SUL MODELLO DI BLACK-SHOLES

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "SUL MODELLO DI BLACK-SHOLES"

Transcript

1 SUL MODELLO DI BLACK-SHOLES LUCA LUSSARDI 1. La dinamica di Black-Schols Il modllo di Black-Schols pr i mrcati finanziari assum com ipotsi fondamntal ch i przzi di bni finanziari sguano una bn dtrminata dinamica S = St, con t [0, T ], soluzion dll quazion diffrnzial stocastica ds = µsdt + σsdw 1.1 ssndo µ L 1 0, T la tndnza σ L 0, T la volatilità. Sappiamo si vda [1] pr dttagli ch nl caso µ, σ, S 0 costanti positiv si ha ch l unica soluzion dl problma { ds = µsdt + σsdw S0 = S 0 1. è data da σ µ St = S 0 t+σw t 1.3 ch quindi rapprsnta un procsso stocastico log-normal, cioé il cui logaritmo è distribuito normalmnt in ogni istant. La formula 1.3 si gnralizza al caso in cui µ, σ non siano costanti: St = S 0 t σ 0 µ ds+ t 0 σdw.. L quazion di Black-Schols Black Schols nl 1973 si rano occupati di particolari contratti drivati chiamati opzioni call urop. Vdiamo brvmnt in cosa consist la problmatica. L opzioni call urop lgano il proprio valor a qullo di uno o più bni sottostanti. Pr smplicità ipotizziamo ch di avr un solo bn sottostant S il cui valor pr unità sgu la dinamica 1.1 nlla qual prndiamo anch σ costant; in particolar, al tmpo t = 0 possdiamo una quantità p 0 dl bn S al valor unitario S 0. Al tmpo t = 0 acquistiamo il diritto di vndr ad un succssivo tmpo prstabilito T > 0, una fissata quantità p T dl bn S ad un przzo prstabilito k. Tal acquisto ha un costo incognito ch dipnd da S 0 ch chiamiamo cs 0, 0, dtto anch prmio. Al variar di t [0, T ] dcidiamo di vndr o comprar quantità dl bn S pr comprar o vndr opzioni, snza quindi immttr né prlvar dnaro: al tmpo t [0, T ] avrmo quindi una quantità pt di bn S, con 1

2 LUCA LUSSARDI p0 = p 0, corrispondntmnt il przzo dll opzioni sguirà una dinamica incognita c = cst, t. Si è quindi vnuto a crar il portafoglio V t := ptst + cst, t, t [0, T ]. Pr com è formulato il contratto quindi convin ch sia cst, T = ST k +. Infatti, s così foss al tmpo final T potrmmo usar k pr comprar il bn S immdiatamnt vndrlo guadagnando ST k > 0. Il problma affrontato da Black Schols è stato qullo di dtrminar la dinamica c in particolar l ntità dl prmio. In quanto sgu non mnzionrmo importanti ipotsi sul mrcato ch prmttono di ffttuar alcun smplificazioni di tipo matmatico; pr maggiori dttagli si vda []. La prima ida è qulla di tnr conto ch istantanamnt non è possibil né aggiungr né toglir dnaro al portafoglio ma vntualmnt ridistribuirlo tra il bn sottostant S l opzioni. Qusto si traduc, pr dfinizion, nll affrmar ch il diffrnzial stocastico dl portafoglio è dato da dv t = ptdst + dcst, t. Pr la rgola dlla catna di Itô si ha, grazi alla 1.1, dunqu dcst, t = St, tdst + x t St, tdt + 1 dv t = ptdst + St, tdst + x t St, tdt + 1 c x St, tσ St dt c x St, tσ St dt..1 Si prsnta a qusto punto la domanda fondamntal alla qual vogliamo trovar una risposta: mantnndo il portafoglio autofinanziant, ovvro non immttndo dnaro né prlvando dnaro, possiamo trovar una stratgia di compravndita di S dll opzioni ch ci consnta di annullar l variazioni stocastich dl bn S? Un portafoglio così dtrminato, s sist, si dirà privo di rischio. La risposta sorprndnt è ch tutto ciò è possibil la dinamica di c sguirà una soluzion di un quazion all drivat parziali. Infatti, basta porr pt = St, t x pr avr ch dv t = t St, tdt + 1 c x St, tσ St dt.

3 SUL MODELLO DI BLACK-SHOLES 3 Crchiamo ora di imporr ch il nostro portafoglio abbia un rndimnto garantito r, ovvro ch sia dv t = rv tdt. Sarà quindi r St, tst + rcst, t = x t St, t + 1 c x St, tσ St cioé t St, t + 1 c x St, tσ St + r St, tst rcs, t = 0. x Da tal dinamica si stra quindi un quazion all drivat parziali pr c, data da t s, t + 1 σ s c s, t + rss, t rcs, t = 0.. dtta quazion diffrnzial di Black-Schols. 3. La formula di Black-Schols Tnuto conto dll considrazioni prcdnti siamo ricondotti allo studio dl problma t s, t + 1 σ s c s, t + rss, t rcs, t = 0, s > 0, t [0, T ] 3.1 cs, T = s k + s > 0, t = T. Mostriamo ch con un opportuno cambiamnto di variabili l quazion diffrnzial nl problma 3.1 si riconduc all quazion dl calor. Infatti, poniamo x := log s + r σ T t τ := σ T t ux, τ := r T τ σ c x r σ 1 τ, T τ. Ossrviamo ch si ha x r σ 1 τ = s, Inoltr, si trova facilmnt ch r x, τ = τ σ r T τ σ cs, t + r T τ σ s x x, τ = r T τ σ u x x, τ = r T τ σ s c T τ σ = t. σ 1 r σ s, t s, t, σ t s s, t, s, t + s s, t.

4 4 LUCA LUSSARDI N sgu ch τ x, τ u x, τ x = σ r T τ σ rcs, t sr s, t t s, t s σ c s, t = 0. Riguardo all condizioni al bordo ossrviamo prima di tutto ch pr cui ni punti x, 0 dv ssr da cui cs, T = rt ux, 0 x k + = s k + = rt ux, 0 ux, 0 = rt x k + =: fx. In dfinitiva, va risolto quindi il problma τ x, τ = u x, τ, x ux, 0 = fx, x R. σ x R, 0 τ T 3. Pr risolvr il problma 3. lavoriamo in trasformata di Fourir; non dttaglirmo sull ipotsi in gioco pr rndr vri i conti ch sguono. Pr dfinizion, poniamo Fgω := 1 gx iωx dx. π La trasformata di Fourir vrifica alcun proprità fondamntali pr l applicazioni all quazioni all drivat parziali. Prcisamnt si ha ssndo Fg ω = iωfgω, u vx := Fu vω = FuωFvω ux yvy dy. Trasformando il problma 3. mdiant la trasformata di Fourir risptto alla variabil spazial x si prvin a da cui, considrando ω com paramtro, Fu ω, τ = ω Fuω, τ τ Fuω, 0 = Ffω Fuω, τ = Ffω ωτ. 3.3

5 SUL MODELLO DI BLACK-SHOLES 5 Posto Γx, τ := 1 x 4τ si ha facilmnt Dunqu, da cui FΓ, τω = ωt. Fuω, τ = FfωFΓ, τω = FΓ, τ fω ux, τ = Γ, τ fx = 1 La soluzion dl problma 3. è quindi data da ux, τ = rt x y 4τ fy dy. x y 4τ y k + dy. Noi siamo intrssati alla dinamica cst, t ch val dunqu cst, t = rt u log St + r T σ t, σ T t rt t = πσ T t In particolar, il prmio sarà dato da cs 0, 0 = ch è la formula di Black-Schols. rt πσ T log St+r σ /T t y σ T t y k + dy. log S 0 y σ T y k + dy Rifrimnti bibliografici [1] L. C. Evans, An Introduction to Stochastic Diffrntial Equations, Amrican Mathmatical Socity, 013. [] M. Baxtr and A. Rnni, Financial Calculus: An Introduction to Drivativ Pricing, Cambridg Univrsity Prss, 1996.

0.1. CIRCONFERENZA 1. La 0.1.1, espressa mediante la formula per la distanza tra due punti, diviene:

0.1. CIRCONFERENZA 1. La 0.1.1, espressa mediante la formula per la distanza tra due punti, diviene: 0.1. CIRCONFERENZA 1 0.1 Circonfrnza Considriamo una circonfrnza di cntro P 0 (x 0, y 0 ) raggio r, cioè il luogo di punti dl piano P (x, y) pr i quali si vrifica la rlazion: 0.1.1. P 0 P = r. La 0.1.1,

Dettagli

Ulteriori esercizi svolti

Ulteriori esercizi svolti Ultriori srcizi svolti Effttuar uno studio qualitativo dll sgunti funzioni ) 4 f ( ) ) ( + ) f ( ) + 3) f ( ) con particolar rifrimnto ai sgunti asptti: a) trova il dominio di f b) indica quali sono gli

Dettagli

ESERCIZI PARTE I SOLUZIONI

ESERCIZI PARTE I SOLUZIONI UNIVR Facoltà di Economia Corso di Matmatica finanziaria 008/09 ESERCIZI PARTE I SOLUZIONI Domini di funzioni di du variabili Esrcizio a f, = log +. L unica condizion di sistnza è data dalla disquazion

Dettagli

Tecniche per la ricerca delle primitive delle funzioni continue

Tecniche per la ricerca delle primitive delle funzioni continue Capitolo 4 Tcnich pr la ricrca dll primitiv dll funzioni continu Nl paragrafo.7 abbiamo dato la dfinizion di primitiva di una funzion f avnt pr dominio un intrvallo I; abbiamo visto ch s F 0 è una primitiva

Dettagli

0 < a < 1 a > 1. In entrambi i casi la funzione y = a x si può studiare per punti e constatare che essa presenta i seguenti andamenti y.

0 < a < 1 a > 1. In entrambi i casi la funzione y = a x si può studiare per punti e constatare che essa presenta i seguenti andamenti y. INTRODUZIONE Ossrviamo, in primo luogo, ch l funzioni sponnziali sono dlla forma a con a costant positiva divrsa da (il caso a è banal pr cui non sarà oggtto dl nostro studio). Si possono allora vrificar

Dettagli

1 Derivate parziali 1. 2 Regole di derivazione 5. 3 Derivabilità e continuità 7. 4 Differenziabilità 7. 5 Derivate seconde e teorema di Schwarz 8

1 Derivate parziali 1. 2 Regole di derivazione 5. 3 Derivabilità e continuità 7. 4 Differenziabilità 7. 5 Derivate seconde e teorema di Schwarz 8 UNIVR Facoltà di Economia Sd di Vicnza Corso di Matmatica Drivat dll funzioni di più variabili Indic Drivat parziali Rgol di drivazion 5 3 Drivabilità continuità 7 4 Diffrnziabilità 7 5 Drivat scond torma

Dettagli

Funzioni lineari e affini. Funzioni lineari e affini /2

Funzioni lineari e affini. Funzioni lineari e affini /2 Funzioni linari aini In du variabili l unzioni linari sono dl tipo a b l unzioni aini sono dl tipo a b c Il graico di una unzion linar è un piano passant pr l origin il graico di una unzion ain è un piano.

Dettagli

PROGRAMMA DI RIPASSO ESTIVO

PROGRAMMA DI RIPASSO ESTIVO ISTITUTO TECNICO PER IL TURISMO EUROSCUOLA ISTITUTO TECNICO PER GEOMETRI BIANCHI SCUOLE PARITARIE PROGRAMMA DI RIPASSO ESTIVO CLASSI MATERIA PROF. QUARTA TURISMO Matmatica Andra Brnsco Làvor ANNO SCOLASTICO

Dettagli

Regimi di cambio. In questa lezione: Studiamo l economia aperta nel breve e nel medio periodo. Studiamo le crisi valutarie.

Regimi di cambio. In questa lezione: Studiamo l economia aperta nel breve e nel medio periodo. Studiamo le crisi valutarie. Rgimi di cambio In qusta lzion: Studiamo l conomia aprta nl brv nl mdio priodo. Studiamo l crisi valutari. Analizziamo brvmnt l Ar Valutari Ottimali. 279 Il mdio priodo Abbiamo visto ch gli fftti di politica

Dettagli

Studio di funzione. R.Argiolas

Studio di funzione. R.Argiolas Studio di unzion R.Argiolas Introduzion Prsntiamo lo studio dl graico di alcun unzioni svolt durant l srcitazioni dl corso di analisi matmatica I assgnat nll prov scritt. Ringrazio anticipatamnt tutti

Dettagli

Esercizi sullo studio di funzione

Esercizi sullo studio di funzione Esrcizi sullo studio di funzion Prima part Pr potr dscrivr una curva, data la sua quazion cartsiana splicita f () occorr procdr scondo l ordin sgunt: 1) Dtrminar l insim di sistnza dlla f () ) Dtrminar

Dettagli

La Formazione in Bilancio delle Unità Previsionali di Base

La Formazione in Bilancio delle Unità Previsionali di Base La Formazion in Bilancio dll Unità Prvisionali di Bas Con la Lgg 3 april 1997, n. 94 sono stat introdott l Unità Prvisionali di Bas (di sguito anch solo UPB), ch rapprsntano un di aggrgazion di capitoli

Dettagli

Teoria dell integrazione secondo Riemann per funzioni. reali di una variabile reale.

Teoria dell integrazione secondo Riemann per funzioni. reali di una variabile reale. Capitolo 2 Toria dll intgrazion scondo Rimann pr funzioni rali di una variabil ral Esistono vari tori dll intgrazion; tutt hanno com comun antnato il mtodo di saustion utilizzato dai Grci pr calcolar l

Dettagli

R k = I k +Q k. Q k = D k-1 - D k

R k = I k +Q k. Q k = D k-1 - D k 1 AMMORTAMENTO AMMORTAMENTO Dbito inizial D 0 si volv (al tasso fisso t) D k = D k-1 (1+t) R k [D k dbito (rsiduo) al tmpo k, R k pagamnto al tmpo k ] Condizioni [D n =0 : stinzion dl dbito in n priodi

Dettagli

ESERCIZI SULLA DEMODULAZIONE INCOERENTE

ESERCIZI SULLA DEMODULAZIONE INCOERENTE Esrcitazioni dl corso di trasmissioni numrich - Lzion 4 6 Fbbraio 8 ESERCIZI SULLA DEMODULAZIONE INCOERENE I du sgnali passa basso di figura sono utilizzati pr la trasmission di simboli binari quiprobabili

Dettagli

1 Il concetto di funzione 1. 2 Funzione composta 4. 3 Funzione inversa 6. 4 Restrizione e prolungamento di una funzione 8

1 Il concetto di funzione 1. 2 Funzione composta 4. 3 Funzione inversa 6. 4 Restrizione e prolungamento di una funzione 8 UNIVR Facoltà di Economia Sd di Vicnza Corso di Matmatica 1 Funzioni Indic 1 Il conctto di funzion 1 Funzion composta 4 3 Funzion invrsa 6 4 Rstrizion prolungamnto di una funzion 8 5 Soluzioni dgli srcizi

Dettagli

COMMISSIONE DELLE COMUNITÀ EUROPEE. Progetto di RACCOMANDAZIONE DELLA COMMISSIONE. del (...)

COMMISSIONE DELLE COMUNITÀ EUROPEE. Progetto di RACCOMANDAZIONE DELLA COMMISSIONE. del (...) COMMISSIONE DELLE COMUNITÀ EUROPEE Bruxlls, xxx COM (2001) yyy final Progtto di RACCOMANDAZIONE DELLA COMMISSIONE dl (...) modificando la raccomandazion 96/280/CE rlativa alla dfinizion dll piccol mdi

Dettagli

Test di autovalutazione

Test di autovalutazione UNITÀ FUNZINI E LR RAPPRESENTAZINE Tst di autovalutazion 0 0 0 0 0 50 60 70 80 90 00 n Il mio puntggio, in cntsimi, è n Rispondi a ogni qusito sgnando una sola dll 5 altrnativ. n Confronta l tu rispost

Dettagli

Le politiche per l equilibrio della bilancia dei pagamenti

Le politiche per l equilibrio della bilancia dei pagamenti L politich pr l quilibrio dlla bilancia di pagamnti Politich pr ottnr l quilibrio dlla bilancia di pagamnti (BP = + MK = 0) nl lungo priodo BP 0 non è sostnibil prchè In cambi fissi S BP0 si sauriscono

Dettagli

Nozioni di base sulle coniche (ellisse (x^2/a^2)+(y^2/b^2)=1, iperbole(x^2/a^2)-(y^2/b^2)=1, parabola e circonferenza):

Nozioni di base sulle coniche (ellisse (x^2/a^2)+(y^2/b^2)=1, iperbole(x^2/a^2)-(y^2/b^2)=1, parabola e circonferenza): Nozioni di bas sull conich (lliss (x^2/a^2)+(y^2/b^2)=1, iprbol(x^2/a^2)-(y^2/b^2)=1, parabola circonfrnza): Dlta =0, significa un solo punto di intrszion tra fascio di rtt conica Dlta >=0, significa 2

Dettagli

Unità didattica: Grafici deducibili

Unità didattica: Grafici deducibili Unità didattica: Grafici dducibili Dstinatari: Allivi di una quarta lico scintifico PNI tal ud è insrita nllo studio dll funzioni rali di variabil ral. Programmi ministriali dl PNI: Dal Tma n 3 funzioni

Dettagli

Comunità Europea (CE) International Accounting Standards, n. 17

Comunità Europea (CE) International Accounting Standards, n. 17 Scopo contnuto dl documnto Comunità Europa (CE) Intrnational Accounting Standards, n. 17 Lasing Lasing Finalità SOMMARIO Paragrafi 1 Ambito di applicazion 2-3 Dfinizioni 4-6 Classificazion dll oprazioni

Dettagli

Documento tratto da La banca dati del Commercialista

Documento tratto da La banca dati del Commercialista Documnto tratto da La banca dati dl Commrcialista Intrnational Accounting Standards Board Intrnational Accounting Standards, n. 17 SCOPO E CONTENUTO DEL DOCUMENTO Lasing Il prsnt Principio sostituisc lo

Dettagli

Lemma 2. Se U V é un sottospazio vettoriale di V allora 0 U.

Lemma 2. Se U V é un sottospazio vettoriale di V allora 0 U. APPUNTI d ESERCIZI PER CASA di GEOMETRIA pr il Corso di Laura in Chimica, Facoltà di Scinz MM.FF.NN., UNICAL (Dott.ssa Galati C.) Rnd, 3 April 2 Sottospazi di uno spazio vttorial, sistmi di gnratori, basi

Dettagli

Corso di Laurea in Economia Matematica per le applicazioni economiche e finanziarie. Esercizi 4

Corso di Laurea in Economia Matematica per le applicazioni economiche e finanziarie. Esercizi 4 Corso di Laura in Economia Matmatica pr l applicazioni conomich finanziari Esrcizi 4 Vrificar s l sgunti funzioni, nll intrvallo chiuso indicato, soddisfano l ipotsi dl torma di Roll, in caso affrmativo,

Dettagli

SCHEMA PER LA STESURA DEL PIANO DI MIGLIORAMENTO INTRODUZIONE. Per la predisposizione del piano, è necessario fare riferimento alle Linee Guida.

SCHEMA PER LA STESURA DEL PIANO DI MIGLIORAMENTO INTRODUZIONE. Per la predisposizione del piano, è necessario fare riferimento alle Linee Guida. INTRODUZIONE Pr la prdisposizion dl piano, è ncssario far rifrimnto all Lin Guida. Lo schma proposto di sguito è stato sviluppato nll ambito dl progtto Miglioramnto dll prformanc dll istituzioni scolastich

Dettagli

Lezione 16 (BAG cap. 15) Corso di Macroeconomia Prof. Guido Ascari, Università di Pavia. Schema Lezione

Lezione 16 (BAG cap. 15) Corso di Macroeconomia Prof. Guido Ascari, Università di Pavia. Schema Lezione Lzion 6 (BAG cap. 5) Mrcati finanziari aspttativ Corso di Macroconomia Prof. Guido Ascari, Univrsità di Pavia Schma Lzion Ruolo dll aspttativ nl dtrminar ii przzi di azioni obbligazioni Sclta fra tanti

Dettagli

IPOTESI ESEMPLIFICATIVA DI ORGANIZZAZIONE DEI CONTENUTI DELLA PROGRAMMAZIONE DI DIPARTIMENTO. PRIMO BIENNIO/SECONDO BIENNIO e ULTIMO ANNO

IPOTESI ESEMPLIFICATIVA DI ORGANIZZAZIONE DEI CONTENUTI DELLA PROGRAMMAZIONE DI DIPARTIMENTO. PRIMO BIENNIO/SECONDO BIENNIO e ULTIMO ANNO IPOTESI ESEMPLIFICATIVA DI ORGANIZZAZIONE DEI CONTENUTI DELLA PROGRAMMAZIONE DI DIPARTIMENTO PRIMO BIENNIO/SECONDO BIENNIO ULTIMO ANNO In cornza con i critri di validazion dlla programmazion di ass (o

Dettagli

METODO DEGLI ELEMENTI FINITI

METODO DEGLI ELEMENTI FINITI Dal libro di tsto Zinkiwicz Taylor, Capitolo 14 pag. 398 Il mtodo dgli lmnti finiti fornisc una soluzion approssimata dl problma lastico; tal approssimazion driva non dall avr discrtizzato il dominio in

Dettagli

SIMT-POS 042 GESTIONE INDICATORI E MIGLIORAMENTO CONTINUO SIMT

SIMT-POS 042 GESTIONE INDICATORI E MIGLIORAMENTO CONTINUO SIMT 1 Prima Stsura Data: 14-08-2014 Rdattori: Gasbarri, Rizzo SIMT-POS 042 GESTIONE INDICATORI E MIGLIORAMENTO CONTINUO SIMT Indic 1 SCOPO... 2 2 CAMPO D APPLICAZIONE... 2 3 DOCUMENTI DI RIFERIMENTO... 2 4

Dettagli

ITALMOBILIARE SOCIETA PER AZIONI

ITALMOBILIARE SOCIETA PER AZIONI ITALMOBILIARE SOCIETA PER AZIONI COMUNICATO STAMPA Informazioni rlativ ai piani di stock option di ITALMOBILIARE S.p.A. ITALCEMENTI S.p.A. già sottoposti alla dcision di rispttivi organi comptnti antcdntmnt

Dettagli

Corso di laurea in Scienze internazionali e diplomatiche. corso di POLITICA ECONOMICA

Corso di laurea in Scienze internazionali e diplomatiche. corso di POLITICA ECONOMICA Corso di laura in Scinz intrnazionali diplomatich corso di OLITICA ECONOMICA SAVERIA CAELLARI Curva di offrta aggrgata di brv priodo; quilibrio domanda offrta aggrgata nl brv nl lungo priodo Aspttativ

Dettagli

Lezione 5. Analisi a tempo discreto di sistemi ibridi. F. Previdi - Controlli Automatici - Lez. 5 1

Lezione 5. Analisi a tempo discreto di sistemi ibridi. F. Previdi - Controlli Automatici - Lez. 5 1 Lzion 5. nalisi a tmpo discrto di sistmi ibridi F. Prvidi - Controlli utomatici - Lz. 5 Schma dlla lzion. Introduzion 2. nalisi a tmpo discrto di sistmi ibridi 3. utovalori di un sistma a sgnali campionati

Dettagli

Compito di Fisica Generale I (Mod. A) Corsi di studio in Fisica ed Astronomia 4 aprile 2011

Compito di Fisica Generale I (Mod. A) Corsi di studio in Fisica ed Astronomia 4 aprile 2011 Compito di Fisica Gnral I (Mod A) Corsi di studio in Fisica d Astronomia 4 april 2011 Problma 1 Du blocchi A B di massa rispttivamnt m A d m B poggiano su un piano orizzontal scabro sono uniti da un filo

Dettagli

LA TRASFORMATA DI LAPLACE

LA TRASFORMATA DI LAPLACE LA RASFORMAA DI LAPLACE Pr dcrivr l voluzion di un itma in rgim tranitorio, oia durant il paaggio dll ucit da un rgim tazionario ad un altro, è ncario ricorrr ad un modllo più gnral riptto al modllo tatico,

Dettagli

Ing. Gestionale Ing. Informatica Ing. Meccanica Ing. Tessile. Cognome Nome Matricola

Ing. Gestionale Ing. Informatica Ing. Meccanica Ing. Tessile. Cognome Nome Matricola Ing Gstional Ing Informatica Ing Mccanica Ing Tssil Cognom Nom Matricola Univrsità dgli Studi di Brgamo Scondo Compitino di Matmatica II ) Si considri la matric 2 3 3 2 Si calcolino gli autovalori gli

Dettagli

CRITERI DI VALUTAZIONE

CRITERI DI VALUTAZIONE CRITERI DI VALUTAZIONE Poiché nl nostro prcorso si darà ampio spazio all mtodologi finalizzat a sviluppar l comptnz dgli allivi ( attravrso la dattica laboratorio, l sprinz in contsti applicativi, l analisi

Dettagli

Limiti di successioni - svolgimenti

Limiti di successioni - svolgimenti Limiti di succssioi - svolgimti Scrivrmo a b quado a b =. Calcoliamo qusto it, raccoglido il fattor al umrator al domiator. Si ha 2 + 2 4 = + 2 2 3! 4 3!. Iazitutto, ricordiamo ch Ioltr, si ha utilizzado

Dettagli

Aspettative, produzione e politica economica

Aspettative, produzione e politica economica Lzion 18 (BAG cap. 17) Aspttativ, produzion politica conomica Corso di Macroconomia Prof. Guido Ascari, Univrsità di Pavia 2 1 L aspttativ la curva IS Dividiamo il tmpo in du priodi: 1. un priodo corrnt

Dettagli

TEMPI SOGGETTI AZIONI Gennaio- Docenti dei due ordini di scuola e Pianificazione del progetto ponte per gli Anno

TEMPI SOGGETTI AZIONI Gennaio- Docenti dei due ordini di scuola e Pianificazione del progetto ponte per gli Anno PROGETTO PONTE TRA ORDINI DI SCUOLA Pr favorir la continuità ducativo didattica nl momnto dl passaggio da un ordin di scuola ad un altro, si labora un pont, sul modllo di qullo sottolncato. TEMPI SOGGETTI

Dettagli

Procedura Operativa Standard. Internal Dealing. Rev. 0 In vigore dal 28 marzo 2012 COMITATO DI CONTROLLO INTERNO. Luogo Data Per ricevuta

Procedura Operativa Standard. Internal Dealing. Rev. 0 In vigore dal 28 marzo 2012 COMITATO DI CONTROLLO INTERNO. Luogo Data Per ricevuta REDATTO: APPROVATO: APPROVATO: INTERNAL AUDITOR COMITATO DI CONTROLLO INTERNO C.D.A. Luogo Data Pr ricvuta INDICE 1.0 SCOPO E AMBITO DI APPLICAZIONE 2.0 RIFERIMENTI NORMATIVI 3.0 DEFINIZIONI 4.0 RUOLI

Dettagli

-LE ASPETTATIVE: NOZIONI DI - MERCATI FINANZIARI E BASE ASPETTATIVE

-LE ASPETTATIVE: NOZIONI DI - MERCATI FINANZIARI E BASE ASPETTATIVE 1 -LE ASPETTATIVE: NOZIONI DI BASE - MERCATI FINANZIARI E ASPETTATIVE DUE DEFINIZIONI PER IL TASSO DI INTERESSE Il tasso di intrss in trmini di monta è chiamato tasso di intrss nominal (i). Il tasso di

Dettagli

SESSIONE ORDINARIA 2012 CORSI SPERIMENTALI

SESSIONE ORDINARIA 2012 CORSI SPERIMENTALI PROBLEMA SESSIONE ORDINARIA 0 CORSI SPERIMENTALI Sia ( x) ln ( x) ln x sia ( x) ln ( x) ln x.. Si dtrmino i domini di di.. Si disnino, nl mdsimo sistma di assi cartsiani ortoonali Oxy, i raici di di..

Dettagli

Le problematiche della consulenza finanziaria

Le problematiche della consulenza finanziaria L problmatich dlla consulnza finanziaria Anna Vizzari MIFID: una dirttiva a tutla di piccoli risparmiatori? MIFID è l acronimo di Markt in Financial Instrumnts Dirctiv. Individua una dirttiva dll Union

Dettagli

LA NOSTRA AVVENTURA NEL CREARE UN LIBRO

LA NOSTRA AVVENTURA NEL CREARE UN LIBRO LA NOSTRA AVVENTURA NEL CREARE UN LIBRO Abbiamo iniziato a lggr in class Nonno Tano la casa dll strgh. Lo scopo ra ascoltar comprndr. Sguir la mastra ch dava sprssività alla lttura imparar da lla a lggr.

Dettagli

Prof. Fernando D Angelo. classe 5DS. a.s. 2007/2008. Nelle pagine seguenti troverete una simulazione di seconda prova su cui lavoreremo dopo le

Prof. Fernando D Angelo. classe 5DS. a.s. 2007/2008. Nelle pagine seguenti troverete una simulazione di seconda prova su cui lavoreremo dopo le Pro. Frnando D Anglo. class 5DS. a.s. 007/008. Nll pagin sgunti trovrt una simulazion di sconda prova su cui lavorrmo dopo l vacanz di Pasqua. Pr mrcoldì 6/03/08 guardat il problma 4 i qusiti 1 8 9-10.

Dettagli

le Segreterie degli Organi di Coordinamento delle rr.ss.aa. FABI DIRCREDITO SINFUB

le Segreterie degli Organi di Coordinamento delle rr.ss.aa. FABI DIRCREDITO SINFUB In rlazion a quanto prvisto dall art.2120 C.C., dall norm di lgg dagli accordi collttivi vignti, convngono ch, in aggiunta alla casistica sprssamnt prvista, il dipndnt possa chidr la anticipazion dl proprio

Dettagli

Tariffe delle prestazioni sanitarie nelle diverse regioni italiane. Laura Filippucci

Tariffe delle prestazioni sanitarie nelle diverse regioni italiane. Laura Filippucci Consumatori in cifr Tariff dll prstazioni sanitari nll divrs rgioni italian Laura Filippucci La rcnt proposta dl Govrno di aggiornar il tariffario dll prstazioni sanitari di laboratorio ha sollvato un

Dettagli

COMUNE DI BOLOGNA Dipartimento Economia e Promozione della Città

COMUNE DI BOLOGNA Dipartimento Economia e Promozione della Città COMUNE DI BOLOGNA Dipartimnto Economia Promozion dlla Città Allgato C all Avviso pubblico pr la prsntazion di progtti di sviluppo alla Agnda Digital di Bologna Modllo di dichiarazion sul posssso di rquisiti

Dettagli

Le evoluzioni del Corporate Banking interbancario in Italia e in Europa

Le evoluzioni del Corporate Banking interbancario in Italia e in Europa Convgno ABI Tavola rotonda L voluzioni dl Corporat Banking intrbancario in Italia in Europa 11 cmbr 2009 Luigi Prissich DG Confindustria Srvizi innovativi Tcnologici Il Progtto Italia Digital Costruir

Dettagli

Il campione. Il campionamento. Il campionamento. Il campionamento. Il campionamento

Il campione. Il campionamento. Il campionamento. Il campionamento. Il campionamento Il campion I mtodi di campionamnto d accnno all dimnsioni di uno studio Raramnt in uno studio pidmiologico è possibil saminar ogni singolo soggtto di una popolazion sia pr difficoltà oggttiv di indagin

Dettagli

UFFICIO EUROPEO DI SELEZIONE DEL PERSONALE (EPSO)

UFFICIO EUROPEO DI SELEZIONE DEL PERSONALE (EPSO) 10.11.2010 IT Gazztta ufficial dll'union uropa C 304 A/1 V (Avvisi) PROCEDIMENTI AMMINISTRATIVI UFFICIO EUROPEO DI SELEZIONE DEL PERSONALE (EPSO) BANDO DI CONCORSI GENERALI EPSO/AST/109-110/10 CORRETTORI

Dettagli

Esercizio 1. Cov(X,Y)=E(X,Y)- E(X)E(Y).

Esercizio 1. Cov(X,Y)=E(X,Y)- E(X)E(Y). Esrcizi di conomtria: sri 4 Esrcizio Siano, Z variabili casuali distribuit scondo la lgg multinomial di paramtri n, p, p, p p p.. Calcolar la Covarianza tra l variabili d. Soluzion Dat du variabili dinit

Dettagli

Prova scritta di Algebra 23 settembre 2016

Prova scritta di Algebra 23 settembre 2016 Prova scritta di Algbra 23 sttmbr 2016 1. Si considri la sgunt applicazion: { Z21 Z ϕ : 3 Z 7 [x] 21 ([2x] 3, [x] 7 ) a) Vrificar ch ϕ è bn dfinita. b) Dir s ([1] 3, [5] 7 ) Imϕ in tal caso trovarn la

Dettagli

Calcolo di integrali. max. min. Laboratorio di Calcolo B 42

Calcolo di integrali. max. min. Laboratorio di Calcolo B 42 Calcolo di intgrali Supponiamo di dovr calcolar l intgral di una funzion in un intrvallo limitato [ min, ma ], di conoscr il massimo d il minimo dlla funzion in tal intrvallo. S gnriamo n punti uniformmnt

Dettagli

Integrazione e Integratori delle Informazioni

Integrazione e Integratori delle Informazioni SC.S.I. A.S.O. Ordin Mauriziano Workshop intrrgional sui sistmi informativi pr la gstion la valutazion dll rti oncologich Torino 24-25 maggio 2007 Intgratori dll Andra Bo - A.S.O. Ordin Mauriziano - S.C.

Dettagli

Calore Specifico

Calore Specifico 6.08 - Calor Spcifico 6.08.a) Lgg Fondamntal dlla Trmologia Un modo pr far aumntar la Tmpratura di un Corpo è qullo di cdr ad sso dl Calor, pr smpio mttndolo in Contatto Trmico con un Corpo a Tmpratura

Dettagli

Il ruolo delle aspettative in economia

Il ruolo delle aspettative in economia Capiolo XV. Il ruolo dll aspaiv in conomia . Tassi di inrss nominali rali Il asso di inrss in rmini di mona è chiamao asso di inrss nominal. Il asso di inrss sprsso in rmini di bni è chiamao asso di inrss

Dettagli

Ambiente di riferimento

Ambiente di riferimento Ambiente di riferimento Cosideriamo un mercato finanziario di una sola azione (investimento a rischio), un titolo obbligazionario (investimento senza rischio) e un contingent claim. La dinamica dei prezzi

Dettagli

CURVE DI PROBABILITÀ PLUVIOMETRICA Le curve di probabilità pluviometrica esprimono la relazione fra le altezze di precipitazione h e la loro durata

CURVE DI PROBABILITÀ PLUVIOMETRICA Le curve di probabilità pluviometrica esprimono la relazione fra le altezze di precipitazione h e la loro durata CURVE DI PROBABILITÀ PLUVIOMETRICA L curv di probabilità pluviomtrica sprimono la rlazion fra l altzz di prcipitazion h la loro durata t, pr un assgnato valor dl priodo di ritorno T. Tal rlazion vin spsso

Dettagli

0.06 100 + (100 100)/4 (100 + 2 100)/3

0.06 100 + (100 100)/4 (100 + 2 100)/3 A. Prtti Svolgimnto di tmi d sam di MDEF A.A. 5/ PROVA CONCLUSIVA DI MATEMATICA pr l DECISIONI ECONOMICO-FINANZIARIE Vicnza, 5// ESERCIZIO. Trovar una prima approssimazion dl tasso di rndimnto a scadnza

Dettagli

ESERCIZI AGGIUNTIVI MODELLO IS-LM ECONOMIA APERTA

ESERCIZI AGGIUNTIVI MODELLO IS-LM ECONOMIA APERTA ESERCIZI AGGIUNTIVI MODELLO IS-LM ECONOMIA APERTA Esrcizio n 1 C= 400 + 0,8D I= 200-1400r G= 200 TA= 0,25 X= 300-100 Q=156+0,4 r*=0,36 L=50+0,2-100r M o =99 a) Dtrminat l quazion dlla IS dlla LM, il tasso

Dettagli

APPROFONDIMENTO MANAGEMENT

APPROFONDIMENTO MANAGEMENT APPROFONDIMENTO MANAGEMENT Iniziativa Comunitaria Equal II Fas IT G2 CAM - 017 Futuro Rmoto Approfondimnto LIQUIDAZIONI E VERSAMENTI IVA ORGANISMO BILATERALE PER LA FORMAZIONE IN CAMPANIA LIQUIDAZIONE

Dettagli

Appunti sulle disequazioni frazionarie

Appunti sulle disequazioni frazionarie ppunti sull disquazioni frazionari Sono utili l sgunti dfinizioni Una disquazion fratta o frazionaria è una disquazion nlla qual l incognita compar in qualch suo dnominator. Una disquazion razional è una

Dettagli

Il Rgistro E-PRTR (Europan Pollutant Rlas and Transfr Rgistr) Attuazion dl Rgolamnto (CE) n. 166/06 LA DICHIARAZIONE PRTR Dlgs 46/2014 (rcpimnto IED), con l art. 30 introduc pr la prima volta l sanzioni

Dettagli

De Rossi, profumo di primavera Sabato 23 Marzo 2013 10:49 - DANIELE GIANNINI

De Rossi, profumo di primavera Sabato 23 Marzo 2013 10:49 - DANIELE GIANNINI DANIELE GIANNINI Frsco com un fior sboccia nl primo giorno primavra Il gol Danil D Rossi al Brasil ha s gnato simbolicamnt la fin dll invrno Il risvglio dlla natura qullo dlla Nazional stava prdndo immritatamnt

Dettagli

Regolamento per il controllo della pubblicità

Regolamento per il controllo della pubblicità Rgolamnto pr il controllo dlla Rgolamnto pr il controllo dlla pu bbliciià. Introduzion: Qusto Rgolamnto vin applicato pr il controllo dlla pubbliciti su: Indumnti d quipaggiamnto di ginnasti, giudici diuignti;

Dettagli

Opuscolo sui sistemi. Totogoal

Opuscolo sui sistemi. Totogoal Opuscolo sui sistmi Totogoal Più info Conoscnz calcistich pr vincr Jackpot alti Informazioni dttagliat costantmnt aggiornat sul Totogoal, sui programmi Toto sui risultati rpribili su Tltxt, a partir dalla

Dettagli

Mercato globale delle materie prime: il caso Ferrero

Mercato globale delle materie prime: il caso Ferrero Mrcato global dll matri prim: il caso Frrro Mauro Fontana In un priodo di fort crisi, com qullo ch attualmnt stiamo vivndo, il vincolo dl potr di acquisto di consumatori assum un importanza fondamntal

Dettagli

Class action e danno antitrust: il caso traghetti

Class action e danno antitrust: il caso traghetti Argomnti Class action danno antitrust: il caso traghtti Giorgio Affrni L azion di class promossa da Altroconsumo contro l compagni di traghtti pr il sosptto cartllo sull rott pr la Sardgna offr l occasion

Dettagli

PROPORZIONI. Cosa possiamo dire di esse? Che la superficie della figura A sta alla superficie della figura B come 4 sta a 6.

PROPORZIONI. Cosa possiamo dire di esse? Che la superficie della figura A sta alla superficie della figura B come 4 sta a 6. Corso di laura: BIOLOGIA Tutor: Floris Marta PRECORSI DI MATEMATICA PROPORZIONI Ossrvar l sgunti figur: Cosa possiamo dir di ss? Ch la suprfici dlla figura A sta alla suprfici dlla figura B com sta a 6.

Dettagli

Il prezzo del petrolio e dei carburanti tra maggio e settembre 2008

Il prezzo del petrolio e dei carburanti tra maggio e settembre 2008 Consumatori in cifr Il przzo dl ptrolio di carburanti tra maggio sttmbr 2008 Marco Bulfon Introduzion 142 Nl corso dll ultimo anno i przzi intrnazionali di molt matri prim hanno subìto un comportamnto

Dettagli

( ) ESERCIZI PROPOSTI. y x. cos x y. x y. c cos. xlog. x y. ctg 2. sin 1. x + 1. ctgx. c sin = + ( ) 1 = + ( ) ( )

( ) ESERCIZI PROPOSTI. y x. cos x y. x y. c cos. xlog. x y. ctg 2. sin 1. x + 1. ctgx. c sin = + ( ) 1 = + ( ) ( ) ESERCIZI PROPOSTI I) Dtrminar l intgral gnral dll sgunti quazioni diffrnziali linari dl primo ordin (fr..): ) ' ) ' ) ) ' os ' 5) ' 6) 7) tg ' ' 8) ' ( + log ) 9) ' ) ) log sin os [ log ] ' + ' sin ( +

Dettagli

1 Scheda di Adesione scaricabile sul sito www.fondazionecariplo.it/scuola21. ione relativo a una ipotetica. consapevoli.

1 Scheda di Adesione scaricabile sul sito www.fondazionecariplo.it/scuola21. ione relativo a una ipotetica. consapevoli. VERSO LA COSTRUZIONE CONDIVISA DEL PIANO DIDATTICO DI SCUOLA 21 s. Istituto Tcnico Commrcial L'obittivo dl prsnt documnto è qullo di smplificar la compilazion dl Piano Didattico di Scuola 21 ch è riportato

Dettagli

APPUNTI DI MACROECONOMIA

APPUNTI DI MACROECONOMIA Brtocco G., Kalajzić A. Mourad Agha G. Univrsità dgli Studi dll Insubria Dipartimnto di Economia Anno accadmico 2014-2015 APPUNTI DI MACROECONOMIA (Sconda part pp. 175-296) Il modllo IS-LM pr una conomia

Dettagli

Quaderni del Dipartimento di Matematica Università degli Studi di Parma. Francesca Fiorenzi ALBERO BINARIO LIBERO. Novembre 1996 n.

Quaderni del Dipartimento di Matematica Università degli Studi di Parma. Francesca Fiorenzi ALBERO BINARIO LIBERO. Novembre 1996 n. Quadrni dl Dipartimnto di Matmatica Univrsità dgli Studi di Parma Francsca Fiornzi ALBERO BINARIO LIBERO Novmbr 1996 n. 153 1 2 Francsca Fiornzi ALBERO BINARIO LIBERO SOMMARIO Un albro binario libro è

Dettagli

Convegno CBI 2009 Le nuove frontiere dell Innovazione nel rapporto Pubblica Amministrazione Locale e Banche Tesoriere

Convegno CBI 2009 Le nuove frontiere dell Innovazione nel rapporto Pubblica Amministrazione Locale e Banche Tesoriere Convgno CBI 2009 L nuov frontir dll Innovazion nl rapporto Pubblica Amministrazion Local Banch Tsorir Clauo Mauro Dirttor Division Imprs Pubblich Privat P.A. principal motor dll innovazion La Pubblica

Dettagli

INTECNA scarl SUITE B1 - INTECNA. La Suite: B1-INTECNA rappresenta la sintesi di tale sforzo.

INTECNA scarl SUITE B1 - INTECNA. La Suite: B1-INTECNA rappresenta la sintesi di tale sforzo. SUITE B1 - INTECNA B1- INTECNA INTECNA, nl corso dlla sua sprinza con SAP Businss On (dal 2003), ha ralizzato numrosi miglioramnti a compltamnto dl prodotto standard, allo scopo di ottnr un modllo di rifrimnto

Dettagli

Accordo quadro-operativo. tra. ICE - Agenzia per la promozione all estero e l internazionalizzazione delle imprese italiane

Accordo quadro-operativo. tra. ICE - Agenzia per la promozione all estero e l internazionalizzazione delle imprese italiane Accordo quadro-oprativo ICE - Agnzia pr la promozion all stro l intrnazionalizzazion dll imprs italian RtImprsa, Agnzia Confdral pr l Rti di Imprsa L ICE - Agnzia pr la promozion all stro intrnazionalizzazion

Dettagli

Big Switch: un nuovo gruppo d acquisto nel mercato elettrico britannico

Big Switch: un nuovo gruppo d acquisto nel mercato elettrico britannico Argomnti Big Switch: un nuovo gruppo d acquisto nl mrcato lttrico britannico Pt Moory Il Big Switch ralizzato da Which? - organizzazion di consumatori ingls - è la dimostrazion ch un gruppo d acquisto

Dettagli

Sicurezza informativa: verso l integrazione dei sistemi di gestione per la sicurezza

Sicurezza informativa: verso l integrazione dei sistemi di gestione per la sicurezza Sicurzza informativa: vrso l intgrazion di sistmi di gstion pr la sicurzza Convgno ABI Banch Sicurzza 2006 Roma, 7 Giugno 2006 Raoul Savastano, Rsponsabil Srvizi Sicurzza KPMG Irm Advisory Agnda Il problma

Dettagli

Innanzitutto, dalla descrizione data nel testo dell esercizio possiamo scrivere:

Innanzitutto, dalla descrizione data nel testo dell esercizio possiamo scrivere: Corso di conomia Poliica II (HZ) /0/202 Soluzion srcizio Innanziuo, dalla dscrizion daa nl so dll srcizio possiamo scrivr: i * 0,06, 5. a) Sappiamo ch il asso di apprzzamno/dprzzamno dlla mona nazional

Dettagli

13 - LA PROGRAMMAZIONE DELL'ALLENAMENTO

13 - LA PROGRAMMAZIONE DELL'ALLENAMENTO 132 13 - LA PROGRAMMAZIONE DELL'ALLENAMENTO La prparazion complta dl calciator si ralizza sottoponndo il suo organismo, la sua prsonalità la sua potnzialità motoria, ad una gran quantità di stimoli ch

Dettagli

Marketing e Finanza. Strategie, marketing e innovazione finanziaria

Marketing e Finanza. Strategie, marketing e innovazione finanziaria Markting Multicanalità Stratgi, markting innovazion finanziaria Innovar attravrso la multicanalità: una sfida pr comptr nl mondo dl Privat Banking 4 Andra Ragaini, Banca Csar Ponti Giancarlo Cairoli, Banca

Dettagli

AZIONI SISMICHE TRAMITE SPETTRO DI RISPOSTA- LA NUOVA NORMA 2007

AZIONI SISMICHE TRAMITE SPETTRO DI RISPOSTA- LA NUOVA NORMA 2007 ispns orso ostr Zon ismica 2 mod _Prof amillo Nuti_ AA 2006 2007 AZIONI IMIHE RAMIE PERO I RIPOA- LA NUOVA NORMA 2007 AZIONI IMIHE L azioni sismich di protto con l quali valutar il risptto di divrsi stati

Dettagli

Franco Ferraris Marco Parvis Generalità sulle Misure di Grandezze Fisiche. Testi consigliati

Franco Ferraris Marco Parvis Generalità sulle Misure di Grandezze Fisiche. Testi consigliati Gnralità sull Misur di Grandzz Fisich - Misurazioni dirtt 1 Tsti consigliati Norma UNI 4546 - Misur Misurazioni; trmini dfinizioni fondamntali - Milano - 1984 Norma UNI-I 9 - Guida all sprssion dll incrtzza

Dettagli

PIANO DI MIGLIORAMENTO PROMUOVERE COMPETENZE PER UNA SCUOLA DI QUALITA. Anno scolastico 2015/2016. Allegato al Piano dell Offerta Formativa

PIANO DI MIGLIORAMENTO PROMUOVERE COMPETENZE PER UNA SCUOLA DI QUALITA. Anno scolastico 2015/2016. Allegato al Piano dell Offerta Formativa PIANO DI MIGLIORAMENTO PROMUOVERE COMPETENZE PER UNA SCUOLA DI QUALITA Anno scolastico 2015/ Allgato al Piano dll Offrta Formativa Dlibra dl Consiglio di Istituto n.4 dl 14/10/2015 PRIMA SEZIONE ANAGRAFICA

Dettagli

Monitoraggio permanente delle reti

Monitoraggio permanente delle reti n di mpon o c a r po: di misu s di cam u n b a m Stru nnt r r uura p oraggio prma ork infrastr it tw i mon shoong, N s o n g ia l ion d, troub war, Cond r ll d So mnt Manag g. rin Monito Monitoraggio prmannt

Dettagli

1. Cos è l IT Governance. 2. I criteri con cui sviluppare un modello di IT Governance. 3. Il modello MEF-Consip

1. Cos è l IT Governance. 2. I criteri con cui sviluppare un modello di IT Governance. 3. Il modello MEF-Consip IMPLEMENTARE IMPLEMENTARE UN UN MODELLO MODELLO DI DI IT IT GOVERNANCE GOVERNANCE SOSTENIBILE SOSTENIBILE PER PER LA LA PROPRIA PROPRIA ORGANIZZAZIONE ORGANIZZAZIONE Giorgio Pagano 1 1. Cos è l IT Govrnanc

Dettagli

Istogrammi ad intervalli

Istogrammi ad intervalli Istogrammi ad intrvalli Abbiamo visto com costruir un istogramma pr rapprsntar un insim di misur dlla stssa granda isica. S la snsibilità dllo strumnto di misura è alta, è probabil ch tra gli N valori

Dettagli

ANALISI STRUTTURALE sistema STRUTTURA STRUTTURA. I modelli meccanici possono suddividersi in: MODELLI CONTINUI. STRUTTURA = modello meccanico

ANALISI STRUTTURALE sistema STRUTTURA STRUTTURA. I modelli meccanici possono suddividersi in: MODELLI CONTINUI. STRUTTURA = modello meccanico AZIONI ANALISI STRUTTURALE sistma STRUTTURA STATO I modlli mccanici possono suddividrsi in: MODELLI CONTINUI Forz Coazioni STRUTTURA = modllo mccanico IDEALIZZAZIONE DELLA STRUTTURA Posizion Vlocità Acclrazion

Dettagli

L Osservatorio ABI Costing Benchmark : i risultati del Rapporto ABI 2004 e le analisi di posizionamento

L Osservatorio ABI Costing Benchmark : i risultati del Rapporto ABI 2004 e le analisi di posizionamento L Ossrvatorio ABI Costg Bnchmark : i risultati dl Rapporto ABI 2004 l anisi posizionamnto Albrto Bstrri Roma, 11 novmbr 2004 Aumnta l fficacia l dll politich contnimnto di Vi Vi sono sono 9 9 classi classi

Dettagli

w(r)=w max (1-r 2 /R 2 ) completamente sviluppato in un tubo circolare è dato da wmax R w max = = max

w(r)=w max (1-r 2 /R 2 ) completamente sviluppato in un tubo circolare è dato da wmax R w max = = max 16-1 Copyright 009 Th McGraw-Hill Companis srl RISOLUZIONI CAP. 16 16.1 Nl flusso laminar compltamnt sviluppato all intrno di un tubo circolar vin misurata la vlocità a r R/. Si dv dtrminar la vlocità

Dettagli

Grazie per aver scelto un telecomando Meliconi.

Grazie per aver scelto un telecomando Meliconi. IT I Grazi pr avr sclto un tlcomando Mliconi. Consrvar il prsnt librtto pr futur consultazioni. Il tlcomando Facil 1 è stato studiato pr comandar un tlvisor. Grazi alla sua ampia banca dati è in grado

Dettagli

x 1 = t + 2s x 2 = s x 4 = 0

x 1 = t + 2s x 2 = s x 4 = 0 Sapinza Univrsità di Roma Corso di laura in Inggnria Enrgtica Gomtria - A.A. 2015-2016 prof. Cigliola Foglio n.10 Somma intrszion di sottospazi vttoriali Esrcizio 1. Sono dati i vttori v 1 = ( 1, 0, 0),

Dettagli

TAVOLA DEI DEI NUCLIDI. Numero di protoni Z. Numero di neutroni N.

TAVOLA DEI DEI NUCLIDI. Numero di protoni Z. Numero di neutroni N. TVOL DEI DEI UCLIDI umro di protoni Z www.nndc.bnl.gov umro di nutroni TVOL DEI DEI UCLIDI www.nndc.bnl.gov TVOL DEI DEI UCLIDI Con il trmin nuclid si indicano tutti gli isotopi conosciuti di lmnti chimici

Dettagli

Scopi e principali caratteristiche del mercato Valutazione delle azioni Regolamentazione

Scopi e principali caratteristiche del mercato Valutazione delle azioni Regolamentazione MERCATO AZIONARIO A.A. 2015/2016 Prof. Albrto Drassi adrassi@units.it DEAMS Univrsità di Trist ARGOMENTI Scopi principali carattristich dl mrcato Valutazion dll azioni Rgolamntazion 2 1 Rapprsntano l intrss

Dettagli

SERVIZIO LUCE 3 - Criteri di sostenibilità

SERVIZIO LUCE 3 - Criteri di sostenibilità SERVIZIO LUCE 3 - Critri sostnibilità 1. Oggtto dll iniziativa La Convnzion ha com oggtto l attività acquisto dll nrgia lttrica, srcizio manutnzion dgli impianti illuminazion pubblica, nonché gli intrvnti

Dettagli

REGRESSIONE LOGISTICA

REGRESSIONE LOGISTICA 0//04 METODI E TECNICHE DELLA RICERCA IN PSICOLOGIA CLINICA E LABORATORIO AA 04/05 PROF. V.P. SENESE Sconda Univrsità di Napoli (SUN) Facoltà di Psicologia Dipartimnto di Psicologia METODI E TECNICHE DELLA

Dettagli

3 Corso di Formazione per Operatori Volontari per Centri di Primo Soccorso e Centri di Recupero Animali Selvatici Feriti o in difficoltà.

3 Corso di Formazione per Operatori Volontari per Centri di Primo Soccorso e Centri di Recupero Animali Selvatici Feriti o in difficoltà. Corpo di Polizia Provincial 3 Corso di Formazion pr Opratori Volontari pr Cntri di Primo Soccorso Cntri di Rcupro Animali Slvatici Friti o in difficoltà. (Opratori da impigar prsso il Cntro di Rcupro Animali

Dettagli