AZIONAMENTI ELETTRICI 2. Modello del motore asincrono trifase ed osservatori di flusso

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "AZIONAMENTI ELETTRICI 2. Modello del motore asincrono trifase ed osservatori di flusso"

Transcript

1 Poltecnco d ono CeeM ZIONMENI EERICI 4 Motoe ancono tfae Modello del motoe ancono tfae ed oeato d fluo S conde la macchna chematzzata con aolgment tatoc pot a π/ ta loo e f nello pazo e aolgment otoc, pot a π/, ma otant petto gl aolgment d tatoe: e equazon elettche d tatoe e otoe ultano: d a Va = a d b Vb = b In foma ettoale poono eee ctte nell unca equazone : V = nalogamente pe l otoe ulta: d a 0 = a d b 0 = b In foma ettoale ulta: d 0 = e equazon che epmono flu n fluzon delle coent d tatoe e d otoe ultano ( pocede mmedatamente alla cttua delle tee n foma matcale): d a b a b 0 = Mcoϑ Mnϑ 0 Mnϑ Mcoϑ Mcoϑ Mnϑ 0 Mnϑ Mcoϑ 0 a b a b { f. d tatoe f. d otoe Poltecnco d ono Pagna 1 d 6 Data ultma eone 30/05/01 utoe: Mchele PSOREI

2 Poltecnco d ono CeeM ZIONMENI EERICI 4 Motoe ancono tfae Pe emplfcae le condeazon che eanno olte d eguto condea l anal della otazone d un ettoe = x = coϑ jnϑ = 1 jy ett oe notazone ett. nel pano compleo con modulo untao e anomala ϑ ( x coϑ y nϑ) j( y coϑ x nϑ) ( x jy )( coϑ n )= jϑ = = e = ϑ In notazone matcale ulta: = = e jϑ x = y x = y coϑ y coϑ x nϑ = nϑ coϑ = nϑ N.B. : det((θ))=1 nϑ x coϑ y = ( ϑ) coϑ nϑ S conde la matce nea: Da cu caa: nϑ coϑ jϑ ( ϑ) = e 1 ( ϑ) è la matce pe cu ( ϑ ) ( ϑ) = ( ϑ) ( ϑ) = 1 1 coϑ nϑ nϑ ( ϑ) = coϑ N.B. eendo una matce otonomale, efca che la matce nea concde con la tapota: Poltecnco d ono Pagna d 6 Data ultma eone 30/05/01 utoe: Mchele PSOREI

3 Poltecnco d ono CeeM ZIONMENI EERICI 4 Motoe ancono tfae coϑ nϑ nϑ coϑ jϑ ( ϑ) = ( ϑ) = e a matce de flu può eee ctta come: [] I = M ( ϑ) M I ( ϑ) [] M, R con: a b 1 0 = I = matce denttà d odne a 0 1 = b [] a b = matc de flu/coent d macchna a b [] Sotto foma ettoale ulta nece: = M ( ϑ ) = M( ϑ) S potzza oa la otazone del femento cateano d ϑ e ndaga ulle tafomazon da applcae a a etto pe ottenee l epeone delle coodnate del nuoo femento. Poltecnco d ono Pagna 3 d 6 Data ultma eone 30/05/01 utoe: Mchele PSOREI

4 Poltecnco d ono CeeM ZIONMENI EERICI 4 Motoe ancono tfae Se è l ettoe epeo nel femento Oab aà, ettoe epeo nel femento Oa b jϑ = e = ( ϑ) pplcando le condeazon pecedent al ettoe coent d tatoe del motoe ancono: = ( ϑ) = ( ϑ ) Nel cao del otoe la tafomazone dee tenee conto della pozone ϑ del otoe petto allo tatoe e bogna codae che le coent otoche ono epee nel femento d otoe del motoe: Oa b : femento d otoe, ncono col otoe e uotato d ϑ petto lo tatoe Oa b : femento ndpendente da tatoe e otoe e uotato d ϑ petto allo tatoe Poltecnco d ono Pagna 4 d 6 Data ultma eone 30/05/01 utoe: Mchele PSOREI

5 Poltecnco d ono CeeM ZIONMENI EERICI 4 Motoe ancono tfae ( ϑ ϑ) = ( ϑ ϑ) = con: = coente d otoe epea nel femento Oa b = coente d otoe epea nel femento d otoe Oa b equazone del fluo concatenato nel femento Oab ulta: = I M ϑ ( ) Nel femento Oa b ulta nece: ( ϑ ) = ( ϑ ) ( ϑ ) ( ϑ ) M ( ϑ) = ( ϑ ) ( ϑ ) M( ϑ ) ( ϑ) ( ϑ ϑ) ( ϑ ) ( ϑ ) = ( ϑ ) ( ϑ ) mente nel econdo addendo : = 1 ( ϑ ) ( ϑ) = ( ϑ ϑ) ( ϑ ϑ) ( ϑ ϑ) = ( ϑ ϑ) ( ϑ ϑ) = 1 Oa b = M 3 etto ono epe nell unco femento Equazone de flu d otoe: ( ) = M ϑ Il nuoo femento Oa b é uotato petto al femento d otoe d un angolo pa a ϑ - ϑ, pe fee le gandezze nel nuoo femento deo petanto condeae la otazone ϑ -ϑ da cu ulta: ( ϑ ϑ) = ϑ = ϑ ϑ M ϑ ( ϑ ) ( ) ( ) ( ϑ ϑ) = ( ϑ ϑ) M( ϑ) ( ϑ ) ( ϑ ϑ) ( ϑ ϑ) Oa b = M te etto ono epe nell unco femento afomazone dell equazone d tatoe: Poltecnco d ono Pagna 5 d 6 Data ultma eone 30/05/01 utoe: Mchele PSOREI

6 Poltecnco d ono CeeM ZIONMENI EERICI 4 Motoe ancono tfae d V = ed epeone della tea nel nuoo femento Oab, d Nota ulla tafomazone d : d d d jϑ dϑ d jϑ = ( ϑ ) = e = j e ( ϑ ) d = jω ( ϑ ) ( ϑ ) d ( ϑ ) V = ( ϑ ) ( ϑ ) ( ϑ ) d V = jω In modo analogo caa la tafomazone dell equazone d otoe: = ( ϑ ϑ) 0 = ( ϑ ϑ) ( ϑ ϑ) ( ϑ ϑ) 0 = jω d d = M = M dω = J equazone meccanca N.B. potzza una macchna con due pol. Poltecnco d ono Pagna 6 d 6 Data ultma eone 30/05/01 utoe: Mchele PSOREI

Controllo vettoriale

Controllo vettoriale Contollo vettoale I tem d contollo tadzonal della macchna ancona, baat u tecnche d contollo calae, egolano l funzonamento della macchna a egme tazonao, ma pemettono d ottenee tanto meccanc oddfacent pe

Dettagli

Il moto circolare uniforme

Il moto circolare uniforme Il moto cicolae unifome Il moto cicolae unifome: peiodo e fequenza Un copo che i muoe lungo una taiettoia cicolae con elocità calae cotante ipaa pe la poizione iniziale a intealli fii di tempo. Definiamo

Dettagli

Controllo di Azionamenti Elettrici. Lezione n 8

Controllo di Azionamenti Elettrici. Lezione n 8 Conollo Azonamen Elec ezone n 8 Coo auea n Ingegnea ell Auomazone Facolà Ingegnea Uneà egl Su Palemo Azonamen elec con mooe n coene alenaa Il mooe ancono negl azonamen a elocà aable anagg el mooe n coene

Dettagli

Un modello di ricerca operativa per le scommesse sportive

Un modello di ricerca operativa per le scommesse sportive Un modello di iceca opeativa pe le commee potive Di Citiano Amellini citianoamellini@aliceit Supponiamo di dove giocae una ceta omma di denao (eempio euo ulla patita MILAN- JUVE Le quote SNAI ono quelle

Dettagli

Corso di Elettrotecnica 1 - Cod. 9200 N Diploma Universitario Teledidattico in Ingegneria Informatica ed Automatica Polo Tecnologico di Alessandria

Corso di Elettrotecnica 1 - Cod. 9200 N Diploma Universitario Teledidattico in Ingegneria Informatica ed Automatica Polo Tecnologico di Alessandria Schede di lettotecnica Coso di lettotecnica - Cod. 900 N Diploma Univesitaio Teledidattico in Ingegneia Infomatica ed utomatica Polo Tecnologico di lessandia cua di Luca FRRRIS Scheda N Sistemi tifase:

Dettagli

Lavoro ed Energia. Scorciatoia: concetto di energia/lavoro. devo conoscere nel dettaglio la traiettoria: molto complicato!!!

Lavoro ed Energia. Scorciatoia: concetto di energia/lavoro. devo conoscere nel dettaglio la traiettoria: molto complicato!!! avoo ed Enega eempo: copo oggetto a oza vaable con la pozone [oza d gavtà, oza della molla] oppue taettoa complcata utlzzando la ola legge d Newton ma non poo calcolae la veloctà del copo n ondo alla pta,

Dettagli

Grandezze cinematiche angolari (1)

Grandezze cinematiche angolari (1) Uniesità degli Studi di Toino D.E.I.A.F.A. MOTO CIRCOLARE UNIFORME FISICA CdL Tecnologie Agoalimentai Uniesità degli Studi di Toino D.E.I.A.F.A. Genealità () Moto di un punto mateiale lungo una ciconfeenza

Dettagli

Capitolo 16. La teoria dell equilibrio generale. Soluzioni delle Domande di ripasso

Capitolo 16. La teoria dell equilibrio generale. Soluzioni delle Domande di ripasso eanko & aeutigam icoeconomia anuale delle oluzioni Capitolo 16 La teoia dell equilibio geneale Soluzioni delle Domande di ipao 1. L analii di equilibio paziale tudia la deteminazione del pezzo e della

Dettagli

Corrente elettrica. Definizione. dq i = dt. Unità di misura. 1Coulomb 1 Ampere = 1secondo. Verso della corrente

Corrente elettrica. Definizione. dq i = dt. Unità di misura. 1Coulomb 1 Ampere = 1secondo. Verso della corrente Nome file j:\scuola\cosi\coso fisica\elettomagnetismo\coente continua\coenti elettiche.doc Ceato il 05/1/003 3.07.00 Dimensione file: 48640 byte Elaboato il 15/01/004 alle oe.37.13, salvato il 10/01/04

Dettagli

Meccanica dei sistemi

Meccanica dei sistemi Meccanca de sste 1. 1. Moento angolae 2. Moento d una foza 3. Foze cental 4. Sste d punt ateal 5. Foze estene e Foze ntene 6. Cento d assa d un sstea 7. Consevazone della quantta d oto 8. Teoea del oento

Dettagli

MOTORE SINCRONO A MAGNETI PERMANENTI

MOTORE SINCRONO A MAGNETI PERMANENTI MOTORE SINCRONO A MAGNETI PERMANENTI L. SALVATORE . Il motoe incono a magneti pemanenti In paato il motoe incono ea conideato un motoe a velocità cotante (la velocità di inconimo), dipendente dalla fequenza

Dettagli

CONDUZIONE NON STAZIONARIA

CONDUZIONE NON STAZIONARIA CONDUZIONE NON AZIONARIA Caso geneale de sstem a tempeatua unfome ebbene l pocesso d conduzone non stazonaa n un soldo sa comunemente dovuto allo sco temco convettvo dal fludo ccostante, alt pocess d sco

Dettagli

6 DINAMICA DEI SISTEMI DI PUNTI MATERIALI

6 DINAMICA DEI SISTEMI DI PUNTI MATERIALI 6 DINAMICA DEI SISTEMI DI PUNTI MATERIALI Consdeao un sstea d n unt ateal con n > nteagent ta loo e con l esto dell unveso. Nello studo d un tale sstea sulta convenente scooe la foza agente ( et) sull

Dettagli

Magnetostatica: forze magnetiche e campo magnetico

Magnetostatica: forze magnetiche e campo magnetico Magnetostatica: foze magnetiche e campo magnetico Lezione 6 Campo di induzione magnetica () (nomenclatua stoica ; in ealtà si dovebbe chiamae, e spesso lo è, campo magnetico) è un campo di foze vettoiale

Dettagli

Magnetostatica: forze magnetiche e campo magnetico

Magnetostatica: forze magnetiche e campo magnetico Magnetostatica: foze magnetiche e campo magnetico Lezione 6 Campo di induzione magnetica B() (nomenclatua stoica ; in ealtà si dovebbe chiamae, e spesso lo è, campo magnetico) è un campo di foze vettoiale

Dettagli

Errori di misura. è ragionevole assumere che una buona stima del valore vero sia la media

Errori di misura. è ragionevole assumere che una buona stima del valore vero sia la media Errori di miura Se lo trumento di miura è abbatanza enibile, la miura rietuta della tea grandezza fiica darà riultati diveri fra loro e fluttuanti in modo caratteritico. E l effetto di errori cauali, o

Dettagli

Sintesi tramite il luogo delle radici

Sintesi tramite il luogo delle radici Sintei tramite il luogo delle radici Può eere utilizzata anche per progettare itemi di controllo per itemi intabili Le pecifiche devono eere ricondotte a opportuni limiti u %, ta, t di W(), oltre quelle

Dettagli

La potenza assorbita dalla pompa per sollevare il liquido dal serbatoio a valle al serbatoio a monte si calcola con la relazione

La potenza assorbita dalla pompa per sollevare il liquido dal serbatoio a valle al serbatoio a monte si calcola con la relazione 1 E S E R C I Z I S U L L E P O M P E C E N T R I F U G E ESERCIZIO 1 In un panto ollevaento per acqua ono not Il lvello geoetco tra ue erbato g 0 La preone aoluta ul erbatoo a valle p A p at La preone

Dettagli

Trasformata di Laplace unilatera Teoria

Trasformata di Laplace unilatera Teoria Definizione Tafomaa di Laplace unilaea Teoia L[f()] = f() $ e ($) d = F() Dove: f() = funzione eale afomabile. E nulla pe

Dettagli

Generalità sulle macchine rotanti

Generalità sulle macchine rotanti Macchie elettiche ate Geealità ulle macchie otati Foza di Loetz U filo coduttoe immeo i u camo magetico B (i figua B ha diezioe ucete dal foglio) e ecoo da ua coete i iega i ua o ell alta diezioe a ecodo

Dettagli

MECCANICA DEI SISTEMI

MECCANICA DEI SISTEMI MECCNIC DEI SISTEMI EX Il tema d ollevamento pe n fgura è cottuto da una barra nclnable lunga L che termna n una carrucola deale, un flo che tene l peo che paando per la carrucola arrva u una uperfce vertcale

Dettagli

Economia del turismo. Prof.ssa Carla Massidda

Economia del turismo. Prof.ssa Carla Massidda Economa del tusmo Pof.ssa Cala Massdda Pate 2 Agoment Defnzone d domanda tustca Detemnant della domanda tustca L elastctà della domanda tustca La stma della domanda tustca Defnzone d domanda tustca Dato

Dettagli

Il lavoro è quindi una grandezza scalare le cui unita di misura sono: = Joule = J

Il lavoro è quindi una grandezza scalare le cui unita di misura sono: = Joule = J Ve. el 9/0/09 Lvoo e Eneg Denzone lvoo pe un oz cotnte Se un oz cotnte gce u un copo che eettu uno potmento ce che l oz compe un lvoo ento come: co ( co ) ove è l componente ell oz pllel llo potmento.

Dettagli

12 L energia e la quantità di moto - 12. L impulso

12 L energia e la quantità di moto - 12. L impulso L enegia e la quantità di moto -. L impulso Il momento angolae e il momento d inezia Il momento angolae nalizziamo alcuni moti di otazione. Se gli attiti sono tascuabili, una uota di bicicletta messa in

Dettagli

Corrente elettrica. Conduttore in equilibrio. Condutture in cui è mantenuta una differenza di potenziale (ddp) E=0 V=cost

Corrente elettrica. Conduttore in equilibrio. Condutture in cui è mantenuta una differenza di potenziale (ddp) E=0 V=cost Coente elettca Conduttoe n equlbo B E 0 E0 cost B Conduttue n cu è mantenuta una dffeenza d potenzale (ddp) > B E 0 _ B Un campo elettco all nteno d un conduttoe appesenta una stuazone d non equlbo. Un

Dettagli

IL MOMENTO ANGOLARE E IL MOMENTO D INERZIA

IL MOMENTO ANGOLARE E IL MOMENTO D INERZIA . L'IMPULS 0 DI MT IL MMENT NGLRE E IL MMENT D INERZI Il momento angolae nalizziamo alcuni moti di otazione. Se gli attiti sono tascuabili, una uota di bicicletta messa in otazione può continuae a giae

Dettagli

Definizione delle specifiche per un sistema di controllo a retroazione unitaria

Definizione delle specifiche per un sistema di controllo a retroazione unitaria Definizione delle pecifiche per un itema di controllo a retroazione unitaria Obiettivi del controllo Il itema di controllo deve eere progettato in modo da garantire un buon ineguimento dei egnali di riferimento

Dettagli

ALBERI, PERNI E CUSCINETTI RADENTI

ALBERI, PERNI E CUSCINETTI RADENTI PAG. 1 ASSI E ALBERI ALBERI, PERNI E CUSCINETTI RAENTI ALBERO: ogano utiizzato e a tamiione ietta e moto otatoio e i un momento tocente. ASSE: ogano che otiene, enza tamiione i momento tocente, coi otanti

Dettagli

LEZIONI SU MAGNETISMO

LEZIONI SU MAGNETISMO Matematca e sca CHEMA LEZIOI U MAGETIMO ntoduce l vettoe nduzone dalla ossevazone del compotamento de magnet. va da nod a sud fuo dal magnete. od è l polo magnetco attatto dal polo nod teeste (che qund

Dettagli

GRANDEZZE MAGNETICHE Prof. Chirizzi Marco www.elettrone.altervista.org marco.chirizzi@libero.it

GRANDEZZE MAGNETICHE Prof. Chirizzi Marco www.elettrone.altervista.org marco.chirizzi@libero.it Soenoide GRANDEZZE MAGNETICHE Pof. Chiizzi Maco www.eettone.atevista.og maco.chiizzi@ibeo.it PREMESSA La pesente dispensa ha come obiettivo queo di gaantie agi aievi de coso di Fisica de biennio, ad indiizzo

Dettagli

Strategie di controllo del motore brushless

Strategie di controllo del motore brushless Saege conollo el mooe uhle Ince onollo eoale un mooe uhle.... cham moellca..... oello namco n ganezze fae..... oello n foma macale... 4.. Epeone ella coppa eleomagneca... 6..4 oello n foma ao... 6..5 oell

Dettagli

Q & Tracce svolte di esercizi sulla Trasmissione del Calore Prof. Mistretta a.a. 2009/2010

Q & Tracce svolte di esercizi sulla Trasmissione del Calore Prof. Mistretta a.a. 2009/2010 racc olt d rcz ulla raon dl alor Prof. trtta a.a. 009/00 Erczo n. S condr una part d atton alta 4 larga 6 pa 0 la cu ucbltà trca è λ λ 0 8 [/( )]. In un crto gorno alor urat dll tpratur dlla uprfc ntrna

Dettagli

CORRENTI ELETTRICHE E CAMPI MAGNETICI STAZIONARI

CORRENTI ELETTRICHE E CAMPI MAGNETICI STAZIONARI CORRENT ELETTRCHE E CAMP MAGNETC STAZONAR Foze magnetiche su una coente elettica; Coppia magnetica su una coente in un cicuito chiuso; Azioni meccaniche su dipoli magnetici; Applicazione (Galvanometo);

Dettagli

Facoltà di Ingegneria Prova scritta di Fisica I 13 Febbraio 2006 Compito A

Facoltà di Ingegneria Prova scritta di Fisica I 13 Febbraio 2006 Compito A Facoltà di Ingegneria Prova critta di Fiica I 13 Febbraio 6 Copito A Eercizio n.1 Un blocco, aiilabile ad un punto ateriale di aa, partendo da fero, civola da un altezza h lungo un piano inclinato cabro

Dettagli

1.1 Identificazione del campo di operatività di un motore AC brushless. Sia dato un motore AC brushless isotropo di cui siano noti i seguenti dati:

1.1 Identificazione del campo di operatività di un motore AC brushless. Sia dato un motore AC brushless isotropo di cui siano noti i seguenti dati: Captolo 1 1.1 Ientfcazone el campo operatvtà un motore AC bruhle Sa ato un motore AC bruhle otropo cu ano not eguent at: Vn = 190 V In = 3.5 A Tn =.6 N n pol = R = 1 Ω L = 8 mh Ke = Kt = 0.4 S etermn l

Dettagli

Il campo magnetico. sommario21.1. capitolo 21.2

Il campo magnetico. sommario21.1. capitolo 21.2 I campo magnetco captoo 21 I campo magnetco d un magnete Campo magnetco geneato da una coente eettca 21.2.1 Campo magnetco geneato da un fo nfnto ettneo pecoso da coente 21.2.2 Campo magnetco geneato da

Dettagli

1 Laser Doppler Velocimetry

1 Laser Doppler Velocimetry Laer oppler Velocmetry 1 Laer oppler Velocmetry 1.1 Introduzone L anemometra laer (LV) è applcata nel campo dell aerodnamca permentale a partre da prm ann ettanta, ann n cu le apparecchature laer dvennero

Dettagli

Leggi di Biot-Savart e di Ampère. Fisica II - CdL Chimica

Leggi di Biot-Savart e di Ampère. Fisica II - CdL Chimica Legg d Bot-Savat e d Ampèe d P R dl Ossevazon spemental Legge d Bot-Savat db ds espemento: X db... assumendo n fomula Legge d Bot-Savat db ds pemeabltà magnetca X db Il campo magnetco è dstbuto ntono al

Dettagli

Macchine. 5 Esercitazione 5

Macchine. 5 Esercitazione 5 ESERCITAZIONE 5 Lavoro nterno d una turbomacchna. Il lavoro nterno massco d una turbomacchna può essere determnato not trangol d veloctà che s realzzano all'ngresso e all'uscta della macchna stessa. Infatt

Dettagli

Le Trasmissioni Meccaniche

Le Trasmissioni Meccaniche Le Tasmissioni Meccaniche Gli inganaggi sono componenti meccanici utilizzati nelle tasmissioni. Una tasmissione meccanica è un meccanismo destinato a tasmettee potenza da un motoe pimo ad una macchina

Dettagli

Il campo magnetico cariche elettriche in moto magnete permanente due polarità nord sud non è monopolo magnetico

Il campo magnetico cariche elettriche in moto magnete permanente due polarità nord sud non è monopolo magnetico Il capo agnetco Un capo agnetco può essee ceato da cache elettche n oto, coè da una coente, oppue da un agnete peanente Speentalente s tova che esstono due polatà nel agnetso polo nod e polo sud: pol ugual

Dettagli

Prova di verifica n.0 Elettronica I (26/2/2015)

Prova di verifica n.0 Elettronica I (26/2/2015) Proa d erfca n.0 lettronca I (26/2/2015) OUT he hfe + L OUT - Fgura 1 Con rfermento alla rete elettrca d Fg.1, determnare: OUT / OUT / la resstenza sta dal generatore ( V ) la resstenza sta dall uscta

Dettagli

Approfondimento 7.4 - Altri tipi di test di significatività del coefficiente di correlazione di Pearson

Approfondimento 7.4 - Altri tipi di test di significatività del coefficiente di correlazione di Pearson Appofondmento 7.4 - Alt tp d test d sgnfcatvtà del coeffcente d coelazone d Peason Una delle cause pncpal della cattva ntepetazone del test d sgnfcatvtà d è che s fonda su un potes nulla pe cu ρ 0. In

Dettagli

Note su alcuni principi fondamentali di macroeconomia Versione parziale e provvisoria. Claudio Sardoni Sapienza Università di Roma

Note su alcuni principi fondamentali di macroeconomia Versione parziale e provvisoria. Claudio Sardoni Sapienza Università di Roma Note u alcuni principi fondamentali di macroeconomia Verione parziale e provvioria Claudio Sardoni Sapienza Univerità di Roma Anno accademico 2010-2011 ii Indice Premea v I Il breve periodo 1 1 Il fluo

Dettagli

UNIVERSITÀ DEGLI STUDI DI TERAMO

UNIVERSITÀ DEGLI STUDI DI TERAMO UNIVERSITÀ DEGLI STUDI DI TERAMO CORSO DI LAUREA IN TUTELA E BENESSERE ANIMALE Coro di : FISICA MEDICA A.A. 2015 /2016 Docente: Dott. Chiucchi Riccardo ail:rchiucchi@unite.it Medicina Veterinaria: CFU

Dettagli

Energia potenziale e dinamica del punto materiale

Energia potenziale e dinamica del punto materiale Enegia potenziale e dinamica del punto mateiale Definizione geneale di enegia potenziale (facoltativo) In modo geneale, la definizione di enegia potenziale può esee pesentata come segue. Sia un punto di

Dettagli

REALTÀ E MODELLI SCHEDA DI LAVORO

REALTÀ E MODELLI SCHEDA DI LAVORO REALTÀ E MDELLI SCHEDA DI LAVR La clessida ad acqua Ipotizziamo che la clessida ad acqua mostata in figua sia fomata da due coni pefetti sovapposti La clessida impiega,5 minuti pe svuotasi e supponiamo

Dettagli

www.ipospadia.it Dott:Giacinto Marrocco

www.ipospadia.it Dott:Giacinto Marrocco www.ipospadia.it Dott:Giacinto Marrocco Le Malformazioni dei Genitali nell'infanzia Un sito dedicato ai pediatri ed ai genitori di bambini con patologie acquisite o congenite degli organi genitali EPISPADIA

Dettagli

5 Secondo principio della termodinamica... 2 5.1 Motori termici... 2 5.1.1 Rendimenti termici... 3 5.2 Secondo principio della termodinamica secondo

5 Secondo principio della termodinamica... 2 5.1 Motori termici... 2 5.1.1 Rendimenti termici... 3 5.2 Secondo principio della termodinamica secondo 5 eondo rno della termodnama... 5. Motor term... 5.. Rendment term... 3 5. eondo rno della termodnama eondo Ke-Plan... 4 5.3 Mahne frgorfere... 4 5.3. Coeffente d retazone (COP... 4 5.4 Pome d alore...

Dettagli

Sottosopra P_PRF0371. 10m 2 a temporary shelter for widespread hospitality. 0.45 scala struttura impalcatura. antivento gelosia traspirante

Sottosopra P_PRF0371. 10m 2 a temporary shelter for widespread hospitality. 0.45 scala struttura impalcatura. antivento gelosia traspirante So o op Un nz o pe unn dou bno o ocuflu ce c à: o o op non o e o v quo d nm cch ce o o pubb coconun ve o p od decon ocon e e Cond v onee o men o ono e n vep opo e np e u o uo o no c o o nf e o eè be o o

Dettagli

I vettori. Grandezze scalari: Grandezze vettoriali

I vettori. Grandezze scalari: Grandezze vettoriali I etto Gndee scl: engono defnte dl loo loe numeco esemp: lunghe d un segmento, e d un fgu pn, tempetu d un copo, ecc. Gndee ettol engono defnte, olte che dl loo loe numeco, d un deone e d un eso esemp:

Dettagli

Cinematica: soluzioni. Scheda 4. Ripetizioni Cagliari di Manuele Atzeni - 3497702002 - info@ripetizionicagliari.it

Cinematica: soluzioni. Scheda 4. Ripetizioni Cagliari di Manuele Atzeni - 3497702002 - info@ripetizionicagliari.it Cinematica: oluzioni Problema di: Cinematica - C0015ban Teto [C0015ban] Eercizi banali di Cinematica: 1. Moto rettilineo uniforme (a) Quanto pazio percorre in un tempo t = 70 un oggetto che i muove con

Dettagli

Algebra 2. 6 4. Sia A un anello commutativo. Si ricorda che in un anello commutativo vale il teorema binomiale, cioè. (a + b) n = a i b n i i.

Algebra 2. 6 4. Sia A un anello commutativo. Si ricorda che in un anello commutativo vale il teorema binomiale, cioè. (a + b) n = a i b n i i. Testo Fac-smle 2 Durata prova: 2 ore 8 1. Un gruppo G s dce semplce se suo unc sottogrupp normal sono 1 e G stesso. Sa G un gruppo d ordne pq con p e q numer prm tal che p < q. (a) Il gruppo G può essere

Dettagli

0. RICHIAMI PRELIMINARI

0. RICHIAMI PRELIMINARI 0. RICHIAMI PRELIMINARI 0.1 RIEPILOGO SULLE UNITÀ DI MISURA DEL SISTEMA INTERNAZIONALE E FATTORI DI CONVERSIONE Le unità fondamentali e upplementari del Sitema Internazionale (SI), noncé le unità derivate

Dettagli

Capitolo IV L n-polo

Capitolo IV L n-polo Capitolo IV L n-polo Abbiamo oervato che una qualiai rete, vita da due nodi, diventa, a tutti gli effetti eterni, un bipolo unico e queto è in qualche miura ovvio e abbiamo anche motrato come cotruire

Dettagli

ONDE ELETTROMAGNETICHE

ONDE ELETTROMAGNETICHE ONDE ELETTROMAGNETICHE Teoia delle onde EM e popagazione (B. Peite) mecoledì 8 febbaio 1 Coso di Compatibilità Elettomagnetica 1 Indice degli agomenti Fenomeni ondulatoi La matematica dell onda La legge

Dettagli

DATI DI TERMOFLUIDODINAMICA

DATI DI TERMOFLUIDODINAMICA DATI DI TERMOFLUIDODINAMICA Unertà degl Std d Catana Dpartmento ng. Ind. e Meccanca INDICE I INDICE Smbol pagna II Dat e cotant d o corrente 1 Tabelle: 1. Acqa: dentà della fae lqda a p = 101 325 Pa 2

Dettagli

Regolatori di pressione elettroidraulici e regolatori di portata,

Regolatori di pressione elettroidraulici e regolatori di portata, Regolator d preone elettrodraulc e regolator d portata, tecnca degl attuator per clndr d pozonamento u turbomacchne Tecnologa affermata I regolator elettrodraulc d preone e regolator d portata ono la oluzone

Dettagli

Professor Mario Dente, Professoressa Giulia Bozzano

Professor Mario Dente, Professoressa Giulia Bozzano Pofesso Mao ente, Pofessoessa Gula Bozzano patmento d Chmca, Mateal e Ingegnea Chmca "Gulo Natta" Sezone Chmca Industale e Ingegnea Chmca Poltecnco d Mlano Pazza Leonado a Vnc, 3-033 Mlano (MI) Pemessa.

Dettagli

Cap. 4 Mercati finanziari

Cap. 4 Mercati finanziari Cap. 4 ercati finanziari Tao interee (i): importante per invetimenti e celte i conumo intertemporali. Noi iamo intereati principalmente ai primi. Come i etermina i? Attori: Banca Centrale (BC), banche,

Dettagli

3. Esercitazioni di Teoria delle code

3. Esercitazioni di Teoria delle code 3. Eserctazon d Teora delle code Poltecnco d Torno Pagna d 33 Prevsone degl effett d una decsone S ndvduano due tpologe d problem: statc: l problema non vara nel breve perodo dnamc: l problema vara Come

Dettagli

Statica del corpo rigido: esercizi svolti dai compitini degli anni precedenti

Statica del corpo rigido: esercizi svolti dai compitini degli anni precedenti Statica de corpo riido: eercizi voti dai compitini dei anni precedenti II COMPITIO 00 003 Un ae di eno orizzontae omoenea, di maa M0 k e unhezza L m, è appoiata u due cavaetti. L ae pore di 60 cm otre

Dettagli

Ing. Mariagrazia Dotoli Controlli Automatici NO (9 CFU) Antitrasformata di Laplace PROCEDIMENTI DI ANTITRASFORMAZIONE

Ing. Mariagrazia Dotoli Controlli Automatici NO (9 CFU) Antitrasformata di Laplace PROCEDIMENTI DI ANTITRASFORMAZIONE PROCEDIMENTI DI ANTITRASFORMAZIONE L'operazione di paaggio invero dal dominio della frequenza complea al dominio del tempo F() f(t) è detta antitraformata o traformazione invera di Laplace. Data una funzione

Dettagli

GUIDA PER L ISTAL LAZ IONE E L A M E SSA IN FUNZIONE DEL SENSORE DI TE MPE R ATURA ESTERNA SU FIAT PANDA 2 SERI E

GUIDA PER L ISTAL LAZ IONE E L A M E SSA IN FUNZIONE DEL SENSORE DI TE MPE R ATURA ESTERNA SU FIAT PANDA 2 SERI E GUIDA PER L ISTAL LAZ IONE E L A M E SSA IN FUNZIONE DEL SENSORE DI TE MPE R ATURA ESTERNA SU FIAT PANDA 2 SERI E 2004-2011 P re m e tt o c h e l a se g ue n te g u i d a è stata c reata esp l i c i ta

Dettagli

Programma del corso di Biofisica: 1. Vettori 2. Ottica elettromagnetismo 3. Ottica lineare 4. Microscopia ottica 5. Livelli energetici (cenni) 6.

Programma del corso di Biofisica: 1. Vettori 2. Ottica elettromagnetismo 3. Ottica lineare 4. Microscopia ottica 5. Livelli energetici (cenni) 6. Pogaa del coso d Bofsca: 1. Vetto 2. Ottca elettoagnetso 3. Ottca lneae 4. Mcoscopa ottca 5. Lell enegetc (cenn) 6. Lase, fbe ottche 7. Mcoscopa d Fluoescenza 8. SEM 9. TEM 10. AFM, SNOM 11. Lell Enegetc

Dettagli

Diagramma circolare di un motore asincrono trifase

Diagramma circolare di un motore asincrono trifase Diagramma circolare di un motore aincrono trifae l diagramma circolare è un diagramma che permette di leggere tutte le grandezze del motore aincrono trifae (potenza rea, perdite nel ferro, coppia motrice,

Dettagli

La seconda prova scritta dell esame di stato 2007 Indirizzo: GEOMETRI Tema di TOPOGRAFIA

La seconda prova scritta dell esame di stato 2007 Indirizzo: GEOMETRI Tema di TOPOGRAFIA La seconda pova scitta dell esame di stato 007 Indiizzo: OMTRI Tema di TOPORI Claudio Pigato Membo del Comitato Scientiico SIT Società Italiana di otogammetia e Topogaia Istituto Tecnico Statale pe eometi

Dettagli

Centro di massa. Coppia di forze. Condizioni di equilibrio. Statica Fisica Sc.Tecn. Natura. P.Montagna Aprile pag.1

Centro di massa. Coppia di forze. Condizioni di equilibrio. Statica Fisica Sc.Tecn. Natura. P.Montagna Aprile pag.1 L EQUILIBRIO LEQU L Corpo rgdo Centro d massa Equlbro Coppa d forze Momento d una forza Condzon d equlbro Leve pag.1 Corpo esteso so e corpo rgdo Punto materale: corpo senza dmenson (approx.deale) Corpo

Dettagli

d a v i d e s e b a s t i a n

d a v i d e s e b a s t i a n d a v i d e s e b a s t i a n s e l e c t e d w o r k s 2 0 0 2-2 0 0 9 w w w. d a v i d e s e b a s t i a n. c o m i n f o @ d a v i d e s e b a s t i a n. c o m D a v i d e S e b a s t i a n ( 1 9 8

Dettagli

CIRCUITI EQUIVALENTI DELLE LINEE ELETTRICHE AEREE

CIRCUITI EQUIVALENTI DELLE LINEE ELETTRICHE AEREE Elettotecca : patmeto d Igegea dell Eega e de Sstem CIRCUITI EQUIVALENTI ELLE LINEE ELETTRICHE AEREE Coso d Lauea Igegea Elettca slde d 48 LE LINEE ELETTRICHE AEREE Sstem Tfase: lee elettche La peseza

Dettagli

d. V B = m 3) L altezza massima dal suolo raggiunta dalla biglia vale

d. V B = m 3) L altezza massima dal suolo raggiunta dalla biglia vale Facoltà d Ingegnea Pova Sctta d Fca I 5 Febbao 00 Queto n Una olla deale d cotante elatca k e d lunghezza a poo d, è pota all nteno d un cannoncno eccanco lungo L e nclnato petto all ozzontale d un angolo

Dettagli

Lezione 12. Regolatori PID

Lezione 12. Regolatori PID Lezione 1 Regolatori PD Legge di controllo PD Conideriamo un regolatore che eercita un azione di controllo dipendente dall errore attravero la eguente legge: t ut = K et K e d K de t P + τ τ+ D. dt La

Dettagli

1atm = 760 torr (o anche mmhg) = 101325 Pa = 1.01325 bar

1atm = 760 torr (o anche mmhg) = 101325 Pa = 1.01325 bar ressone: tendenza del gas ad espanders densonalente è Forza superce ewton L'untà d sura usata n pratca è l'atosera (at) a (ascal) at 760 torr (o anche Hg) 05 a.05 bar olue: sura d una porzone d spazo densonalente

Dettagli

IL CONTROLLO DEI GNSS SYSTEMS IN REAL TIME KINEMATIC CON LE NUOVE NORME ISO 17123-8:2007

IL CONTROLLO DEI GNSS SYSTEMS IN REAL TIME KINEMATIC CON LE NUOVE NORME ISO 17123-8:2007 IL CONTROLLO DEI GNSS SYSTEMS IN REAL TIME KINEMATIC CON LE NUOVE NORME ISO 17123-8:2007 Lorenzo LEONE (*), Daniela LAUDANI FICHERA (**) Marco LEONE (***), Giueppe PULVIRENTI (****) (*) Dipartimento di

Dettagli

Obiettivi Specifici di apprendimento GEOGRAFIA. CURRICOLO VERTICALE DI ISTITUTO (dalla Cl. I Sc.Primaria alla Cl. III Sc.Second. 1 gr.

Obiettivi Specifici di apprendimento GEOGRAFIA. CURRICOLO VERTICALE DI ISTITUTO (dalla Cl. I Sc.Primaria alla Cl. III Sc.Second. 1 gr. bettv pecfc d ppendmento GGAFA VA D ( cpm cecond 1 g) A NNZ ABÀ sse cpm gnzzto tempo e spz (pm, po, mente, sop, sotto, dvnt, deto, vcno, ontno,snst, dest, ecc) sse cpm ement costtutv deo spzo vssuto: funzon,

Dettagli

MODELLI DI SCELTA DEL PERCORSO PER RETI DI TRASPORTO COLLETTIVO

MODELLI DI SCELTA DEL PERCORSO PER RETI DI TRASPORTO COLLETTIVO IPARTIMENTO INENERIA CIVILE UNIVERSITÀ I ROMA TOR VERATA coo di Pianificazione dei tapoti 2 MOELLI I SCELTA EL PERCORSO PER RETI I TRASPORTO COLLETTIVO 1 CLASSIFICAZIONE EI COMPORTAMENTI I SCELTA celta

Dettagli

Impianti di climatizzazione a tutt aria: generalità e dimensionamento

Impianti di climatizzazione a tutt aria: generalità e dimensionamento Laboatoo d Sntes Fnale Modulo d Tecnca del Contollo Ambentale Impant d clmatzzazone a tutt aa: genealtà e dmensonamento Pof. Flppo de Ross 1/25 Laboatoo d Sntes Fnale Modulo d Tecnca del Contollo Ambentale

Dettagli

IL TEOREMA DI UNICITA PER 1 FLUIDI INCOMPRESSIBILI, PERFETTI,ETEROGENEI

IL TEOREMA DI UNICITA PER 1 FLUIDI INCOMPRESSIBILI, PERFETTI,ETEROGENEI IL TEOREMA DI UNICITA PER 1 FLUIDI INCOMPRESSIBILI, PERFETTI,ETEROGENEI di DARIO GRAFFI, Bologna (Italia) 1. In una Nota pubblicata due anni fa (1) ho tabilito il teorema di unicitil per le'equazioni dei

Dettagli

Sezioni in c.a. La flessione composta. Catania, 16 marzo 2004 Marco Muratore

Sezioni in c.a. La flessione composta. Catania, 16 marzo 2004 Marco Muratore Sezioni in c.a. La fleione compota Catania, 16 marzo 004 arco uratore Per chi non c era 1. Compreione: verifica Tenioni ammiibili α cd Ac f 1.5 f yd A 0.7 σ ( A max c c n A ) Riultati comparabili per il

Dettagli

durante lo spostamento infinitesimo dr la quantità data dal prodotto scalare F dr

durante lo spostamento infinitesimo dr la quantità data dal prodotto scalare F dr 4. Lavoo ed enegia Definizione di lavoo di una foza Si considea un copo di massa m in moto lungo una ceta taiettoia. Si definisce lavoo infinitesimo fatto dalla foza F duante lo spostamento infinitesimo

Dettagli

Ques t or epor tès t a t oc ur a t oda : Dot t. s s agi us eppi nadel or enz o-medi c oe pi demi ol ogo UOCCont r ol l odi Ges t i one-f l us s i I nf or ma t i v i T el. 0813050416-ema i l : gi us eppi

Dettagli

La spettroscopia Raman spettroscopia ottica spettroscopia di assorbimento spettroscopia di fluorescenza o di luminescenza

La spettroscopia Raman spettroscopia ottica spettroscopia di assorbimento spettroscopia di fluorescenza o di luminescenza La pettrocopa Raman Con l termne pettrocopa oltamente ntende peccare un nterazone d una onda con la matera. In una chematzzazone puttoto emplcata poamo dre che la onda emerge dall nterazone portando con

Dettagli

C3. Rette parallele e perpendicolari

C3. Rette parallele e perpendicolari C. Rette paallele e pependicolai C.1 Rette pependicolai Due ette ed ono dette pependicolai e incociandoi fomano quatto angoli conguenti. Si cive. C. Teoema: ette pependicolai fomano angoli etti Due ette

Dettagli

Leggi di Biot-Savart e di Ampère. Fisica II - CdL Chimica

Leggi di Biot-Savart e di Ampère. Fisica II - CdL Chimica Legg d ot-savat e d Ampèe q d q P R dl Ossevazon spemental d Legge d ot-savat ds q espemento: X d d d d d d d ds 1 ds 2 sen q... assumendo n fomula I ds ˆ d k m 2 d Legge d ot-savat ds q X d d k c m pemeabltà

Dettagli

i i i: i I i i!i!, i i i

i i i: i I i i!i!, i i i S I D RA D red g i n g, M a r i n e & E n v i ro n m e n ta l C o n t ra ct o r i i i: i I i i!i!, i i i P ro g ett a e d e s e g u e d a p i ù d i 3 0 a n n i o p e re m a r i tt i m e i n I t a l i a

Dettagli

Le ipotesi di base che si utilizzano sono le stesse quattro già viste con riferimento al caso della flessione semplice e cioè:

Le ipotesi di base che si utilizzano sono le stesse quattro già viste con riferimento al caso della flessione semplice e cioè: LEZIONI N 44 E 45 CALCOLO A ROTTURA DELLA SEZIONE PRESSOINFLESSA PROBLEMI DI VERIFICA La procedura di verifica dei pilatri di c.a., ottopoti a forzo normale e momento flettente, è baata ulla cotruzione

Dettagli

Analisi dei flussi 182

Analisi dei flussi 182 Programmazone e Controllo Anals de fluss Clent SERVIZIO Uscta Quanto al massmo produce l mo sstema produttvo? Quanto al massmo produce la ma macchna? Anals de fluss 82 Programmazone e Controllo Teora delle

Dettagli

5. CAMBIO. 5.1. descrizione

5. CAMBIO. 5.1. descrizione ambio powe - shift 5. AMBIO 5.. descizione Tattasi di cambio meccanico a te velocità avanti e te velocità indieto, ealizzate mediante cinque iduttoi epicicloidali vaiamente collegati ta loo. Tutte le cinque

Dettagli

MACCHINE ELETTRICHE. Macchine Asincrone. Stefano Pastore. Dipartimento di Ingegneria e Architettura Corso di Elettrotecnica (IN 043) a.a.

MACCHINE ELETTRICHE. Macchine Asincrone. Stefano Pastore. Dipartimento di Ingegneria e Architettura Corso di Elettrotecnica (IN 043) a.a. MACCHNE ELETTCHE Mcchine Aincrone Stefno Ptore Diprtimento di ngegneri e Architettur Coro di Elettrotecnic (N 043).. 0-3 ntroduzione Sono dette Mcchine d nduzione (trife) otore gbbi o rotore vvolto Sttore

Dettagli

Vettori. Le grandezze fisiche sono: scalari; vettoriali;

Vettori. Le grandezze fisiche sono: scalari; vettoriali; Vetto 1 Le gndee fsche sono: scl; vettol; Def: Gnde scle defnt unvocmente d un numeo (postvo o negtvo) (con oppotun untà d msu) es.: tempo, mss, tempetu, cc elettc, Def: Gnde vettole (vd. pgn seguente)

Dettagli

Esame di COSTRUZIONE DI MACCHINE L5 PROGETTAZIONE MECCANICA I L3. Appello del 04.03.2004

Esame di COSTRUZIONE DI MACCHINE L5 PROGETTAZIONE MECCANICA I L3. Appello del 04.03.2004 Esame di COSTRUZOE D MACCHE L5 PROGETTAZOE MECCACA L Appello del 0.0.00 La figua mosta le uote dentate e gli albei di un iduttoe. Dati: Coppia in ingesso C 60 m Velocità albeo di ingesso n 50 pm Mateiale

Dettagli

3. Catene di Misura e Funzioni di Trasferimento

3. Catene di Misura e Funzioni di Trasferimento 3.. Generalità 3. Catene di Miura e Funzioni di Traferimento 3.. Generalità Il egnale che rappreenta la grandezza da miurare viene trattato in modo da poter eprimere quet ultima con uno o più valori numerici

Dettagli

Cariche in campo magnetico: Forza magnetica

Cariche in campo magnetico: Forza magnetica Lezione 18 Campo magnetico I Stoicamente, i geci sapevano che avvicinando un pezzo di magnetite a della limatua di feo questa lo attaeva. La magnetite ea il pimo esempio noto di magnete pemanente. Come

Dettagli

Regime Permanente. (vedi Vitelli-Petternella par. VI.1,VI.1.1,VI.2)

Regime Permanente. (vedi Vitelli-Petternella par. VI.1,VI.1.1,VI.2) Regme Permanente (ve Vtell-Petternella par. VI.,VI..,VI.) Comportamento a regme permanente Clafcazone n tp Conzon a Cclo Chuo Conzon a Cclo Aperto Rpota a Regme per Dturb Cotant Dturbo ulla mura Rpota

Dettagli

21. COLLEGAMENTI SALDATI

21. COLLEGAMENTI SALDATI . COLLEET SLDT. Petucc Leon d Costuone d acchne La saldatua è un pocesso che consente d collegae element costuttv ta loo o con l esteno. È un collegamento fsso ed namovble. Da un punto d vsta meccanco,

Dettagli

Analisi di pompe di calore geotermiche con sonde orizzontali

Analisi di pompe di calore geotermiche con sonde orizzontali Anals d pompe d caloe geotemche con sonde ozzontal MICHELE DE CARLI MAURO MANOVAN LEONARDO PRENDIN ANGELO ZARRELLA ROBERO ZECCHIN 3 ALESSANDRO ZERBEO Dpatmento d Fsca ecnca dell Unvestà degl Stud d Padova

Dettagli

L equazione che descrive il moto del corpo è la seconda legge della dinamica

L equazione che descrive il moto del corpo è la seconda legge della dinamica Eercizio ul piano inclinato La forza peo è data dalla formula p mg Allora e grandezze geometriche: poono eere critte utilizzando l angolo di inclinazione del piano oppure le Angolo di inclinazione orza

Dettagli

REGISTRAZIONE DEL MOTO. Lo scopo è riempire una tabella t/s (istante di tempo/posizione occupata)

REGISTRAZIONE DEL MOTO. Lo scopo è riempire una tabella t/s (istante di tempo/posizione occupata) REGISTRAZIONE DEL MOTO Lo copo è riempire una abella / (iane di empo/poizione occupaa) (ec) (meri) Ciò i può fare in due modi: 1) Prefiare le poizioni e miurare a quale empo vengano raggiune. Si compila

Dettagli

PROBLEMI RISOLTI DI CINEMATICA

PROBLEMI RISOLTI DI CINEMATICA Prof Giovanni Ianne PROBLEMI RISOLTI DI CINEMATICA Un aereo parte alle ore 4:0 e arriva a detinazione alle ore 5:5 coprendo una ditanza di 500 K Calcolare la velocità edia dell aereo in K/h e traforarla

Dettagli

LA GESTIONE DELLO STRESS

LA GESTIONE DELLO STRESS LA GESTIONE DELLO STRESS Stre è enza alcun dubbio una delle parole più uate (o abuate) nel mondo, almeno in quello occidentale. Vi ono molti ignificati dati a queto termine, alcuni ne ottolineano primariamente

Dettagli