Esercitazioni di Statistica

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Esercitazioni di Statistica"

Transcript

1 Esercitazioni di Statistica Calcolo delle probabilità Prof. Livia De Giovanni Esercizio 1 Si vuole studiare la distribuzione del sesso dei figli nelle famiglie aventi due figli (per semplicità si escludono dall indagine le famiglie aventi gemelli). a) Si specifichi lo spazio campionario b) Si definiscano gli eventi A: il figlio più grande è una femmina e B: entrambi i figli hanno lo stesso sesso. c) Si definiscano gli eventi il figlio più grande è femmina o entrambi i figli hanno lo stesso sesso e il figlio più grande è femmina e entrambi i figli hanno lo stesso sesso d) Si verifichi che A = {A B} {A B} a) S = {MM, MF, F M, F F } dove, in ogni coppia di lettere, la prima indica il maggiore dei figli. b) A = {F M, F F }, B = {F F, MM} c) A B = {F M, F F, MM} e A B = {F F } d) Notiamo che B = {F M, MF } e A B = {F M}. Quindi {F F } {F M} = A Esercizio 2 Si consideri l esperimento avente come risultati possibili i numeri 1, 2, 3, 4, 5 di probabilità rispettivamente 0.2, 0.4, 0.1, 0.1, 0.2. a) Determinare lo spazio dei risultati possibili. b) Descrivere gli eventi elencati e determinarne la probabilità: A: numero minore o uguale a 3 B: numero dispari C: numero pari 1

2 a) Tutti i possibili sottoinsiemi di S sono tanti quanti le disposizioni con ripetizione di 2 elementi (1=presenza, 0=assenza) su 5 posti in numero di 2 5 = 32. Il numero di sottoinsiemi di dimensione m è ottenendo calcolando il numero di combinazioni di n = 5 elementi di classe m 5 D m per m = 1,..., 5. Se sono note le probabilità degli eventi elementari (non negative e di somma 1) per l assioma 3 della probabilità la probabilità di un qualunque sottoinsieme di S è la somma delle probabilità degli eventi elementari in esso contenuti. {{}, {1}, {2}, {3}, {4}, {5}, {1,2}, {1,3}, {1,4}, {1,5}, {2,3}, {2,4}, {2,5}, {3,4}, {3,5}, {4,5}, {1,2,3}, {1,2,4}, {1,2,5}, {1,3,4}, {1,4,5}, {1,3,5}, {2,3,4}, {2,3,5}, {2,4,5}, {3,4,5}, {1,2,3,4}, {1,2,3,5}, {2,3,4,5}, {1,2,4,5}, {1,3,4,5}, {1,2,3,4,5}} b) A = (1, 2, 3) P (A) = = 0.7 B = (1, 3, 5) P (B) = = 0.5 C = (2, 4) P (C) = = 0.5 Esercizio 3 Si consideri un urna contenente tre palline, una Rossa, una Bianca e una Verde. Si estraggono due palline in successione senza reimmissione. Si determini la probabilità che, per la coppia estratta a) la prima pallina estratta sia rossa b) la seconda pallina estratta non sia bianca c) la prima pallina sia rossa o la seconda non sia bianca. a) Lo spazio degli eventi è dato da {RB, RV, BR, BV, V R, V B} Il numero degli eventi possibili è quindi 6. Ciascuno di tali eventi ha probabilità 1/6 in quanto la probabilità di una qualunque pallina è 1/3 alla prima estrazione e 1/2 (estrazione senza reimmissione) alla seconda estrazione (1/3 1/2 = 1/6). Il numero degli eventi favorevoli è due, quindi la probabilità cercata è 2/6. b) Il numero degli eventi favorevoli è 4, la probabilità è 4/6 c) Possiamo procedere come sopra o usare la formula P (A B) = P (A) + P (B) P (A B) dove A e B sono gli eventi di cui ai punti 1 e 2. A B è quindi l evento {RV } e P (A B) = 1/6. Quindi la probabilità cercata è 2/6 + 4/6 1/6 = 5/6. 2

3 Esercizio 4 Siano A e B due eventi di un comune spazio degli eventi S. Si conosce che gli eventi A e B sono indipendenti e incompatibili e che le probabilità dei due eventi sono legate dalla seguente relazione: Determinare la probabilità dei due eventi. P r(a) = 2 P r(b). Se due eventi A e B sono incompatibili si ha che: A B = P r(a B) = 0. (1) Se due eventi A e B sono indipendenti si ha che: Mettendo assieme le condizioni 1 e 2 si ha che P r(a B) = P r(a) P r(b). (2) P r(a) P r(b) = 0. (3) Quindi le due assunzioni (incompatiblità ed indipendenza) implicano che oppure oppure P r(a) = 0 e P r(b) 0 (4) P r(b) = 0 e P r(a) 0 (5) P r(a) = P r(b) = 0. (6) Il problema fornisce come ipotesi supplementare che P r(a) = 2P r(b) ed essendo quest ultima compatibile esclusivamente con il caso 6 si può concludere che P r(a) = P r(b) = 0. Esercizio 5 Dati due eventi A, B, con P (A) = 1/2 e P (A B) = P (B A) = 1/4 calcolare la probabilità degli eventi condizionati Ā B e A B. Per risolvere il quesito occorre partire dalla definizione di probabilità dell intersezione di due eventi P (A B) = P (A)P (B A) = P (B)P (A B), e da questa si determina che P (B) = P (A) = 1/2. Dalla definizione di probabilità dell evento complementare si ha che P (Ā B) = 1 P (A B) = 1 = 1 P (A)P ( B A) P ( B) P (A B) P ( B) = P (A)(1 P (B A)) = 1 P ( B) = P (B A) = 1 4. Con calcoli analoghi si ottiene P (A B) = 3 4 3

4 Esercizio 6 In un certo collegio, il 25% degli studenti è stato bocciato in matematica, il 15% è stato bocciato in chimica, e il 10% è stato bocciato sia in matematica che in chimica. Viene scelto a caso uno studente. a) Se egli stato bocciato in chimica, qual è la probabilità che sia stato bocciato in matematica? b) Se egli è stato bocciato in matematica, qual è la probabilità che sia stato bocciato in chimica? c) Qual è la probabilità che sia stato bocciato in matematica o in chimica? allora: Sia M = {studenti bocciati in matematica} e C = {studenti bocciati in chimica}, P (M) = 0, 25 P (C) = 0, 15 P (M C) = 0, 10 a) La probabilità che uno studente sia stato bocciato in matematica, se si sa che stato bocciato in chimica, è P (M C) = P (M C) P (C) = 0, 10 0, 15 = 2 3 b) La probabilità che uno studente sia stato bocciato in chimica, se si sa che stato bocciato in matematica, è P (C M) = P (C M) P (M) = 0, 10 0, 25 = 2 5 c) La probabilità che sia stato bocciato in matematica o in chimica, è P (M C) = P (M) + P (C) P (M C) = 0, , 15 0, 10 = 0, 30 Esercizio 7 Un collettivo di 200 studenti è stato classificato secondo il voto riportato ad un dato esame e a seconda che l esame in oggetto fosse il primo a essere sostenuto o meno Primo Esame Voto SI N0 voto voto > Si estrae a caso dal collettivo uno studente. Si considerino gli eventi A:{voto 24}, B:{ il primo esame sostenuto}. Calcolare: a) Pr(A), Pr(B), b) Pr(A B), c) Pr(B A). A e B sono indipendenti? 4

5 Dalla tabella riportante i casi favorevoli Primo Esame Voto SI N0 voto voto > si ottiente la tabella delle frequenze congiunte e marginali Primo Esame Voto SI N0 voto voto > a) Dalle precedenti tabelle si ottiene: P r(a) = = 0.275, P r(b) = = b) P r(a B) = 40/200 = 0.2 quindi P r(a B) = = 0.5 c) P r(b A) = P r(a B) P r(a) o, dalla tabella: 40/55 = 0.2/0.275 = = = A e B non sono indipendenti poiché P (B A) P (B) Esercizio 8 Una frazione pari al 20% dei messaggi di posta elettronica ricevuti è classificato come spam. Se consideriamo i messaggi di spam, la probabilità che contengano parole di un certo tipo ( lotteria, notificazione, vincitore ) è pari a 0,70, mentre per i messaggi validi tale probabilità risulta pari a 0,05. Sulla base di queste informazioni, calcolare la probabilità che un messaggio che contiene le parole di cui sopra costituisca uno spam. 5

6 Indicando con B l evento {Il messaggio classificato come spam} e con A l evento {Il messaggio contiene parole di un certo tipo} dal testo abbiamo che: P (B) = 0, 20 P (A B) = 0, 70 P (A B) = 0, 05 e ci viene richiesto di determinare la seguente probabilità: P (B A). Applicando il Teorema di Bayes otteniamo che: P (B A) = P (A B)P (B) P (A B)P (B)+P (A B)P (B) = = 0,7 0,2 0,7 0,2+0,05 0,8 P (A B)P (B) = P (A B)P (B)+P (A B)(1 P (B)) = 0, 78 Esercizio 9 Siano A e B due eventi dello spazio campionario tali che P (A) = 0, 7 e P (A B) = 0, 8. Si determini P (B) nei seguenti casi: a) A e B sono incompatibili; b) A e B sono indipendenti; c) P (A B) = 0, 6. Dal testo abbiamo che: P (A) = 0, 7 P (A B) = 0, 8 a) Se A e B sono incompatibili si ha che: P (A B) = 0 e poiché: otteniamo che: P (A B) = P (A) + P (B) P (A B) 0, 8 = 0, 7 + P (B) 0 P (B) = 0, 1 b) Se A e B sono indipendenti si ha che: P (A B) P (B A) = P (A) = P (B) da cui e poiché: otteniamo che: P (A B) = P (A) P (B) P (A B) = P (A) + P (B) P (A B) P (A B) = P (A) + P (B) P (A) P (B) = P (A) + (1 P (A)) P (B) quindi: 0, 8 = 0, 7 + (1 0, 7)P (B) P (B) = 0, 33 6

7 c) Poiché P (A B) = P (A) + P (B) P (A B) = P (A) + P (B) P (A B)P (B) = se P (A B) = 0, 6 otteniamo che: = P (A) + (1 P (A B))P (B) 0, 8 = 0, 7 + (1 0, 6)P (B) P (B) = 0, 25 Esercizio 10 Da un urna contenente 5 palline bianche e 6 nere si effettuano due estrazioni con reinserimento. Si calcoli a) la probabilità che le due palline estratte siano del medesimo colore b) la probabilità che almeno una delle due sia nera. Indicando con A = {le due palline estratte sono del medesimo colore} e con B = {almeno una delle due palline nera} abbiamo che: A = {le due palline estratte sono bianche} {le due palline estratte sono nere} B = {una delle palline estratte nera} {le due palline estratte sono nere} Sfruttando l indipendenza delle estrazioni (estrazioni con reinserimento) e l incompatibilità tra eventi risulta: a) b) P (A) = = = 0, 504 P (B) = = = 0, 79 Esercizio 11 Un azienda produttrice di mattoni sta effettuando dei controlli su ogni pezzo prodotto. E noto che il 20% dei mattoni presenta un difetto (evento D). Si sa inoltre che: se il mattone non è difettoso, supera il controllo (evento C) con probabilità 0,9 ; se il mattone è difettoso, la probabilità che non superi il controllo è 0,7. Sapendo che il mattone ha superato il controllo, qual è la probabilità che NON sia difettoso? 7

8 Indicando con D l evento {il mattone presenta un difetto} e con C l evento {il mattone supera il controllo}, dal testo abbiamo che: P (D) = 0, 20 P (C D) = 0, 9 P (C D) = 0, 7 e ci viene richiesto di determinare la seguente probabilità: P (D C). Applicando il Teorema di Bayes otteniamo che: P (D C) = P (C D)P (D) P (C D)P (D)+P (C D)P (D) = = 0,9 (1 0,2) 0,9 (1 0,2))+(1 0,7)) 0,2 P (C D)(1 P (D)) P (C D)(1 P (D))+(1 P (C D))P (D) = = 0, 92 Esercizio 12 Da un urna contenente 10 palline, di cui 6 bianche e 4 nere, si estraggono due palline. Determinare la probabilità dei seguenti eventi nel caso di estrazioni a) con reimmissione e b) senza reimmissione: E1: le due palline sono bianche E2: una pallina è bianca e l altra è nera E3: almeno una pallina è bianca a) Si definiscono gli eventi: B1: estrazione di pallina bianca alla prima estrazione B2: estrazione di pallina bianca alla seconda estrazione N1: estrazione di pallina nera alla prima estrazione N2: estrazione di pallina nera alla seconda estrazione Nei termini degli eventi definiti risulta: E1 = B1 B2 La corrispondente probabilità è data da p(e1) = p(b1 B2) = p(b1)p(b2/b1) (probabilità condizionata) = p(b1)p(b2) (indipendenza) = 6/10 6/10 = 36/100 E2 = (B1 N2) (N1 B2) La corrispondente probabilità è data da p(e2) = p[(b1 N2) (N1 B2)] = p(b1 N2) + p(n1 B2) (eventi incompatibili) = p(b1)p(n 2/B1) + p(n 1)p(B2/N 1) (probabilità condizionata)= p(b1)p(n 2) + 8

9 p(n1)p(b2) (indipendenza) = 6/10 4/10 + 4/10 6/10 = 48/100 E3 = (B1 N2) (N1 B2) (B1 B2) La corrispondente probabilità è data da p(e3) = p[(b1 N 2) (N 1 B2) (B1 B2)] = p(b1 N 2)+p(N 1 B2)+p(B1 B2) (eventi incompatibili) = p(b1)p(n 2/B1) + p(n 1)p(B2/N 1) + p(b1)p(b2/b1) (probabilità condizionata) = p(b1)p(n 2) + p(n 1)p(B2) + p(b1)p(b2) (indipendenza) = 6/10 4/10 + 4/10 6/10 + 6/10 6/10 = 84/100 b) Nei termini degli eventi definiti risulta: E1 = B1 B2 La corrispondente probabilità è data da p(e1) = p(b1 B2) = p(b1)p(b2/b1) (probabilità condizionata) = 6/10 5/9 = 30/90 E2 = (B1 N2) (N1 B2) La corrispondente probabilità è data da p(e2) = p[(b1 N2) (N1 B2)] = p(b1 N2) + p(n1 B2) (eventi incompatibili)= p(b1)p(n 2/B1)+p(N 1)p(B2/N 1) (probabilità condizionata) = 6/10 4/9+4/10 6/9 = 48/90 E3 = (B1 N2) (N1 B2) (B1 B2) La corrispondente probabilità è data da p(e3) = p[(b1 N 2) (N 1 B2) (B1 B2)] = p(b1 N 2)+p(N 1 B2)+p(B1 B2) (eventi incompatibili) = p(b1)p(n 2/B1) + p(n 1)p(B2/N 1) + p(b1)p(b2/b1) (probabilità condizionata) = 6/10 4/9 + 4/10 6/9 + 6/10 5/9 = 78/90 Esercizio 13 Si consideri la prova consistente nel lancio di un dado non truccato due volte. Calcolare la probabilità degli eventi così definiti: A: si verifica 6 con il primo dado B: la somma dei punteggi è 7 C: la somma dei punteggi è 8 Verificare la relazione di dipendenza/indipendenza stocastica tra B e A e tra C e A Spazio dei risultati possibili S:

10 A = { } B = { } C = { } A B = {61} A e B indipendenti: p(a/b) = p(a B)/p(B) = 1/36/6/36 = 1/6 = p(a) A C = {62} A e C dipendenti: p(a/c) = p(a C)/p(C) = 1/36/5/36 = 1/5 diverso da p(a) = 1/6 Esercizio 14 Ciascun relé nei circuiti in figura si chiude con probabilità 0.8. Se tutti i circuiti funzionano indipendentemente determinare la probabilità che la corrente scorra tra A e B (a circuito in serie entrambi i relé si devono chiudere; b e c circuiti in parallelo almeno uno dei circuiti si deve chiudere. a) La corrente scorre tra A e B se tutti e due i relé si chiudono. Indicando con R1 l evento chiusura relé 1 e R2 l evento chiusura relé 2, con C l evento la corrente scorre nel circuito risulta: p(c) = p(r1 R2) = p(r1) p(r2) = = 0.64 (legge delle probabilità composte per eventi indipendenti). b) La corrente scorre tra A e B se in almeno uno dei due circuiti C1 e C2 tutti e due i relé si chiudono. Indicando con R11 l evento chiusura relé nel primo circuito e R12 l evento chiusura relé nel secondo circuito, con C l evento la corrente scorre nel circuito, con C1 l evento la corrente scorre nel primo circuito, con C2 l evento la corrente scorre nel secondo circuito risulta: p(c) = p(c1 C2) = p(r11 R12) = p(r11) + p(r12) p(r11 R12) = = 0.96 (legge delle probabilità totali e composte per eventi indipendenti). c) La corrente scorre tra A e B se in almeno uno dei due circuiti C1 e C2 tutti e due i relé si chiudono. Indicando con R11 l evento chiusura relé 1 nel primo circuito, con R21 l evento chiusura relé 2 nel primo circuito, con R12 l evento chiusura relé 1 nel secondo circuito, con R22 l evento chiusura relé 2 nel secondo circuito, con C l evento la corrente scorre nel circuito, con C1 l evento la corrente scorre nel primo circuito, con C2 l evento la corrente scorre nel secondo circuito risulta: p(c) = p(c1 C2) = p((r11 R21) (R12 R22)) = = (legge delle probabilità totali e composte per eventi indipendenti). Esercizio (Scozzafava) 15 (Paradosso di de Meré) Verificare se sia più probabile ottenere almeno una volta la faccia 6 lanciando 4 volte un dado oppure ottenere almeno una volta due facce 6 lanciando 24 volte due dadi (4 eventi di probabilità 1/6 e 24 eventi di probabilità 1/36). 10

11 La probabilità di avere almeno una volta 6 si calcola come complemento della probabilità di non avere 6 nessuna volta: P (almeno una volta 6) = 1 P (nessuna volta 6) = 1 ( 5 6 )4 = La probabilità di avere almeno due volte 6 si calcola come complemento della probabilità di non avere due volte 6 nessuna volta: P (almeno una volta due 6) = 1 P (nessuna volta due 6) = 1 ( )24 = Esercizio (Ross) 16 In un paese vi sono 4 tecnici che riparano televisori. Se si guastano 4 TV, qual è la probabilità che vengano chiamati esattamente 2 tecnici? Cosa stiamo assumendo senza dirlo esplicitamente? Poiché i tecnici sono equiprobabili si può determinare la probabilità come numero di casi favorevoli su numero di casi possibili. Casi possibili: 4 4 (disposizioni con ripetizione di 4 elementi di classe 4) Casi favorevoli: ( 4 2) (2 4 2) P (chiamare esattamente 2 tecnici) = (6 14)/256 = (4 21)/256 = 21/64 Infatti delle 4 4 disposizioni con ripetizione di 4 elementi su 4 posti quelle in cui ci sono esattamente due numeri diversi si ottengono considerando ( 4 2) modi di scegliere due numeri tra i 4 (combinazioni senza ripetizione di 4 elementi di classe 2) e per ogni coppia scelta considerando i 2 4 modi di disporre i due elementi su 4 posti (disposizioni con 11

12 ripetizione di 2 elementi su 4 posti) a cui bisogna togliere i casi dei 4 elementi uguali ( e se ad esempio ci si riferisce alla coppia di tecnici 1 e 2). Ad esempio , , , , , , (esclusa ) e altre 7 con 2 al primo posto , , , , , , (esclusa ) Esercizio 17 In un lotto di 250 microchip la percentuale di pezzi difettosi è Si estraggono a caso, e in blocco, 18 microchip. Qual è la probabilità che tra i 18 pezzi ve ne siano 3 difettosi? Cosa stiamo assumendo senza dirlo esplicitamente? Poiché i tutti i microchip sono equiprobabili si può determinare la probabilità come numero di casi favorevoli su numero di casi possibili. Casi possibili: ( ) (combinazioni senza ripetizione di 250 elementi di classe 18) Casi favorevoli: ( )( ) 3 15 P (tra i 18 microchip ve ne sono 3 difettosi) = (10 3 )( ) ( ) = Infatti delle ( ) combinazioni possibili il numero di quelle in cui ci vi sono 3 pezzi difettosi (e 240 integri) si ottiene associando a tutti i modi di scegliere 3 pezzi dai 10 difettosi (combinazioni di 10 elementi di classe 3) ciascuno dei modi di otttenere 15 pezzi dai 240 integri (combinazioni di 240 elementi di classe 15). 12

13 CALCOLO COMBINATORIO Principio fondamentale del calcolo combinatorio: Se una procedura può essere realizzata in n 1 modi diversi, e se, dopo questa procedura, una seconda procedura pu essere realizzata in n 2 modi diversi, e se, dopo questa seconda procedura, una terza procedura può essere realizzata in n 3 modi diversi, e così via; allora il numero di modi in cui la procedura può essere realizzata nell ordine indicato è n 1 n 2 n 3... Numero di gruppi di ampiezza m da un insieme di n elementi: Senza Ripetizione Con Ripetizione Ordinato (Disposizioni) n! (n m)! Non Ordinato (Combinazioni) = n(n 1)... (n m + 1) nm ( n m ) ( n + m 1 m ) Permutazioni di n elementi: n! Permutazioni di n elementi di cui k uguali e n k uguali: n! k!(n k)! Esercizio 18 Quattro libri A, B, C, D devono essere posti in ordine in uno scaffale in cui c è posto solo per tre libri. Determinare in quanti modi i libri possono essere messi in ordine. Disposizioni senza ripetizione di n = 4 elementi su m = 3 posti 4 DSR 3 = = 24 ABC ABD ACB ACD ADB ADC BAC BAD BCA BCD BDA BDC CAB CAD CBA CBD CDA CDB DAB DAC DBA DBC DCA DCB Esercizio 19 Tre libri A, B, C devono essere posti in ordine in uno scaffale in cui c è posto per tre libri. Determinare in quanti modi i libri possono essere messi in ordine. Disposizioni senza ripetizione di n = 3 elementi su m = 3 posti equivalentemente permutazioni di n = 3 elementi P 3 = = 6 ABC ACB BAC BCA CAB CBA 13

14 Esercizio 20 Si considerino le 4 cifre 1,2,3,4. Determinare quanti numeri di 2 cifre si possono determinare a partire da esse. Disposizioni con ripetizione di n = 4 elementi su m = 2 posti 4 DCR 2 = 4 4 = 4 2 = Esercizio 21 Quattro libri A, B, C, D devono essere posti in ordine in uno scaffale in cui c è posto solo per tre libri senza alcun riferimento all ordine in cui vengono posti. Determinare in quanti modi i libri possono essere messi in ordine. ( Combinazioni ) senza ripetizione di n = 4 elementi su m = 3 posti 4 4CSR 3 = = 4 3 ABC ACD ABD BCD Esercizio 18 Si considerino 4 oggetti, di cui due di tipo A (uguali) e due di tipo B (uguali). Determinare il numero di permutazioni distinte dei 4 oggetti. Permutazioni di n = 4 oggetti di cui k = 2 uguali (A, A) e altri n k = 2 uguali (B, B) pari a 4!/(2! 2!) = 6. AABB ABAB ABBA BAAB BBAA BABA 14

Ancora sull indipendenza. Se A e B sono indipendenti allora lo sono anche

Ancora sull indipendenza. Se A e B sono indipendenti allora lo sono anche Ancora sull indipendenza Se A e B sono indipendenti allora lo sono anche A e B Ā e B Ā e B Sfruttiamo le leggi di De Morgan Leggi di De Morgan A B = Ā B A B = Ā B P (Ā B) = P (A B) = 1 P (A B) = 1 (P (A)

Dettagli

Somma logica di eventi

Somma logica di eventi Somma logica di eventi Da un urna contenente 24 palline numerate si estrae una pallina. Calcolare la probabilità dei seguenti eventi: a) esce un numero divisibile per 5 o superiore a 20, b) esce un numero

Dettagli

CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 7

CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 7 CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 7 Dott.ssa Antonella Costanzo a.costanzo@unicas.it Incompatibilità ed indipendenza stocastica. Probabilità condizionate, legge della probabilità totale, Teorema

Dettagli

Corso di ELEMENTI DI STATISTICA Alcuni problemi di probabilità, con soluzioni

Corso di ELEMENTI DI STATISTICA Alcuni problemi di probabilità, con soluzioni Corso di ELEMENTI DI STATISTICA Alcuni problemi di probabilità, con soluzioni Si tratta di problemi elementari, formulati nel linguaggio ordinario Quindi, per ogni problema la suluzione proposta è sempre

Dettagli

Esercizi sul calcolo delle probabilità

Esercizi sul calcolo delle probabilità Esercizi sul calcolo delle probabilità Svolti e da svolgere (per MAR 13 marzo) Dati due eventi A e B dello spazio campionario Ω. Si sappia che P(A c )=0,3 P(B)=0,4 e P(A B c )=0,5 si determinino le probabilità

Dettagli

Statistica 1. Esercitazioni. Dott. Luigi Augugliaro 1. Università di Palermo

Statistica 1. Esercitazioni. Dott. Luigi Augugliaro 1. Università di Palermo Statistica 1 Esercitazioni Dott. 1 1 Dipartimento di Scienze Statistiche e Matematiche S. Vianelli, Università di Palermo ricevimento: lunedì ore 15-17 mercoledì ore 15-17 e-mail: luigi.augugliaro@unipa.it

Dettagli

Appunti ed esercizi di combinatoria. Alberto Carraro

Appunti ed esercizi di combinatoria. Alberto Carraro Appunti ed esercizi di combinatoria Alberto Carraro December 2, 2009 01 Le formule principali per contare Disposizioni Sia A un insieme di n 1 elementi distinti Le sequenze di 1 k n elementi scelti senza

Dettagli

CORSO DI CALCOLO DELLE PROBABILITÀ E STATISTICA. Esercizi su eventi, previsioni e probabilità condizionate

CORSO DI CALCOLO DELLE PROBABILITÀ E STATISTICA. Esercizi su eventi, previsioni e probabilità condizionate CORSO DI CALCOLO DELLE PROBABILITÀ E STATISTICA Esercizi su eventi, previsioni e probabilità condizionate Nota: Alcuni esercizi sono tradotti, più o meno fedelmente, dal libro A first course in probability

Dettagli

Calcolo delle Probabilità

Calcolo delle Probabilità Calcolo delle Probabilità Il calcolo delle probabilità studia i modelli matematici delle cosidette situazioni di incertezza. Molte situazioni concrete sono caratterizzate a priori da incertezza su quello

Dettagli

Università degli Studi di Cassino, Anno accademico 2004-2005 Corso di Statistica 2, Prof. M. Furno

Università degli Studi di Cassino, Anno accademico 2004-2005 Corso di Statistica 2, Prof. M. Furno Università degli Studi di Cassino, Anno accademico 2004-2005 Corso di Statistica 2, Prof. M. Furno Esercitazione del 18/1/2005 Dott. Claudio Conversano Esercizio 1 (non svolto in aula) Vengono lanciati

Dettagli

Corso di Matematica. Corso di Laurea in Farmacia, Facoltà di Farmacia. Università degli Studi di Pisa. Maria Luisa Chiofalo.

Corso di Matematica. Corso di Laurea in Farmacia, Facoltà di Farmacia. Università degli Studi di Pisa. Maria Luisa Chiofalo. Corso di Matematica Corso di Laurea in Farmacia, Facoltà di Farmacia Università degli Studi di Pisa Maria Luisa Chiofalo Scheda 18 Esercizi svolti sul calcolo delle probabilità I testi degli esercizi sono

Dettagli

ESERCIZI EVENTI E VARIABILI ALEATORIE

ESERCIZI EVENTI E VARIABILI ALEATORIE ESERCIZI EVENTI E VARIABILI ALEATORIE 1) Considera la tabella seguente, che descrive la situazione occupazionale di 63 persone in relazione al titolo di studio. Occupazione SI NO Titolo Licenza media 5%

Dettagli

Esercizi di Probabilità e Statistica

Esercizi di Probabilità e Statistica Esercizi di Probabilità e Statistica Samuel Rota Bulò 19 marzo 2007 Spazi di probabilità finiti e uniformi Esercizio 1 Un urna contiene due palle nere e una rossa. Una seconda urna ne contiene una bianca

Dettagli

Probabilità e Statistica Esercitazioni. a.a. 2009/2010. C.d.L.S.: Ingegneria Civile-Architettonico, Ingegneria Civile-Strutturistico.

Probabilità e Statistica Esercitazioni. a.a. 2009/2010. C.d.L.S.: Ingegneria Civile-Architettonico, Ingegneria Civile-Strutturistico. Probabilità e Statistica Esercitazioni a.a. 2009/2010 C.d.L.S.: Ingegneria Civile-Architettonico, Ingegneria Civile-Strutturistico Probabilità Ines Campa e Marco Longhi Probabilità e Statistica - Esercitazioni

Dettagli

Test sul calcolo della probabilità

Test sul calcolo della probabilità Test sul calcolo della probabilità 2 Test sul calcolo della probabilità Test sul calcolo della probabilità. La probabilità p di un evento E, quando si indica con E il suo complementare, è : a) 0 se E è

Dettagli

Esercizi di Calcolo delle Probabilita (I)

Esercizi di Calcolo delle Probabilita (I) Esercizi di Calcolo delle Probabilita (I) 1. Si supponga di avere un urna con 15 palline di cui 5 rosse, 8 bianche e 2 nere. Immaginando di estrarre due palline con reimmissione, si dica con quale probabilità:

Dettagli

Teoria della probabilità Assiomi e teoremi

Teoria della probabilità Assiomi e teoremi Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Teoria della probabilità Assiomi e teoremi A.A. 2008-09 Alberto Perotti DELEN-DAUIN Esperimento casuale Esperimento

Dettagli

PROBABILITA' E VARIABILI CASUALI

PROBABILITA' E VARIABILI CASUALI PROBABILITA' E VARIABILI CASUALI ESERCIZIO 1 Due giocatori estraggono due carte a caso da un mazzo di carte napoletane. Calcolare: 1) la probabilità che la prima carta sia una figura oppure una carta di

Dettagli

Calcolo delle probabilità (riassunto veloce) Laboratorio di Bioinformatica Corso A aa 2005-2006

Calcolo delle probabilità (riassunto veloce) Laboratorio di Bioinformatica Corso A aa 2005-2006 Calcolo delle probabilità riassunto veloce Laboratorio di Bioinformatica Corso aa 2005-2006 Teoria assiomatica della probabilità S = spazio campionario = insieme di tutti i possibili esiti di un esperimento

Dettagli

Calcolo combinatorio

Calcolo combinatorio Probabilità e Statistica Esercitazioni a.a. 2009/2010 C.d.L.S.: Ingegneria Civile-Architettonico, Ingegneria Civile-Strutturistico Calcolo combinatorio Ines Campa e Marco Longhi Probabilità e Statistica

Dettagli

Probabilità e Statistica Esercitazioni. a.a. 2006/2007

Probabilità e Statistica Esercitazioni. a.a. 2006/2007 Probabilità e Statistica Esercitazioni a.a. 2006/2007 C.d.L.: Ingegneria per l Ambiente ed il Territorio, Ingegneria Civile, Ingegneria Gestionale, Ingegneria dell Informazione C.d.L.S.: Ingegneria Civile

Dettagli

Si considerino gli eventi A = nessuno studente ha superato l esame e B = nessuno studente maschio ha superato l esame. Allora A c B è uguale a:

Si considerino gli eventi A = nessuno studente ha superato l esame e B = nessuno studente maschio ha superato l esame. Allora A c B è uguale a: TEST DI AUTOVALUTAZIONE - SETTIMANA 2 I diritti d autore sono riservati. Ogni sfruttamento commerciale non autorizzato sarà perseguito. Metodi statistici per la biologia 1 Parte A 1.1 Si considerino gli

Dettagli

Esercizi di Calcolo delle Probabilità (calcolo combinatorio)

Esercizi di Calcolo delle Probabilità (calcolo combinatorio) Esercizi di Calcolo delle Probabilità (calcolo combinatorio 1. Lanciamo due dadi regolari. Qual è la probabilità che la somma delle facce rivolte verso l alto sia pari a 7? 1/6 2. Due palline vengono estratte

Dettagli

Statistica 1. Esercitazioni. Dott. Luigi Augugliaro 1. Università di Palermo

Statistica 1. Esercitazioni. Dott. Luigi Augugliaro 1. Università di Palermo Statistica 1 Esercitazioni Dott. 1 1 Dipartimento di Scienze Statistiche e Matematiche S. Vianelli, Università di Palermo ricevimento: lunedì ore 15-17 mercoledì ore 15-17 e-mail: luigi.augugliaro@unipa.it

Dettagli

Corso di Calcolo delle Probabilità e Statistica. Esercizi su variabili aleatorie discrete

Corso di Calcolo delle Probabilità e Statistica. Esercizi su variabili aleatorie discrete Corso di Calcolo delle Probabilità e Statistica Esercizi su variabili aleatorie discrete Es.1 Da un urna con 10 pallina bianche e 15 palline nere, si eseguono estrazioni con reimbussolamento fino all estrazione

Dettagli

Tabella 7. Dado truccato

Tabella 7. Dado truccato 0 ALBERTO SARACCO 4. Compiti a casa 7novembre 200 4.. Ordini di grandezza e calcolo approssimato. Esercizio 4.. Una valigia misura 5cm di larghezza, 70cm di lunghezza e 45cm di altezza. Quante palline

Dettagli

Esercizi di Probabilità e statistica. Francesco Caravenna Paolo Dai Pra

Esercizi di Probabilità e statistica. Francesco Caravenna Paolo Dai Pra Esercizi di Probabilità e statistica Francesco Caravenna Paolo Dai Pra Capitolo 1 Spazi di probabilità discreti 1.1 Proprietà fondamentali Esercizio 1 Esprimere ciascuno dei seguenti eventi in termini

Dettagli

Esericizi di calcolo combinatorio

Esericizi di calcolo combinatorio Esericizi di calcolo combinatorio Alessandro De Gregorio Sapienza Università di Roma alessandrodegregorio@uniroma1it Problema (riepilogativo) La segretaria di un ufficio deve depositare 3 lettere in 5

Dettagli

Esercizi di calcolo combinatorio e probabilità Svolgimento a cura di Mattia Puddu

Esercizi di calcolo combinatorio e probabilità Svolgimento a cura di Mattia Puddu Esercizi di calcolo combinatorio e probabilità Svolgimento a cura di Mattia Puddu 1. Gli interi da 1 a 9 sono scritti nelle 9 caselle di una scacchiera 3x3, ogni intero in ogni casella diversa, in modo

Dettagli

(concetto classico di probabilità)

(concetto classico di probabilità) Probabilità matematica (concetto classico di probabilità) Teoria ed esempi Introduzione Il calcolo delle probabilità è la parte della matematica che si occupa di prevedere, sulla base di regole e leggi

Dettagli

CALCOLO COMBIN I A N T A O T RIO

CALCOLO COMBIN I A N T A O T RIO CALCOLO COMBINATORIO Disposizioni Si dicono disposizioni di N elementi di classe k tutti quei gruppi che si possono formare prendendo ogni volta k degli N elementi e cambiando ogni volta un elemento o

Dettagli

Calcolo delle probabilità

Calcolo delle probabilità Calcolo delle probabilità Laboratorio di Bioinformatica Corso A aa 2005-2006 Statistica Dai risultati di un esperimento si determinano alcune caratteristiche della popolazione Calcolo delle probabilità

Dettagli

1. Elementi di Calcolo Combinatorio.

1. Elementi di Calcolo Combinatorio. . Elementi di Calolo Combinatorio. Prinipio Base del Conteggio Supponiamo he si devono ompiere due esperimenti. Se l esperimento uno può assumere n risultati possibili, e per ognuno di questi i sono n

Dettagli

Analisi dei Dati 12/13 Esercizi proposti 3 soluzioni

Analisi dei Dati 12/13 Esercizi proposti 3 soluzioni Analisi dei Dati 1/13 Esercizi proposti 3 soluzioni 0.1 Un urna contiene 6 palline rosse e 8 palline nere. Si estraggono simultaneamente due palline. Qual è la probabilità di estrarle entrambe rosse? (6

Dettagli

PROBABILITA. Sono esempi di fenomeni la cui realizzazione non è certa a priori e vengono per questo detti eventi aleatori (dal latino alea, dado)

PROBABILITA. Sono esempi di fenomeni la cui realizzazione non è certa a priori e vengono per questo detti eventi aleatori (dal latino alea, dado) L esito della prossima estrazione del lotto L esito del lancio di una moneta o di un dado Il sesso di un nascituro, così come il suo peso alla nascita o la sua altezza.. Il tempo di attesa ad uno sportello

Dettagli

STATISTICA MEDICA Prof. Tarcisio Niglio http://www.tarcisio.net tarcisio@mclink.it oppure su Facebook Anno Accademico 2011-2012

STATISTICA MEDICA Prof. Tarcisio Niglio http://www.tarcisio.net tarcisio@mclink.it oppure su Facebook Anno Accademico 2011-2012 STATISTICA MEDICA Prof. Tarcisio Niglio http://www.tarcisio.net tarcisio@mclink.it oppure su Facebook Anno Accademico 2011-2012 Calcolo delle Probabilità Teoria & Pratica La probabilità di un evento è

Dettagli

1 Probabilità condizionata

1 Probabilità condizionata 1 Probabilità condizionata Accade spesso di voler calcolare delle probabilità quando si è in possesso di informazioni parziali sull esito di un esperimento, o di voler calcolare la probabilità di un evento

Dettagli

Elementi di calcolo delle probabilità

Elementi di calcolo delle probabilità Elementi di calcolo delle probabilità Definizione di probabilità A) Qui davanti a me ho un urna contenente 2 palline bianche e 998 nere. Mi metto una benda sugli occhi, scuoto ripetutamente l urna ed estraggo

Dettagli

Traccia della soluzione degli esercizi del Capitolo 1

Traccia della soluzione degli esercizi del Capitolo 1 Traccia della soluzione degli esercizi del Capitolo 1 Esercizio 1 Esprimere ciascuno dei seguenti eventi in termini degli eventi A, B, C. 1. Almeno un evento si verifica. 2. Al più un evento si verifica..

Dettagli

TEOREMI SULLA PROBABILITÀ

TEOREMI SULLA PROBABILITÀ TEOREMI SULLA PROBABILITÀ o Probabilità totale oprobabilità contraria oprobabilità condizionata odipendenza stocastica oprobabilità composta oformula di Bayes oproblemi di riepilogo Probabilità di eventi

Dettagli

CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 6

CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 6 CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 6 Dott.ssa Antonella Costanzo a.costanzo@unicas.it Riepilogo: Postulati del calcolo della probabilità (Kolmogorov): Dato un evento A Ω, dove è lo spazio degli

Dettagli

k n Calcolo delle probabilità e calcolo combinatorio (di Paolo Urbani maggio 2011)

k n Calcolo delle probabilità e calcolo combinatorio (di Paolo Urbani maggio 2011) b) (vedi grafo di lato) 7 0 9 0 0 0 ( E ) + + 0, ) Calcolare, riguardo al gioco del totocalcio, la probabilità dei seguenti eventi utilizzando il calcolo combinatorio a) E : fare b) E : fare 0 c) E : fare

Dettagli

metodi matematici per l ingegneria prove scritte d esame 1 Indice

metodi matematici per l ingegneria prove scritte d esame 1 Indice metodi matematici per l ingegneria prove scritte d esame Indice. Novembre 4 - Prova in itinere. Luglio 5.. Febbraio 6 4 4. Giugno 6. 5 5. Luglio 6 6 . Novembre 4 - Prova in itinere Esercizio. Una scatola

Dettagli

Primi esercizi per gli studenti del corso di Statistica ed Elementi di Probabilita

Primi esercizi per gli studenti del corso di Statistica ed Elementi di Probabilita Primi esercizi per gli studenti del corso di Statistica ed Elementi di Probabilita NOTA 1 Gli esercizi sono presi da compiti degli scorsi appelli, oppure da testi o dispense di colleghi. A questi ultimi

Dettagli

Esercizi. Rappresentando le estrazioni con un grafo ad albero, calcolare la probabilità che:

Esercizi. Rappresentando le estrazioni con un grafo ad albero, calcolare la probabilità che: Esercizi Esercizio 4. Un urna contiene inizialmente 2 palline bianche e 4 palline rosse. Si effettuano due estrazioni con la seguente modalità: se alla prima estrazione esce una pallina bianca, la si rimette

Dettagli

Calcolo delle probabilità

Calcolo delle probabilità Calcolo delle probabilità Il problema di Monty Hill nel film 21 Elementare!! Statistiche, cambio di variabili. 1 Il coefficiente di correlazione tra Indicee Stipendio vale 0,94. E possibile asserire che

Dettagli

A = { escono 2 teste e due croci (indipendentemente dall ordine) } B = { al primo tiro esce testa }.

A = { escono 2 teste e due croci (indipendentemente dall ordine) } B = { al primo tiro esce testa }. ESERCIZI ELEMENTARI DI CALCOLO DELLE PROBABILITÀ Teorema della somma 1) Giocando alla roulette, calcolare la probabilità che su una estrazione esca: a) Un numero compreso tra 6 e 12 (compresi) oppure maggiore

Dettagli

PROBABILITA CONDIZIONALE

PROBABILITA CONDIZIONALE Riferendoci al lancio di un dado, indichiamo con A l evento esce un punteggio inferiore a 4 A ={1, 2, 3} B l evento esce un punteggio dispari B = {1, 3, 5} Non avendo motivo per ritenere il dado truccato,

Dettagli

Calcolo delle probabilità. 3. La probabiltà nella concezione frequentista. 4. La probabiltà nella concezione soggettiva

Calcolo delle probabilità. 3. La probabiltà nella concezione frequentista. 4. La probabiltà nella concezione soggettiva Calcolo delle probabilità. Gli eventi - definizioni propedeutiche 2. La probabiltà nella concezione classica. La probabiltà nella concezione frequentista 4. La probabiltà nella concezione soggettiva. La

Dettagli

Esercizi di Probabilità e Statistica

Esercizi di Probabilità e Statistica Esercizi di Probabilità e Statistica Samuel Rota Bulò 9 giugno 006 Spazi di probabilità finiti e uniformi Esercizio Un urna contiene 6 palline rosse, 4 nere, 8 bianche. Si estrae una pallina; calcolare

Dettagli

Esempio II.1.2. Esempio II.1.3. Esercizi

Esempio II.1.2. Esempio II.1.3. Esercizi Calcolo combinatorio Il calcolo combinatorio consiste nello sviluppo di nozioni e tecniche per contare i possibili ordinamenti di un insieme e le possibili scelte di sottoinsiemi di un insieme Ha numerosi

Dettagli

Esercizi di calcolo combinatorio

Esercizi di calcolo combinatorio CORSO DI CALCOLO DELLE PROBABILITÀ E STATISTICA Esercizi di calcolo combinatorio Nota: Alcuni esercizi sono tradotti, più o meno fedelmente, dal libro A first course in probability di Sheldon Ross, quinta

Dettagli

Capitolo 4 Probabilità

Capitolo 4 Probabilità Levine, Krehbiel, Berenson Statistica II ed. 2006 Apogeo Capitolo 4 Probabilità Insegnamento: Statistica Corso di Laurea Triennale in Economia Facoltà di Economia, Università di Ferrara Docenti: Dott.

Dettagli

Probabilità e statistica

Probabilità e statistica Indice generale.probabilità ed eventi aleatori....come si può definire una probabilità....eventi equiprobabili....eventi indipendenti, eventi dipendenti....eventi incompatibili....eventi compatibili....probabilità

Dettagli

Probabilità e Statistica Esercitazioni. a.a. 2006/2007

Probabilità e Statistica Esercitazioni. a.a. 2006/2007 Probabilità e Statistica Esercitazioni a.a. 2006/2007 C.d.L.: Ingegneria per l Ambiente ed il Territorio, Ingegneria Civile, Ingegneria Gestionale, Ingegneria dell Informazione C.d.L.S.: Ingegneria Civile

Dettagli

Corso di Matematica e Statistica 4 Calcolo combinatorio e probabilità. Le disposizioni semplici di n elementi di classe k

Corso di Matematica e Statistica 4 Calcolo combinatorio e probabilità. Le disposizioni semplici di n elementi di classe k Pordenone Corso di Matematica e Statistica 4 Calcolo combinatorio e probabilità UNIVERSITAS STUDIORUM UTINENSIS Giorgio T. Bagni Facoltà di Scienze della Formazione Dipartimento di Matematica e Informatica

Dettagli

ELEMENTI DI CALCOLO DELLE PROBABILITA

ELEMENTI DI CALCOLO DELLE PROBABILITA Statistica, CLEA p. 1/55 ELEMENTI DI CALCOLO DELLE PROBABILITA Premessa importante: il comportamento della popolazione rispetto una variabile casuale X viene descritto attraverso una funzione parametrica

Dettagli

Probabilità Calcolo combinatorio, probabilità elementare, probabilità condizionata, indipendenza, th delle probabilità totali, legge di Bayes

Probabilità Calcolo combinatorio, probabilità elementare, probabilità condizionata, indipendenza, th delle probabilità totali, legge di Bayes Sessione Live #3 Settimana dal 7 all 11 marzo 2003 Probabilità Calcolo combinatorio, probabilità elementare, probabilità condizionata, indipendenza, th delle probabilità totali, legge di Bayes Lezioni

Dettagli

Calcolo delle Probabilità

Calcolo delle Probabilità Calcolo delle Probabilità Corso di Laurea Specialistica in SCIENZE DELLE PROFESSIONI SANITARIE DELLA RIABILITAZIONE Corso di Laurea Specialistica in SCIENZE DELLE PROFESSIONI SANITARIE AREA TECNICO ASSISTENZIALI

Dettagli

STATISTICA E PROBABILITá

STATISTICA E PROBABILITá STATISTICA E PROBABILITá Statistica La statistica è una branca della matematica, che descrive un qualsiasi fenomeno basandosi sulla raccolta di informazioni, sottoforma di dati. Questi ultimi risultano

Dettagli

Probabilità. Esperimento, risultati e spazio campionario

Probabilità. Esperimento, risultati e spazio campionario Probabilità La probabilità è usata nel linguaggio comune per dare indicazioni quantitative sul verificarsi di certi eventi: i) probabilità di incorre in un data patologia causa l abuso di alcol, fumo,

Dettagli

1 Calcolo delle probabilità

1 Calcolo delle probabilità 1 Calcolo delle probabilità Lo studio delle leggi del caso va sotto il nome di calcolo delle probabilità. Ci fu un vigoroso sviluppo di questa disciplina a cavallo tra il cinquecento e il seicento e lo

Dettagli

Prove e sottoprove. Perché il calcolo combinatorio. La moltiplicazione combinatorica. Scelta con e senza ripetizione { } ( )

Prove e sottoprove. Perché il calcolo combinatorio. La moltiplicazione combinatorica. Scelta con e senza ripetizione { } ( ) Perché il calcolo combinatorio Basato sulle idee primitive di distinzione e di classificazione, stabilisce in quanti modi diversi si possono combinare degli oggetti E molto utile nell enumerazione dei

Dettagli

ESERCIZI DI CALCOLO COMBINATORIO

ESERCIZI DI CALCOLO COMBINATORIO ESERCIZI DI CALCOLO COMBINATORIO 1. Calcolare il numero degli anagrammi che possono essere formati con le lettere della parola Amore. [120] 2. Quante partite di poker diverse possono essere giocate da

Dettagli

PROBABILITA CONDIZIONALE

PROBABILITA CONDIZIONALE Riferendoci al lancio di un dado, indichiamo con A l evento esce un punteggio inferiore a 4 A ={1, 2, 3} B l evento esce un punteggio dispari B = {1, 3, 5} Non avendo motivo per ritenere il dado truccato,

Dettagli

Calcolo delle probabilità

Calcolo delle probabilità Calcolo delle probabilità Il calcolo delle probabilità ha avuto origine nel Seicento in riferimento a questioni legate al gioco d azzardo e alle scommesse. Oggi trova tante applicazioni in ambiti anche

Dettagli

TEORIA DELLA PROBABILITÀ I

TEORIA DELLA PROBABILITÀ I TEORIA DELLA PROBABILITÀ I Dipartimento di Matematica ITIS V.Volterra San Donà di Piave Versione [2015-16] Indice 1 Probabilità 1 1.1 Introduzione............................................ 1 1.2 Eventi...............................................

Dettagli

Matematica Applicata. Probabilità e statistica

Matematica Applicata. Probabilità e statistica Matematica Applicata Probabilità e statistica Fenomeni casuali Fenomeni che si verificano in modi non prevedibili a priori 1. Lancio di una moneta: non sono in grado di prevedere con certezza se il risultato

Dettagli

STATISTICA Lezioni ed esercizi

STATISTICA Lezioni ed esercizi Università di Torino QUADERNI DIDATTICI del Dipartimento di Matematica MARIA GARETTO STATISTICA Lezioni ed esercizi Corso di Laurea in Biotecnologie A.A. 00/00 Quaderno # Novembre 00 M. Garetto - Statistica

Dettagli

Appunti di Teoria della Probabilità Università degli Studi di Bari Corso di Laurea in Scienze Statistiche A.A. 2011/2012.

Appunti di Teoria della Probabilità Università degli Studi di Bari Corso di Laurea in Scienze Statistiche A.A. 2011/2012. Appunti di Teoria della Probabilità Università degli Studi di Bari Corso di Laurea in Scienze Statistiche A.A. 2011/2012 Alessio Pollice 2 Capitolo 1 Eventi e probabilità 1.1 Premessa Etimologia e significato

Dettagli

Algoritmi (9 CFU) (A.A. 2009-10)

Algoritmi (9 CFU) (A.A. 2009-10) Algoritmi (9 CFU) (A.A. 2009-10) Probabilità e Algoritmi randomizzati Prof. V. Cutello Algoritmi 1 Overview Definiamo concetti di base di probabilità Variabili casuali e valore medio Algoritmi randomizzati

Dettagli

PARTE PRIMA PROBABILITA

PARTE PRIMA PROBABILITA i PARTE PRIMA PROBABILITA CAPITOLO I - Gli assiomi della probabilità 1.1 Introduzione........................................................... pag. 1 1.2 Definizione assiomatica di probabilità.......................................

Dettagli

ESERCIZI DI RIEPILOGO 2. 7 jj(addi

ESERCIZI DI RIEPILOGO 2. 7 jj(addi ESERCIZI DI RIEPILOGO 2 ESERCIZIO 1 Da un comune mazzo di 52 carte francesi (13 carte per ognuno dei quattro semi: picche, cuori, fiori e quadri) viene estratta casualmente una carta. Definiti gli eventi:

Dettagli

Corso Integrato di Statistica Informatica e Analisi dei Dati Sperimentali Note A.A. 2009-10 C. Meneghini

Corso Integrato di Statistica Informatica e Analisi dei Dati Sperimentali Note A.A. 2009-10 C. Meneghini Corso Integrato di Statistica Informatica e Analisi dei Dati Sperimentali Note A.A. 2009-10 C. Meneghini 1 Elementi di calcolo delle probabilitá, teorema di Bayes e applicazioni 1.1 Definizione di probabilitá

Dettagli

Capitolo 4 PROBABILITÀ. Thursday, 5 April 12

Capitolo 4 PROBABILITÀ. Thursday, 5 April 12 Capitolo 4 PROBABILITÀ Cosa imparerete Idea di esperimento aleatorio Idea di evento Come si definisce una probabilità Idea di probabilità condizionata Determinare se gli eventi sono indipendenti Usare

Dettagli

Esercitazioni del corso di Statistica Proff. Mortera/Vicard a.a. 2011/2012

Esercitazioni del corso di Statistica Proff. Mortera/Vicard a.a. 2011/2012 Esercitazioni del corso di Statistica Proff. Mortera/Vicard a.a. 2011/2012 Esercizi di calcolo delle probabilità 1. Nel 1980 la popolazione USA era così composta: 10% della California, 6% di origine ispanica,

Dettagli

Errori cognitivi, probabilità e decisioni mediche nella diagnostica di laboratorio. M. Besozzi - IRCCS Istituto Auxologico Italiano

Errori cognitivi, probabilità e decisioni mediche nella diagnostica di laboratorio. M. Besozzi - IRCCS Istituto Auxologico Italiano Errori cognitivi, probabilità e decisioni mediche nella diagnostica di laboratorio M. Besozzi - IRCCS Istituto Auxologico Italiano L argomento... Errori cognitivi Il problema gnoseologico Dati, informazione

Dettagli

Dispense di Probabilità e Statistica. Francesco Caravenna Paolo Dai Pra

Dispense di Probabilità e Statistica. Francesco Caravenna Paolo Dai Pra Dispense di Probabilità e Statistica Francesco Caravenna Paolo Dai Pra Capitolo 1 Spazi di probabilità discreti 1.1 Generalità Nel corso di questo libro con la dicitura esperimento aleatorio indicheremo

Dettagli

LA STATISTICA E IL CALCOLO DELLE PROBABILITÀ

LA STATISTICA E IL CALCOLO DELLE PROBABILITÀ LA STATISTICA E IL CALCOLO DELLE PROBABILITÀ Prof. Francesco Tottoli Versione 3 del 20 febbraio 2012 DEFINIZIONE È una scienza giovane e rappresenta uno strumento essenziale per la scoperta di leggi e

Dettagli

1 Breve introduzione alla probabilità elementare: approccio intuitivo

1 Breve introduzione alla probabilità elementare: approccio intuitivo Breve introduzione alla probabilità elementare: approccio intuitivo. È usuale che in molte situazioni che si presentano concretamente ci sia a priori incertezza su ciò che accadrà nel futuro: il calcolo

Dettagli

Calcolo delle P robabilitá. Esercizi svolti e quesiti per il CdS in Economia e Finanza

Calcolo delle P robabilitá. Esercizi svolti e quesiti per il CdS in Economia e Finanza Calcolo delle P robabilitá Esercizi svolti e quesiti per il CdS in Economia e Finanza Giuseppe Sanfilippo Dipartimento di Scienze Statistiche e Matematiche S. Vianelli Università degli Studi di Palermo

Dettagli

VARIABILI ALEATORIE MULTIPLE E TEOREMI ASSOCIATI. Dopo aver trattato delle distribuzioni di probabilità di una variabile aleatoria, che

VARIABILI ALEATORIE MULTIPLE E TEOREMI ASSOCIATI. Dopo aver trattato delle distribuzioni di probabilità di una variabile aleatoria, che VARIABILI ALATORI MULTIPL TORMI ASSOCIATI Fonti: Cicchitelli Dall Aglio Mood-Grabill. Moduli 6 9 0 del programma. VARIABILI ALATORI DOPPI Dopo aver trattato delle distribuzioni di probabilità di una variabile

Dettagli

Eserciziario di Calcolo delle Probabilità. Piero Quatto, Riccardo Borgoni, Elena Colicino, Daniela Mariosa

Eserciziario di Calcolo delle Probabilità. Piero Quatto, Riccardo Borgoni, Elena Colicino, Daniela Mariosa Eserciziario di Calcolo delle Probabilità Piero Quatto, Riccardo Borgoni, Elena Colicino, Daniela Mariosa 1 PARTE 1 Probabilità e variabili casuali discrete Sezione 1. Insieme e calcolo combinatorio Esercizio

Dettagli

Viene lanciata una moneta. Se esce testa vinco 100 euro, se esce croce non vinco niente. Quale è il valore della mia vincita?

Viene lanciata una moneta. Se esce testa vinco 100 euro, se esce croce non vinco niente. Quale è il valore della mia vincita? Viene lanciata una moneta. Se esce testa vinco 00 euro, se esce croce non vinco niente. Quale è il valore della mia vincita? Osserviamo che il valore della vincita dipende dal risultato dell esperimento

Dettagli

matematica probabilmente

matematica probabilmente IS science centre immaginario scientifico Laboratorio dell'immaginario Scientifico - Trieste tel. 040224424 - fax 040224439 - e-mail: lis@lis.trieste.it - www.immaginarioscientifico.it indice Altezze e

Dettagli

Cenni di calcolo combinatorio

Cenni di calcolo combinatorio Cenni di calcolo combinatorio 1 Introduzione Calcolare quanti sono i diversi modi di ordinare un insieme di oggetti è un problema interessante. Quante sigle diverse si possono fare con le tre lettere RST?

Dettagli

Esercizio 1. Si supponga di aver assegnato ad una popolazione di N = 4 dattilografe un test e di aver ottenuto i seguenti risultati:

Esercizio 1. Si supponga di aver assegnato ad una popolazione di N = 4 dattilografe un test e di aver ottenuto i seguenti risultati: Esercizio 1 Si suppoga di aver assegato ad ua popolazioe di N = 4 dattilografe u test e di aver otteuto i segueti risultati: Dattilografa N. Errori A 3 B C 1 D 4 La variabile, il umero di errori commessi

Dettagli

Metodi quantitativi per il trade marketing Modulo 1 Valutazione dei rischi per il marketing a.a. 2010/2011

Metodi quantitativi per il trade marketing Modulo 1 Valutazione dei rischi per il marketing a.a. 2010/2011 Metodi quantitativi per il trade marketing Modulo Valutazione dei rischi per il marketing a.a. 200/20 Problemi per esercitazione individuale (non svolti in aula NB: i problemi assegnati per esercitazione

Dettagli

Marco Di Marzio. Primi elementi di inferenza statistica

Marco Di Marzio. Primi elementi di inferenza statistica Marco Di Marzio Primi elementi di inferenza statistica Ringraziamenti Un sentito ringraziamento a Fabiola Del Greco e Agnese Panzera per la preziosa collaborazione. Indice Probabilità. Esperimenti casuali...........................................2

Dettagli

Corso di Probabilità e Statistica

Corso di Probabilità e Statistica Università degli Studi di Verona Facoltà di Scienze MM.FF.NN. Corso di Laurea in Informatica Corso di Probabilità e Statistica (Prof.ssa L.Morato) Esercizi a cura di: S.Poffe sara.poffe@stat.unipd.it A.A.

Dettagli

Politecnico di Milano Appunti di calcolo delle probabilità per il corso di Fondamenti di Statistica e Segnali Biomedici [Mod 1] 1

Politecnico di Milano Appunti di calcolo delle probabilità per il corso di Fondamenti di Statistica e Segnali Biomedici [Mod 1] 1 Politecnico di Milano Appunti di calcolo delle probabilità per il corso di Fondamenti di Statistica e Segnali Biomedici [Mod 1] 1 Ilenia Epifani 1 Il contenuto di queste dispense è protetto dalle leggi

Dettagli

E LE M E N T I D I P R O B A B I L I T A

E LE M E N T I D I P R O B A B I L I T A L M T I D I P R O B A B I L I T A CI STORICI Il calcolo delle probabilità si è andato sviluppando piuttosto di recente, intorno al 500 e per lungo tempo solo come una branca della matematica Solo dal secolo

Dettagli

Calcolo delle probabilitá: esercizi svolti fino all 8 febbraio

Calcolo delle probabilitá: esercizi svolti fino all 8 febbraio Calcolo delle probabilitá: esercizi svolti fino all 8 febbraio Alessandro Sicco sicco@dm.unito.it Lezione 1. Calcolo combinatorio, formula delle probabilitá totali, formula di Bayes Esercizio 1.1. 7 bambini

Dettagli

CALCOLO COMBINATORIO. Psicometria 1 - Lezione 5 Lucidi presentati a lezione AA 2000/2001 dott. Corrado Caudek

CALCOLO COMBINATORIO. Psicometria 1 - Lezione 5 Lucidi presentati a lezione AA 2000/2001 dott. Corrado Caudek CALCOLO COMBINATORIO Psicometria 1 - Lezione 5 Lucidi presentati a lezione AA 2000/2001 dott. Corrado Caudek 1 Il problema del calcolo combinatorio è stabilire in quanti modi diversi una sequenza di eventi

Dettagli

1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario:

1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario: Esempi di domande risposta multipla (Modulo II) 1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario: 1) ha un numero di elementi pari a 5; 2) ha un numero di elementi

Dettagli

Esercizi di Calcolo delle Probabilità con Elementi di Statistica Matematica

Esercizi di Calcolo delle Probabilità con Elementi di Statistica Matematica Esercizi di Calcolo delle Probabilità con Elementi di Statistica Matematica Lucio Demeio Dipartimento di Scienze Matematiche Università Politecnica delle Marche 1. Esercizio. Siano X ed Y due variabili

Dettagli

Esercitazioni 2013/14

Esercitazioni 2013/14 Esercitazioni 2013/14 Esercizio 1 Due ditte V e W partecipano ad una gara di appalto per la costruzione di un tratto di autostrada che viene assegnato a seconda del prezzo. L offerta fatta dalla ditta

Dettagli

Pillole di Probabilitá

Pillole di Probabilitá Pillole di Probabilitá Roberto Paoletti Supponiamo di dover fare una previsione su un esito che puó avvenire all interno di un certo insieme di eventi. Ad esempio, viene lanciato un dado e si vuole fare

Dettagli

Probabilità discreta

Probabilità discreta Probabilità discreta Daniele A. Gewurz 1 Che probabilità c è che succeda...? Una delle applicazioni della combinatoria è nel calcolo di probabilità discrete. Quando abbiamo a che fare con un fenomeno che

Dettagli

CENNI DI CALCOLO COMBINATORIO E DELLE PROBABILITÀ Appunti delle lezioni del Prof. Giuseppe Puggioni a cura di M. Marras e B.

CENNI DI CALCOLO COMBINATORIO E DELLE PROBABILITÀ Appunti delle lezioni del Prof. Giuseppe Puggioni a cura di M. Marras e B. CENNI DI CALCOLO COMBINATORIO E DELLE PROBABILITÀ Appunti delle lezioni del Prof. Giuseppe Puggioni a cura di M. Marras e B. Pettinelli CALCOLO COMBINATORIO Disposizioni semplici Dati n elementi ( a 1,

Dettagli