regione in cui è presente un campo elettrostatico.

Energia potenziale elettrica e potenziale. In queste pagine R indicherà una regione in cui è presente un campo elettrostatico. Energia potenziale elettrica e potenziale 0. Premessa In queste pagine R indicherà una regione in cui è presente un campo elettrostatico. 1. La forza elettrostatica è conservativa Una o più cariche ferme

Dettagli

LA CORRENTE ELETTRICA CONTINUA

LA CORRENTE ELETTRICA CONTINUA LA CORRENTE ELETTRICA CONTINUA (Fenomeno, indipendente dal tempo, che si osserva nei corpi conduttori quando le cariche elettriche fluiscono in essi.) Un conduttore metallico è in equilibrio elettrostatico

Dettagli

LA CORRENTE ELETTRICA

LA CORRENTE ELETTRICA L CORRENTE ELETTRIC H P h Prima che si raggiunga l equilibrio c è un intervallo di tempo dove il livello del fluido non è uguale. Il verso del movimento del fluido va dal vaso a livello maggiore () verso

Dettagli

LA CORRENTE ELETTRICA Prof. Erasmo Modica erasmo@galois.it

LA CORRENTE ELETTRICA Prof. Erasmo Modica erasmo@galois.it LA CORRENTE ELETTRICA Prof. Erasmo Modica erasmo@galois.it L INTENSITÀ DELLA CORRENTE ELETTRICA Consideriamo una lampadina inserita in un circuito elettrico costituito da fili metallici ed un interruttore.

Dettagli

funziona meglio con FIREFOX! FENOMENI ELETTROSTATICI mappa 1 mappa 2 mappa 3 mappa 4 http://cmap.ihmc.us/

funziona meglio con FIREFOX! FENOMENI ELETTROSTATICI mappa 1 mappa 2 mappa 3 mappa 4 http://cmap.ihmc.us/ mappa 1 mappa 2 mappa 3 mappa 4 http://cmap.ihmc.us/ funziona meglio con FIREFOX! FENOMENI ELETTROSTATICI Struttura dell'atomo (nucleo, protoni, neutroni, elettroni); cariche elettriche elementari (elettrone,

Dettagli

Magnetismo. limatura di ferro. Fenomeno noto fin dall antichità. Da Magnesia città dell Asia Minore - Magnetite

Magnetismo. limatura di ferro. Fenomeno noto fin dall antichità. Da Magnesia città dell Asia Minore - Magnetite Magnetismo Alcuni minerali (ossidi di ferro) attirano la limatura di ferro. Fenomeno noto fin dall antichità. Da Magnesia città dell Asia Minore - Magnetite Proprietà non uniforme. Se si ricava opportuno

Dettagli

Esercizi e considerazioni pratiche sulla legge di ohm e la potenza

Esercizi e considerazioni pratiche sulla legge di ohm e la potenza Esercizi e considerazioni pratiche sulla legge di ohm e la potenza Come detto precedentemente la legge di ohm lega la tensione e la corrente con un altro parametro detto "resistenza". Di seguito sono presenti

Dettagli

V= R*I. LEGGE DI OHM Dopo aver illustrato le principali grandezze elettriche è necessario analizzare i legami che vi sono tra di loro.

V= R*I. LEGGE DI OHM Dopo aver illustrato le principali grandezze elettriche è necessario analizzare i legami che vi sono tra di loro. LEGGE DI OHM Dopo aver illustrato le principali grandezze elettriche è necessario analizzare i legami che vi sono tra di loro. PREMESSA: Anche intuitivamente dovrebbe a questo punto essere ormai chiaro

Dettagli

Con gli esperimenti di Faraday ( 1831 ) l'elettromagnetismo si complica

Con gli esperimenti di Faraday ( 1831 ) l'elettromagnetismo si complica Elettromagnetismo prima di Faraday: campi elettrici e campi magnetici Correnti elettriche creano campi magnetici Cariche elettriche creano campi elettrici Con gli esperimenti di Faraday ( 1831 ) l'elettromagnetismo

Dettagli

Il campo magnetico. 1. Fenomeni magnetici 2. Calcolo del campo magnetico 3. Forze su conduttori percorsi da corrente 4. La forza di Lorentz

Il campo magnetico. 1. Fenomeni magnetici 2. Calcolo del campo magnetico 3. Forze su conduttori percorsi da corrente 4. La forza di Lorentz Il campo magnetico 1. Fenomeni magnetici 2. Calcolo del campo magnetico 3. Forze su conduttori percorsi da corrente 4. La forza di Lorentz 1 Lezione 1 - Fenomeni magnetici I campi magnetici possono essere

Dettagli

Il magnetismo. Il campo magnetico

Il magnetismo. Il campo magnetico Il magnetismo Un magnete (o calamita) è un corpo che genera intorno a sé un campo di forza che attrae il ferro Un magnete naturale è un minerale contenente magnetite, il cui nome deriva dal greco "pietra

Dettagli

Induzione elettromagnetica

Induzione elettromagnetica Induzione elettromagnetica 1. Induzione elettromagnetica 2. Esperienze di Faraday 3. Legge di Faraday Neumann Lenz Induzione elettromagnetica (1) La rivoluzione determinata dall'utilizzo dell'energia elettrica

Dettagli

Magnetismo. Roberto Cirio. Corso di Laurea in Chimica e Tecnologia Farmaceutiche Anno accademico 2007 2008 Corso di Fisica

Magnetismo. Roberto Cirio. Corso di Laurea in Chimica e Tecnologia Farmaceutiche Anno accademico 2007 2008 Corso di Fisica Roberto Cirio Corso di Laurea in Chimica e Tecnologia Farmaceutiche Anno accademico 2007 2008 Corso di Fisica La lezione di oggi I magneti Il campo magnetico Il ciclotrone Fisica a.a. 2007/8 2 I magneti

Dettagli

Generazione campo magnetico

Generazione campo magnetico ELETTRO-MAGNETISMO Fra magnetismo ed elettricità esistono stretti rapporti: La corrente elettrica genera un campo magnetico; Un campo magnetico può generare elettricità. Generazione campo magnetico Corrente

Dettagli

19 Il campo elettrico - 3. Le linee del campo elettrico

19 Il campo elettrico - 3. Le linee del campo elettrico Moto di una carica in un campo elettrico uniforme Il moto di una particella carica in un campo elettrico è in generale molto complesso; il problema risulta più semplice se il campo elettrico è uniforme,

Dettagli

Corso di fisica generale con elementi di fisica tecnica

Corso di fisica generale con elementi di fisica tecnica Corso di fisica generale con elementi di fisica tecnica Aniello (Daniele) Mennella Dipartimento di Fisica Secondo modulo Parte prima (fondamenti di elettromagnetismo) Lezione 3 Campi magnetici e forza

Dettagli

Corrente elettrica. Esempio LA CORRENTE ELETTRICA CONTINUA. Cos è la corrente elettrica? Definizione di intensità di corrente elettrica

Corrente elettrica. Esempio LA CORRENTE ELETTRICA CONTINUA. Cos è la corrente elettrica? Definizione di intensità di corrente elettrica Corrente elettrica LA CORRENTE ELETTRICA CONTINUA Cos è la corrente elettrica? La corrente elettrica è un flusso di elettroni che si spostano dentro un conduttore dal polo negativo verso il polo positivo

Dettagli

Elettricità e magnetismo

Elettricità e magnetismo E1 Cos'è l'elettricità La carica elettrica è una proprietà delle particelle elementari (protoni e elettroni) che formano l'atomo. I protoni hanno carica elettrica positiva. Gli elettroni hanno carica elettrica

Dettagli

Classe 3 D Bucci Arianna Evangelista Andrea Palombo Leonardo Ricci Alessia Progetto di Scienze a.s. 2013/2014. Prof.ssa Piacentini Veronica

Classe 3 D Bucci Arianna Evangelista Andrea Palombo Leonardo Ricci Alessia Progetto di Scienze a.s. 2013/2014. Prof.ssa Piacentini Veronica Classe 3 D Bucci Arianna Evangelista Andrea Palombo Leonardo Ricci Alessia Progetto di Scienze a.s. 2013/2014 Prof.ssa Piacentini Veronica La corrente elettrica La corrente elettrica è un flusso di elettroni

Dettagli

Il Corso di Fisica per Scienze Biologiche

Il Corso di Fisica per Scienze Biologiche Il Corso di Fisica per Scienze Biologiche Ø Prof. Attilio Santocchia Ø Ufficio presso il Dipartimento di Fisica (Quinto Piano) Tel. 075-585 2708 Ø E-mail: attilio.santocchia@pg.infn.it Ø Web: http://www.fisica.unipg.it/~attilio.santocchia

Dettagli

GIROSCOPIO. Scopo dell esperienza: Teoria fisica. Verificare la relazione: ω p = bmg/iω

GIROSCOPIO. Scopo dell esperienza: Teoria fisica. Verificare la relazione: ω p = bmg/iω GIROSCOPIO Scopo dell esperienza: Verificare la relazione: ω p = bmg/iω dove ω p è la velocità angolare di precessione, ω è la velocità angolare di rotazione, I il momento principale d inerzia assiale,

Dettagli

Università del Salento Corso di Laurea Triennale in Ingegneria Industriale Appello di FISICA GENERALE 2 del 27/01/15

Università del Salento Corso di Laurea Triennale in Ingegneria Industriale Appello di FISICA GENERALE 2 del 27/01/15 Università del Salento Corso di Laurea Triennale in Ingegneria Industriale Appello di FISICA GENERALE 2 del 27/01/15 Esercizio 1 (9 punti): Una distribuzione di carica è costituita da un guscio sferico

Dettagli

Induzione magnetica. Corrente indotta. Corrente indotta. Esempio. Definizione di flusso magnetico INDUZIONE MAGNETICA E ONDE ELETTROMAGNETICHE

Induzione magnetica. Corrente indotta. Corrente indotta. Esempio. Definizione di flusso magnetico INDUZIONE MAGNETICA E ONDE ELETTROMAGNETICHE Induzione magnetica INDUZIONE MAGNETICA E ONDE ELETTROMAGNETICHE Che cos è l induzione magnetica? Si parla di induzione magnetica quando si misura una intensità di corrente diversa da zero che attraversa

Dettagli

Esperienze con l elettricità e il magnetismo

Esperienze con l elettricità e il magnetismo Esperienze con l elettricità e il magnetismo Laboratorio di scienze Le esperienze di questo laboratorio ti permettono di acquisire maggiore familiarità con l elettricità e il magnetismo e di sperimentare

Dettagli

CONDUTTORI, CAPACITA' E DIELETTRICI

CONDUTTORI, CAPACITA' E DIELETTRICI CONDUTTORI, CAPACITA' E DIELETTRICI Capacità di un conduttore isolato Se trasferiamo una carica elettrica su di un conduttore isolato questa si distribuisce sulla superficie in modo che il conduttore sia

Dettagli

Magnetismo. Prof. Mario Angelo Giordano

Magnetismo. Prof. Mario Angelo Giordano Magnetismo Prof. Mario Angelo Giordano Fenomeni magnetici Il magnete ha sempre due estremità magnetizzate, il polo nord e il polo sud. Avvicinando i poli, si possono respingere oppure attrarre. Il magnete

Dettagli

Esercizi su elettrostatica, magnetismo, circuiti elettrici, interferenza e diffrazione

Esercizi su elettrostatica, magnetismo, circuiti elettrici, interferenza e diffrazione Esercizi su elettrostatica, magnetismo, circuiti elettrici, interferenza e diffrazione 1. L elettrone ha una massa di 9.1 10-31 kg ed una carica elettrica di -1.6 10-19 C. Ricordando che la forza gravitazionale

Dettagli

Forze come grandezze vettoriali

Forze come grandezze vettoriali Forze come grandezze vettoriali L. Paolucci 23 novembre 2010 Sommario Esercizi e problemi risolti. Per la classe prima. Anno Scolastico 2010/11 Parte 1 / versione 2 Si ricordi che la risultante di due

Dettagli

nei materiali (Inserendo un materiale all interno di un campo magnetico generato da un magnete permanente)

nei materiali (Inserendo un materiale all interno di un campo magnetico generato da un magnete permanente) COMPORTAMENTO MAGNETICO DEI MATERIALI a) nel vuoto B = μ0 H μ0 = 4 π 10-7 H/m b) nei materiali (Inserendo un materiale all interno di un campo magnetico generato da un magnete permanente) Il materiale

Dettagli

MOTO DI UNA CARICA IN UN CAMPO ELETTRICO UNIFORME

MOTO DI UNA CARICA IN UN CAMPO ELETTRICO UNIFORME 6. IL CONDNSATOR FNOMNI DI LTTROSTATICA MOTO DI UNA CARICA IN UN CAMPO LTTRICO UNIFORM Il moto di una particella carica in un campo elettrico è in generale molto complesso; il problema risulta più semplice

Dettagli

Matematica generale CTF

Matematica generale CTF Successioni numeriche 19 agosto 2015 Definizione di successione Monotonìa e limitatezza Forme indeterminate Successioni infinitesime Comportamento asintotico Criterio del rapporto per le successioni Definizione

Dettagli

Definizione di mutua induzione

Definizione di mutua induzione Mutua induzione Definizione di mutua induzione Una induttanza produce un campo magnetico proporzionale alla corrente che vi scorre. Se le linee di forza di questo campo magnetico intersecano una seconda

Dettagli

Q 1 = +3 10-5 C carica numero 1 Q 2 = +4 10-5 C carica numero 2 forza esercitata tra le cariche distanza tra le cariche, incognita

Q 1 = +3 10-5 C carica numero 1 Q 2 = +4 10-5 C carica numero 2 forza esercitata tra le cariche distanza tra le cariche, incognita Problema n 1 A quale distanza, una dall'altra bisogna porre nel vuoto due cariche (Q 1 =3 10-5 C e Q 2 =4 10-5 C) perché esse esercitino una sull'altra la forza di 200 N? Q 1 = +3 10-5 C carica numero

Dettagli

FISICA. Le forze. Le forze. il testo: 2011/2012 La Semplificazione dei Testi Scolastici per gli Alunni Stranieri IPSIA A.

FISICA. Le forze. Le forze. il testo: 2011/2012 La Semplificazione dei Testi Scolastici per gli Alunni Stranieri IPSIA A. 01 In questa lezione parliamo delle forze. Parliamo di forza quando: spostiamo una cosa; solleviamo un oggetto; fermiamo una palla mentre giochiamo a calcio; stringiamo una molla. Quando usiamo (applichiamo)

Dettagli

9. Urti e conservazione della quantità di moto.

9. Urti e conservazione della quantità di moto. 9. Urti e conservazione della quantità di moto. 1 Conservazione dell impulso m1 v1 v2 m2 Prima Consideriamo due punti materiali di massa m 1 e m 2 che si muovono in una dimensione. Supponiamo che i due

Dettagli

Strane anomalie di un motore omopolare Di Valerio Rizzi e Giorgio Giurini

Strane anomalie di un motore omopolare Di Valerio Rizzi e Giorgio Giurini Strane anomalie di un motore omopolare Di Valerio Rizzi e Giorgio Giurini Gli scriventi, in qualità di studiosi del generatore omopolare hanno deciso di costruire questo motore per cercare di capire le

Dettagli

Generatore di Forza Elettromotrice

Generatore di Forza Elettromotrice CIRCUITI ELETTRICI Corrente Elettrica 1. La corrente elettrica è un flusso ordinato di carica elettrica. 2. L intensità di corrente elettrica (i) è definita come la quantità di carica che attraversa una

Dettagli

Due cariche positive si respingono, due cariche negative si respingono, una carica positiva e una negativa si attraggono.

Due cariche positive si respingono, due cariche negative si respingono, una carica positiva e una negativa si attraggono. 2012 11 08 pagina 1 Carica elettrica Esistono cariche elettriche di due tipi: positiva e negativa. Due cariche positive si respingono, due cariche negative si respingono, una carica positiva e una negativa

Dettagli

1-LA FISICA DEI CAMPI ELETTRICI E MAGNETICI.

1-LA FISICA DEI CAMPI ELETTRICI E MAGNETICI. 1-LA FISICA DEI CAMPI ELETTRICI E MAGNETICI. Tutti i fenomeni elettrici e magnetici hanno origine da cariche elettriche. Per comprendere a fondo la definizione di carica elettrica occorre risalire alla

Dettagli

Moto circolare uniforme

Moto circolare uniforme Moto circolare uniforme 01 - Moto circolare uniforme. Il moto di un corpo che avviene su una traiettoria circolare (una circonferenza) con velocità (in modulo, intensità) costante si dice moto circolare

Dettagli

Carica positiva e carica negativa

Carica positiva e carica negativa Elettrostatica Fin dal 600 a.c. si erano studiati alcuni effetti prodotti dallo sfregamento di una resina fossile, l ambra (dal cui nome in greco electron deriva il termine elettricità) con alcuni tipi

Dettagli

Regole della mano destra.

Regole della mano destra. Regole della mano destra. Macchina in continua con una spira e collettore. Macchina in continua con due spire e collettore. Macchina in continua: schematizzazione di indotto. Macchina in continua. Schematizzazione

Dettagli

Elettrostatica dei mezzi materiali

Elettrostatica dei mezzi materiali Elettrostatica dei mezzi materiali Nel caso dei conduttori si è visto che: Il campo elettrico farà muovere le cariche all interno del conduttore in modo tale che: Tutte le cariche sono sulla superficie

Dettagli

APPUNTI DI ELETTROMAGNETISMO E RADIOTECNICA. Coordinatore del Progetto prof. Vito Potente Stesura a cura del docente ing.

APPUNTI DI ELETTROMAGNETISMO E RADIOTECNICA. Coordinatore del Progetto prof. Vito Potente Stesura a cura del docente ing. APPUNTI DI ELETTROMAGNETISMO E RADIOTECNICA Coordinatore del Progetto prof. Vito Potente Stesura a cura del docente ing. Marcello Surace 1 Si richiamano le definizioni delle leggi fondamentali, invitando

Dettagli

Energia e Lavoro. In pratica, si determina la dipendenza dallo spazio invece che dal tempo

Energia e Lavoro. In pratica, si determina la dipendenza dallo spazio invece che dal tempo Energia e Lavoro Finora abbiamo descritto il moto dei corpi (puntiformi) usando le leggi di Newton, tramite le forze; abbiamo scritto l equazione del moto, determinato spostamento e velocità in funzione

Dettagli

Esempio Esame di Fisica Generale I C.d.L. ed.u. Informatica

Esempio Esame di Fisica Generale I C.d.L. ed.u. Informatica Esempio Esame di Fisica Generale I C.d.L. ed.u. Informatica Nome: N.M.: 1. 1d (giorno) contiene all incirca (a) 8640 s; (b) 9 10 4 s; (c) 86 10 2 s; (d) 1.44 10 3 s; (e) nessuno di questi valori. 2. Sono

Dettagli

MAGNETISMO ed ELETTROMAGNETISMO

MAGNETISMO ed ELETTROMAGNETISMO MAGNETIMO ed ELETTROMAGNETIMO INTRODUZIONE: CAMPO MAGNETICO NEL VUOTO appiamo dalla fisica che un pezzo di minerale di ferro come la magnetite presenta la proprietà di attrarre spontaneamente a se altri

Dettagli

APPUNTI DEL CORSO DI SISTEMI IMPIANTISTICI E SICUREZZA INTRODUZIONE AGLI IMPIANTI ELETTRICI: FONDAMENTI DI ELETTROTECNICA

APPUNTI DEL CORSO DI SISTEMI IMPIANTISTICI E SICUREZZA INTRODUZIONE AGLI IMPIANTI ELETTRICI: FONDAMENTI DI ELETTROTECNICA APPUNTI DEL CORSO DI SISTEMI IMPIANTISTICI E SICUREZZA INTRODUZIONE AGLI IMPIANTI ELETTRICI: FONDAMENTI DI ELETTROTECNICA Concetti e grandezze fondamentali CAMPO ELETTRICO: è un campo vettoriale di forze,

Dettagli

Cosa determina il moto? Aristotele pensava che occorresse uno sforzo per mantenere un corpo in movimento. Galileo non era d'accordo.

Cosa determina il moto? Aristotele pensava che occorresse uno sforzo per mantenere un corpo in movimento. Galileo non era d'accordo. Introduzione Cosa determina il moto? Aristotele pensava che occorresse uno sforzo per mantenere un corpo in movimento. Galileo non era d'accordo. riassunto Cosa determina il moto? Forza - Spinta di un

Dettagli

1 di 3 07/06/2010 14.04

1 di 3 07/06/2010 14.04 Principi 1 http://digilander.libero.it/emmepi347/la%20pagina%20di%20elettronic... 1 di 3 07/06/2010 14.04 Community emmepi347 Profilo Blog Video Sito Foto Amici Esplora L'atomo Ogni materiale conosciuto

Dettagli

La corrente elettrica

La corrente elettrica PROGRAMMA OPERATIVO NAZIONALE Fondo Sociale Europeo "Competenze per lo Sviluppo" Obiettivo C-Azione C1: Dall esperienza alla legge: la Fisica in Laboratorio La corrente elettrica Sommario 1) Corrente elettrica

Dettagli

La corrente elettrica La resistenza elettrica La seconda legge di Ohm Resistività e temperatura L effetto termico della corrente

La corrente elettrica La resistenza elettrica La seconda legge di Ohm Resistività e temperatura L effetto termico della corrente Unità G16 - La corrente elettrica continua La corrente elettrica La resistenza elettrica La seconda legge di Ohm Resistività e temperatura L effetto termico della corrente 1 Lezione 1 - La corrente elettrica

Dettagli

Transitori del primo ordine

Transitori del primo ordine Università di Ferrara Corso di Elettrotecnica Transitori del primo ordine Si consideri il circuito in figura, composto da un generatore ideale di tensione, una resistenza ed una capacità. I tre bipoli

Dettagli

La corrente elettrica

La corrente elettrica Lampadina Ferro da stiro Altoparlante Moto di cariche elettrice Nei metalli i portatori di carica sono gli elettroni Agitazione termica - moto caotico velocità media 10 5 m/s Non costituiscono una corrente

Dettagli

METODO PER LA DESCRIZIONE DEL CAMPO MAGNETICO ROTANTE

METODO PER LA DESCRIZIONE DEL CAMPO MAGNETICO ROTANTE Ing. ENRICO BIAGI Docente di Tecnologie elettrice, Disegno, Progettazione ITIS A. Volta - Perugia ETODO PER LA DESCRIZIONE DEL CAPO AGNETICO ROTANTE Viene illustrato un metodo analitico-grafico per descrivere

Dettagli

Probabilità condizionata: p(a/b) che avvenga A, una volta accaduto B. Evento prodotto: Evento in cui si verifica sia A che B ; p(a&b) = p(a) x p(b/a)

Probabilità condizionata: p(a/b) che avvenga A, una volta accaduto B. Evento prodotto: Evento in cui si verifica sia A che B ; p(a&b) = p(a) x p(b/a) Probabilità condizionata: p(a/b) che avvenga A, una volta accaduto B Eventi indipendenti: un evento non influenza l altro Eventi disgiunti: il verificarsi di un evento esclude l altro Evento prodotto:

Dettagli

IL TRASFORMATORE REALE

IL TRASFORMATORE REALE Il trasformatore ideale è tale poiché: IL TRASFORMATORE REALE si ritengono nulle le resistenze R 1 e R 2 degli avvolgimenti; il flusso magnetico è interamente concatenato con i due avvolgimenti (non vi

Dettagli

DINAMICA DEL PUNTO MATERIALE E CONCETTO DI FORZA. Dinamica: studio delle forze che causano il moto dei corpi

DINAMICA DEL PUNTO MATERIALE E CONCETTO DI FORZA. Dinamica: studio delle forze che causano il moto dei corpi DINAMICA DEL PUNTO MATERIALE E CONCETTO DI FORZA Dinamica: studio delle forze che causano il moto dei corpi 1 Forza Si definisce forza una qualunque causa esterna che produce una variazione dello stato

Dettagli

Proprietà elettrostatiche dei dielettrici

Proprietà elettrostatiche dei dielettrici Proprietà elettrostatiche dei dielettrici Prendiamo in considerazione ciò che accade quando si riempie lo spazio con un isolante. Consideriamo un condensatore piano con il vuoto tra le armature. Carichiamo

Dettagli

13. Campi vettoriali

13. Campi vettoriali 13. Campi vettoriali 1 Il campo di velocità di un fluido Il concetto di campo in fisica non è limitato ai fenomeni elettrici. In generale il valore di una grandezza fisica assegnato per ogni punto dello

Dettagli

LABORATORIO DI FISICA. Elettromagnetismo

LABORATORIO DI FISICA. Elettromagnetismo MINISTERO DELL ISTRUZIONE,UNIVERSITA E RICERCA ISTITUTO TECNICO INDUSTRIALE STATALE L. DA Vinci Via G. Rosato, 5-66034 L a n c i a n o (Ch) Tel. 087242556 Fax 0872702934 E-mail: chtf0200l@istruzione.it

Dettagli

F S V F? Soluzione. Durante la spinta, F S =ma (I legge di Newton) con m=40 Kg.

F S V F? Soluzione. Durante la spinta, F S =ma (I legge di Newton) con m=40 Kg. Spingete per 4 secondi una slitta dove si trova seduta la vostra sorellina. Il peso di slitta+sorella è di 40 kg. La spinta che applicate F S è in modulo pari a 60 Newton. La slitta inizialmente è ferma,

Dettagli

Legge di Faraday. x x x x x x x x x x E B. x x x x x x x x x x R x x x x x x x x x x. x x x x x x x x x x. x x x x x x x x x x E B 1

Legge di Faraday. x x x x x x x x x x E B. x x x x x x x x x x R x x x x x x x x x x. x x x x x x x x x x. x x x x x x x x x x E B 1 B ds Legge di Faraday E x x x x x x x x x x E B x x x x x x x x x x R x x x x x x x x x x B 1 x x x x x x x x x x E x x x x x x x x x x E Schema Generale Elettrostatica moto di una carica q in un campo

Dettagli

E 0 = E 1 2 + E 0. 2 = E h. = 3.2kV / m. 2 1 x. κ 1. κ 2 κ 1 E 1 = κ 2 E 2. = κ 1 E 1 x ε 0 = 8

E 0 = E 1 2 + E 0. 2 = E h. = 3.2kV / m. 2 1 x. κ 1. κ 2 κ 1 E 1 = κ 2 E 2. = κ 1 E 1 x ε 0 = 8 Solo Ingegneria dell Informazione e Ingegneria dell Energia (Canale 2 e DM 59) Problema Due condensatori piani C e C, uguali ad armature quadrate separate dalla distanza, sono connessi in parallelo. Lo

Dettagli

Visione d insieme DOMANDE E RISPOSTE SULL UNITÀ

Visione d insieme DOMANDE E RISPOSTE SULL UNITÀ Visione d insieme DOMANDE E RISPOSTE SULL UNITÀ Che cos è la corrente elettrica? Nei conduttori metallici la corrente è un flusso di elettroni. L intensità della corrente è il rapporto tra la quantità

Dettagli

La propagazione delle onde luminose può essere studiata per mezzo delle equazioni di Maxwell. Tuttavia, nella maggior parte dei casi è possibile

La propagazione delle onde luminose può essere studiata per mezzo delle equazioni di Maxwell. Tuttavia, nella maggior parte dei casi è possibile Elementi di ottica L ottica si occupa dello studio dei percorsi dei raggi luminosi e dei fenomeni legati alla propagazione della luce in generale. Lo studio dell ottica nella fisica moderna si basa sul

Dettagli

Unità realizzata con la collaborazione dell alunno GIANMARCO BERTONATI (Elaborato d Esame a.s.:2011/2012 classe 3 D)

Unità realizzata con la collaborazione dell alunno GIANMARCO BERTONATI (Elaborato d Esame a.s.:2011/2012 classe 3 D) 1 Unità realizzata con la collaborazione dell alunno GIANMARCO BERTONATI (Elaborato d Esame a.s.:2011/2012 classe 3 D) 2 circuito realizzato dall alunno Gianmarco Bertonati grazie al quali ha potuto spiegare

Dettagli

LICEO SCIENTIFICO G. LEOPARDI A.S. 2010-2011 FENOMENI MAGNETICI FONDAMENTALI

LICEO SCIENTIFICO G. LEOPARDI A.S. 2010-2011 FENOMENI MAGNETICI FONDAMENTALI LICEO SCIENTIFICO G. LEOPARDI A.S. 2010-2011 FENOMENI MAGNETICI FONDAMENTALI Prof. Euro Sampaolesi IL CAMPO MAGNETICO TERRESTRE Le linee del magnete-terra escono dal Polo geomagnetico Nord ed entrano nel

Dettagli

CORRENTE E TENSIONE ELETTRICA LA CORRENTE ELETTRICA

CORRENTE E TENSIONE ELETTRICA LA CORRENTE ELETTRICA CORRENTE E TENSIONE ELETTRICA La conoscenza delle grandezze elettriche fondamentali (corrente e tensione) è indispensabile per definire lo stato di un circuito elettrico. LA CORRENTE ELETTRICA DEFINIZIONE:

Dettagli

E l e t t r o m a g n e t i s m o. Saggio Finale

E l e t t r o m a g n e t i s m o. Saggio Finale Corso abilitante IX ciclo Classe di concorso A038 ( Fisica ) Anno Accademico 2007 / 2008 (1 anno ) Specializzando: ( matr. 3801/SS ) E l e t t r o m a g n e t i s m o prof. Saggio Finale 1. Presentazione

Dettagli

Danilo Saccoccioni - LAVORO - - ENERGIA MECCANICA - - POTENZA -

Danilo Saccoccioni - LAVORO - - ENERGIA MECCANICA - - POTENZA - Danilo Saccoccioni - LVORO - - ENERGI MECCNIC - - POTENZ - LVORO COMPIUTO D UN ORZ RELTIVMENTE UNO SPOSTMENTO Diamo la definizione di lavoro compiuto da una forza relativamente a uno spostamento, distinguendo

Dettagli

TERZA LEZIONE (4 ore): INTERAZIONE MAGNETICA

TERZA LEZIONE (4 ore): INTERAZIONE MAGNETICA TERZA LEZIONE (4 ore): INTERAZIONE MAGNETICA Evidenza dell interazione magnetica; sorgenti delle azioni magnetiche; forze tra poli magnetici, il campo magnetico Forza magnetica su una carica in moto; particella

Dettagli

Forza. Forza. Esempi di forze. Caratteristiche della forza. Forze fondamentali CONCETTO DI FORZA E EQUILIBRIO, PRINCIPI DELLA DINAMICA

Forza. Forza. Esempi di forze. Caratteristiche della forza. Forze fondamentali CONCETTO DI FORZA E EQUILIBRIO, PRINCIPI DELLA DINAMICA Forza CONCETTO DI FORZA E EQUILIBRIO, PRINCIPI DELLA DINAMICA Cos è una forza? la forza è una grandezza che agisce su un corpo cambiando la sua velocità e provocando una deformazione sul corpo 2 Esempi

Dettagli

Corso di Elettronica Organizzato dall associazione no-profit Agorà Lesina (FG)

Corso di Elettronica Organizzato dall associazione no-profit Agorà Lesina (FG) 004 Corso di Elettronica Organizzato dall associazione no-profit Agorà Lesina (FG) Lezione n. Che cos è un interruttore? L interruttore è un dispositivo meccanico che chiude un contatto elettrico (fig.).

Dettagli

ENERGIA. Energia e Lavoro Potenza Energia cinetica Energia potenziale Principio di conservazione dell energia meccanica

ENERGIA. Energia e Lavoro Potenza Energia cinetica Energia potenziale Principio di conservazione dell energia meccanica 1 ENERGIA Energia e Lavoro Potenza Energia cinetica Energia potenziale Principio di conservazione dell energia meccanica 2 Energia L energia è ciò che ci permette all uomo di compiere uno sforzo o meglio

Dettagli

LA LEGGE DI GRAVITAZIONE UNIVERSALE

LA LEGGE DI GRAVITAZIONE UNIVERSALE GRAVIMETRIA LA LEGGE DI GRAVITAZIONE UNIVERSALE r La legge di gravitazione universale, formulata da Isaac Newton nel 1666 e pubblicata nel 1684, afferma che l'attrazione gravitazionale tra due corpi è

Dettagli

Storia dei generatori di tensione e della corrente elettrica

Storia dei generatori di tensione e della corrente elettrica Storia dei generatori di tensione e della corrente elettrica Prof. Daniele Ippolito Liceo Scientifico Amedeo di Savoia di Pistoia 1778 Alessandro Volta, in analogia al potenziale gravitazionale definito

Dettagli

LEZIONE DI ELETTRONICA per la classe 5 TIM/TSE

LEZIONE DI ELETTRONICA per la classe 5 TIM/TSE LEZIONE DI ELETTRONICA per la classe 5 TIM/TSE MODULO : Analisi dei circuiti lineari in regime sinusoidale PREMESSA L analisi dei sistemi elettrici lineari, in regime sinusoidale, consente di determinare

Dettagli

Condensatore elettrico

Condensatore elettrico Condensatore elettrico Sistema di conduttori che possiedono cariche uguali ma di segno opposto armature condensatore La presenza di cariche crea d.d.p. V (tensione) fra i due conduttori Condensatore piano

Dettagli

Complementi di Analisi per Informatica *** Capitolo 2. Numeri Complessi. e Circuiti Elettrici. a Corrente Alternata. Sergio Benenti 7 settembre 2013

Complementi di Analisi per Informatica *** Capitolo 2. Numeri Complessi. e Circuiti Elettrici. a Corrente Alternata. Sergio Benenti 7 settembre 2013 Complementi di Analisi per nformatica *** Capitolo 2 Numeri Complessi e Circuiti Elettrici a Corrente Alternata Sergio Benenti 7 settembre 2013? ndice 2 Circuiti elettrici a corrente alternata 1 21 Circuito

Dettagli

Economia Applicata ai sistemi produttivi. 06.05.05 Lezione II Maria Luisa Venuta 1

Economia Applicata ai sistemi produttivi. 06.05.05 Lezione II Maria Luisa Venuta 1 Economia Applicata ai sistemi produttivi 06.05.05 Lezione II Maria Luisa Venuta 1 Schema della lezione di oggi Argomento della lezione: il comportamento del consumatore. Gli economisti assumono che il

Dettagli

LA FORZA. Il movimento: dal come al perché

LA FORZA. Il movimento: dal come al perché LA FORZA Concetto di forza Principi della Dinamica: 1) Principio d inerzia 2) F=ma 3) Principio di azione e reazione Forza gravitazionale e forza peso Accelerazione di gravità Massa, peso, densità pag.1

Dettagli

INTEGRATORE E DERIVATORE REALI

INTEGRATORE E DERIVATORE REALI INTEGRATORE E DERIVATORE REALI -Schemi elettrici: Integratore reale : C1 R2 vi (t) R1 vu (t) Derivatore reale : R2 vi (t) R1 C1 vu (t) Elenco componenti utilizzati : - 1 resistenza da 3,3kΩ - 1 resistenza

Dettagli

Come visto precedentemente l equazione integro differenziale rappresentativa dell equilibrio elettrico di un circuito RLC è la seguente: 1 = (1)

Come visto precedentemente l equazione integro differenziale rappresentativa dell equilibrio elettrico di un circuito RLC è la seguente: 1 = (1) Transitori Analisi nel dominio del tempo Ricordiamo che si definisce transitorio il periodo di tempo che intercorre nel passaggio, di un sistema, da uno stato energetico ad un altro, non è comunque sempre

Dettagli

CdL Professioni Sanitarie A.A. 2012/2013. Unità 7: Forze elettriche e magnetiche

CdL Professioni Sanitarie A.A. 2012/2013. Unità 7: Forze elettriche e magnetiche L. Zampieri Fisica per CdL Professioni Sanitarie A.A. 12/13 CdL Professioni Sanitarie A.A. 2012/2013 Unità 7: Forze elettriche e magnetiche Forza elettrica e corrente Carica elettrica e legge di Coulomb

Dettagli

Corrente elettrica. Daniel Gessuti

Corrente elettrica. Daniel Gessuti Corrente elettrica Daniel Gessuti indice 1 Definizioni 1 Definizione di corrente 1 Definizione di resistenza 2 2 Effetto Joule 3 Circuiti in parallelo 4 3 Circuiti in serie 5 4 Il campo magnetico 5 Fenomeni

Dettagli

a b c Figura 1 Generatori ideali di tensione

a b c Figura 1 Generatori ideali di tensione Generatori di tensione e di corrente 1. La tensione ideale e generatori di corrente Un generatore ideale è quel dispositivo (bipolo) che fornisce una quantità di energia praticamente infinita (generatore

Dettagli

X = Z sinj Q = VI sinj

X = Z sinj Q = VI sinj bbiamo già parlato dei triangoli dell impedenza e delle potenze. Notiamo la similitudine dei due triangoli rettangoli. Perciò possiamo indifferentemente calcolare: (fattore di potenza) Il fattore di potenza

Dettagli

L esperienza di Hertz sulle onde elettromagnetiche

L esperienza di Hertz sulle onde elettromagnetiche L esperienza di Hertz sulle onde elettromagnetiche INTRODUZIONE Heinrich Hertz (1857-1894) nel 1886 riuscì per la prima volta a produrre e a rivelare le onde elettromagnetiche di cui Maxwell aveva previsto

Dettagli