AZIONAMENTI ELETTRICI 2. Modello del motore asincrono trifase ed osservatori di flusso

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "AZIONAMENTI ELETTRICI 2. Modello del motore asincrono trifase ed osservatori di flusso"

Transcript

1 Poltecnco d ono CeeM ZIONMENI EERICI 4 Motoe ancono tfae Modello del motoe ancono tfae ed oeato d fluo S conde la macchna chematzzata con aolgment tatoc pot a π/ ta loo e f nello pazo e aolgment otoc, pot a π/, ma otant petto gl aolgment d tatoe: e equazon elettche d tatoe e otoe ultano: d a Va = a d b Vb = b In foma ettoale poono eee ctte nell unca equazone : V = nalogamente pe l otoe ulta: d a 0 = a d b 0 = b In foma ettoale ulta: d 0 = e equazon che epmono flu n fluzon delle coent d tatoe e d otoe ultano ( pocede mmedatamente alla cttua delle tee n foma matcale): d a b a b 0 = Mcoϑ Mnϑ 0 Mnϑ Mcoϑ Mcoϑ Mnϑ 0 Mnϑ Mcoϑ 0 a b a b { f. d tatoe f. d otoe Poltecnco d ono Pagna 1 d 6 Data ultma eone 30/05/01 utoe: Mchele PSOREI

2 Poltecnco d ono CeeM ZIONMENI EERICI 4 Motoe ancono tfae Pe emplfcae le condeazon che eanno olte d eguto condea l anal della otazone d un ettoe = x = coϑ jnϑ = 1 jy ett oe notazone ett. nel pano compleo con modulo untao e anomala ϑ ( x coϑ y nϑ) j( y coϑ x nϑ) ( x jy )( coϑ n )= jϑ = = e = ϑ In notazone matcale ulta: = = e jϑ x = y x = y coϑ y coϑ x nϑ = nϑ coϑ = nϑ N.B. : det((θ))=1 nϑ x coϑ y = ( ϑ) coϑ nϑ S conde la matce nea: Da cu caa: nϑ coϑ jϑ ( ϑ) = e 1 ( ϑ) è la matce pe cu ( ϑ ) ( ϑ) = ( ϑ) ( ϑ) = 1 1 coϑ nϑ nϑ ( ϑ) = coϑ N.B. eendo una matce otonomale, efca che la matce nea concde con la tapota: Poltecnco d ono Pagna d 6 Data ultma eone 30/05/01 utoe: Mchele PSOREI

3 Poltecnco d ono CeeM ZIONMENI EERICI 4 Motoe ancono tfae coϑ nϑ nϑ coϑ jϑ ( ϑ) = ( ϑ) = e a matce de flu può eee ctta come: [] I = M ( ϑ) M I ( ϑ) [] M, R con: a b 1 0 = I = matce denttà d odne a 0 1 = b [] a b = matc de flu/coent d macchna a b [] Sotto foma ettoale ulta nece: = M ( ϑ ) = M( ϑ) S potzza oa la otazone del femento cateano d ϑ e ndaga ulle tafomazon da applcae a a etto pe ottenee l epeone delle coodnate del nuoo femento. Poltecnco d ono Pagna 3 d 6 Data ultma eone 30/05/01 utoe: Mchele PSOREI

4 Poltecnco d ono CeeM ZIONMENI EERICI 4 Motoe ancono tfae Se è l ettoe epeo nel femento Oab aà, ettoe epeo nel femento Oa b jϑ = e = ( ϑ) pplcando le condeazon pecedent al ettoe coent d tatoe del motoe ancono: = ( ϑ) = ( ϑ ) Nel cao del otoe la tafomazone dee tenee conto della pozone ϑ del otoe petto allo tatoe e bogna codae che le coent otoche ono epee nel femento d otoe del motoe: Oa b : femento d otoe, ncono col otoe e uotato d ϑ petto lo tatoe Oa b : femento ndpendente da tatoe e otoe e uotato d ϑ petto allo tatoe Poltecnco d ono Pagna 4 d 6 Data ultma eone 30/05/01 utoe: Mchele PSOREI

5 Poltecnco d ono CeeM ZIONMENI EERICI 4 Motoe ancono tfae ( ϑ ϑ) = ( ϑ ϑ) = con: = coente d otoe epea nel femento Oa b = coente d otoe epea nel femento d otoe Oa b equazone del fluo concatenato nel femento Oab ulta: = I M ϑ ( ) Nel femento Oa b ulta nece: ( ϑ ) = ( ϑ ) ( ϑ ) ( ϑ ) M ( ϑ) = ( ϑ ) ( ϑ ) M( ϑ ) ( ϑ) ( ϑ ϑ) ( ϑ ) ( ϑ ) = ( ϑ ) ( ϑ ) mente nel econdo addendo : = 1 ( ϑ ) ( ϑ) = ( ϑ ϑ) ( ϑ ϑ) ( ϑ ϑ) = ( ϑ ϑ) ( ϑ ϑ) = 1 Oa b = M 3 etto ono epe nell unco femento Equazone de flu d otoe: ( ) = M ϑ Il nuoo femento Oa b é uotato petto al femento d otoe d un angolo pa a ϑ - ϑ, pe fee le gandezze nel nuoo femento deo petanto condeae la otazone ϑ -ϑ da cu ulta: ( ϑ ϑ) = ϑ = ϑ ϑ M ϑ ( ϑ ) ( ) ( ) ( ϑ ϑ) = ( ϑ ϑ) M( ϑ) ( ϑ ) ( ϑ ϑ) ( ϑ ϑ) Oa b = M te etto ono epe nell unco femento afomazone dell equazone d tatoe: Poltecnco d ono Pagna 5 d 6 Data ultma eone 30/05/01 utoe: Mchele PSOREI

6 Poltecnco d ono CeeM ZIONMENI EERICI 4 Motoe ancono tfae d V = ed epeone della tea nel nuoo femento Oab, d Nota ulla tafomazone d : d d d jϑ dϑ d jϑ = ( ϑ ) = e = j e ( ϑ ) d = jω ( ϑ ) ( ϑ ) d ( ϑ ) V = ( ϑ ) ( ϑ ) ( ϑ ) d V = jω In modo analogo caa la tafomazone dell equazone d otoe: = ( ϑ ϑ) 0 = ( ϑ ϑ) ( ϑ ϑ) ( ϑ ϑ) 0 = jω d d = M = M dω = J equazone meccanca N.B. potzza una macchna con due pol. Poltecnco d ono Pagna 6 d 6 Data ultma eone 30/05/01 utoe: Mchele PSOREI

Controllo vettoriale

Controllo vettoriale Contollo vettoale I tem d contollo tadzonal della macchna ancona, baat u tecnche d contollo calae, egolano l funzonamento della macchna a egme tazonao, ma pemettono d ottenee tanto meccanc oddfacent pe

Dettagli

Il moto circolare uniforme

Il moto circolare uniforme Il moto cicolae unifome Il moto cicolae unifome: peiodo e fequenza Un copo che i muoe lungo una taiettoia cicolae con elocità calae cotante ipaa pe la poizione iniziale a intealli fii di tempo. Definiamo

Dettagli

Controllo di Azionamenti Elettrici. Lezione n 8

Controllo di Azionamenti Elettrici. Lezione n 8 Conollo Azonamen Elec ezone n 8 Coo auea n Ingegnea ell Auomazone Facolà Ingegnea Uneà egl Su Palemo Azonamen elec con mooe n coene alenaa Il mooe ancono negl azonamen a elocà aable anagg el mooe n coene

Dettagli

Un modello di ricerca operativa per le scommesse sportive

Un modello di ricerca operativa per le scommesse sportive Un modello di iceca opeativa pe le commee potive Di Citiano Amellini citianoamellini@aliceit Supponiamo di dove giocae una ceta omma di denao (eempio euo ulla patita MILAN- JUVE Le quote SNAI ono quelle

Dettagli

MODELLO MATEMATICO DELLA MACCHINA AD INDUZIONE A ROTORE AVVOLTO IN REGIME COMUNQUE VARIABILE. Ezio Santini SAPIENZA Università di Roma

MODELLO MATEMATICO DELLA MACCHINA AD INDUZIONE A ROTORE AVVOLTO IN REGIME COMUNQUE VARIABILE. Ezio Santini SAPIENZA Università di Roma ODEO AEAICO DEA ACCHINA AD INDUZIONE A OOE AVVOO IN EGIE COUNQUE VAIABIE Ezo Santn SAPIENZA Unetà oma Equazon namche ella macchna ancona S pena n coneazone una macchna ancona tfae a otoe aolto, a eempo

Dettagli

Lavoro ed Energia. Scorciatoia: concetto di energia/lavoro. devo conoscere nel dettaglio la traiettoria: molto complicato!!!

Lavoro ed Energia. Scorciatoia: concetto di energia/lavoro. devo conoscere nel dettaglio la traiettoria: molto complicato!!! avoo ed Enega eempo: copo oggetto a oza vaable con la pozone [oza d gavtà, oza della molla] oppue taettoa complcata utlzzando la ola legge d Newton ma non poo calcolae la veloctà del copo n ondo alla pta,

Dettagli

Corso di Elettrotecnica 1 - Cod. 9200 N Diploma Universitario Teledidattico in Ingegneria Informatica ed Automatica Polo Tecnologico di Alessandria

Corso di Elettrotecnica 1 - Cod. 9200 N Diploma Universitario Teledidattico in Ingegneria Informatica ed Automatica Polo Tecnologico di Alessandria Schede di lettotecnica Coso di lettotecnica - Cod. 900 N Diploma Univesitaio Teledidattico in Ingegneia Infomatica ed utomatica Polo Tecnologico di lessandia cua di Luca FRRRIS Scheda N Sistemi tifase:

Dettagli

Capitolo 16. La teoria dell equilibrio generale. Soluzioni delle Domande di ripasso

Capitolo 16. La teoria dell equilibrio generale. Soluzioni delle Domande di ripasso eanko & aeutigam icoeconomia anuale delle oluzioni Capitolo 16 La teoia dell equilibio geneale Soluzioni delle Domande di ipao 1. L analii di equilibio paziale tudia la deteminazione del pezzo e della

Dettagli

Gli urti impulso teorema dell impulso

Gli urti impulso teorema dell impulso Gl ut Spesso abbao bsogno d conoscee coa una oza dpende dal tepo, n quanto solee l poblea utlzzando le eazon enegetche non è possble o sucente. Intoducao alloa la seguente quanttà ettoale chaata pulso.

Dettagli

Grandezze cinematiche angolari (1)

Grandezze cinematiche angolari (1) Uniesità degli Studi di Toino D.E.I.A.F.A. MOTO CIRCOLARE UNIFORME FISICA CdL Tecnologie Agoalimentai Uniesità degli Studi di Toino D.E.I.A.F.A. Genealità () Moto di un punto mateiale lungo una ciconfeenza

Dettagli

Meccanica dei sistemi

Meccanica dei sistemi Meccanca de sste 1. 1. Moento angolae 2. Moento d una foza 3. Foze cental 4. Sste d punt ateal 5. Foze estene e Foze ntene 6. Cento d assa d un sstea 7. Consevazone della quantta d oto 8. Teoea del oento

Dettagli

MOTORE SINCRONO A MAGNETI PERMANENTI

MOTORE SINCRONO A MAGNETI PERMANENTI MOTORE SINCRONO A MAGNETI PERMANENTI L. SALVATORE . Il motoe incono a magneti pemanenti In paato il motoe incono ea conideato un motoe a velocità cotante (la velocità di inconimo), dipendente dalla fequenza

Dettagli

Corrente elettrica. Definizione. dq i = dt. Unità di misura. 1Coulomb 1 Ampere = 1secondo. Verso della corrente

Corrente elettrica. Definizione. dq i = dt. Unità di misura. 1Coulomb 1 Ampere = 1secondo. Verso della corrente Nome file j:\scuola\cosi\coso fisica\elettomagnetismo\coente continua\coenti elettiche.doc Ceato il 05/1/003 3.07.00 Dimensione file: 48640 byte Elaboato il 15/01/004 alle oe.37.13, salvato il 10/01/04

Dettagli

Magnetostatica: forze magnetiche e campo magnetico

Magnetostatica: forze magnetiche e campo magnetico Magnetostatica: foze magnetiche e campo magnetico Lezione 6 Campo di induzione magnetica () (nomenclatua stoica ; in ealtà si dovebbe chiamae, e spesso lo è, campo magnetico) è un campo di foze vettoiale

Dettagli

Sintesi tramite il luogo delle radici

Sintesi tramite il luogo delle radici Sintei tramite il luogo delle radici Può eere utilizzata anche per progettare itemi di controllo per itemi intabili Le pecifiche devono eere ricondotte a opportuni limiti u %, ta, t di W(), oltre quelle

Dettagli

CONDUZIONE NON STAZIONARIA

CONDUZIONE NON STAZIONARIA CONDUZIONE NON AZIONARIA Caso geneale de sstem a tempeatua unfome ebbene l pocesso d conduzone non stazonaa n un soldo sa comunemente dovuto allo sco temco convettvo dal fludo ccostante, alt pocess d sco

Dettagli

Magnetostatica: forze magnetiche e campo magnetico

Magnetostatica: forze magnetiche e campo magnetico Magnetostatica: foze magnetiche e campo magnetico Lezione 6 Campo di induzione magnetica B() (nomenclatua stoica ; in ealtà si dovebbe chiamae, e spesso lo è, campo magnetico) è un campo di foze vettoiale

Dettagli

FACOLTA DI INGEGNERIA

FACOLTA DI INGEGNERIA FACOTA DI INGEGNERIA Coo di Fiica Tecnica Abientale ESERCIZI SVOTI CONVEZIONE Eecizio Del vapo d acua alla tepeatua di 0 C coe in un tubo d acciaio avente tepeatua intena di 7 C. Il tubo a aggio inteno

Dettagli

Facoltà di Ingegneria Esame scritto di Fisica II

Facoltà di Ingegneria Esame scritto di Fisica II Facoltà ngegnea Eae ctto Fca.9.4 Eeczo n. Un conenatoe, capactà, a facce pane e paallele, aea S c e tanza, è collegato n paallelo a un econo conenatoe clnco capactà nf e a un geneatoe eale foza elettootce

Dettagli

Trasformata di Laplace unilatera Teoria

Trasformata di Laplace unilatera Teoria Definizione Tafomaa di Laplace unilaea Teoia L[f()] = f() $ e ($) d = F() Dove: f() = funzione eale afomabile. E nulla pe

Dettagli

La potenza assorbita dalla pompa per sollevare il liquido dal serbatoio a valle al serbatoio a monte si calcola con la relazione

La potenza assorbita dalla pompa per sollevare il liquido dal serbatoio a valle al serbatoio a monte si calcola con la relazione 1 E S E R C I Z I S U L L E P O M P E C E N T R I F U G E ESERCIZIO 1 In un panto ollevaento per acqua ono not Il lvello geoetco tra ue erbato g 0 La preone aoluta ul erbatoo a valle p A p at La preone

Dettagli

Generalità sulle macchine rotanti

Generalità sulle macchine rotanti Macchie elettiche ate Geealità ulle macchie otati Foza di Loetz U filo coduttoe immeo i u camo magetico B (i figua B ha diezioe ucete dal foglio) e ecoo da ua coete i iega i ua o ell alta diezioe a ecodo

Dettagli

MECCANICA DEI SISTEMI

MECCANICA DEI SISTEMI MECCNIC DEI SISTEMI EX Il tema d ollevamento pe n fgura è cottuto da una barra nclnable lunga L che termna n una carrucola deale, un flo che tene l peo che paando per la carrucola arrva u una uperfce vertcale

Dettagli

Errori di misura. è ragionevole assumere che una buona stima del valore vero sia la media

Errori di misura. è ragionevole assumere che una buona stima del valore vero sia la media Errori di miura Se lo trumento di miura è abbatanza enibile, la miura rietuta della tea grandezza fiica darà riultati diveri fra loro e fluttuanti in modo caratteritico. E l effetto di errori cauali, o

Dettagli

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova di FISICA del 7 Settembre 2004

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova di FISICA del 7 Settembre 2004 CORSO DI LURE IN SCIENZE BIOLOGICHE Poa di FISIC del Settebe 4 1) Una paticella di aa 1 kg i uoe u un gadino alto 5 c cabo. La elocità iniziale della paticella è /, il coefficiente di attito dinaico del

Dettagli

6 DINAMICA DEI SISTEMI DI PUNTI MATERIALI

6 DINAMICA DEI SISTEMI DI PUNTI MATERIALI 6 DINAMICA DEI SISTEMI DI PUNTI MATERIALI Consdeao un sstea d n unt ateal con n > nteagent ta loo e con l esto dell unveso. Nello studo d un tale sstea sulta convenente scooe la foza agente ( et) sull

Dettagli

Prova di verifica n.0 Elettronica I (26/2/2015)

Prova di verifica n.0 Elettronica I (26/2/2015) Proa d erfca n.0 lettronca I (26/2/2015) OUT he hfe + L OUT - Fgura 1 Con rfermento alla rete elettrca d Fg.1, determnare: OUT / OUT / la resstenza sta dal generatore ( V ) la resstenza sta dall uscta

Dettagli

Approfondimento 7.4 - Altri tipi di test di significatività del coefficiente di correlazione di Pearson

Approfondimento 7.4 - Altri tipi di test di significatività del coefficiente di correlazione di Pearson Appofondmento 7.4 - Alt tp d test d sgnfcatvtà del coeffcente d coelazone d Peason Una delle cause pncpal della cattva ntepetazone del test d sgnfcatvtà d è che s fonda su un potes nulla pe cu ρ 0. In

Dettagli

Economia del turismo. Prof.ssa Carla Massidda

Economia del turismo. Prof.ssa Carla Massidda Economa del tusmo Pof.ssa Cala Massdda Pate 2 Agoment Defnzone d domanda tustca Detemnant della domanda tustca L elastctà della domanda tustca La stma della domanda tustca Defnzone d domanda tustca Dato

Dettagli

1.1 Identificazione del campo di operatività di un motore AC brushless. Sia dato un motore AC brushless isotropo di cui siano noti i seguenti dati:

1.1 Identificazione del campo di operatività di un motore AC brushless. Sia dato un motore AC brushless isotropo di cui siano noti i seguenti dati: Captolo 1 1.1 Ientfcazone el campo operatvtà un motore AC bruhle Sa ato un motore AC bruhle otropo cu ano not eguent at: Vn = 190 V In = 3.5 A Tn =.6 N n pol = R = 1 Ω L = 8 mh Ke = Kt = 0.4 S etermn l

Dettagli

Capitolo 16. La teoria dell equilibrio generale. Soluzioni dei Problemi

Capitolo 16. La teoria dell equilibrio generale. Soluzioni dei Problemi eanko & aeutigam icoeconomia III Edizione anuale delle oluzioni Capitolo 6 La teoia dell equilibio geneale Soluzioni dei Poblemi 6. a) In equilibio, la quantità offeta e quella domandata devono eee uguali,

Dettagli

Corrente elettrica. Conduttore in equilibrio. Condutture in cui è mantenuta una differenza di potenziale (ddp) E=0 V=cost

Corrente elettrica. Conduttore in equilibrio. Condutture in cui è mantenuta una differenza di potenziale (ddp) E=0 V=cost Coente elettca Conduttoe n equlbo B E 0 E0 cost B Conduttue n cu è mantenuta una dffeenza d potenzale (ddp) > B E 0 _ B Un campo elettco all nteno d un conduttoe appesenta una stuazone d non equlbo. Un

Dettagli

12 L energia e la quantità di moto - 12. L impulso

12 L energia e la quantità di moto - 12. L impulso L enegia e la quantità di moto -. L impulso Il momento angolae e il momento d inezia Il momento angolae nalizziamo alcuni moti di otazione. Se gli attiti sono tascuabili, una uota di bicicletta messa in

Dettagli

ALBERI, PERNI E CUSCINETTI RADENTI

ALBERI, PERNI E CUSCINETTI RADENTI PAG. 1 ASSI E ALBERI ALBERI, PERNI E CUSCINETTI RAENTI ALBERO: ogano utiizzato e a tamiione ietta e moto otatoio e i un momento tocente. ASSE: ogano che otiene, enza tamiione i momento tocente, coi otanti

Dettagli

Strategie di controllo del motore brushless

Strategie di controllo del motore brushless Saege conollo el mooe uhle Ince onollo eoale un mooe uhle.... cham moellca..... oello namco n ganezze fae..... oello n foma macale... 4.. Epeone ella coppa eleomagneca... 6..4 oello n foma ao... 6..5 oell

Dettagli

LEZIONI SU MAGNETISMO

LEZIONI SU MAGNETISMO Matematca e sca CHEMA LEZIOI U MAGETIMO ntoduce l vettoe nduzone dalla ossevazone del compotamento de magnet. va da nod a sud fuo dal magnete. od è l polo magnetco attatto dal polo nod teeste (che qund

Dettagli

Definizione delle specifiche per un sistema di controllo a retroazione unitaria

Definizione delle specifiche per un sistema di controllo a retroazione unitaria Definizione delle pecifiche per un itema di controllo a retroazione unitaria Obiettivi del controllo Il itema di controllo deve eere progettato in modo da garantire un buon ineguimento dei egnali di riferimento

Dettagli

Q & Tracce svolte di esercizi sulla Trasmissione del Calore Prof. Mistretta a.a. 2009/2010

Q & Tracce svolte di esercizi sulla Trasmissione del Calore Prof. Mistretta a.a. 2009/2010 racc olt d rcz ulla raon dl alor Prof. trtta a.a. 009/00 Erczo n. S condr una part d atton alta 4 larga 6 pa 0 la cu ucbltà trca è λ λ 0 8 [/( )]. In un crto gorno alor urat dll tpratur dlla uprfc ntrna

Dettagli

Le Trasmissioni Meccaniche

Le Trasmissioni Meccaniche Le Tasmissioni Meccaniche Gli inganaggi sono componenti meccanici utilizzati nelle tasmissioni. Una tasmissione meccanica è un meccanismo destinato a tasmettee potenza da un motoe pimo ad una macchina

Dettagli

Vettori e rette in R 2

Vettori e rette in R 2 Vettoi e ette in R odotto calae. Eecizi. Calcolae il podotto calae dei vettoi: v = [ ] e v = [ ] v_ v_ Il podotto calae è dato da: v v = ( ) + =. Calcolae l'angolo compeo ta i vettoi: v = [ ] e v = [ ]

Dettagli

Controllo di Azionamenti Elettrici. Lezione n 11. Controllo in frequenza del motore in corrente alternata con alimentazione a corrente impressa

Controllo di Azionamenti Elettrici. Lezione n 11. Controllo in frequenza del motore in corrente alternata con alimentazione a corrente impressa Contollo Azonament Elettc ezone n Coo auea n ngegnea ell Automazone Facoltà ngegnea Unvetà egl Stu Palemo Contollo n fequenza el motoe n coente altenata con almentazone a coente mpea egge vaazone ella

Dettagli

REALTÀ E MODELLI SCHEDA DI LAVORO

REALTÀ E MODELLI SCHEDA DI LAVORO REALTÀ E MDELLI SCHEDA DI LAVR La clessida ad acqua Ipotizziamo che la clessida ad acqua mostata in figua sia fomata da due coni pefetti sovapposti La clessida impiega,5 minuti pe svuotasi e supponiamo

Dettagli

Il lavoro è quindi una grandezza scalare le cui unita di misura sono: = Joule = J

Il lavoro è quindi una grandezza scalare le cui unita di misura sono: = Joule = J Ve. el 9/0/09 Lvoo e Eneg Denzone lvoo pe un oz cotnte Se un oz cotnte gce u un copo che eettu uno potmento ce che l oz compe un lvoo ento come: co ( co ) ove è l componente ell oz pllel llo potmento.

Dettagli

Sottosopra P_PRF0371. 10m 2 a temporary shelter for widespread hospitality. 0.45 scala struttura impalcatura. antivento gelosia traspirante

Sottosopra P_PRF0371. 10m 2 a temporary shelter for widespread hospitality. 0.45 scala struttura impalcatura. antivento gelosia traspirante So o op Un nz o pe unn dou bno o ocuflu ce c à: o o op non o e o v quo d nm cch ce o o pubb coconun ve o p od decon ocon e e Cond v onee o men o ono e n vep opo e np e u o uo o no c o o nf e o eè be o o

Dettagli

Facoltà di Ingegneria Prova scritta di Fisica I 13 Febbraio 2006 Compito A

Facoltà di Ingegneria Prova scritta di Fisica I 13 Febbraio 2006 Compito A Facoltà di Ingegneria Prova critta di Fiica I 13 Febbraio 6 Copito A Eercizio n.1 Un blocco, aiilabile ad un punto ateriale di aa, partendo da fero, civola da un altezza h lungo un piano inclinato cabro

Dettagli

Algebra 2. 6 4. Sia A un anello commutativo. Si ricorda che in un anello commutativo vale il teorema binomiale, cioè. (a + b) n = a i b n i i.

Algebra 2. 6 4. Sia A un anello commutativo. Si ricorda che in un anello commutativo vale il teorema binomiale, cioè. (a + b) n = a i b n i i. Testo Fac-smle 2 Durata prova: 2 ore 8 1. Un gruppo G s dce semplce se suo unc sottogrupp normal sono 1 e G stesso. Sa G un gruppo d ordne pq con p e q numer prm tal che p < q. (a) Il gruppo G può essere

Dettagli

Energia potenziale e dinamica del punto materiale

Energia potenziale e dinamica del punto materiale Enegia potenziale e dinamica del punto mateiale Definizione geneale di enegia potenziale (facoltativo) In modo geneale, la definizione di enegia potenziale può esee pesentata come segue. Sia un punto di

Dettagli

CORRENTI ELETTRICHE E CAMPI MAGNETICI STAZIONARI

CORRENTI ELETTRICHE E CAMPI MAGNETICI STAZIONARI CORRENT ELETTRCHE E CAMP MAGNETC STAZONAR Foze magnetiche su una coente elettica; Coppia magnetica su una coente in un cicuito chiuso; Azioni meccaniche su dipoli magnetici; Applicazione (Galvanometo);

Dettagli

La legge di Planck e l ipotesi dei quanti di luce Bose (Università di Dacca, India) Lo spazio delle fasi di un quanto di luce relativo ad un certo

La legge di Planck e l ipotesi dei quanti di luce Bose (Università di Dacca, India) Lo spazio delle fasi di un quanto di luce relativo ad un certo 1 La legge di Planck e l ipotei dei quanti di luce Boe (Univeità di Dacca, India) (pevenuto il luglio 194) Lo pazio delle fai di un quanto di luce elativo ad un ceto volume viene divio in "celle" della

Dettagli

- determinare il modulo della densita di corrente di spostamento J s e il valore

- determinare il modulo della densita di corrente di spostamento J s e il valore Un ondenatoe a fae piane e paallele viene aiato ollegandolo ad un geneatoe di oente di modo he duante la aia del ondenatoe la oente di onduzione ia otante. Le amatue del ondenatoe hanno upefiie A π R ono

Dettagli

1 Laser Doppler Velocimetry

1 Laser Doppler Velocimetry Laer oppler Velocmetry 1 Laer oppler Velocmetry 1.1 Introduzone L anemometra laer (LV) è applcata nel campo dell aerodnamca permentale a partre da prm ann ettanta, ann n cu le apparecchature laer dvennero

Dettagli

Figura 1 Geometria attuale. Figura 2 Sezione trapezia

Figura 1 Geometria attuale. Figura 2 Sezione trapezia ESERCITAZIONE N. 4 (20 aple 2005) Dmensonamento daulco d un canale apeto PROBLEMA Nel pogetto d ecupeo d un aea s ntende potae alla luce un canale che n passato è stato tombnato con tubazon pefabbcate

Dettagli

Leggi di Biot-Savart e di Ampère. Fisica II - CdL Chimica

Leggi di Biot-Savart e di Ampère. Fisica II - CdL Chimica Legg d Bot-Savat e d Ampèe d P R dl Ossevazon spemental Legge d Bot-Savat db ds espemento: X db... assumendo n fomula Legge d Bot-Savat db ds pemeabltà magnetca X db Il campo magnetco è dstbuto ntono al

Dettagli

Corso di Elettrotecnica 1 - Cod N Diploma Universitario Teledidattico in Ingegneria Informatica ed Automatica Polo Tecnologico di Alessandria

Corso di Elettrotecnica 1 - Cod N Diploma Universitario Teledidattico in Ingegneria Informatica ed Automatica Polo Tecnologico di Alessandria Schede di Elettotecnica oso di Elettotecnica 1 - od. 9200 N Diploma Univesitaio Teledidattico in Ingegneia Infomatica ed Automatica Polo Tecnologico di Alessandia A cua di uca FEAIS Scheda N 8 icuiti in

Dettagli

Macchine. 5 Esercitazione 5

Macchine. 5 Esercitazione 5 ESERCITAZIONE 5 Lavoro nterno d una turbomacchna. Il lavoro nterno massco d una turbomacchna può essere determnato not trangol d veloctà che s realzzano all'ngresso e all'uscta della macchna stessa. Infatt

Dettagli

IL MOMENTO ANGOLARE E IL MOMENTO D INERZIA

IL MOMENTO ANGOLARE E IL MOMENTO D INERZIA . L'IMPULS 0 DI MT IL MMENT NGLRE E IL MMENT D INERZI Il momento angolae nalizziamo alcuni moti di otazione. Se gli attiti sono tascuabili, una uota di bicicletta messa in otazione può continuae a giae

Dettagli

Economia del turismo

Economia del turismo Unvestà degl Stud d Cagla Facoltà d Economa Coso d Lauea n Economa e Gest. de Sev. Tustc A.A. 2013-2014 Economa del tusmo Pof.ssa Cala Massdda Economa del Tusmo Pof.ssa Cala Massdda Sezone 8 I MODELLI

Dettagli

Il campo magnetico cariche elettriche in moto magnete permanente due polarità nord sud non è monopolo magnetico

Il campo magnetico cariche elettriche in moto magnete permanente due polarità nord sud non è monopolo magnetico Il capo agnetco Un capo agnetco può essee ceato da cache elettche n oto, coè da una coente, oppue da un agnete peanente Speentalente s tova che esstono due polatà nel agnetso polo nod e polo sud: pol ugual

Dettagli

Cinematica: soluzioni. Scheda 4. Ripetizioni Cagliari di Manuele Atzeni - 3497702002 - info@ripetizionicagliari.it

Cinematica: soluzioni. Scheda 4. Ripetizioni Cagliari di Manuele Atzeni - 3497702002 - info@ripetizionicagliari.it Cinematica: oluzioni Problema di: Cinematica - C0015ban Teto [C0015ban] Eercizi banali di Cinematica: 1. Moto rettilineo uniforme (a) Quanto pazio percorre in un tempo t = 70 un oggetto che i muove con

Dettagli

PROBLEMI RISOLTI DI DINAMICA

PROBLEMI RISOLTI DI DINAMICA PROBLEMI RISOLTI DI DINAMICA 1 Un autoobile di aa 100 Kg auenta in odo unifore la ua velocità di 30 / in 0 a) Quale forza agice durante i 0? b) Quale forza arebbe necearia per ipriere un accelerazione

Dettagli

GRANDEZZE MAGNETICHE Prof. Chirizzi Marco www.elettrone.altervista.org marco.chirizzi@libero.it

GRANDEZZE MAGNETICHE Prof. Chirizzi Marco www.elettrone.altervista.org marco.chirizzi@libero.it Soenoide GRANDEZZE MAGNETICHE Pof. Chiizzi Maco www.eettone.atevista.og maco.chiizzi@ibeo.it PREMESSA La pesente dispensa ha come obiettivo queo di gaantie agi aievi de coso di Fisica de biennio, ad indiizzo

Dettagli

www.ipospadia.it Dott:Giacinto Marrocco

www.ipospadia.it Dott:Giacinto Marrocco www.ipospadia.it Dott:Giacinto Marrocco Le Malformazioni dei Genitali nell'infanzia Un sito dedicato ai pediatri ed ai genitori di bambini con patologie acquisite o congenite degli organi genitali EPISPADIA

Dettagli

Statica del corpo rigido: esercizi svolti dai compitini degli anni precedenti

Statica del corpo rigido: esercizi svolti dai compitini degli anni precedenti Statica de corpo riido: eercizi voti dai compitini dei anni precedenti II COMPITIO 00 003 Un ae di eno orizzontae omoenea, di maa M0 k e unhezza L m, è appoiata u due cavaetti. L ae pore di 60 cm otre

Dettagli

UNIVERSITÀ DEGLI STUDI DI TERAMO

UNIVERSITÀ DEGLI STUDI DI TERAMO UNIVERSITÀ DEGLI STUDI DI TERAMO CORSO DI LAUREA IN TUTELA E BENESSERE ANIMALE Coro di : FISICA MEDICA A.A. 2015 /2016 Docente: Dott. Chiucchi Riccardo ail:rchiucchi@unite.it Medicina Veterinaria: CFU

Dettagli

I vettori. Grandezze scalari: Grandezze vettoriali

I vettori. Grandezze scalari: Grandezze vettoriali I etto Gndee scl: engono defnte dl loo loe numeco esemp: lunghe d un segmento, e d un fgu pn, tempetu d un copo, ecc. Gndee ettol engono defnte, olte che dl loo loe numeco, d un deone e d un eso esemp:

Dettagli

5 Secondo principio della termodinamica... 2 5.1 Motori termici... 2 5.1.1 Rendimenti termici... 3 5.2 Secondo principio della termodinamica secondo

5 Secondo principio della termodinamica... 2 5.1 Motori termici... 2 5.1.1 Rendimenti termici... 3 5.2 Secondo principio della termodinamica secondo 5 eondo rno della termodnama... 5. Motor term... 5.. Rendment term... 3 5. eondo rno della termodnama eondo Ke-Plan... 4 5.3 Mahne frgorfere... 4 5.3. Coeffente d retazone (COP... 4 5.4 Pome d alore...

Dettagli

EX 1 Calcolare la velocità di rinculo di un fucile di 4 kg che spara un proiettile di 0.05kg alla velocità di 280m/s.

EX 1 Calcolare la velocità di rinculo di un fucile di 4 kg che spara un proiettile di 0.05kg alla velocità di 280m/s. SITEMI ISOLATI EX 1 Calcolae la veloctà d nculo d un ucle d 4 kg che spaa un poettle d 0.05kg alla veloctà d 80m/s. EX Un one che vagga alla veloctà d = 6*10 5 m/s colpsce un alto one emo. S osseva che

Dettagli

Il campo magnetico. sommario21.1. capitolo 21.2

Il campo magnetico. sommario21.1. capitolo 21.2 I campo magnetco captoo 21 I campo magnetco d un magnete Campo magnetco geneato da una coente eettca 21.2.1 Campo magnetco geneato da un fo nfnto ettneo pecoso da coente 21.2.2 Campo magnetco geneato da

Dettagli

Note su alcuni principi fondamentali di macroeconomia Versione parziale e provvisoria. Claudio Sardoni Sapienza Università di Roma

Note su alcuni principi fondamentali di macroeconomia Versione parziale e provvisoria. Claudio Sardoni Sapienza Università di Roma Note u alcuni principi fondamentali di macroeconomia Verione parziale e provvioria Claudio Sardoni Sapienza Univerità di Roma Anno accademico 2010-2011 ii Indice Premea v I Il breve periodo 1 1 Il fluo

Dettagli

1atm = 760 torr (o anche mmhg) = 101325 Pa = 1.01325 bar

1atm = 760 torr (o anche mmhg) = 101325 Pa = 1.01325 bar ressone: tendenza del gas ad espanders densonalente è Forza superce ewton L'untà d sura usata n pratca è l'atosera (at) a (ascal) at 760 torr (o anche Hg) 05 a.05 bar olue: sura d una porzone d spazo densonalente

Dettagli

MODELLI DI SCELTA DEL PERCORSO PER RETI DI TRASPORTO COLLETTIVO

MODELLI DI SCELTA DEL PERCORSO PER RETI DI TRASPORTO COLLETTIVO IPARTIMENTO INENERIA CIVILE UNIVERSITÀ I ROMA TOR VERATA coo di Pianificazione dei tapoti 2 MOELLI I SCELTA EL PERCORSO PER RETI I TRASPORTO COLLETTIVO 1 CLASSIFICAZIONE EI COMPORTAMENTI I SCELTA celta

Dettagli

DATI DI TERMOFLUIDODINAMICA

DATI DI TERMOFLUIDODINAMICA DATI DI TERMOFLUIDODINAMICA Unertà degl Std d Catana Dpartmento ng. Ind. e Meccanca INDICE I INDICE Smbol pagna II Dat e cotant d o corrente 1 Tabelle: 1. Acqa: dentà della fae lqda a p = 101 325 Pa 2

Dettagli

ONDE ELETTROMAGNETICHE

ONDE ELETTROMAGNETICHE ONDE ELETTROMAGNETICHE Teoia delle onde EM e popagazione (B. Peite) mecoledì 8 febbaio 1 Coso di Compatibilità Elettomagnetica 1 Indice degli agomenti Fenomeni ondulatoi La matematica dell onda La legge

Dettagli

Capitolo IV L n-polo

Capitolo IV L n-polo Capitolo IV L n-polo Abbiamo oervato che una qualiai rete, vita da due nodi, diventa, a tutti gli effetti eterni, un bipolo unico e queto è in qualche miura ovvio e abbiamo anche motrato come cotruire

Dettagli

Regolatori di pressione elettroidraulici e regolatori di portata,

Regolatori di pressione elettroidraulici e regolatori di portata, Regolator d preone elettrodraulc e regolator d portata, tecnca degl attuator per clndr d pozonamento u turbomacchne Tecnologa affermata I regolator elettrodraulc d preone e regolator d portata ono la oluzone

Dettagli

GUIDA PER L ISTAL LAZ IONE E L A M E SSA IN FUNZIONE DEL SENSORE DI TE MPE R ATURA ESTERNA SU FIAT PANDA 2 SERI E

GUIDA PER L ISTAL LAZ IONE E L A M E SSA IN FUNZIONE DEL SENSORE DI TE MPE R ATURA ESTERNA SU FIAT PANDA 2 SERI E GUIDA PER L ISTAL LAZ IONE E L A M E SSA IN FUNZIONE DEL SENSORE DI TE MPE R ATURA ESTERNA SU FIAT PANDA 2 SERI E 2004-2011 P re m e tt o c h e l a se g ue n te g u i d a è stata c reata esp l i c i ta

Dettagli

6. Catene di Markov a tempo continuo (CMTC)

6. Catene di Markov a tempo continuo (CMTC) 6. Catene d Markov a tempo contnuo (CMTC) Defnzone Una CMTC è un processo stocastco defnto come segue: lo spazo d stato è dscreto: X{x,x 2, }. L nseme X può essere sa fnto sa nfnto numerable. L nseme de

Dettagli

INTRODUZIONE ALL ANALISI DI MISSIONI SPAZIALI PROBLEMA FONDAMENTALE DELLA MECCANICA CELESTE

INTRODUZIONE ALL ANALISI DI MISSIONI SPAZIALI PROBLEMA FONDAMENTALE DELLA MECCANICA CELESTE ITRODUZIOE ALL AALISI DI MISSIOI SPAZIALI PROBLEMA ODAMETALE DELLA MECCAICA CELESTE Poblea Cop Int. Anals Msson Spazal Pob. Cop Poblea Cop Int. Anals Msson Spazal Pob. Cop Obettvo: Ientfcae la taettoa

Dettagli

11 MOTORE AD INDUZIONE

11 MOTORE AD INDUZIONE Moto Ancon 194 11 MOTORE AD INDUZIONE Il moto ad nduzon è tato molto uato, pché è nato p almntato dttamnt dalla tnon d almntazon tfa, qund p la total mancanza d contollo, n applcazon a bao lvllo. Il moto

Dettagli

Le obbligazioni: misure di rendimento e rischio La curva dei rendimenti per scadenze

Le obbligazioni: misure di rendimento e rischio La curva dei rendimenti per scadenze Le obblgazon: msure d rendmento e rscho La curva de rendment per scadenze Economa del Mercato Moblare A.A. 2017-2018 La curva de rendment (yeld curve) (1) Il rendmento d un ttolo obblgazonaro dpende da

Dettagli

Professor Mario Dente, Professoressa Giulia Bozzano

Professor Mario Dente, Professoressa Giulia Bozzano Pofesso Mao ente, Pofessoessa Gula Bozzano patmento d Chmca, Mateal e Ingegnea Chmca "Gulo Natta" Sezone Chmca Industale e Ingegnea Chmca Poltecnco d Mlano Pazza Leonado a Vnc, 3-033 Mlano (MI) Pemessa.

Dettagli

3. Esercitazioni di Teoria delle code

3. Esercitazioni di Teoria delle code 3. Eserctazon d Teora delle code Poltecnco d Torno Pagna d 33 Prevsone degl effett d una decsone S ndvduano due tpologe d problem: statc: l problema non vara nel breve perodo dnamc: l problema vara Come

Dettagli

d a v i d e s e b a s t i a n

d a v i d e s e b a s t i a n d a v i d e s e b a s t i a n s e l e c t e d w o r k s 2 0 0 2-2 0 0 9 w w w. d a v i d e s e b a s t i a n. c o m i n f o @ d a v i d e s e b a s t i a n. c o m D a v i d e S e b a s t i a n ( 1 9 8

Dettagli

Centro di massa. Coppia di forze. Condizioni di equilibrio. Statica Fisica Sc.Tecn. Natura. P.Montagna Aprile pag.1

Centro di massa. Coppia di forze. Condizioni di equilibrio. Statica Fisica Sc.Tecn. Natura. P.Montagna Aprile pag.1 L EQUILIBRIO LEQU L Corpo rgdo Centro d massa Equlbro Coppa d forze Momento d una forza Condzon d equlbro Leve pag.1 Corpo esteso so e corpo rgdo Punto materale: corpo senza dmenson (approx.deale) Corpo

Dettagli

MACCHINA ELEMENTARE A RILUTTANZA

MACCHINA ELEMENTARE A RILUTTANZA Sistemi magnetici con moto meccanico MACCHINA ELEMENTARE A RILUTTANZA Consiste in un nucleo magnetico con un avvolgimento a N spie e una pate mobile che uota con spostamento angolae θ e velocità angolae

Dettagli

d. V B = m 3) L altezza massima dal suolo raggiunta dalla biglia vale

d. V B = m 3) L altezza massima dal suolo raggiunta dalla biglia vale Facoltà d Ingegnea Pova Sctta d Fca I 5 Febbao 00 Queto n Una olla deale d cotante elatca k e d lunghezza a poo d, è pota all nteno d un cannoncno eccanco lungo L e nclnato petto all ozzontale d un angolo

Dettagli

Programma del corso di Biofisica: 1. Vettori 2. Ottica elettromagnetismo 3. Ottica lineare 4. Microscopia ottica 5. Livelli energetici (cenni) 6.

Programma del corso di Biofisica: 1. Vettori 2. Ottica elettromagnetismo 3. Ottica lineare 4. Microscopia ottica 5. Livelli energetici (cenni) 6. Pogaa del coso d Bofsca: 1. Vetto 2. Ottca elettoagnetso 3. Ottca lneae 4. Mcoscopa ottca 5. Lell enegetc (cenn) 6. Lase, fbe ottche 7. Mcoscopa d Fluoescenza 8. SEM 9. TEM 10. AFM, SNOM 11. Lell Enegetc

Dettagli

Diagramma circolare di un motore asincrono trifase

Diagramma circolare di un motore asincrono trifase Diagramma circolare di un motore aincrono trifae l diagramma circolare è un diagramma che permette di leggere tutte le grandezze del motore aincrono trifae (potenza rea, perdite nel ferro, coppia motrice,

Dettagli

CIRCUITI EQUIVALENTI DELLE LINEE ELETTRICHE AEREE

CIRCUITI EQUIVALENTI DELLE LINEE ELETTRICHE AEREE Elettotecca : patmeto d Igegea dell Eega e de Sstem CIRCUITI EQUIVALENTI ELLE LINEE ELETTRICHE AEREE Coso d Lauea Igegea Elettca slde d 48 LE LINEE ELETTRICHE AEREE Sstem Tfase: lee elettche La peseza

Dettagli

Cap. 4 Mercati finanziari

Cap. 4 Mercati finanziari Cap. 4 ercati finanziari Tao interee (i): importante per invetimenti e celte i conumo intertemporali. Noi iamo intereati principalmente ai primi. Come i etermina i? Attori: Banca Centrale (BC), banche,

Dettagli

RISOLUZIONE ESERCIZI SULLA PROBABILITA. E, pertanto

RISOLUZIONE ESERCIZI SULLA PROBABILITA. E, pertanto RISOLUZIO SRIZI SULLA PROBABILITA PROBABILITA LASSIA ) a) I cas possbl sono 0, mentre quell faoreol sono ; ; 0 b) cas faoreol sono 0, 0 ; 0 cas faoreol sono, ; 0 0 0 0 0 P. 0 0 ) 0 pallne, 0B, V, R, 0G

Dettagli

La seconda prova scritta dell esame di stato 2007 Indirizzo: GEOMETRI Tema di TOPOGRAFIA

La seconda prova scritta dell esame di stato 2007 Indirizzo: GEOMETRI Tema di TOPOGRAFIA La seconda pova scitta dell esame di stato 007 Indiizzo: OMTRI Tema di TOPORI Claudio Pigato Membo del Comitato Scientiico SIT Società Italiana di otogammetia e Topogaia Istituto Tecnico Statale pe eometi

Dettagli

Ing. Mariagrazia Dotoli Controlli Automatici NO (9 CFU) Antitrasformata di Laplace PROCEDIMENTI DI ANTITRASFORMAZIONE

Ing. Mariagrazia Dotoli Controlli Automatici NO (9 CFU) Antitrasformata di Laplace PROCEDIMENTI DI ANTITRASFORMAZIONE PROCEDIMENTI DI ANTITRASFORMAZIONE L'operazione di paaggio invero dal dominio della frequenza complea al dominio del tempo F() f(t) è detta antitraformata o traformazione invera di Laplace. Data una funzione

Dettagli

Grafi ed equazioni topologiche

Grafi ed equazioni topologiche Graf ed equazon topologche www.de.ng.unbo.t/pers/mastr/ddattca.htm (ersone del --) Premessa Se s ndca con l l numero d corrent e l numero d tenson de component d un crcuto, la rsoluzone del crcuto rchede

Dettagli

Laboratorio di Algoritmi e Strutture Dati

Laboratorio di Algoritmi e Strutture Dati Il problema Laboratorio di Algoritmi e Strutture Dati Docenti: M. Goldwurm, S. Aguzzoli Appello del 5 Aprile 005 Progetto Recinti Conegna entro il Aprile 005 Si tudia la reitenza di alcune pecie di piante

Dettagli

Obiettivi Specifici di apprendimento GEOGRAFIA. CURRICOLO VERTICALE DI ISTITUTO (dalla Cl. I Sc.Primaria alla Cl. III Sc.Second. 1 gr.

Obiettivi Specifici di apprendimento GEOGRAFIA. CURRICOLO VERTICALE DI ISTITUTO (dalla Cl. I Sc.Primaria alla Cl. III Sc.Second. 1 gr. bettv pecfc d ppendmento GGAFA VA D ( cpm cecond 1 g) A NNZ ABÀ sse cpm gnzzto tempo e spz (pm, po, mente, sop, sotto, dvnt, deto, vcno, ontno,snst, dest, ecc) sse cpm ement costtutv deo spzo vssuto: funzon,

Dettagli

Guida al calcolo della ripetibilità di un metodo di prova ed alla sua verifica nel tempo

Guida al calcolo della ripetibilità di un metodo di prova ed alla sua verifica nel tempo Guida al calcolo della ipetibilità di un metodo di pova ed alla ua veifica nel tempo N. Bottazzini e L. Cavalli UNICHIM (Milano) Seminaio SINAL, ettembe 007 Definizioni (UNI ISO 575-) Peciione gado di

Dettagli

Ques t or epor tès t a t oc ur a t oda : Dot t. s s agi us eppi nadel or enz o-medi c oe pi demi ol ogo UOCCont r ol l odi Ges t i one-f l us s i I nf or ma t i v i T el. 0813050416-ema i l : gi us eppi

Dettagli

Lezione 12. Regolatori PID

Lezione 12. Regolatori PID Lezione 1 Regolatori PD Legge di controllo PD Conideriamo un regolatore che eercita un azione di controllo dipendente dall errore attravero la eguente legge: t ut = K et K e d K de t P + τ τ+ D. dt La

Dettagli

Urti su scale diverse. m 1 m 2. tra particelle α Ν. t 4 ms. meteor-crater m. F r 21. r risultato di un contatto fisico

Urti su scale diverse. m 1 m 2. tra particelle α Ν. t 4 ms. meteor-crater m. F r 21. r risultato di un contatto fisico Ut uto: eeto solato el quale ua oza elataete tesa agsce e u teo elataete bee su due o ù co cotatto ta loo [aossazoe ulsa: tascuo oze estee] sultato d u cotatto sco F F sultato d ua teazoe ta atcelle eteo-cate

Dettagli