Università degli studi di Cagliari. Corso di aggiornamento. Unità 4 PIASTRE IN C.A. E INSTABILITÀ. - Analisi Limite: Metodo delle Linee di rottura

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Università degli studi di Cagliari. Corso di aggiornamento. Unità 4 PIASTRE IN C.A. E INSTABILITÀ. - Analisi Limite: Metodo delle Linee di rottura"

Transcript

1 Università degli studi di Cagliari Dipartimento di Ingegneria Strutturale Corso di aggiornamento Unità 4 PIASTRE IN C.A. E INSTABILITÀ RELATORE: Ing. Igino MURA imura@unia.it -6 Giugno 00 - Analisi Limite: Metodo delle Linee di rottura

2 METODO DELLE LINEE DI ROTTURA ( Yield Line ) Premesse L appliazione del teorema inematio ondue in genere a una agevole valutazione del limite superiore del ario di ollasso. Numerosi risultati sono ontenuti nei lavori di Johansen he per primo ha elaborato la teoria delle linee di rottura e in suessive opere di altri Autori. Si onsiderano a tale sopo una o più famiglie di meanismi, definite da settori rigidi di piastra e da linee di rottura (erniere ilindrihe plastihe formatesi a seguito dello snervamento dell aiaio e del raggiungimento del momento plastio limite). Per determinare il ario he ha trasformato la piastra in meanismo si utilizza normalmente il Prinipio dei lavori Virtuali, on il quale si eguaglia il lavoro fornito dai arihi esterni a quello dissipato nelle linee di rottura (erniere plastihe ilindrihe). In alternativa è anhe possibile utilizzare il osiddetto Metodo delle Forze Nodali (metodo peraltro obsoleto e poo utilizzato). Linee di rottura Linee di rottura

3 Definizione della famiglia di meanismi La definizione delle famiglie di meanismi riveste una importanza fondamentale per l appliazione del metodo inematia, he su di esso si fonda. Lo sopo è quello di individuare la famiglia he ontenga il meanismo he fornise il più piolo valore del ario di ollasso. Non esistono regole preise per la individuazione dei meanismi: l esperienza e l intuito ingegneristio devono essere di guida. Tuttavia il disegno del meanismo deve soddisfare alle seguenti presrizioni: la figura del meanismo deve suddividere la piastra in settori rigidi, he si assume restino piani anhe a ollasso, mentre tutte le deformazioni sono onentrate nelle erniere ilindrihe; le erniere ilindrihe sono segmenti di retta; una erniera ilindria he separa due settori rigidi a ollasso deve passare per il punto di intersezione degli assi di rotazione dei settori rigidi medesimi; una erniera ilindria non può separare più di due settori rigidi; gli assi di rotazione sono in numero pari a settori rigidi e sono fisiamente definiti da bordi appoggiati, da erniere ilindrihe in orrispondenza a bordi inastrati ovvero ad appoggi puntuali (pilastri).

4 Esempi di famiglie di meanismi

5

6 - Caratteristihe delle armature Nelle piastre le armature, inferiori e superiori, sono disposte seondo le direzioni degli assi prinipali. A e A- indiano l area, per unità di lunghezza di piastra, delle sezioni di armatura disposte parallelamente a, inferiori e superiori. A y e A- y rappresentano le analoghe sezioni di armature, disposte parallelamente a y, inferiori e superiori. k = A y / A = A- y / A- è il oeffiiente di ortotropia, rapporto tra le aree delle armature disposte in un medesimo lembo, inferiore o superiore, per unità di lunghezza della piastra. g = A- / A = A- y / A y è il oeffiiente di anisotropia, rapporto tra le aree delle armature, superiori ed inferiori, he hanno la medesima orientazione, per unità di lunghezza della piastra.

7 Momenti plastii Si india poi on d il braio di leva della oppia interna, he si pone ostante sia per la flessione he tende le fibre inferiori he superiori, indipendentemente dalla direzione delle armature (risulta d d essendo il rapporto (/d) 0. ) Nelle piastre in emento armato di spessore ostante, ammettendo he il momento limite ui possono attingere dipenda dalla sola armatura tesa, i momenti limite per unità di lunghezza sono dati da: M = A d Fsy, ( momento limite relativo alle armature inferiori dirette ome ), M y = k M (idem, dirette ome y), M- = g M ( momento limite relativo alle armature superiori dirette ome ), M- y = g k M (idem, dirette ome y).

8 6 Criterio di plastiità y Mp y M - p M ϕ M - ϕ My Cerniera plastia positiva M - y Cerniera plastia negativa In una retta d artiolazione inlinata di un angolo ϕ rispetto alla direzione dell asse, i momenti limite per flessione positiva Mp (snervamento delle sole armature inferiori) e per flessione negativa M-p (snervamento delle sole armature superiori) possono sriversi, relativamente alla lunghezza unitaria, in base al riterio di plastiità di Johansen: Mp = M ( sen ϕ k os ϕ ) M-p = M ( sen ϕ k os ϕ ) g Se la piastra è isotropa e le armature nelle due direzioni ortogonali hanno la stessa sezione per strise di uguale larghezza (k = ), le preedenti diventano: Mp = M M-p = M g E i momenti plastii risultano ostanti ed indipendenti dalla orientazione.

9 7 PRINCIPIO DEI LAVORI VIRTUALI L appliazione del Prinipio dei Lavori Virtuali neessita del alolo del lavoro We fornito dai arihi esterni, del lavoro interno Wi dissipato dai momenti plastii agenti nelle erniere plastihe e infine del lavoro Wϕ dissipato negli eventuali meanismi a ventaglio formatisi negli spigoli delle piastre. Il PLV assume la seguente forma: 7. Lavoro dissipato nelle erniere La dissipazione W i si srive: W i W ϕ = W e W i = Σ D i Σ D - i on: Di= M p l Θ Nella preedente espressione di Di, M p è il momento plastio della generia artiolazione (per un tratto di lunghezza unitaria), l è la sua lunghezza e Θ è il modulo del vettore rotazione relativa fra le porzioni rigide separate dall'artiolazione, ome rappresentato in figura: erniera positiva () erniera negativa (-) L espressione del lavoro per le erniere he snervano rispettivamente le armature inferiori () e superiori (-) si srive: Di = M p l Θ D-i = M p - l Θ Le preedenti relazioni possono essere rese non dimensionali ponendo: l = l L w i = Di L M

10 7. Lavoro dissipato nei ventagli Nelle piastre ortotrope, l espressione del lavoro Dϕ j dissipate nello j mo ventaglio assume la forma: k Wϕ = j M [( g ) os( α j k ( g) Ψ j ] δv j β ) sin Ψ dove, ome risulta nella figura suessive δ V j è lo spostamento virtuale del vertie V dello j mo ventaglio, Ψ j è l angolo al entro del ventaglio, α j e β j sono gli angoli dei raggi di periferia del ventaglio rispetto all asse delle. Le preedenti relazioni possono essere rese non dimensionali δ j ponendo: vj V Dϕ j δ =, wϕ j = L L M y V r Ψ β - α dφ dφ Nelle piastre isotrope, indiando on Mp and M-p i momenti delle erniere plastihe relativi alle armature rispettivamente inferiori e superiori, l espressione Wϕ j assume la forma più semplie: φ j j Wϕ = j ( Mp M-p) δvj ϕ j dove δv j è lo spostamento virtuale del vertie dell j mo ventaglio e ϕ j è l angolo al entro del ventaglio.

11 7. Lavoro fornito dai arihi Detto C un punto della piastra sul quale agise il ario per unità di superfiie P(,y), se da è un areola infinitesima he ontiene C e V(,y) è il spostamento trasversale a ollasso, il lavoro fornito dai arihi esterni vale: W e = A P(, y) V (, y) da Le preedenti relazioni possono essere rese non dimensionali ponendo: we De L M =, V v =, L A a =, L p = P L 6 M

12 Calolo del limite superiore del ario Consideriamo il meanismo di ollasso rappresentato e definito dai inque parametri,,... La piastra è supposta ortotropa on oeffiiente k, on momenti plastii per le armature inferiori e superiori uguali. y 4 O bordo appoggiato bordo inastrato

13 Si ottiene l equazione del prinipio dei lavori virtuali in forma adimensionale: ( ) ( ) ( ) 4 aros π ( ) ( ) aros π π = { ( ) [ ] ( ) = 6 p ( ) ( ) ( ) ( ) aros 4 π ( ) ( ) ( ) aros π ( ) } 4 π

14 Riera dei parametri he minimizzano p on il metodo Simulated Annealing (metodo euristio). 0. X X X X4 X movese-0 Convergenza dei parametri alla soluzione per i parametri,,.. ( = 0. )..0 ps movese-0 Convergenza di p s.

A. Fondazioni Superficiali. 1. Tipologie 2. Scelta del piano di posa 3. Verifica del carico limite 4. Verifica dei cedimenti

A. Fondazioni Superficiali. 1. Tipologie 2. Scelta del piano di posa 3. Verifica del carico limite 4. Verifica dei cedimenti A. Fondazioni Superfiiali 1. Tipologie 2. Selta del piano di posa 3. Verifia del ario limite 4. Verifia dei edimenti = N es lshfond r int erro ( D h) wzw BL + + Il omplesso terreno-fondazione è verifiato

Dettagli

con la direzione ad essa normale. In corrispondenza del punto A, immediatamente all interno del corpo, tale angolo vale θ 1 = π 4

con la direzione ad essa normale. In corrispondenza del punto A, immediatamente all interno del corpo, tale angolo vale θ 1 = π 4 Esame sritto di Elettromagnetismo del 16 Luglio 2012 - a.a. 2011-2012 proff. F. Laava, F. Rii, D. Trevese Elettromagnetismo 10 o 12 rediti: eserizi 1,2,3 tempo 3 h e 30 min; Reupero di un esonero: eserizi

Dettagli

FACOLTA DI INGEGNERIA TECNICA DELLE COSTRUZIONI

FACOLTA DI INGEGNERIA TECNICA DELLE COSTRUZIONI FACOLTA DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA CIVILE ED AMBIENTALE III ANNO ACCADEMICO TECNICA DELLE COSTRUZIONI Lezione VII Cemento armato: ESERCITAZIONI: FLESSIONE (SLE, SLU) TAGLIO (prima parte)

Dettagli

Esempio di progetto di un telaio di c.a.

Esempio di progetto di un telaio di c.a. q q 1 q 5 8 11 13 h q q 1 q 1 4 7 10 1 h 1 3 6 9 L L 1 L 1 L Fig. 1 Shema statio. La struttura intelaiata in.a. riportata in Fig. 1 è ostituita da travi di sez. 80 m x 4 m e pilastri di sezione 30 m x

Dettagli

16 L INTEGRALE INDEFINITO

16 L INTEGRALE INDEFINITO 9. Integrali immediati 6 L INTEGRALE INDEFINITO Riassumiamo le puntate preedenti: si die INTEGRALE INDEFINITO di una funzione f ( ), la famiglia di tutte e sole quelle funzioni la ui derivata è uguale

Dettagli

Esempi di domande per scritto e orale

Esempi di domande per scritto e orale 260 A.Frangi, 208 Appendice D Esempi di domande per scritto e orale D. LE e PLV Risolvere il problema 7.6.6 Risolvere il problema 7.6.7 Nella pagina del docente relativa a Scienza delle Costruzioni allievi

Dettagli

Seminario di Studio sul documento CNR-DT200/ Giugno Esempi di rinforzo a FLESSIONE con FRP Stato limite ultimo

Seminario di Studio sul documento CNR-DT200/ Giugno Esempi di rinforzo a FLESSIONE con FRP Stato limite ultimo Esempi numerii F.Ceroni A.Prota Seminario di Studio sul doumento CNR-DT200/2004 Napoli, 0 Giugno 2005 Esempi di rinorzo a FLESSIONE on FRP Stato limite ultimo Ing. Franesa Ceroni eroni@unisannio.it Università

Dettagli

Università della Calabria

Università della Calabria Progetto di un paraboloide iperbolio in.a. 1 Università della Calabria Faoltà di Ingegneria Dipartimento di Strutture Corso di Laurea Speialistia in Ingegneria Edile Corso di Complementi di Tenia delle

Dettagli

Prova scritta di Tecnica delle Costruzioni, Prof. Fausto Mistretta 11/11/2010 ore 15:00 aula ALFA.

Prova scritta di Tecnica delle Costruzioni, Prof. Fausto Mistretta 11/11/2010 ore 15:00 aula ALFA. Cognome e ome: Matricola: Università degli Studi di Cagliari Prova scritta di Tecnica delle Costruzioni, Prof. Fausto Mistretta 11/11/010 ore 15:00 aula ALFA. Quesito 1 (8 punti). Verificare allo SLU la

Dettagli

Gli integrali indefiniti

Gli integrali indefiniti Gli integrali indefiniti PREMESSA Il problema del alolo dell area del sotto-grafio di f() Un problema importante, anhe per le appliazioni in fisia, è quello del alolo dell area sotto a al grafio di una

Dettagli

Linee di Trasmissione: Propagazione per onde

Linee di Trasmissione: Propagazione per onde Linee di Trasmissione: Propagazione per onde v + (z) Rappresentazione shematia di una linea di trasmissione z Definizione matematia dell onda di tensione he si propaga verso la z resente: ω 0 v ( z) =

Dettagli

Prova scritta di Geometria differenziale - 27/2/2012

Prova scritta di Geometria differenziale - 27/2/2012 Prova scritta di Geometria differenziale - 27/2/2012 Tempo disponibile: 3 ore Non sono ammesse calcolatrici, appunti o libri di testo. Una copia degli appunti è disponibile per libera consultazione alla

Dettagli

Il problema dell instabilità torsio-flessionale delle travi inflesse

Il problema dell instabilità torsio-flessionale delle travi inflesse Facoltà di Ingegneria Corso di Studi in Ingegneria per l Ambiente e per il Territorio Tesi di laurea Il problema dell instabilità torsio-flessionale delle travi inflesse Anno Accademico 2011/2012 Relatore

Dettagli

Il Problema del De Saint Venant

Il Problema del De Saint Venant Il Problema del De Saint Venant Tema 1 Si consideri una trave di acciaio di lunghezza L = m e con sezione retta a corona circolare di raggio esterno R = 30 cm e raggio interno r = 0 cm, che rispetti le

Dettagli

Sezioni in c. a. Sforzo normale. dalle tensioni ammissibili agli stati limite. Catania, 11 marzo 2004 Marco Muratore

Sezioni in c. a. Sforzo normale. dalle tensioni ammissibili agli stati limite. Catania, 11 marzo 2004 Marco Muratore Sezioni in. a. dalle tensioni ammissibili agli stati limite Sorzo normale Catania, 11 marzo 2004 Maro Muratore Veriia allo S.L.U. di sezione rettangolare Quando il legame tensioni-deormazioni non è lineare

Dettagli

Corso di Laurea in Ingegneria Meccanica Anno Accademico 2017/2018 Meccanica Razionale - Prova teorica del 21/6/2018.

Corso di Laurea in Ingegneria Meccanica Anno Accademico 2017/2018 Meccanica Razionale - Prova teorica del 21/6/2018. Corso di Laurea in Ingegneria Meccanica nno ccademico 2017/2018 Meccanica Razionale - Prova teorica del 21/6/2018 Prova teorica - Nome... N. Matricola... ncona, 21 giugno 2018 1. (i) Enunciare e dimostrare

Dettagli

Spin. La hamiltoniana classica di una particella di massa m e carica q in presenza di un potenziale elettromagnetico (Φ, A) si scrive.

Spin. La hamiltoniana classica di una particella di massa m e carica q in presenza di un potenziale elettromagnetico (Φ, A) si scrive. Spin La hamiltoniana lassia di una partiella di massa m e aria q in presenza di un potenziale elettromagnetio Φ, A si srive Sviluppando il quadrato si ha H = H = p q A 2 + qφ p 2 + A 2 2q A p + qφ 2 Se

Dettagli

Algoritmo di best-fit (o fitting) sinusoidale a 3 parametri ( ) ( )

Algoritmo di best-fit (o fitting) sinusoidale a 3 parametri ( ) ( ) Algoritmo di best-it (o itting) sinusoidale a 3 parametri Supponiamo di disporre della versione digitalizzata di un segnale sinusoidale di ampiezza di pio A, requenza nota, ase assoluta ϕ e on omponente

Dettagli

Il processo inverso della derivazione si chiama integrazione.

Il processo inverso della derivazione si chiama integrazione. Integrale Indefinito e l Antiderivata Il proesso inverso della derivazione si hiama integrazione. Nota la variazione istantanea di una grandezza p.es. la veloità) è neessario sapere ome si omporta tale

Dettagli

Le trasformazioni NON isometriche

Le trasformazioni NON isometriche Le trasformazioni NON isometrihe Sono trasformazioni non isometrihe quelle trasformazioni he non onservano le distanze fra i punti Fra queste rientrano le affinità L insieme delle affinità si può osì rappresentare

Dettagli

Argomenti Capitolo 1 Richiami

Argomenti Capitolo 1 Richiami Argomenti Capitolo 1 Richiami L insieme dei numeri reali R si rappresenta geometricamente con l insieme dei punti di una retta orientata su cui sia stato fissato un punto 0 e un segmento unitario. L insieme

Dettagli

RICHIAMI SUL CALCOLO DELLE SPINTE SUI MURI DI SOSTEGNO

RICHIAMI SUL CALCOLO DELLE SPINTE SUI MURI DI SOSTEGNO RICHIAMI SUL CALCOLO DELLE SPINTE SUI MURI DI SOSTEGNO Quasi tutte le immagini sono tratte da: Lancellotta, Costanzo, Foti, PROGETTAZIONE GEOTECNICA Hoepli Ed. 2011 GENERALITÀ Sono strutture di sostegno

Dettagli

1. Calcolo del Momento di plasticizzazione per una sezione tubolare in acciaio.

1. Calcolo del Momento di plasticizzazione per una sezione tubolare in acciaio. 1. Calolo del Momento di plastiizzazione per una sezione tubolare in aiaio. La sezione presa in onsiderazione è la seguente: Shema di riferimento per il alolo del momento di plastiizzazione della sezione

Dettagli

E = ŷ E 0 e i(kx ωt)

E = ŷ E 0 e i(kx ωt) Equilibrio osillatore ario radiazione nera Consideriamo dapprima un onda piana, monoromatia e polarizzata linearmente, he attraversi un sottile strato (dx) di dielettrio omogeneo ed isotropo a bassa densità

Dettagli

3 Geometria delle masse e momento di 2 ordine 3.3 Ellisse centrale d inerzia e nocciolo centrale d inerzia

3 Geometria delle masse e momento di 2 ordine 3.3 Ellisse centrale d inerzia e nocciolo centrale d inerzia 3 Geometria delle masse e momento di ordine ESERCIZI SVOLTI Considerata la sezione rappresentata in figura, calcolare i raggi d inerzia massimo e minimo, tracciare l ellisse d inerzia e il nocciolo centrale

Dettagli

Il punzonamento. Catania, 18 marzo 2004 Pier Paolo Rossi

Il punzonamento. Catania, 18 marzo 2004 Pier Paolo Rossi Il punzonamento Catania, 18 marzo 2004 Pier Paolo Rossi PUNZONAMENTO 4.3.4 Generalità. Il punzonamento può risultare da un carico concentrato o da una reazione agente su un area relativamente piccola di

Dettagli

FACOLTÀ DI INGEGNERIA. ESAME DI MECCANICA RAZIONALE Corso di Laurea in Ingegneria Meccanica PROF. A. PRÁSTARO 21/01/2013

FACOLTÀ DI INGEGNERIA. ESAME DI MECCANICA RAZIONALE Corso di Laurea in Ingegneria Meccanica PROF. A. PRÁSTARO 21/01/2013 FACOLTÀ DI INGEGNERIA ESAME DI MECCANICA RAZIONALE Corso di Laurea in Ingegneria Meania PROF A PRÁSTARO /0/03 Fig Diso D, ruotante, on rihiamo elastio radiale in un piano vertiale π, e portatore di aria

Dettagli

Fondazioni superficiali: calcolo del carico limite

Fondazioni superficiali: calcolo del carico limite Fondazioni superfiiali: alolo del ario limite Rottura generale Q lim O 45 ϕ/ A 90 P 45 - ϕ/ A uneo spinta attiva A uneo spinta attiva T T settore di transizione P uneo spinta passiva,, ϕ La rottura generale

Dettagli

4 SOLLECITAZIONI INDOTTE. 4.1 Generalità

4 SOLLECITAZIONI INDOTTE. 4.1 Generalità 4 SOLLECITAZIONI INDOTTE 4.1 Generalità Le azioni viste inducono uno stato pensionale interno alla struttura e all edificio che dipende dalla modalità con cui le azioni si esplicano. Le sollecitazioni

Dettagli

Corso di Progetto di Strutture. POTENZA, a.a Pareti in c.a.

Corso di Progetto di Strutture. POTENZA, a.a Pareti in c.a. Corso di Progetto di Strutture POTENZA, a.a. 2012 2013 Pareti in c.a. Dott. Marco VONA Scuola di Ingegneria, Università di Basilicata marco.vona@unibas.it http://www.unibas.it/utenti/vona/ PARETI La parete

Dettagli

Analisi 1 e 2 - Quarto compitino Soluzioni proposte

Analisi 1 e 2 - Quarto compitino Soluzioni proposte Analisi 1 e 2 - Quarto ompitino Soluzioni proposte 23 maggio 2017 Eserizio 1. Risolvere il problema di Cauhy y = x(4 y2 ) y y(0) = α al variare di α R, α 0 Soluzione proposta. Se α = 2 oppure α = 2 abbiamo

Dettagli

Test di autovalutazione

Test di autovalutazione Test di autovalutazione 0 0 0 0 40 50 0 70 80 90 00 n Il mio punteggio, in entesimi, è n Rispondi a ogni quesito segnando una sola delle 5 alternative. n Confronta le tue risposte on le soluzioni. n Colora,

Dettagli

Università degli studi di Cagliari. Corso di aggiornamento. Unità 4 PIASTRE IN C.A. E INSTABILITÀ

Università degli studi di Cagliari. Corso di aggiornamento. Unità 4 PIASTRE IN C.A. E INSTABILITÀ Università degli studi di Cagliari Dipartimento di Ingegneria Strutturale Corso di aggiornamento Unità 4 PIASTRE IN C.A. E INSTABILITÀ RELATORE: Ing. Igino MURA imura@unica.it 25-26 Giugno 2010 - Instabilità:

Dettagli

FACOLTA DI INGEGNERIA PROGETTO DI STRUTTURE A/A Docente: Ing. M.Malena PROGETTO DI SCALE IN CEMENTO ARMATO

FACOLTA DI INGEGNERIA PROGETTO DI STRUTTURE A/A Docente: Ing. M.Malena PROGETTO DI SCALE IN CEMENTO ARMATO PROGETTO DI SCALE IN CEMENTO ARMATO CONTENUTO LEZIONE Generalità sulle scale e tipologie Scala con trave a ginocchio modellazione e calcolo sollecitazioni Progetto dei gradini (calcolo armatura) Progetto

Dettagli

Appunti di geometria analitica dello spazio. di Fabio Maria Antoniali

Appunti di geometria analitica dello spazio. di Fabio Maria Antoniali Appunti di geometria analitica dello spazio di Fabio Maria Antoniali versione del 23 maggio 2017 1 Un po di teoria 1.1 Vettori e punti 1.1.1 Componenti cartesiane e vettoriali Fissato nello spazio un riferimento

Dettagli

Esercitazioni di Meccanica Razionale

Esercitazioni di Meccanica Razionale Esercitazioni di Meccanica Razionale a.a. 2002/2003 Dinamica dei sistemi materiali Maria Grazia Naso naso@ing.unibs.it Dipartimento di Matematica Università degli Studi di Brescia Esercitazioni di Meccanica

Dettagli

Geometria analitica del piano II (M.S. Bernabei & H. Thaler)

Geometria analitica del piano II (M.S. Bernabei & H. Thaler) Geometria analitica del piano II (M.S. Bernabei & H. Thaler) Equazione della retta in forma esplicita Sia data una retta r ax + by + c = 0 con b 0. Svolgendo questa equazione per y otteniamo e ponendo

Dettagli

POLARIZZAZIONE. I = < (E 0 cos ϕ) 2 > (1) dove < (E 0 cos ϕ) 2 > è il valore mediato nel tempo.

POLARIZZAZIONE. I = < (E 0 cos ϕ) 2 > (1) dove < (E 0 cos ϕ) 2 > è il valore mediato nel tempo. POLARIZZAZIONE ESERCIZIO 1 Un fascio di luce naturale attraversa una serie di polarizzatori ognuno dei quali ha l asse di polarizzazione ruotato di 45 rispetto al precedente. Determinare quale frazione

Dettagli

ANGOLI ORIENTA ORIENT TI A

ANGOLI ORIENTA ORIENT TI A ANGOLI OIENTATI DEFINIZIONE CLASSICA DI ANGOLO L angolo è la porzione di piano ontenuta tra due semirette on la stessa origine. A - L origine omune O è detta vertie. a - Le due semirette OA a e OB b sono

Dettagli

1 Sistemi di riferimento

1 Sistemi di riferimento Università di Bologna - Corsi di Laurea Triennale in Ingegneria, II Facoltà - Cesena Esercitazioni del corso di Fisica Generale L-A Anno accademico 2006-2007 1 Sistemi di riferimento Le grandezze usate

Dettagli

TEORIA DELLE LASTRE SOTTILI

TEORIA DELLE LASTRE SOTTILI TEORIA DELLE LASTRE SOTTILI Pavimentazioni rigide D( ) = q-kw δ 4 w δ 4 w δ 4 w + 2 + δx 4 δx 2 δy 2 δy 4 D= EH 3 /(12(1-μ 2 )) : rigidità flessionale della lastra H : spessore della lastra E : modulo

Dettagli

Schema planimetrico delle carpenteria.

Schema planimetrico delle carpenteria. Shema planimetrio delle arpenteria. 1 Riferimenti normativi 3.1.3. TENSIONI NORMALI DI COMPRESSIONE AMMISSIBILI NEL CONGLOMERATO. Tenute presenti le presrizioni ontenute nel punto 5.2.1., le tensioni ammissibili

Dettagli

Le proiezioni Quotate o dei piani quotati. Le proiezioni Quotate

Le proiezioni Quotate o dei piani quotati. Le proiezioni Quotate Le proiezioni Quotate Per una rappresentazione grafica del terreno completa, cioè planoaltimetrica, in una determinata scala di rappresentazione, è necessario usare la teoria delle proiezioni quotate,

Dettagli

Prova di compressione monoassiale

Prova di compressione monoassiale Prova di compressione monoassiale σ σ f σ y Y G ε e F OY : comportamento elastico YF : comportamento elastoplastico GB : scarico - ricarico F : rottura σ y : tensione di snervamento σ f : tensione di rottura

Dettagli

Corso di Laurea in Ingegneria Meccanica Anno Accademico 2017/2018 Meccanica Razionale - Prova teorica del 13/1/2018

Corso di Laurea in Ingegneria Meccanica Anno Accademico 2017/2018 Meccanica Razionale - Prova teorica del 13/1/2018 Corso di Laurea in Ingegneria Meccanica Anno Accademico 2017/2018 Meccanica Razionale - Prova teorica del 13/1/2018 Nome... N. Matricola... Ancona, 13 gennaio 2018 1. Un sistema rigido piano è costituito

Dettagli

Le omotetie. Nel caso in cui il centro di omotetia O corrisponda con l'origine degli assi, le equazioni dell'omotetia sono. le equazioni sono ωch

Le omotetie. Nel caso in cui il centro di omotetia O corrisponda con l'origine degli assi, le equazioni dell'omotetia sono. le equazioni sono ωch O Le omotetie Dato un numero reale non nullo h e un punto P del piano l omotetia di rapporto h e entro O è quella trasformazione he assoia a P il punto P' tale he P P OP' = h OP. Se è P(xy) allora P'(hx

Dettagli

Le derivate parziali

Le derivate parziali Sia f(x, y) una funzione definita in un insieme aperto A R 2 e sia P 0 = x 0, y 0 un punto di A. Essendo A un aperto, esiste un intorno I(P 0, δ) A. Preso un punto P(x, y) I(P 0, δ), P P 0, possiamo definire

Dettagli

Fasi del progetto geotecnico di una fondazione

Fasi del progetto geotecnico di una fondazione Fondazioni 1 Reuisiti di progetto Fondazione: parte della struttura he vinola e trasferise al terreno le azioni trasmesse dall elevazione. I livelli di solleitazioni tipii dei materiali strutturali sono

Dettagli

proiezione della Terra su un cilindro che, per non far torto a nessun paese, conserva le aree). Indubbiamente tutte

proiezione della Terra su un cilindro che, per non far torto a nessun paese, conserva le aree). Indubbiamente tutte CATE NAUTICHE Sono sempre stato attratto dalla artografia: ogni arta ha la propria aratteristia he dipende dall uso he uno deve farne (per esempio la arta dell ONU o proiezione di Gall-Peters è un partiolare

Dettagli

Corso di Laurea in Ingegneria Meccanica Anno Accademico 2017/2018 Meccanica Razionale - Prova teorica del 10/2/2018.

Corso di Laurea in Ingegneria Meccanica Anno Accademico 2017/2018 Meccanica Razionale - Prova teorica del 10/2/2018. Corso di Laurea in Ingegneria Meccanica Anno Accademico 2017/2018 Meccanica Razionale - Prova teorica del 10/2/2018 Prova teorica - A Nome... N. Matricola... Ancona, 10 febbraio 2018 1. Un asta AB di lunghezza

Dettagli

Viti per calcestruzzo fischer FBS

Viti per calcestruzzo fischer FBS 1. Tipo FBS vite per alestruzzo (gvz) FBS-M8 vite per alestruzzo on filetto esterno M 8 (gvz) FBS A vite per alestruzzo (A) FBS-M8/M1 vite per alestruzzo on doppio filetto interno M8/M1 (gvz) FBS-P vite

Dettagli

misura. Adesso, ad un arbitrario punto P dello spazio associamo una terna di numeri reali x

misura. Adesso, ad un arbitrario punto P dello spazio associamo una terna di numeri reali x 4. Geometria di R 3. Questo paragrafo è molto simile al paragrafo : tratta infatti delle proprietà geometriche elementari dello spazio R 3. Per assegnare delle coordinate nello spazio, fissiamo innanzitutto

Dettagli

misura. Adesso, ad un arbitrario punto P dello spazio associamo una terna di numeri reali x

misura. Adesso, ad un arbitrario punto P dello spazio associamo una terna di numeri reali x 4. Geometria di R 3. Questo paragrafo è molto simile al paragrafo : tratta infatti delle proprietà geometriche elementari dello spazio R 3. Per assegnare delle coordinate nello spazio, fissiamo innanzitutto

Dettagli

GEOMETRIA ANALITICA NELLO SPAZIO (3D Geometry)

GEOMETRIA ANALITICA NELLO SPAZIO (3D Geometry) GEOMETRIA ANALITICA NELLO SPAZIO (3D Geometry) SISTEMA DI RIFERIMENTO NELLO SPAZIO La geometria analitica dello spazio è molto simile alla geometria analitica del piano. Per questo motivo le formule sono

Dettagli

MOMENTO DI UNA FORZA RISPETTO A UN PUNTO. Obiettivi

MOMENTO DI UNA FORZA RISPETTO A UN PUNTO. Obiettivi MOMENTO DI UNA FORZA RISPETTO A UN PUNTO Obiettivi 1. Richiamare il concetto di momento e mostrare come calcolarlo operativamente in 2 e 3 dimensioni. 2. Mostrare metodi semplificati per calcolare il momento

Dettagli

IMBOZZAMENTO. ν = modulo di Poisson = 0.3 per l acciaio

IMBOZZAMENTO. ν = modulo di Poisson = 0.3 per l acciaio IMBOZZAMENTO Le lastre, che costituiscono le pareti degli elementi strutturali, possono instabilizzarsi localmente, cioè uscire dal proprio piano formando delle bozze. Se l asta è semplicemente compresso

Dettagli

PROVA DI RECUPERO DEL : ESERCIZIO N 1. Traccia

PROVA DI RECUPERO DEL : ESERCIZIO N 1. Traccia PROV DI RECUPERO DEL 0.9.000: ESERCIZIO N Traia Con rierimento al portale iniato in igura, omposto a una trave retiolare in aiaio e ue pilastri in emento armato, imensionare e veriiare il orrente superiore

Dettagli

GESTIONE delle RISORSE IDRICHE

GESTIONE delle RISORSE IDRICHE Corso di laurea seialistia in Ingegneria delle Aque e della Difesa del Suolo Corso di GESTIONE delle RISORSE IDRICHE a.a. 2003-2004 Lezione 6 Prof. Lua Lanza Diartimento di Ingegneria Ambientale - DIAM

Dettagli

Esercizi geometria analitica nello spazio. Corso di Laurea in Informatica. Docente: Andrea Loi. Correzione

Esercizi geometria analitica nello spazio. Corso di Laurea in Informatica. Docente: Andrea Loi. Correzione Esercizi geometria analitica nello spazio Corso di Laurea in Informatica Docente: Andrea Loi Correzione 1. Denotiamo con P 1, P 13, P 3, P 1, P, P 3, P i simmetrici di un punto P rispetto ai piani coordinati

Dettagli

Invarianze e leggi di conservazione: definizioni generali Teorema di Noether Invarianze e costanti del moto Traslazioni nello spazio Rotazioni nello

Invarianze e leggi di conservazione: definizioni generali Teorema di Noether Invarianze e costanti del moto Traslazioni nello spazio Rotazioni nello Invarianze e leggi di conservazione: definizioni generali Teorema di Noether Invarianze e costanti del moto Traslazioni nello spazio Rotazioni nello spazio. Il momento angolare. Lo spin Il gruppo SU(2)

Dettagli

Esercitazione biomateriali. Materiali compositi

Esercitazione biomateriali. Materiali compositi Eseritazione bioateriali Materiali opositi Modello di Voigt: ondizione di isodeorazione Se il ario è appliato in senso longitudinale, ibra e atrie dovranno deorarsi nella stessa isura Il ario (P ) si distribuise

Dettagli

Compito di Meccanica Razionale

Compito di Meccanica Razionale Compito di Meccanica Razionale Corso di Laurea in Ingegneria Aerospaziale 30 Gennaio 207 (usare fogli diversi per esercizi diversi) Primo Esercizio Si fissi in un piano un sistema di riferimento Oxy. In

Dettagli

Lezione 9 LA SPINTA ESERCITATA DA UN FLUIDO SU UNA SUPERFICIE GOBBA

Lezione 9 LA SPINTA ESERCITATA DA UN FLUIDO SU UNA SUPERFICIE GOBBA Appunti dei corsi di Idraulica e Idrodinamica Lezione 9 LA SPINTA ESERCITATA DA UN LUIDO SU UNA SUPERICIE GOBBA Come illustrato nella LEZIONE e nella LEZIONE 3, la forza esercitata da un fluido in quiete

Dettagli

Equilibrio di un punto materiale (anelli, giunti ecc.)

Equilibrio di un punto materiale (anelli, giunti ecc.) Equilibrio di un punto materiale (anelli, giunti ecc.) Per l equilibrio di un punto basta Obiettivo: verificare che Σ F i 0 Determinare le forze trasmesse al nodo da tutti gli elementi concorrenti, e

Dettagli

Problemi piani: L elemento triangolare a 3 nodi. Dalle dispense del prof. Dario Amodio e dalle lezioni del prof. Giovanni Santucci

Problemi piani: L elemento triangolare a 3 nodi. Dalle dispense del prof. Dario Amodio e dalle lezioni del prof. Giovanni Santucci Problemi piani: L elemento triangolare a 3 nodi Dalle dispense del prof. Dario Amodio e dalle lezioni del prof. Giovanni Santucci Elementi bidimensionali: stato di tensione piana In molti casi, pur essendo

Dettagli

1 ( Si ruoti poi l intorno IP ( ) con centro in P, così da individuare un intorno I ( P)

1 ( Si ruoti poi l intorno IP ( ) con centro in P, così da individuare un intorno I ( P) Equation Chapter 1 Section 1 1. Simmetrie materiali Nel caso di materiali elastici lineari il tensore elastico C è definito da 1 costanti elastiche. Si vogliono ora classificare i materiali in funzione

Dettagli

Statica delle murature

Statica delle murature Statica delle murature Corso di Laurea Specialistica in Ingegneria Edile - A.A. 2006-2007 Università degli Studi di Cagliari Prof. ing. Antonio Cazzani antonio.cazzani@ing.unitn.it http://www.ing.unitn.it/~cazzani/didattica/sdm

Dettagli

Proprietà delle operazioni sui numeri naturali. Introduzione geometrica alle proprietà delle operazioni = 11 = 8 + 3

Proprietà delle operazioni sui numeri naturali. Introduzione geometrica alle proprietà delle operazioni = 11 = 8 + 3 Proprietà delle operazioni sui numeri naturali 1. Le proprietà delle operazioni possono essere introdotte geometriamente in modo da fornirne una giustifiazione intuitiva e una visualizzazione : 2. Le proprietà

Dettagli

FISICA. Lezione n. 2 (2 ore) Gianluca Colò Dipartimento di Fisica sede Via Celoria 16, Milano

FISICA. Lezione n. 2 (2 ore) Gianluca Colò Dipartimento di Fisica sede Via Celoria 16, Milano Università degli Studi di Milano Facoltà di Scienze Matematiche Fisiche e Naturali Corsi di Laurea in: Informatica ed Informatica per le Telecomunicazioni Anno accademico 2010/11, Laurea Triennale, Edizione

Dettagli

INSIEMI DI NUMERI COMPLESSI E LORO RAPPRESENTAZIONE SUL PIANO COMPLESSO. di Francesco Camia

INSIEMI DI NUMERI COMPLESSI E LORO RAPPRESENTAZIONE SUL PIANO COMPLESSO. di Francesco Camia INSIEMI DI NUMERI COMPLESSI E LORO RAPPRESENTAZIONE SUL PIANO COMPLESSO di Francesco Camia 1)Rappresentare nel piano complesso gli insiemi: A = { 2, 3 }, B = { : =+1+2, }. Siccome nel piano complesso e

Dettagli

Prova Scritta Elettromagnetismo (a.a. 2018/19, S. Giagu/F. Lacava/F. Piacentini)

Prova Scritta Elettromagnetismo (a.a. 2018/19, S. Giagu/F. Lacava/F. Piacentini) Prova Scritta Elettromagnetismo - 8.6.09 a.a. 08/9, S. Giagu/F. Lacava/F. Piacentini) recupero primo esonero: risolvere l esercizio : tempo massimo.5 ore. recupero secondo esonero: risolvere l esercizio

Dettagli

Presentazione 5/2017 SINTETICA I PONTI IMPALCATI A GRATICCIO

Presentazione 5/2017 SINTETICA I PONTI IMPALCATI A GRATICCIO Presentazione 5/2017 SINTETICA I PONTI IMPALCATI A GRATICCIO FACOLTÀ DI INGEGNERIA CIVILE E INDUSTRIALE CORSI DI: TEORIA E PROGETTO DIPONTI Prof. Fabio Brancaleoni GESTIONE DIPONTI E GRANDI STRUTTURE Prof.

Dettagli

11 luglio Soluzione esame di geometria - Ing. gestionale - a.a COGNOME... NOME... N. MATRICOLA... ISTRUZIONI

11 luglio Soluzione esame di geometria - Ing. gestionale - a.a COGNOME... NOME... N. MATRICOLA... ISTRUZIONI COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura ore. ISTRUZIONI Ti sono stati consegnati tre fogli, stampati fronte e retro. Come prima cosa scrivi

Dettagli

Introduzione alla cinematica dei sistemi. Angoli di Eulero

Introduzione alla cinematica dei sistemi. Angoli di Eulero Introduzione alla cinematica dei sistemi. Angoli di Eulero F. Demontis Corsi PAS 204 Cinematica dei sistemi rigidi In questo capitolo studiamo la cinematica dei sistemi rigidi formati da un numero finito

Dettagli

ANAMORFOSI CATOTTRICHE (SPECCHIO SFERICO).

ANAMORFOSI CATOTTRICHE (SPECCHIO SFERICO). ANAMORFOSI CATOTTRICHE (SPECCHIO SFERICO). Sviluppo dei calcoli. Si osservi la Fig. 1. La circonferenza di centro O è la traccia della sfera Σ (specchio sferico) sul piano del disegno; TT è la traccia

Dettagli

Esercizi di Geometria Affine

Esercizi di Geometria Affine Esercizi di Geometria Affine Sansonetto Nicola dicembre 01 Geometria Affine nel Piano Esercizio 1. Nel piano affine standard A (R) dotato del riferimento canonico, si consideri la retta τ di equazione

Dettagli

Enrico Borghi L EQUAZIONE DI DIRAC NELLA APPROSSIMAZIONE DI PAULI

Enrico Borghi L EQUAZIONE DI DIRAC NELLA APPROSSIMAZIONE DI PAULI Enrio Borghi L EQUAZIONE DI DIRAC NELLA APPROSSIMAZIONE DI PAULI E. Borghi - L equazione di Dira nella approssimazione di Pauli Rihiami a studi presenti in fisiarivisitata Leggendo L equazione di Dira

Dettagli

CORSO DI TECNOLOGIE E TECNICHE DI RAPPRESENTAZIONI GRAFICHE

CORSO DI TECNOLOGIE E TECNICHE DI RAPPRESENTAZIONI GRAFICHE CORSO DI TECNOLOGIE E TECNICHE DI RARESENTAZIONI GRAFICHE ER L ISTITUTO TECNICO SETTORE TECNOLOGICO Agraria, Agroalimentare e Agroindustria classe seconda ARTE RIMA Disegno del rilievo Unità Didattica:

Dettagli

pendolo reversibile TEORIA FISICA

pendolo reversibile TEORIA FISICA pendolo reversibile TEORIA FISICA Scopo dell esperienza è la misurazione dell accelerazione di gravità g attraverso il periodo di oscillazione di un pendolo reversibile. Si utilizza un pendolo doppio o

Dettagli

Esercitazioni di Meccanica Razionale

Esercitazioni di Meccanica Razionale Esercitazioni di Meccanica Razionale a.a. 2002/2003 Composizione di stati cinetici Maria Grazia Naso naso@ing.unibs.it Dipartimento di Matematica Università degli Studi di Brescia Esercitazioni di Meccanica

Dettagli

Solai e solette con armatura incrociata: comportamento e calcolo

Solai e solette con armatura incrociata: comportamento e calcolo Solai e solette con armatura incrociata: comportamento e calcolo Consideriamo la piastra di figura a riferita a un sistema di assi cartesiani x e y, e in particolare le due strisce ortogonali t x e t y

Dettagli

Piano euclideo. In E 2 (R) fissiamo un riferimento cartesiano ortonormale [O, B], con B = ( e 1, e 2 ).

Piano euclideo. In E 2 (R) fissiamo un riferimento cartesiano ortonormale [O, B], con B = ( e 1, e 2 ). Definizione Si dice spazio (affine) euclideo di dimensione n sul campo reale, uno spazio affine A[A, (V n (R), ), a] in cui il prodotto scalare è definito positivo. Lo si indica con E n (R). In E 2 (R)

Dettagli

ESERCIZI DI ALGEBRA LINEARE (II PARTE) In ogni sezione gli esercizi sono tendenzialmente ordinati per difficoltà crescente.

ESERCIZI DI ALGEBRA LINEARE (II PARTE) In ogni sezione gli esercizi sono tendenzialmente ordinati per difficoltà crescente. ESERCIZI DI ALGEBRA LINEARE (II PARTE) versione: 4 maggio 26 In ogni sezione gli esercizi sono tendenzialmente ordinati per difficoltà crescente Autovettori e autovalori Esercizio Trova gli autovalori

Dettagli

PRIMITIVA DI UNA FUNZIONE. INTEGRALE INDEFINITO. INTEGRALI IMMEDIATI O RICONDUCIBILI AD IMMEDIATI. METODI DI INTEGRAZIONE.

PRIMITIVA DI UNA FUNZIONE. INTEGRALE INDEFINITO. INTEGRALI IMMEDIATI O RICONDUCIBILI AD IMMEDIATI. METODI DI INTEGRAZIONE. PRIMITIVA DI UNA FUNZIONE. INTEGRALE INDEFINITO. INTEGRALI IMMEDIATI O RICONDUCIBILI AD IMMEDIATI. METODI DI INTEGRAZIONE. DEF. Una funzione F() si die primitiva di una funzione y f() definita nell intervallo

Dettagli

Analisi II. Foglio di esercizi n.2 10/10/2017 (Aggiornamento del 17/10/2017)

Analisi II. Foglio di esercizi n.2 10/10/2017 (Aggiornamento del 17/10/2017) Analisi II Foglio di esercizi n 10/10/017 (Aggiornamento del 17/10/017) Esercizi su massimi e minimi liberi con studi aggiuntivi 1 Siano K R n compatto e Ω R n un aperto contenente K Si consideri f C 1

Dettagli

Indice I vettori Geometria delle masse

Indice I vettori Geometria delle masse Indice 1 I vettori 1 1.1 Vettori: definizioni................................ 1 1.2 Componenti scalare e vettoriale di un vettore secondo una retta orientata. 2 1.3 Operazioni di somma, differenza tra

Dettagli

1.4 Modelli di calcolo

1.4 Modelli di calcolo 1.4 Modelli di calcolo Le connessioni fra le varie aste sono ben diverse dalle idealizzazioni. Ipotesi semificative per passare dalla struttura reale al modello di calcolo. Le ipotesi semificative conducono

Dettagli

Progetto con modelli tirante-puntone 6.5 EC2

Progetto con modelli tirante-puntone 6.5 EC2 AICAP - ASSOCIAZIONE ITALIANA CALCESTRUZZO ARMATO E PRECOMPRESSO Guida all uso dell Eurocodice 2 nella progettazione strutturale Facoltà di Ingegneria - Università degli Studi di Pisa Pisa, 26 Gennaio

Dettagli

Università degli Studi di Teramo Facoltà di Scienze Politiche

Università degli Studi di Teramo Facoltà di Scienze Politiche Università degli Studi di Teramo Faoltà di Sienze Politihe Corso di Laurea in Statistia Lezioni del Corso di Matematia a ura di D. Tondini a.a. 3/4 CAPITOLO II LE EQUAZIONI DIFFERENZIALI. GENERALITÀ È

Dettagli

Ingegneria Gestionale - Corso di Algebra lineare e Analisi II anno accademico 2009/2010 ESERCITAZIONE 4.4

Ingegneria Gestionale - Corso di Algebra lineare e Analisi II anno accademico 2009/2010 ESERCITAZIONE 4.4 Ingegneria Gestionale - Corso di Algebra lineare e Analisi II anno accademico 9/ ESERCITAZIONE. (Cognome) (Nome) (Numero di matricola) Proposizione Vera Falsa Per due punti distinti di R passa un unica

Dettagli

DEDUZIONE DEL TEOREMA DELL'ENERGIA CINETICA DELL EQUAZIONE SIMBOLICA DELLA DINAMICA

DEDUZIONE DEL TEOREMA DELL'ENERGIA CINETICA DELL EQUAZIONE SIMBOLICA DELLA DINAMICA DEDUZIONE DEL TEOREMA DELL'ENERGIA CINETICA DELL EQUAZIONE SIMBOLICA DELLA DINAMICA Sia dato un sistema con vincoli lisci, bilaterali e FISSI. Ricaviamo, dall equazione simbolica della dinamica, il teorema

Dettagli

Esercizi di magnetismo

Esercizi di magnetismo Esercizi di magnetismo Fisica II a.a. 2003-2004 Lezione 16 Giugno 2004 1 Un riassunto sulle dimensioni fisiche e unità di misura l unità di misura di B è il Tesla : definisce le dimensioni [ B ] = [m]

Dettagli

FORMULAZIONE DELL ELEMENTO DI TIMOSHENKO

FORMULAZIONE DELL ELEMENTO DI TIMOSHENKO FORMUAZIONE DE EEMENTO DI TIMOSHENKO Nell analisi strutturale e nel progetto dei telai si utilizza quasi sempre la teoria delle travi sviluppata da Eulero-Bernoulli. Molti manuali usano esclusivamente

Dettagli

GEOMETRIA svolgimento di uno scritto del 11 Gennaio 2012

GEOMETRIA svolgimento di uno scritto del 11 Gennaio 2012 GEOMETRIA svolgimento di uno scritto del Gennaio ) Trovare una base per lo spazio delle soluzioni del seguente sistema omogeneo: x + y 5z = 3x y + z = x y + 8z =. Il sistema può essere scritto in forma

Dettagli

Lezione 2 Richiami sui sistemi di riferimento Richiami di trigonometria Vettori Calcolo vettoriale

Lezione 2 Richiami sui sistemi di riferimento Richiami di trigonometria Vettori Calcolo vettoriale Corsi di Laurea dei Tronchi Comuni 2 e 4 Dr. Andrea Malizia 1 Richiami sui sistemi di riferimento Richiami di trigonometria Vettori Calcolo vettoriale 2 Sistemi di riferimento e spostamento 3 Sistemi di

Dettagli

ACCIAIO Calcolo Strutturale

ACCIAIO Calcolo Strutturale ISTITUTO TECNICO COSTRUZIONI AMBIENTE TERRITORIO Appunti per il corso di PROGETTAZIONE COSTRUZIONI IMPIANTI ACCIAIO Calcolo Strutturale Aggiornamento: Aprile 2016 Prof. Ing. Del Giudice Tony GENERALITA

Dettagli

Nome: Cognome: Data: 4/11/2017

Nome: Cognome: Data: 4/11/2017 Esercizio N. 1 Valutazione 5 1. Si consideri un lanciatore, lungo L = 40m, fermo sulla rampa di lancio modellato come una trave appoggiata, alla base (x=0m) e a x = 3/4L, come in figura. La sollecitazione

Dettagli

R-XPT ANCORANTE PASSANTE

R-XPT ANCORANTE PASSANTE RXPT ANCORANTE PASSANTE Anorante passante per alestruzzo non fessurato Approvazioni e rapporti ETA 17/0183 Informazioni sul prodotto Caratteristihe e vantaggi Elevate prestazioni in alestruzzo non fessurato

Dettagli

Scrivi l equazione di un iperbole conoscendone i fuochi e la costante ( = differenza costante) 2k.

Scrivi l equazione di un iperbole conoscendone i fuochi e la costante ( = differenza costante) 2k. . ESERCIZI SULL IPERBOLE A partire dall equazione di un iperbole stabilisi quanto valgono I. le oordinate dei vertii e dei fuohi II. la ostante (differenza ostante delle distanze di un punto dai fuohi)

Dettagli

Lezione 2 Richiami sui sistemi di riferimento Richiami di trigonometria Vettori Calcolo vettoriale

Lezione 2 Richiami sui sistemi di riferimento Richiami di trigonometria Vettori Calcolo vettoriale Dr. Andrea Malizia Prof. Maria Guerrisi 1 Richiami sui sistemi di riferimento Richiami di trigonometria Vettori Calcolo vettoriale Sistemi di riferimento e spostamento 2 Sistemi di riferimento e spostamento

Dettagli