Facoltà di Economia - Università di Sassari Anno Accademico Dispense Corso di Econometria Docente: Luciano Gutierrez

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Facoltà di Economia - Università di Sassari Anno Accademico Dispense Corso di Econometria Docente: Luciano Gutierrez"

Transcript

1 Facolà di Economia - Universià di Sassari Anno Accademico Dispense Corso di Economeria Docene: Luciano Guierrez Uilizzo dei modelli di regressione per l analisi della serie soriche Programma: 3. Uilizzo del modello di regressione per la previsione 3.2 Inroduzione all analisi delle serie soriche 3.3 Il modello auoregressivo Luciano Guierrez Diparimeno di Economia e Sisemi Arborei Tel.: Universià of Sassari Fax: Via E. De Nicola, Sassari lguierr@uniss.i web: hp://

2 48 3. Uilizzo del modello di regressione per la previsione Una delle domande a cui si può rispondere uilizzando le procedure prima vise è la seguene: quale è la migliore previsione del asso di inflazione nel prossimo mese, o nel prossimo rimesre o per il prossimo anno? Oppure quale è la migliore previsione del asso di crescia del Prodoo Inorno Lordo (PIL) nel prossimo rimesre o nel prossimo anno? Il modello di regressione mulipla può essere uilizzao per rispondere a quese domande. Ad esempio daa la regressione K = α+ x β + ε =,2,..., T; (4.) k k k= nel caso si conoscano i valori dei regressori x per il periodo ( T + ) k, possiamo uilizzare le sime ˆα e β ˆk per oenere la previsione della variabile dipendene per il periodo ( T + ). La previsione sarà daa da in cui ˆT ˆ = αˆ + x βˆ (4.2) T+ T+ k k k= + è la previsione della variabile dipendene nel periodo ( ) K T + oenua uilizzando i valori noi dei regressori al empo ( T + ) e le sime dei parameri oenue uilizzando le osservazioni della variabile dipendene e dei regressori nel periodo =,2,..., T. Una vola noo il valore della variabile al empo ( ) l errore di previsione. Queso sarà dao da: T+ T+ T+ T +, T +, possiamo calcolare e = ˆ (4.3) Nel caso e T + > 0 abbiamo soosimao il valore effeivo della variabile dipendene al empo ( ) T +, nel caso invece e + < 0 abbiamo sovrasimao il valore effeivo della T variabile dipendene al empo ( T + ). Possiamo dire qualcosa relaivamene all errore di previsione o, quanomeno aribuirne le cause? La risposa è si. Se si osserva la (4.) e la (4.2) noiamo che : a) una delle cause dell errore di previsione è legaa all errore di regressione ε che, anche se per ipoesi e per cosruzione se uilizziamo il meodo dei minimi quadrai mediamene è uguale a zero, assumerà generalmene valori maggiori e minori di zero.

3 49 b) Il secondo moivo è legao alle sime dei parameri ˆα e β ˆk. Come sappiamo è possibile che inroducendo nuove osservazioni e simando nuovamene la regressione (4.) il valore delle sime cambi. Ciò inroduce quindi una uleriore componene socasica all errore di previsione. E ineressane noare che, se le sime dei parameri sono abbasanza sabili, un buon indicaore della varianza dell errore di previsione è daa dalla varianza dei residui definia come è noo come ( ) ˆ T 2 εˆ =. E possibile allora uilizzare l espressione T K 2 = σ σˆ / *00, cioè il rapporo ra la deviazione sandard della varianza dei residui e il valore medio della variabile dipendene per avere una sima dell errore medio percenuale della previsione. Nauralmene più piccolo è queso valore e più ala è la probabilià di avere una buona previsione (sempre che le sime dei parameri siano piuoso sabili). Un calcolo più preciso dell errore di previsione può essere oenuo nel seguene modo. Immaginiamo di voler disporre di una sima dell errore medio di previsione del nosro modello nell ulimo quinquennio I dai di cui disponiamo coprono il periodo ) simiamo la regressione (4.) per il periodo Oeniamo una previsione per l anno 2000 di ŷ 2000 uilizzando la (4.2), cioè uilizziamo i valori noi dei regressori per l anno 2000 x 2000,k e le sime dei parameri ˆα e β ˆk. 2) Simiamo di nuovo la regressione (4.) uilizzando quesa vola il periodo Oeniamo una previsione per l anno 200 di ŷ 200 uilizzando la (4.2), i valori noi dei regressori per l anno 200 x 200,k e le nuove sime dei parameri ˆα e β ˆk. 3) Ripeiamo l esercizio per oenere la previsione per gli anni 2002, 2003 e ) Possiamo ora calcolare la radice dell errore medio di previsione REMP mediane l espressione 2004 = 2000 REMP = ( ˆ ) 5 2 (4.4)

4 50 e lo scosameno medio percenuale (SMP) come REMP SMP = * (4.5) = L SMP ci dice di quano percenualmene abbiamo sbagliao rispeo al livello medio della variabile dipendene nell ulimo quinquennio. Se ad esempio SMP=.2, abbiamo che mediamene l errore di previsione nell ulimo quinquennio è dell.2%, ossia abbiamo soosimao, o sovrasimao, la variabile dipendene nell ulimo quinquennio dell.2% rispeo ai valori medi degli ulimi cinque anni. 3.2 Inroduzione all analisi delle serie soriche Se si osserva il grafico del prodoo inerno lordo ialiano (PIL) si noa come queso cresca cosanemene nel empo seguendo un profilo di ipo esponenziale. In praica il profilo di crescia è simile a r PIL = ce =,2,..., T (4.6) In cui c è una cosane e r è il asso media di crescia del PIL. Se uilizziamo i logarimi avremo che la (4.6) può essere riscria come r ( ) ( ) log PIL = log ce = log( c) + r =,2,..., T (4.7) Allora avremo che il logarimo del PIL cresce linearmene al asso r. Nell analisi delle serie soriche alcune concei sono imporani: a) daa una serie sorica si definisce il riardo primo (o lag uno) della serie sorica i valori di riardai di un periodo e si scrive. Possiamo definire anche il riardo di ordine p di una serie economica definendo ui i valori della serie sorica riardai di p periodi rispeo alla serie originaria. La serie si scrive come p. La abella seguene illusra la cosruzione delle serie soriche riardae di un periodo, due periodi e re periodi o alrimeni definie come lag uno, lag due e lag re. Come è possibile noare dalla abella 3. definendo la serie sorica con riardo uno perdiamo in coda una osservazione. Nauralmene abbiamo che una serie sorica con riardo p compora la definizione di una serie sorica con p osservazioni in meno in coda.

5 5 Tab.3. Serie soriche e riardi b) daa una serie sorica definisce differenza prima della serie sorica l espressione =. Noa che nel caso in cui la serie sorica venga rasformaa uilizzando i log = log log, cioè è uguale al asso di logarimi avremo che ( ) ( ) ( ) crescia della serie sorica ra il periodo e il periodo -. L approssimazione è molo buona per variazioni percenuali della serie sorica conenue nell inervallo [-2%, 2%]. Se le variazioni sono più pronunciae la variazione logarimica soosima la variazione percenuale effeiva della serie sorica in modo rilevane. Noa inolre che se applichiamo le differenze prime alla (4.7) abbiamo che ( ) ( ) log PIL = log( c) + r -log( c) r = r (4.8) Allora se il modello (4.6) è quello correo, r è il asso medio di crescia del PIL nel periodo in esame. La sima dell equazione ( ) È noa come sima del rend della serie sorica log = α + r + ε =,2,..., T (4.9). Nauralmene il regressore in queso caso è la variabile deerminisica (non è una variabile socasica) che nel caso si abbiamo 00 osservazione della variabile dipendene assume i valori,2,3,,00. La sima di r, ˆr, oenua ad esempio con il meodo dei minimi quadrai ordinari indica allora il asso medio di crescia dalla variabile dipendene nel periodo in esame. 3.3 Il modello auoregressivo Dae le definizioni precedeni, possiamo definire il modello auoregressivo del primo ordine, AR(), come = α+ δ + ε = 2,..., T (4.0)

6 52 I parameri α e δ possono essere simai uilizzando i minimi quadrai ordinari. Possiamo anche simare il modello auoregressivo espresso in differenze prime = η+ λ + ε = 3,..., T (4.) In generale, possiamo definire il modello auoregressivo di ordine p, AR(p), come = α+ δ + δ δp p + ε = p+,..., T (4.2) Anche in queso caso avremo che i coefficieni del modello possono essere simai uilizzando lo simaore minimi quadrai. Il modello auoregressivo può essere nauralmene uilizzao per la previsione della serie sorica nel periodo +. La meodologia è quella prima esposa nel paragrafo 3..

Analisi delle serie storiche parte IV Metodi di regressione

Analisi delle serie storiche parte IV Metodi di regressione Analisi delle serie soriche pare IV Meodi di regressione a.a. 16/17 Saisica Economica -Laurea in Relazioni Economiche Inernazionali 1 Meodo della regressione La componene di fondo, Trend o Ciclo-Trend,

Dettagli

Facoltà di Economia - Università di Sassari Anno Accademico Dispense Corso di Econometria Docente: Luciano Gutierrez

Facoltà di Economia - Università di Sassari Anno Accademico Dispense Corso di Econometria Docente: Luciano Gutierrez Facolà di Economia - Universià di Sassari Anno Accademico 004-005 Dispense Corso di Economeria Docene: Luciano Guierrez La Regressione Mulipla Programma:... Il problema dell omissione di variabili....

Dettagli

Facoltà di Economia - Università di Sassari Anno Accademico Dispense Corso di Econometria Docente: Luciano Gutierrez

Facoltà di Economia - Università di Sassari Anno Accademico Dispense Corso di Econometria Docente: Luciano Gutierrez Facolà di Economia - Universià di Sassari Anno Accademico 004-005 Dispense Corso di Economeria Docene: Luciano Guierrez La Regressione Lineare Programma: Inroduzione.. Il modello di regressione lineare..

Dettagli

1. Si consideri il seguente modello di regressione per serie storiche trimestrali riferite all area Euro:

1. Si consideri il seguente modello di regressione per serie storiche trimestrali riferite all area Euro: 1. Si consideri il seguene modello di regressione per serie soriche rimesrali riferie all area Euro: π β + β π + β π + β π + β y + δ D + δ D + D + u = 0 1 1 2 2 3 3 4 1 1 2 2 δ3 3 in cui π è il asso di

Dettagli

Equazioni Differenziali (5)

Equazioni Differenziali (5) Equazioni Differenziali (5) Daa un equazione differenziale lineare omogenea y n + a n 1 ()y n 1 + a 0 ()y = 0, (1) se i coefficieni a i non dipendono da, abbiamo viso che le soluzioni si possono deerminare

Dettagli

PIL NOMINALE, PIL REALE E DEFLATORE

PIL NOMINALE, PIL REALE E DEFLATORE PIL NOMINALE, PIL REALE E DEFLATORE Il PIL nominale (o a prezzi correni) Come sappiamo il PIL è il valore di ui i beni e servizi finali prodoi in un cero periodo all inerno del paese. Se per calcolare

Dettagli

Il Value at Risk secondo l approccio parametrico: un esempio semplificato

Il Value at Risk secondo l approccio parametrico: un esempio semplificato Universià degli Sudi di Napoli Federico II Caedra di Economia delle Aziende di Assicurazione Il Value a Risk secondo l approccio paramerico: un esempio semplificao Domenico Curcio, Ph. D. Value a Risk

Dettagli

Modelli ARMA, regressione spuria e cointegrazione Amedeo Argentiero

Modelli ARMA, regressione spuria e cointegrazione Amedeo Argentiero Modelli ARMA, regressione spuria e coinegrazione Amedeo Argeniero amedeo.argeniero@unipg.i Definizione modello ARMA Un modello ARMA(p, q) (AuoRegressive Moving Average of order p and q) ha la seguene sruura:

Dettagli

UNIVERSITA DEGLI STUDI DI PADOVA FACOLTA DI SCIENZE STATISTICHE CORSO DI LAUREA IN STATISTICA ECONOMIA E FINANZA

UNIVERSITA DEGLI STUDI DI PADOVA FACOLTA DI SCIENZE STATISTICHE CORSO DI LAUREA IN STATISTICA ECONOMIA E FINANZA UNIVERSITA DEGLI STUDI DI PADOVA FACOLTA DI SCIENZE STATISTICHE CORSO DI LAUREA IN STATISTICA ECONOMIA E FINANZA Tesi di laurea CURVE DI DOMANDA AGGREGATA: UN ANALISI EMPIRICA PER L ITALIA Relaore: DOTT.

Dettagli

Scienza dei Materiali VO Esercitazioni

Scienza dei Materiali VO Esercitazioni Scienza dei Maeriali VO Eserciazioni 9. Deformazione viscoelasica ver. 1.0 ESERCIZI Ex 9.1 Rilassameno Uno sforzo di 7.6 MPa è applicao ad un maeriale elasomerico manenendo cosane la deformazione. Dopo

Dettagli

Soluzioni degli esercizi di Analisi Matematica I

Soluzioni degli esercizi di Analisi Matematica I Sapienza - Universià di Roma - Corso di Laurea in Ingegneria Eleroecnica Soluzioni degli esercizi di Analisi Maemaica I A.A. 6 7 - Docene: Luca Baaglia Lezione del Dicembre 6 Argomeno: Equazioni differenziali,

Dettagli

Corso di laurea in Ingegneria Meccatronica CONTROLLI AUTOMATICI E CA - 03 FUNZIONE DI TRASFERIMENTO

Corso di laurea in Ingegneria Meccatronica CONTROLLI AUTOMATICI E CA - 03 FUNZIONE DI TRASFERIMENTO Auomaion Roboics and Sysem CONTROL Corso di laurea in Ingegneria Meccaronica CONTROLLI AUTOMATICI E AZIONAMENTI ELETTRICI CA - 03 FUNZIONE DI TRASFERIMENTO Universià degli Sudi di Modena e Reggio Emilia

Dettagli

I principali indicatori sintetici sulle revisioni

I principali indicatori sintetici sulle revisioni I principali indicaori sineici sulle revisioni Con la realizzazione e la diffusione dei riangoli delle revisioni, l Isa si propone di analizzare il processo di revisione dell informazione saisica congiunurale

Dettagli

La Previsione della Domanda. La previsione della domanda è un elemento chiave della gestione aziendale

La Previsione della Domanda. La previsione della domanda è un elemento chiave della gestione aziendale La Previsione della omanda La previsione della domanda è un elemeno chiave della gesione aziendale Cosi Cliene Vanaggio compeiivo esi I mod 001 1 ermiene rocesso oninuo Personalizzao Prodoo Indifferenziao

Dettagli

Modelli stocastici per la volatilità

Modelli stocastici per la volatilità Modelli socasici per la volailià Dai modelli di volailià a media mobile ai modelli GARCH I modelli di volailià con medie mobili assumono ce i rendimeni siano i.i.d. la volailià è cosane nel empo: forniscono

Dettagli

MODELLISTICA E SIMULAZIONE cred.: 5 7,5 Recupero 1 prova: 25 luglio 2005

MODELLISTICA E SIMULAZIONE cred.: 5 7,5 Recupero 1 prova: 25 luglio 2005 Poliecnico di Milano I a Facolà di Ingegneria C.S. in Ing. per l Ambiene e il Terriorio MODELLISTICA E SIMULAZIONE cred.: 5 7,5 Recupero prova: 5 luglio 005 COGNOME NOME FIRMA: [7,5 credii] Voo: ATTENZIONE!

Dettagli

L'importanza delle restrizioni econometriche nell'utilizzo dei modelli GARCH per la valutazione del rischio di prodotti finanziari

L'importanza delle restrizioni econometriche nell'utilizzo dei modelli GARCH per la valutazione del rischio di prodotti finanziari L'imporanza delle resrizioni economeriche nell'uilizzo dei modelli GARCH per la valuazione del rischio di prodoi finanziari Giusj Carmen Sanangelo (MeodiaLab) Robero Reno (Universià di Siena e MeodiaLab)

Dettagli

X 3 = tasso di intervento della Banca centrale Europea (ex tasso ufficiale di sconto)

X 3 = tasso di intervento della Banca centrale Europea (ex tasso ufficiale di sconto) ECONOMETRIA Esempi di ESERCIZI per la PROVA SCRITTA 1) Quali sviluppi della meodologia saisica hanno favorio la nascia dell economeria (fondazione dell Economeric Sociey, 1930). Quali conribui meodologici

Dettagli

L analisi delle serie storiche

L analisi delle serie storiche L analisi delle serie soriche Per serie sorica si inende un insieme di dai ordinai secondo un crierio cronologico. Ogni dao è associao ad un paricolare isane o inervallo di empo. Se a ciascun isane o inervallo

Dettagli

Scienza dei Materiali 1 Esercitazioni

Scienza dei Materiali 1 Esercitazioni Scienza dei Maeriali 1 Eserciazioni 15. Maeriali polimerici ver. 1.0 ESERCIZI Ex 15.1 Rilassameno 1 Uno sforzo di 7.6 MPa è applicao ad un maeriale elasomerico manenendo cosane la deformazione. Dopo 40

Dettagli

La procedura Box-Jenkins

La procedura Box-Jenkins La procedura Box-Jenkins La selezione del modello - Procedura di Box e Jenkins (976): procedura per cosruire, a parire dall osservazione dei dai, un modello ARMA ao ad approssimare il processo generaore

Dettagli

Nome: Nr. Mat. Firma:

Nome: Nr. Mat. Firma: Fondameni di Conrolli Auomaici Prova Parziale 8 Aprile 2 - A.A. 2/ Nome: Nr. Ma. Firma: a) Deerminare la rasformaa di Laplace X i (s) dei segueni segnali emporali x i (): x () = 4 + 2 e +5 cos(3 6), x

Dettagli

Modelli stocastici per la volatilità

Modelli stocastici per la volatilità Modelli socasici per la volailià Inroduzione ai modelli GARCH Generalized AuoRegressive Condiional Heeroschedasiciy In un modello GARCH si assume che i rendimeni siano generai da un processo socasico con

Dettagli

INFLAZIONE, PRODUZIONE 1 E CRESCITA DELLA MONETA

INFLAZIONE, PRODUZIONE 1 E CRESCITA DELLA MONETA INFLAZIONE, PRODUZIONE 1 E CRESCITA DELLA MONETA CI OCCUPEREMO DI 1) Legge di Okun Relazione ra la variazione della disoccupazione e la deviazione del asso di crescia della produzione dal suo asso naurale

Dettagli

Teoria dei segnali. Unità 2 Sistemi lineari. Sistemi lineari: definizioni e concetti di base. Concetti avanzati Politecnico di Torino 1

Teoria dei segnali. Unità 2 Sistemi lineari. Sistemi lineari: definizioni e concetti di base. Concetti avanzati Politecnico di Torino 1 Sisemi lineari: deinizioni e concei di base Teoria dei segnali Unià 2 Sisemi lineari Sisemi lineari Deinizioni e concei di base Concei avanzai 2 25 Poliecnico di Torino Sisemi lineari: deinizioni e concei

Dettagli

Generatore di clock mediante NE 555

Generatore di clock mediante NE 555 Generaore di clock mediane NE 555 onsideriamo la seguene figura inegrao NE555 è quello racchiuso dalla linea raeggiaa. i noa, all inerno dell inegrao, un lach di ipo R. Un lach di ipo R è un circuio sequenziale

Dettagli

La procedura Box-Jenkins

La procedura Box-Jenkins La procedura Box-Jenkins La selezione del modello - Procedura di Box e Jenkins (1976): procedura per cosruire, a parire dall osservazione dei dai, un modello ARMA ao ad approssimare il processo generaore

Dettagli

RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI

RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI RISPOSTA IN FREQUENZA SISTEMI LTI Inroduzione Se il segnale d ingresso di un sisema Lineare Tempo-Invariane LTI e un esponenziale complesso, l

Dettagli

g Y g M p g Y g g + g M p dove p è il tasso di crescita dei prezzi, ovvero il tasso di inflazione. Poiché g è costante, g

g Y g M p g Y g g + g M p dove p è il tasso di crescita dei prezzi, ovvero il tasso di inflazione. Poiché g è costante, g APPENDICI 465 g Y g g + g M p dove p è il asso di crescia dei prezzi, ovvero il asso di inflazione. Poiché g è cosane, g g è uguale a zero. Quindi: g Y g M p Il asso di crescia della produzione è approssimaivamene

Dettagli

Dato T = numero di osservazioni disponibili nel campione di dati, è possibile calcolare per la generica variabile x: Var. Corr =

Dato T = numero di osservazioni disponibili nel campione di dati, è possibile calcolare per la generica variabile x: Var. Corr = . MISURE STATISTICHE DI SINTESI Dao T = numero di osservazioni disponibili nel campione di dai, è possibile calcolare per la generica variabile : T Media (campionaria); µ = i T i= T 2 Varianza (campionaria);

Dettagli

La risposta di un sistema lineare viscoso a un grado di libertà sollecitato da carichi impulsivi. Prof. Adolfo Santini - Dinamica delle Strutture 1

La risposta di un sistema lineare viscoso a un grado di libertà sollecitato da carichi impulsivi. Prof. Adolfo Santini - Dinamica delle Strutture 1 La risposa di un sisema lineare viscoso a un grado di liberà solleciao da carichi impulsivi Prof. Adolfo Sanini - Dinamica delle Sruure 1 Inroduzione 1/2 Un carico p() si definisce impulsivo quando agisce

Dettagli

STATISTICA ECONOMICA ED ANALISI DI MERCATO Previsioni Economiche ed Analisi di Serie Storiche A.A / 04 ESERCITAZIONE 4. Exponential Smoothing

STATISTICA ECONOMICA ED ANALISI DI MERCATO Previsioni Economiche ed Analisi di Serie Storiche A.A / 04 ESERCITAZIONE 4. Exponential Smoothing TATTCA ECONOMCA ED ANAL D MERCATO Previsioni Economiche ed Analisi di erie oriche A.A. 2003 / 04 EERCTAZONE 4 Exponenial moohing di Daniele Toninelli Noa: LAVORARE U PRM 0 ANN D DAT E ARE EVENTUAL PREVON

Dettagli

State Space Model. Corso di: Analisi delle Serie Storiche. Corso di Laurea Triennale in: Scienze Statistiche A.A. 2017/18

State Space Model. Corso di: Analisi delle Serie Storiche. Corso di Laurea Triennale in: Scienze Statistiche A.A. 2017/18 Sae Space Model Corso di: Analisi delle Serie Soriche Corso di Laurea Triennale in: Scienze Saisiche A.A. 07/8 Generalià Gli Sae Space Models (Modelli nello Spazio degli Sai) forniscono una meodologia

Dettagli

RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI

RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI 1 Fondameni di segnali Fondameni e rasmissione TLC Inroduzione Se il segnale d ingresso di un sisema Lineare Tempo-Invariane LTI e un esponenziale

Dettagli

TRASFORMATE DI LAPLACE

TRASFORMATE DI LAPLACE CONTROLLI AUTOMATICI Ingegneria della Gesione Indusriale e della Inegrazione di Impresa hp://www.auomazione.ingre.unimore.i/pages/corsi/conrolliauomaicigesionale.hm Trasformae di Laplace Gli esempi visi

Dettagli

EQUAZIONI GONIOMETRICHE

EQUAZIONI GONIOMETRICHE EQUAZIONI GONIOMETRICHE ) risolvere: cos + cos 0 Si raa di un caso riconducibile ad un equazione algebrica di grado nell incognia cos, per cui si può scrivere: cos ± + 8 4 cos cos 80 + k60 ± 60 + k60 6)

Dettagli

UNITA 3. LE EQUAZIONI GONIOMETRICHE.

UNITA 3. LE EQUAZIONI GONIOMETRICHE. UNITA. LE EQUAZIONI GONIOMETRICHE.. Generalià sulle equazioni goniomeriche.. Equazioni goniomeriche elemenari con seno, eno, angene e coangene.. Alri ipi di equazioni goniomeriche elemenari.. Le funzioni

Dettagli

ANALISI DEI RESIDUI E RELAZIONI NON LINEARI

ANALISI DEI RESIDUI E RELAZIONI NON LINEARI Lezione del 5-- (IV canale, Do.ssa P. Vicard) ANALISI DEI RESIDUI E RELAZIONI NON LINEARI ESEMPIO: consideriamo il seguene daa se x y xy x y* e 9, 9,,,, 5, 7,,,7, 9 9,5 -,7 9,77 7,9 7,5,7 9,,,5,7,, 9,

Dettagli

Lezione 4 Material Requirement Planning

Lezione 4 Material Requirement Planning Lezione 4 Maerial Requiremen Planning Obieivo: noi gli alberi di prodoo per ciascun ipo; daa una sringa di loi di prodoi finii (fabbisogni dei clieni), ciascun loo da complearsi enro un dao inervallo (se.)

Dettagli

SISTEMI LINEARI TEMPO INVARIANTI. Fondamenti Segnali e Trasmissione

SISTEMI LINEARI TEMPO INVARIANTI. Fondamenti Segnali e Trasmissione SISTEMI LINEARI TEMPO INVARIANTI Fondameni Segnali e Trasmissione Definizione di sisema Sisema: Da un puno di visa fisico e un disposiivo ce modifica un segnale (), deo ingresso, generando il segnale y(),

Dettagli

10 ESERCITAZIONE. Esercizi svolti: Capitolo 15 Curva di Phillips Esercizio 2. Capitolo 16 Disinflazione, disoccupazione e crescita Esercizio 3

10 ESERCITAZIONE. Esercizi svolti: Capitolo 15 Curva di Phillips Esercizio 2. Capitolo 16 Disinflazione, disoccupazione e crescita Esercizio 3 10 SRCITAZION sercizi svoli: Capiolo 15 Curva di Phillips sercizio 2 Capiolo 16 Disinflazione, disoccupazione e crescia sercizio 3 1 CAPITOLO 15 CURVA DI PHILLIPS Curva di Phillips Relazione che lega inflazione

Dettagli

Minimi Quadrati Ricorsivi

Minimi Quadrati Ricorsivi Minimi Quadrai Ricorsivi Minimi Quadrai Ricorsivi Fino ad ora abbiamo sudiao due diversi meodi per l idenificazione dei modelli: - Minimi quadrai, uilizzao per l idenificazione dei modelli ARX, in cui

Dettagli

Introduzione ai Modelli di Durata: Stime Non-Parametriche. a.a. 2009/ Quarto Periodo Prof. Filippo DOMMA

Introduzione ai Modelli di Durata: Stime Non-Parametriche. a.a. 2009/ Quarto Periodo Prof. Filippo DOMMA Inroduzione ai Modelli di Duraa: ime Non-Parameriche cenni a.a. 2009/2010 - Quaro Periodo Prof. Filippo DOMMA Corso di Laurea pecialisica/magisrale in Economia Applicaa Facolà di Economia UniCal F. DOMMA

Dettagli

UNITA 3. LE EQUAZIONI GONIOMETRICHE.

UNITA 3. LE EQUAZIONI GONIOMETRICHE. UNITA. LE EQUAZIONI GONIOMETRICHE.. Generalià sulle equazioni goniomeriche.. Equazioni goniomeriche elemenari con seno, coseno, angene e coangene.. Alri ipi di equazioni goniomeriche elemenari.. Le funzioni

Dettagli

La previsione della domanda nella supply chain

La previsione della domanda nella supply chain La previsione della domanda nella supply chain La previsione della domanda 1 Linea guida Il ruolo della prerevisione nella supply chain Le caraerisiche della previsione Le componeni della previsione ed

Dettagli

Corso di Laurea in Ingegneria Informatica (Laurea on Line) Prima prova Intermedia

Corso di Laurea in Ingegneria Informatica (Laurea on Line) Prima prova Intermedia Milano, 4//003 Corso di Laurea in Ingegneria Informaica (Laurea on Line) Corso di Fondameni di Segnali e rasmissione Prima prova Inermedia Carissimi sudeni, scopo di quesa prima prova inermedia è quello

Dettagli

Perturbazione armonica : teoria generale

Perturbazione armonica : teoria generale Perurbazione armonica : eoria generale Absrac Queso documeno rispecchia buona pare del capiolo XIII del Cohen. Si raa dapprima la ransizione ra due sai dello spero discreo di un non meglio specificao sisema,

Dettagli

LA TRASFORMATA DI FOURIER: PROPRIETA ED ESEMPI. 1 Fondamenti TLC

LA TRASFORMATA DI FOURIER: PROPRIETA ED ESEMPI. 1 Fondamenti TLC LA TRASFORMATA DI FOURIER: PROPRIETA ED ESEMPI Fondameni TLC Propriea della () LINEARITA : la della combinazione lineare (somma pesaa) di due segnali e uguale alla combinazione lineare delle dei due segnali.

Dettagli

1. Domanda La funzione di costo totale di breve periodo (con il costo espresso in euro) di un impresa è la seguente:

1. Domanda La funzione di costo totale di breve periodo (con il costo espresso in euro) di un impresa è la seguente: 1. omanda La funzione di coso oale di breve periodo (con il coso espresso in euro) di un impresa è la seguene: eerminare il coso oale, il coso oale medio, il coso marginale, i cosi oali fissi e i cosi

Dettagli

Teoria dei Segnali. La Convoluzione (esercizi) parte prima

Teoria dei Segnali. La Convoluzione (esercizi) parte prima Teoria dei Segnali La Convoluzione (esercizi) pare prima 1 Si ricorda che la convoluzione ra due segnali x() e y(), reali o complessi, indicaa simbolicamene come: C xy () = x() * y() è daa indifferenemene

Dettagli

POLITECNICO DI TORINO

POLITECNICO DI TORINO POLITECNICO DI TORINO ESERCITAZIONI DI LOGISTICA Laurea in Ingegneria Logisica e della Produzione Corso di Logisica e di Disribuzione 1 Docene: Prof. Ing. Giulio Zoeri Tuore: Ing. Giuliano Scapaccino A.A.

Dettagli

Linea guida raccomandata per la valutazione della vita residua di componenti esercìti in regime di scorrimento viscoso

Linea guida raccomandata per la valutazione della vita residua di componenti esercìti in regime di scorrimento viscoso ISPESL Linea guida raccomandaa per la valuazione della via residua di componeni esercìi in regime di scorrimeno viscoso Calcolo della frazione di via consumaa per scorrimeno viscoso Sezione 2 LG v. 1 Nella

Dettagli

1. ESEMPIO DI CINEMATICA DI UN SISTEMA A DUE CORPI RIGIDI

1. ESEMPIO DI CINEMATICA DI UN SISTEMA A DUE CORPI RIGIDI . ESEMPIO DI CINEMATICA DI UN SISTEMA A DUE CORPI RIGIDI Dao il sisema illusrao in Figura, consisene in due barre rigide connesse da un giuno di roazione orizzonale ; la prima barra è vincolaa a ruoare

Dettagli

Ist. di economia, Corso di Laurea in Ing. Gestionale, I canale (A-L), A.A Prof. R. Sestini

Ist. di economia, Corso di Laurea in Ing. Gestionale, I canale (A-L), A.A Prof. R. Sestini Is. di economia, Corso di Laurea in Ing. Gesionale, I canale (A-L), A.A. 2008-2009. Prof. R. Sesini SCHEMA DELLE LEZIONI DELLA TREDICESIMA SETTIMANA ELEMENTI di CONTABILITA ECONOMICA NAZIONALE e di MACROECONOMIA

Dettagli

Corso di Misure Geodeiche Esercizio posizionameno relaivo Versione:. Jun. 00 Creao da Marco Scurai. remessa. La presene eserciazione risolve in modo compleo e deagliao un problema di sima della posizione

Dettagli

1 Catene di Markov a stati continui

1 Catene di Markov a stati continui Caene di Markov a sai coninui In queso caso abbiamo ancora una successione di variabili casuali X 0, X, X,... ma lo spazio degli sai è un insieme più che numerabile. Nel seguio supporremo che lo spazio

Dettagli

CONTROLLI AUTOMATICI Ingegneria Meccatronica

CONTROLLI AUTOMATICI Ingegneria Meccatronica CONTROLLI AUTOMATICI Ingegneria Meccaronica TRASFORMATE DI LAPLACE Prof. Cesare Fanuzzi Ing. Crisian Secchi e-mail: cesare.fanuzzi@unimore.i, crisian.secchi@unimore.i hp://www.auomazione.ingre.unimore.i

Dettagli

Teoria dei segnali terza edizione

Teoria dei segnali terza edizione eoria dei segnali Capiolo 4 Sisemi monodimensionali a empo coninuo SOLUZIONI DEGLI ESERCIZI Soluzione dell esercizio 4. Il segnale x () coniene le requenza = and = 7 / ( ) = 3.5 / quindi, disorsioni di

Dettagli

f v, lim allora x, y x, y e analogamente se 0,1 Osserviamo che la derivata direzionale esiste per ogni punto x y e ogni vettore,2 0,0 cos 2 1

f v, lim allora x, y x, y e analogamente se 0,1 Osserviamo che la derivata direzionale esiste per ogni punto x y e ogni vettore,2 0,0 cos 2 1 DERIVATA DIREZIONALE La definizione di derivaa direzionale è y, lim,, f v y v f y v, v Se v, allora, y, y e analogamene se,, y, y f, y y Calcolare la derivaa direzionale della funzione dove v allora dom

Dettagli

SOLUZIONI SCRITTO DI ANALISI MATEMATICA II - 24/06/08. C.L. in Matematica e Matematica per le Applicazioni

SOLUZIONI SCRITTO DI ANALISI MATEMATICA II - 24/06/08. C.L. in Matematica e Matematica per le Applicazioni SOLUZIONI SCRITTO DI ANALISI MATEMATICA II - 4/06/08 C.L. in Maemaica e Maemaica per le Applicazioni Prof. K. R. Payne e Do. M. Calanchi, C. Tarsi, L. Vesely Soluzione esercizio. (a) Sia f definia da f(x)

Dettagli

Università del Sannio

Università del Sannio Uniersià del Sannio Corso di Fisica 1 Lezione 3 Cinemaica I Prof.ssa Sefania Peracca Corso di Fisica 1 - Lez. 3 - Cinemaica I 1 Cinemaica La cinemaica è quella branca della fisica che sudia il moimeno

Dettagli

Università degli studi di Genova Facoltà di Scienze Matematiche, Fisiche e Naturali. Prova Finale. Titolo:

Università degli studi di Genova Facoltà di Scienze Matematiche, Fisiche e Naturali. Prova Finale. Titolo: Universià degli sudi di Genova Facolà di Scienze Maemaiche, Fisiche e Naurali Anno accademico 003 004 Corso di laurea in Saisica Maemaica e Traameno Informaico dei Dai Prova Finale Tiolo: Analisi delle

Dettagli

Teoria perturbativa (parte II : probabilità di transizione, pacchetto d onda)

Teoria perturbativa (parte II : probabilità di transizione, pacchetto d onda) Teoria perurbaiva (pare II : probabilià di ransizione, paheo d onda) Espressione della perurbazione Qui uilizziamo i risulai della prima pare dello sudio dell inerazione della radiazione eleromagneia on

Dettagli

Approccio Classico: Metodi di Scomposizione

Approccio Classico: Metodi di Scomposizione Approccio Classico: Meodi di Scomposizione Il Modello di Scomposizione Il modello maemaico ipoizzao nel meodo classico di scomposizione è: y =f(s, T, E ) dove y è il dao riferio al periodo S è la componene

Dettagli

Processo di Arrivi di Poisson

Processo di Arrivi di Poisson CALCOLO DELLE PROBABILITA Processo di Arrivi di Poisson Per arrivo riferimeno. si inende un qualsiasi eveno casuale che si realizza in un deerminao sisema di Un processo di arrivi è un flusso di eveni

Dettagli

sedimentazione Approfondimenti matematici

sedimentazione Approfondimenti matematici sedimenazione Approfondimeni maemaici considerazioni sulla velocià L espressione p A F = R (1) che fornisce la relazione sulle forze ageni nel processo della sedimenazine, indica che all inizio il moo

Dettagli

Vediamo come si sviluppa la soluzione esplicita del problema. ( t)

Vediamo come si sviluppa la soluzione esplicita del problema. ( t) Analisi ransioria L'analisi dinamica ransioria (dea anche analisi emporale) è una ecnica che consene di deerminare la risposa dinamica di una sruura soggea ad una generica ecciazione emporale Gli effei

Dettagli

Capitolo IX. Inflazione, produzione e crescita della moneta

Capitolo IX. Inflazione, produzione e crescita della moneta Capiolo IX. Inflazione, produzione e crescia della monea 1. Produzione, disoccupazione e inflazione Legge di Okun Relazione ra la variazione della disoccupazione e la deviazione del asso di crescia della

Dettagli

ESERCITAZIONE 3 Analisi Classica - Reprise

ESERCITAZIONE 3 Analisi Classica - Reprise STATISTICA ECONOMICA ED ANALISI DI MERCATO Previsioni Economiche ed Analisi di Serie Soriche A.A. 2003 / 04 ESERCITAZIONE 3 Analisi Classica - Reprise di Daniele Toninelli D ORA IN POI LAVORARE SUI PRIMI

Dettagli

SISTEMI LINEARI TEMPO INVARIANTI

SISTEMI LINEARI TEMPO INVARIANTI SISTEMI LINEARI TEMPO INVARIANTI SISTEMI LINEARI TEMPO INVARIANTI Sisema: Definizione di Sisema Da un puno di visa fisico e un disposiivo ce modifica un segnale x(), deo ingresso, generando il segnale

Dettagli

GENERALITA SULLE MACCHINE ELETTRICHE

GENERALITA SULLE MACCHINE ELETTRICHE GENERALITA SULLE MACCHINE ELETTRICHE Una macchina è un organo che assorbe energia di un deerminao ipo e la rasforma in energia di un alro ipo. Energia in Energia in MACCHINA ingresso uscia Energia dispersa

Dettagli

Titolo unità. Dalla serie alla trasformata di Fourier Proprietà della trasformata di Fourier Uguaglianza di Parseval e principio di indeterminazione

Titolo unità. Dalla serie alla trasformata di Fourier Proprietà della trasformata di Fourier Uguaglianza di Parseval e principio di indeterminazione Inroduzione ai segnali deerminai iolo unià Dalla serie alla rasormaa di ourier Proprieà della rasormaa di ourier Uguaglianza di Parseval e principio di indeerminazione 005 Poliecnico di orino 1 Dalla serie

Dettagli

SISTEMI LINEARI TEMPO INVARIANTI

SISTEMI LINEARI TEMPO INVARIANTI SISTEMI LINEARI TEMPO INVARIANTI 1 Fondameni di segnali Fondameni e rasmissione TLC Definizione di sisema Sisema: Da un puno di visa fisico e un disposiivo ce modifica un segnale x(, deo ingresso, generando

Dettagli

Economia Politica H-Z Lezione 8

Economia Politica H-Z Lezione 8 Blanchard, Macroeconomia, Il Mulino 2009 Economia Poliica H-Z Lezione 8 Sergio Vergalli vergalli@eco.unibs.i Sergio Vergalli - Lezione 4 1 Blanchard, Macroeconomia, Il Mulino 2009 Capiolo VIII. Inflazione,

Dettagli

COSTRUZIONE DELLE TAVOLE SELEZIONATE

COSTRUZIONE DELLE TAVOLE SELEZIONATE COSTRUZIONE DELLE TAVOLE SELEZIONATE 1. Inroduzione Ai fini della deerminazione delle presazioni di un conrao assicuraivo sulla via umana, srumeno indispensabile sono le avole demografiche di moralià,

Dettagli

Capitolo 9 I Σ I BC I BC. Dimostrazione: Con un calcolo diretto si prova la a). La b) e` ovvia. Dalla a) e b) segue. xy x μx y μ

Capitolo 9 I Σ I BC I BC. Dimostrazione: Con un calcolo diretto si prova la a). La b) e` ovvia. Dalla a) e b) segue. xy x μx y μ Capiolo 9 9- Richiami sulle disribuzioni normali mulivariae 9- Modelli nello spazio degli sai (Modelli Sae Space e cosruzione del filro di Kalman 9-3 Filraggio previsione e regolarizzazione nei modello

Dettagli

Cinematica del punto materiale 1. La definizione di cinematica.

Cinematica del punto materiale 1. La definizione di cinematica. Cinemaica del puno maeriale 1. La definizione di cinemaica. 2. Posizione e Sposameno 3. Equazione oraria del moo 4. Traieoria 5. Moo in una dimensione. 6. Velocià media e velocià isananea. 7. Moo reilineo

Dettagli

Alcuni strumenti per misure di portata e velocità

Alcuni strumenti per misure di portata e velocità Capiolo 8 lcuni srumeni per misure di poraa e velocià 8. Meodi sperimenali per misure di velocià lcune delle principali ecniche che si uilizzano in fluidodinamica per misure di velocià (o poraa) sono riassune

Dettagli

Affidabilità dei sistemi

Affidabilità dei sistemi dei sisemi Un sisema (o uno qualsiasi dei suoi componeni) può essere soggeo a sress casuali. Es: un fusibile in un circuio; una rave di acciaio soo carico; l ala di un aereo soo l influenza di forze Collasso

Dettagli

SISTEMI LINEARI TEMPO INVARIANTI

SISTEMI LINEARI TEMPO INVARIANTI SISTEMI LINEARI TEMPO INVARIANTI Fondameni di Segnali e Trasmissione Sisema: Definizione di Sisema Da un puno di visa fisico e un disposiivo ce modifica un segnale, deo ingresso, generando il segnale,

Dettagli

La risposta di un sistema lineare viscoso a un grado di libertà sollecitato da carichi periodici. Prof. Adolfo Santini - Dinamica delle Strutture 1

La risposta di un sistema lineare viscoso a un grado di libertà sollecitato da carichi periodici. Prof. Adolfo Santini - Dinamica delle Strutture 1 La risposa di un sisema lineare viscoso a un grado di liberà solleciao da carichi periodici Prof. Adolfo Sanini - Dinamica delle Sruure 1 Inroduzione 1/ Un carico p() si dice periodico quando assume indefiniamene

Dettagli

Circuiti dinamici. Circuiti del primo ordine. (versione del ) Circuiti del primo ordine

Circuiti dinamici. Circuiti del primo ordine.  (versione del ) Circuiti del primo ordine ircuii dinamici ircuii del primo ordine www.die.ing.unibo.i/pers/masri/didaica.hm (versione del 4-5- ircuii del primo ordine ircuii del primo ordine: circuii il cui sao è definio da una sola variabile

Dettagli

Università degli Studi di Padova Dipartimento di Scienze Statistiche Corso di Laurea Triennale in. Statistica Economia e Finanza

Università degli Studi di Padova Dipartimento di Scienze Statistiche Corso di Laurea Triennale in. Statistica Economia e Finanza Universià degli Sudi di Padova Diparimeno di Scienze Saisiche Corso di Laurea Triennale in Saisica Economia e Finanza RELAZIONE FINALE UN TEST PER L AUTOCORRELAZIONE BASATO SULLO STIMATORE DI CAUCHY Relaore:

Dettagli

Economia Politica H-Z Lezione 9

Economia Politica H-Z Lezione 9 Blanchard, Macroeconomia, Il Mulino 2009 Economia Poliica H-Z Lezione 9 Sergio Vergalli vergalli@eco.unibs.i Sergio Vergalli - Lezione 4 1 Blanchard, Macroeconomia, Il Mulino 2009 Capiolo XIII. Le aspeaive:

Dettagli

x(t) y(t) 45 o x x(t) -2T

x(t) y(t) 45 o x x(t) -2T Eserciazione 0 - Processi casuali Esercizio Si consideri lo schema di fig., dove =A cos(!0 + ) e e una cosane. Si consideri il paramero A come una variabile casuale uniformemene disribuia ra 0 e.calcolare

Dettagli

Esercizio 1 [punti 4] Si tracci il grafico dei segnali a. x 1 (t) = x( t + 2), t R, b. x 2 (t) = x( t 1), t R, sapendo che x(t) =

Esercizio 1 [punti 4] Si tracci il grafico dei segnali a. x 1 (t) = x( t + 2), t R, b. x 2 (t) = x( t 1), t R, sapendo che x(t) = Esercizio [puni 4] Prova scria di SEGNALI E SISTEMI 5 seembre 2003 Proff. L. Finesso, M. Pavon e S. Pinzoni (a.a. 2002-2003) Teso e Soluzione (redaa da L. Finesso) Si racci il grafico dei segnali a. x

Dettagli

Università di Trieste Facoltà d Ingegneria. Esercitazioni per la preparazione della prova scritta di Matematica 3 Dott. Franco Obersnel. e 5x dx.

Università di Trieste Facoltà d Ingegneria. Esercitazioni per la preparazione della prova scritta di Matematica 3 Dott. Franco Obersnel. e 5x dx. Universià di Triese Facolà d Ingegneria. Eserciazioni per la preparazione della prova scria di Maemaica 3 Do. Franco Obersnel Lezione 7: inegrali generalizzai; funzioni definie da inegrali. Esercizio.

Dettagli

UNIVERSITÀ di ROMA TOR VERGATA

UNIVERSITÀ di ROMA TOR VERGATA UNIVERSITÀ di ROMA TOR VERGATA Corso di Probabilià e Saisica 26-7 PBaldi, GTerenzi Tuorao 5, 2 aprile 27 Corso di Laurea in Maemaica Esercizio Dire se esisono delle cosani c ali che le funzioni a) f (x)

Dettagli

UNIVERSITA DEGLI STUDI DI PADOVA

UNIVERSITA DEGLI STUDI DI PADOVA UNIVERSITA DEGLI STUDI DI PADOVA FACOLTA DI SCIENZE STATISTICHE Corso di Laurea Specialisica in Scienze Saisiche, Economiche, Finanziarie ed Aziendali PREVISIONI ROBUSTE CON IL LISCIAMENTO ESPONENZIALE

Dettagli

Circuiti del I ordine

Circuiti del I ordine ircuii del I ordine 9 Un circuio è deo del I ordine se coniene un solo elemeno dinamico, condensaore o induore, e per il reso è cosiuio da componeni elerici di ipo algebrico privi di memoria, ovvero generaori

Dettagli

Ci domandiamo allora se e sempre possibile rappresentare una funzione in questo modo.

Ci domandiamo allora se e sempre possibile rappresentare una funzione in questo modo. 1. Serie di Fourier I problemi al bordo associai ad equazioni differenziali si sanno risolvere con il meodo di separazione delle variabili solano se il dao iniziale si rappresena nella forma fx = a cosx

Dettagli

Università degli Studi di Bergamo Corso di Geometria e Algebra Lineare (vecchio programma) 17 giugno 2015 Tema A

Università degli Studi di Bergamo Corso di Geometria e Algebra Lineare (vecchio programma) 17 giugno 2015 Tema A Universià degli Sudi di Bergamo orso di Geomeria e Algebra Lineare (vecchio programma) 7 giugno Tema A Tempo a disposizione: ore. alcolarici, libri e appuni non sono ammessi. Ogni esercizio va iniziao

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito del log 1 + x2 y 2

Analisi Matematica II Corso di Ingegneria Gestionale Compito del log 1 + x2 y 2 Analisi Maemaica II Corso di Ingegneria Gesionale Compio del 5-7-7 - È obbligaorio consegnare ui i fogli, anche la brua e il eso. - Le rispose senza giusificazione sono considerae nulle. Esercizio. puni

Dettagli

Circuiti in regime sinusoidale

Circuiti in regime sinusoidale ircuii in regime sinusoidale are www.die.ing.unibo.i/pers/masri/didaica.hm versione del 3-0-05 Funzioni sinusoidali a cos ampiezza fase iniziale radiani, rad < pulsazione rad/s f frequenza herz, Hz T periodo

Dettagli

Corso di Laurea in Ingegneria Informatica (Laurea on Line) Prima prova Intermedia

Corso di Laurea in Ingegneria Informatica (Laurea on Line) Prima prova Intermedia Milano, 5//00 Corso di Laurea in Ingegneria Informaica (Laurea on Line Corso di Fondameni di Segnali e rasmissione Prima prova Inermedia Carissimi sudeni, scopo di quesa prima prova inermedia è quello

Dettagli

Processi stocastici e affidabilità

Processi stocastici e affidabilità Processi socasici e affidabilià ω Dao un esperimeno casuale, si assuma di associare ad ogni ( ω ) esio ω una funzione x, di. Risula così definio un insieme di funzioni del empo, deo processo socasico,

Dettagli

Indice generale della produzione industriale. indice grezzo corretto per i giorni lavorativi destagionalizzato. marzo 07.

Indice generale della produzione industriale. indice grezzo corretto per i giorni lavorativi destagionalizzato. marzo 07. Indice generale della produzione indusriale indice grezzo correo per i giorni lavoraivi desagionalizzao 0.0 0.0 00.0 indice 90.0 80.0 70.0 60.0 50.0 marzo 06 giugno 06 seembre 06 dicembre 06 marzo 07 giugno

Dettagli

AA. 2012/13 50011-CLMG Esercitazione - IRPEF TESTO E SOLUZIONI

AA. 2012/13 50011-CLMG Esercitazione - IRPEF TESTO E SOLUZIONI AA. 2012/13 50011-CLMG Eserciazione - IRPEF TESTO E SOLUZIONI Esercizio 1 - IRPEF Il signor X, che vive solo e non ha figli, ha percepio, nel corso dell anno correne, i segueni reddii: - Reddii da lavoro

Dettagli

Analisi Matematica 3/Analisi 4 - SOLUZIONI (19/01/2015)

Analisi Matematica 3/Analisi 4 - SOLUZIONI (19/01/2015) Corso di Laurea in Maemaica Docene: Claudia Anedda Analisi Maemaica 3/Analisi 4 - SOLUZIONI (19/1/215) 1) Daa la serie x b e nx [(n + 1) 2 e x n 2 ], n1 b N +, b pari: i) dimosrare che essa è una serie

Dettagli

ESEMPI DI ESERCIZI SU IRPEF ED IRES

ESEMPI DI ESERCIZI SU IRPEF ED IRES ESEMPI DI ESERCIZI SU IRPEF ED IRES 1. Irpef 1) Dopo avere definio il conceo di progressivià delle impose, si indichino le modalià per la realizzazione di un sisema di impose progressivo. ) Il signor A,

Dettagli