Trasformazione in clausole
|
|
- Nicolina Colucci
- 2 anni fa
- Visualizzazioni
Transcript
1 DEPARTMENT OF INFORMATION ENGINEERING UNIVERSITY OF PADOVACorso Principio di A.A. Intelligenza di Risoluzione Artificiale ing. Marco Falda atomi letterali) Una A1 A2 L An B1 L Bm clausola negati priva Le o èuna di non clausole quantificatori negati disgiunzione (cioèdi di 2 con Una e clausola rappresenta senza letterali la contraddizione si indica 4 Sistema generalizzazione Introduzione efficienza Logica di deduzione efficiente per la formule unificazione a di clausole risoluzione Horn) algoritmo SLD (su di Trasformazione in clausole X (p(y) Y Z ( p(y) ( Y ( p(y) ( Y ( Y q(x,z)) (q(x,z) (q(x,y) (q(x,y) ( q(x,y) p(y))) ( p(y) p(z))) p(y)))) p(y)))) p(z))) A B A B X A X X Y p(x,y) X p(x, g(x)) 3 {( p(y) q(x,g(x,y))), ( p(y) p(g(x,y)))} A 1
2 Sia partire T una da una trasformazione Proprietà T insoddisfacibile teoria del primo in clausole ordine a T. Sostituzione: Istanza: varianteunificazione σ= {X1/T1, LXn/Tn} 5 6 [E]σ T insoddisfacibile Unificabilità: [A1]σ= L= [An]σ Composizione: σ= σ1σ2 Caso 1.C1= 2.C2= Principio di Risoluzione i,j: Si deduce Ai= di clausole A1 L An B1 L Bm Bj C3= (C1\{Ai}) prive di variabili (C2\{Bj}) Una Esiste σse Unificazione generale sostituzione λ: una σ= di sostituzione tutte ϑèpiùgenerale (MGU) che ed èunica èla piùdi a ϑλ 7 meno di ridenominazioni 8 2
3 Teorema di unificazione S1(A1) C1{X1/C2} C1=C2 NO se{x2/s1(a1)} {X2/C1} {X1/X2} ses1=s2 {X1/S2(A2)} e{a1/a2} NO* La dimostrazione Dimostrazione contraddizione HC ( F)C avviene H per refutazione: per 9 Ci+1= termina Ci {risolventi di Ci} finché o 12 Unificazione generali per clausole Si Caso 1.C1= 2.C2= i,j,ϑ: deduce di [Ai]ϑ= clausole B1 L Bm A1 L An C3= Di= [(C1\{Ai}) con p(t1, variabili L, tk) Sotto Correttezza e completezza [ Bj]ϑ (C2\{Bj})]ϑ corretta: {HC opportune ipotesi ( F)C} la risoluzione insoddisf. è completa: {HC ( F)C} insoddisf. 3
4 1.Semplificazioni 2.Strategie sussunteb e strategie incompletezza) (possono = [A]σ, (tautologie, introdurre...) formule La Programmazione Logica DEPARTMENT OF INFORMATION ENGINEERING UNIVERSITY OF PADOVA Confronta Strategia linear-input Èincompleta con originale una clausola per sempre nel le clausole caso presa l ultimo generale, dall insieme di risolvente Horn Clausole positivoclausole di Horn A1 A2 L An B1 L Bm con al piùun (B1 L Bm) letterale A1, A2, L, An B1, L, Bm 16 4
5 Clausole di Horn Clausola Tipi goal: definita: di clausole A B1, solo un letterali L, ( ) L, letterale Bm Bmnegativi positivogoal sum(0,x,x) sum(s(x),y,s(z)) fatto [sum(s(0),0,w)]ϑ= Esempio di risoluzione regola Intelligenza Artificiale, testa {X1/0,Y1/0,W/s(Z1)} sum(x,y,z) A.A ( M. Falda) corpo 17 [sum(s(x1),y1,s(z1))]ϑ sum(0, 0, Z1) 20 Interessa Interrogazioni: Opera quantificate Risoluzione SLD Y la sostituzione di risposta sum(s(0),s(s(0)),y), Z per assurdo esistenzialmente congiunzioni sum(y,s(0),z) con variabili Una dall insieme varianti Tipi di derivazione 1.successo derivazione Cie (Gn= dei delle ) goal SLD MGU Gi, èdata ϑi delle fallimento 3.fallimento infinito(gn ) 5
6 La Non Correttezza e completezza 1.regola 2.strategia completa risoluzione determinismo di calcolo di (per ricerca SLD (selezione clausole ècorretta degli delle di atomi) Horn) clausole) e sui un etichettato Alberi SLD nessun ramo nodi ramo i per goal con per ogni la (G0alla regola atomo e con radice) unificabile ϑ La cammini sostituzione e proiettando di risposta su G0 componendo i 24 Influenza Di goalnédalla Regola calcolo l insieme solito èstatica di solo successo profondità) l efficienza, (non dipende non dal sum(w,0,0), Esempio sum(w,0,k) di albero SLD sum(0,x,x) sum(s(x),y,s(z)) sum(x,y,z) sum(w,0,0), sum(w,0,k) sum(0,0,0) CL1, ϑ 1 = {W/0, K/0} CL1, ϑ2 = {} Successo 23 6
7 sum(s(w1),0,0), sum(w,0,0), Esempio sum(w,0,k) di sum(w1,0,k1) albero SLD Definisce Dipende dell albero Strategie di ricerca Fallimento finito lista dei nodi da la SLD come modalitàdi visitare viene visita gestita (DFS, BFS) la sum(s(w1),0,0) CL2, ϑ 3 = {W/s(W1),K/s(K1)} CL1, ϑ 4 = {W1/0,k1/0} sum(s(w1),0,0), sum(s(s(w2),0,k), Esempio di sum(w1,0,k1) sum(w2,0,k2) albero SLD CL2, ϑ 5 = {W1/s(W2),K1/s(K2)} CL2, ϑ 6 = {W2/s(W3),K2/s(K3)} Seleziona Usa backtrackingcronologico Caso del Prolog... all ordine la ricerca di le apparizione clausole profonditàcon base Fallimento infinito risoluzione non completa 7
8 Una può Interpretazione essere clausola p(t1, vista come L, del tipo tn) B1, una procedura procedurale L, Bm Per invocarla p(1, L, n) 30 Non Le Reversibilitàe di esistono distinzioni assegnamento liberano solo ingresso variabili sono e nel uscita backtracking sola scrittura parametri e si 29 8
Si basano sul seguente Teorema: S = A sse S { A} è insoddisfacibile.
Deduzione automatica La maggior parte dei metodi di deduzione automatica sono metodi di refutazione: anziché dimostrare direttamente che S A, si dimostra che S { A} è un insieme insoddisfacibile (cioè
Albero semantico. Albero che mette in corrispondenza ogni formula con tutte le sue possibili interpretazioni.
Albero semantico Albero che mette in corrispondenza ogni formula con tutte le sue possibili interpretazioni. A differenza dell albero sintattico (che analizza la formula da un punto di vista puramente
Risoluzione. Eric Miotto Corretto dal prof. Silvio Valentini 15 giugno 2005
Risoluzione Eric Miotto Corretto dal prof. Silvio Valentini 15 giugno 2005 1 Risoluzione Introdurremo ora un metodo per capire se un insieme di formule è soddisfacibile o meno. Lo vedremo prima per insiemi
Logica del primo ordine
Logica del primo ordine Sistema formale sviluppato in ambito matematico formalizzazione delle leggi del pensiero strette relazioni con studi filosofici In ambito Intelligenza Artificiale logica come linguaggio
FONDAMENTI DI INTELLIGENZA ARTIFICIALE (8 CFU)
FONDAMENTI DI INTELLIGENZA ARTIFICIALE (8 CFU) 13 Febbraio 2015 Tempo a disposizione: 2 h Risultato: 32/32 punti Esercizio 1 (punti 6) Si esprimano in logica dei predicati del I ordine le seguenti frasi:
(anno accademico 2008-09)
Calcolo relazionale Prof Alberto Belussi Prof. Alberto Belussi (anno accademico 2008-09) Calcolo relazionale E un linguaggio di interrogazione o e dichiarativo: at specifica le proprietà del risultato
LOGICA MATEMATICA E CONCETTUALIZZAZIONE
STEFANO FERILLI Monografia su LOGICA MATEMATICA E CONCETTUALIZZAZIONE Università degli Studi di Bari Facoltà di Scienze Matematiche, Fisiche e Naturali Corso di Laurea in Informatica Corso di Ingegneria
Rappresentazione della conoscenza. Lezione 11. Rappresentazione della Conoscenza Daniele Nardi, 2008Lezione 11 0
Rappresentazione della conoscenza Lezione 11 Rappresentazione della Conoscenza Daniele Nardi, 2008Lezione 11 0 Sommario Pianificazione Deduttiva nel calcolo delle situazioni (Reiter 3.3) Teoria del calcolo
Errori più comuni. nelle prove scritte
Errori più comuni nelle prove scritte Gli errori più frequenti, e reiterati da chi sostiene diverse prove, sono innanzi tutto meta-errori, cioè errori che non riguardano tanto l applicazione delle tecniche,
LOGICA DEI PREDICATI. Introduzione. Predicati e termini individuali. Termini individuali semplici e composti
Introduzione LOGICA DEI PREDICATI Corso di Intelligenza Artificiale A.A. 2009/2010 Prof. Ing. Fabio Roli La logica dei predicati, o logica del primo ordine (LPO) considera schemi proposizionali composti
Logica e risoluzione: esercizi
Logica e risoluzione: esercizi 1 CLAUSOLE Una clausola è una disgiunzione di letterali (cioè formule atomiche negate e non negate), in cui tutte le variabili sono quantificate universalmente in modo implicito.
x u v(p(x, fx) q(u, v)), e poi
0.1. Skolemizzazione. Ogni enunciato F (o insieme di enunciati Γ) è equisoddisfacibile ad un enunciato universale (o insieme di enunciati universali) in un linguaggio estensione del linguaggio di F (di
Logica dei predicati
IV Logica dei predicati 14. FORMULE PREDICATIVE E QUANTIFICATORI 14.1. Dalla segnatura alle formule predicative Il simbolo (x).ϕ(x) [per ogni x, ϕ(x) è vera] denota una proposizione definita, e non c è
Algebra di Boole ed Elementi di Logica
Algebra di Boole ed Elementi di Logica 53 Cenni all algebra di Boole L algebra di Boole (inventata da G. Boole, britannico, seconda metà 8), o algebra della logica, si basa su operazioni logiche Le operazioni
Programmazione Dichiarativa. Programmazione Logica. SICStus PROLOG PROLOG. http://www.sics.se/sicstus/ Bob Kowalski: "Algoritmo = Logica + Controllo"
Programmazione Logica Bob Kowalski: "Algoritmo = Logica + Controllo" nella programmazione tradizionale: il programmatore deve occuparsi di entrambi gli aspetti nella programmazione dichiarativa: il programmatore
Planning as Model Checking Presentazione della Tesina di Intelligenza Artificiale
Planning as Model Checking Presentazione della Tesina di Intelligenza Artificiale di Francesco Maria Milizia francescomilizia@libero.it Model Checking vuol dire cercare di stabilire se una formula è vera
3 CENNI DI TEORIA DELLA COMPLESSITA COMPUTAZIONALE. E. Amaldi Fondamenti di R.O. Politecnico di Milano 1
3 CENNI DI TEORIA DELLA COMPLESSITA COMPUTAZIONALE E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 Scopo: Stimare l onere computazionale per risolvere problemi di ottimizzazione e di altra natura
C1: L C1 C2: L C2 C: C1 C2
Abbiamo visto Gli agenti logici applicano inferenze a una base di conoscenza per derivare nuove informazioni. Concetti base della logica: sintassi: struttura formale delle sentenze semantica: verita` di
Universita' degli Studi di Udine UNA PROPOSTA PER L'INTRODUZIONE DI CAPACITA' DI META-RAPPRESENTAZIONE IN UN LINGUAGGIO DI PROGRAMMAZIONE LOGICA
Universita' degli Studi di Udine FACOLTA' DI SCIENZE MATEMATICHE FISICHE E NATURALI UNA PROPOSTA PER L'INTRODUZIONE DI CAPACITA' DI META-RAPPRESENTAZIONE IN UN LINGUAGGIO DI PROGRAMMAZIONE LOGICA Relatore:
Intelligenza Artificiale. Logica proposizionale: calcolo automatico
Intelligenza Artificiale Logica proposizionale: calcolo automatico Marco Piastra Logica formale (Parte 3) - Parte 3 Calcolo automatico Forme normali ed a clausole Risoluzione e refutazione Forward chaining
Intelligenza Artificiale. Metodi di ricerca
Intelligenza Artificiale Metodi di ricerca Marco Piastra Metodi di ricerca - 1 Ricerca nello spazio degli stati (disegno di J.C. Latombe) I nodi rappresentano uno stato Gli archi (orientati) una transizione
Linguaggi del I ordine - semantica. Per dare significato ad una formula del I ordine bisogna specificare
Linguaggi del I ordine - semantica Per dare significato ad una formula del I ordine bisogna specificare Un dominio Un interpretazione Un assegnamento 1 Linguaggi del I ordine - semantica (ctnd.1) Un modello
Ripasso di teoria ed esercizi in preparazione al secondo compito.??? Dicembre 2004
Ripasso di teoria ed esercizi in preparazione al secondo compito??? Dicembre 2004 Teoria: domande tipiche da compitino 1. Manipolazione delle strutture sintattiche: quali sono i predicati per la manipolazione
Il calcolo dei predicati per R.C. Agenti logici: la logica del prim ordine. Esempio: il mondo dei blocchi. Concettualizzazione
Il calcolo dei predicati per R.C. Agenti logici: la logica del prim ordine Sintassi, semantica, inferenza Maria Simi a.a. 2014-2015 Nella logica dei predicati abbiamo assunzioni ontologiche più ricche:
I Problemi e la loro Soluzione. Il Concetto Intuitivo di Calcolatore. Risoluzione di un Problema. Esempio
Il Concetto Intuitivo di Calcolatore Fondamenti di Informatica A Ingegneria Gestionale Università degli Studi di Brescia Docente: Prof. Alfonso Gerevini I Problemi e la loro Soluzione Problema: classe
Derivazioni SLD. Passo di derivazione SLD. Derivazione SLD. Notazione
Passo di derivazione SLD Derivazioni SLD Sia R una regola di selezione e P un insieme di clausole definite. Diciamo che G' deriva da G in P con un passo di derivazione SLD (G => G') se G = A,B,C dove B
Programmazione logica con vincoli
CAPITOLO 14 Programmazione logica con vincoli In questo capitolo studieremo una forma di programmazione dichiarativa affine al Prolog, la programmazione logica con vincoli (constraint logic programming,
UNIVERSITÀ DEGLI STUDI LA SAPIENZA CORSO DI STUDI IN INFORMATICA ESERCITAZIONI AL CORSO DI LOGICA MATEMATICA LOGICA PROPOSIZIONALE
UNIVERSITÀ DEGLI STUDI LA SAPIENZA CORSO DI STUDI IN INFORMATICA ESERCITAZIONI AL CORSO DI LOGICA MATEMATICA LOGICA PROPOSIZIONALE TAVOLE DI VERITÀ, COLETEZZA VERO-FUNZIONALE Esercizio 1. Calcola le tavole
LOGICA PER LA PROGRAMMAZIONE. Franco Turini turini@di.unipi.it
LOGICA PER LA PROGRAMMAZIONE Franco Turini turini@di.unipi.it IPSE DIXIT Si consideri la frase: in un dato campione di pazienti, chi ha fatto uso di droghe pesanti ha utilizzato anche droghe leggere. Quali
Predicati e Quantificatori
Predicati e Quantificatori Limitazioni della logica proposizionale! Logica proposizionale: il mondo è descritto attraverso proposizioni elementari e loro combinazioni logiche! I singoli oggetti cui si
Algebra e Logica Matematica. Calcolo delle proposizioni Logica del primo ordine
Università di Bergamo Anno accademico 2006 2007 Ingegneria Informatica Foglio Algebra e Logica Matematica Calcolo delle proposizioni Logica del primo ordine Esercizio.. Costruire le tavole di verità per
Intelligenza Artificiale Ing. Tiziano Papini
Intelligenza Artificiale Ing. Tiziano Papini Email: papinit@dii.unisi.it Web: http://www.dii.unisi.it/~papinit Constraint Satisfaction Introduzione Intelligenza Artificiale - CSP Tiziano Papini - 2011
Problemi computazionali
Problemi computazionali Intrattabilità e classi computazionali Decidibilità e Trattabilità Problemi decidibili possono richiedere tempi di risoluzione elevati: Torri di Hanoi Decidibilità e Trattabilità
Formalizzazione: (funz. parziale)
ESERCIZI DI FORMALIZZAZIONE: funzioni Funzioni Parziali Definizione: Siano A e B due insiemi, una funzione parziale F : A B è un insieme di coppie a,b (con a A e b B) in cui ogni elemento di A è in coppia
CAPITOLO 3 TRASFORMARE FORMULE E DEDURRE DA TEORIE.
pag. 1 Capitolo 3 CAPITOLO 3 TRASFORMARE FORMULE E DEDURRE DA TEORIE. 1. Sistemi di trasformazione. La nozione di relazione binaria che abbiamo già esaminato nel capitolo precedente è anche alla base della
Programmazione logica e PROLOG. Esercitazione 1. AI - Carlucci Aiello & Nardi, 2007 Esercitazione 1 0
Programmazione logica e PROLOG Esercitazione 1 AI - Carlucci Aiello & Nardi, 2007 Esercitazione 1 0 Sommario Programmazione logica Base delle conoscenze Interrogazioni Regole Ricorsive Esecuzione dei programmi
La programmazione con vincoli in breve. La programmazione con vincoli in breve
Obbiettivi Introdurre la nozione di equivalenza di CSP. Dare una introduzione intuitiva dei metodi generali per la programmazione con vincoli. Introdurre il framework di base per la programmazione con
FONDAMENTI*DI*INTELLIGENZA*ARTIFICIALE*
FONDAMENTI*DI*INTELLIGENZA*ARTIFICIALE* *1 *parte*(6*cfu)* 14*Settembre*2011* *Tempo*a*disposizione:*2*h* *Risultato:*3232*punti* Esercizio*1*(6*punti)* Inlogicadeipredicatidelprimoordine,valelaseguenteconseguenzalogica:,,,
Appunti di Logica Matematica
Appunti di Logica Matematica Francesco Bottacin 1 Logica Proposizionale Una proposizione è un affermazione che esprime un valore di verità, cioè una affermazione che è VERA oppure FALSA. Ad esempio: 5
Intelligenza Artificiale I
Intelligenza Artificiale I Esercitazione 3 Marco Piastra Esercitazione 3-1 Semantic Tableau, regole alfa e beta Un tableau è un insieme di fbf Le regole (alfa e beta trasformano un tableau in uno o due
Note del Corso di Modelli Biologici Discreti: Un paio di algoritmi DNA per risolvere SAT
Note del Corso di Modelli Biologici Discreti: Un paio di algoritmi DNA per risolvere SAT Giuditta Franco Corso di Laurea in Bioinformatica - AA 2012/2013 Uno dei più grossi risultati nell informatica degli
Esercitazioni per il corso di Logica Matematica
Esercitazioni per il corso di Logica Matematica Luca Motto Ros 02 marzo 2005 Nota importante. Queste pagine contengono appunti personali dell esercitatore e sono messe a disposizione nel caso possano risultare
CPM - PERT CPM - PERT. Rappresentazione di un progetto. Gestione di un progetto. Critical Path Method Project Evaluation and Review Technique
CPM - PERT CPM - PERT CPM e PERT sono metodologie per la gestione di progetti composti da più attività in cui esistano relazioni di precedenza. Critical Path Method Project Evaluation and Review Technique
Prolog: aritmetica e ricorsione
Capitolo 13 Prolog: aritmetica e ricorsione Slide: Aritmetica e ricorsione 13.1 Operatori aritmetici In logica non vi è alcun meccanismo per la valutazione di funzioni, che è fondamentale in un linguaggio
LA KB delle logiche descrittive. Che tipo di ragionamenti? Problemi decisionali per DL. Sussunzione. Soddisfacilità di concetti (CS)
Ragionamento nelle logiche descrittive M. Simi, 2014-2015 LA KB delle logiche descrittive K = (T, A) T (T-BOX), componente terminologica A (A-BOX), componente asserzionale Una interpretazione I soddisfa
FONDAMENTI DI INTELLIGENZA ARTIFICIALE M 15 Luglio 2010 Tempo a disposizione 2h 45min Risultato 32/32 punti
FONDAMENTI DI INTELLIGENZA ARTIFICIALE M Luglio 2010 Tempo a disposizione 2h 45min Risultato 32/32 punti Esercizio 1 (punti 4) Si formalizzino il logica dei predicati del I ordine le seguenti frasi: Ogni
Linguaggi di programmazione
Linguaggi di programmazione Programmazione L attività con cui si predispone l elaboratore ad eseguire un particolare insieme di azioni su particolari dati, allo scopo di risolvere un problema Dati Input
Informatica 3. Informatica 3. LEZIONE 10: Introduzione agli algoritmi e alle strutture dati. Lezione 10 - Modulo 1. Importanza delle strutture dati
Informatica 3 Informatica 3 LEZIONE 10: Introduzione agli algoritmi e alle strutture dati Modulo 1: Perchè studiare algoritmi e strutture dati Modulo 2: Definizioni di base Lezione 10 - Modulo 1 Perchè
Linguaggi. Claudio Sacerdoti Coen 11/04/2011. 18: Semantica della logica del prim ordine. Universitá di Bologna
Linguaggi 18: Semantica della logica del prim ordine Universitá di Bologna 11/04/2011 Outline Semantica della logica del prim ordine 1 Semantica della logica del prim ordine Semantica
anche i programmi sono strutture dati manipolabili utilizzo della ricorsione e non assegnamento
IL LINGUAGGIO PROLOG PROLOG: PROgramming in LOGic, nato nel 1973 E il più noto linguaggio di Programmazione Logica ALGORITMO = LOGICA + CONTROLLO Si fonda sulle idee di Programmazione Logica avanzate da
Logica proposizionale
Logica proposizionale Proposizione: frase compiuta che è sempre o vera o falsa. Connettivi Posti in ordine di precedenza: not, and, or, implica, doppia implicazione Sintassi Le proposizioni sono costituite
TABELLA OPERATORI ARITMETICI
ARITMETICA E RICORSIONE Non esiste, in logica, alcun meccanismo per la valutazione di funzioni, operazione fondamentale in un linguaggio di programmazione I numeri interi possono essere rappresentati come
FONDAMENTI DI INTELLIGENZA ARTIFICIALE 1 parte (6 CFU) 12 Luglio 2012 Tempo a disposizione: 2 h Risultato: 32/32 punti
FONDAMENTI DI INTELLIGENZA ARTIFICIALE 1 parte (6 CFU) 12 Luglio 2012 Tempo a disposizione: 2 h Risultato: 32/32 punti Esercizio 1 (7 punti) Si formalizzi in logica dei predicati del primo ordine la seguente
Varianti Macchine di Turing
Varianti Macchine di Turing Esistono definizioni alternative di macchina di Turing. Chiamate Varianti. Tra queste vedremo: MdT a più nastri e MdT non deterministiche. Mostriamo: tutte le varianti ragionevoli
Progettazione concettuale
Progettazione concettuale Strategie top-down A partire da uno schema che descrive le specifiche mediante pochi concetti molto astratti, si produce uno schema concettuale mediante raffinamenti successivi
UNIVERSITA DEGLI STUDI DI BARI FACOLTA DI SCIENZE MATEMATICHE FISICHE E NATURALI CORSO DI LAUREA IN INFORMATICA A.A. 2005/06 DELLA CONOSCENZA
UNIVERSITA DEGLI STUDI DI BARI FACOLTA DI SCIENZE MATEMATICHE FISICHE E NATURALI CORSO DI LAUREA IN INFORMATICA A.A. 2005/06 TESI DI LAUREA IN INGEGNERIA DELLA CONOSCENZA E SISTEMI ESPERTI THETA-SUSSUNZIONE
Linguaggi Elementari
Linguaggi Elementari Marzo 2007 In questi appunti verranno introdotte le conoscenze essenziali relative ai linguaggi del primo ordine e alla loro semantica. Verrà anche spiegato come preprocessare un problema
Componenti di un sistema KNOWLEDGE-BASED
Componenti di un sistema KNOWLEDGE-BASED DYNAMIC DATABASE PROBLEM FORMALIZATION CONTROL STRATEGY IL DATABASE DESCRIVE LA SITUAZIONE CORRENTE NELLA DETERMINAZIONE DELLA SOLUZIONE AL PROBLEMA. LA FORMALIZZAZIONE
In ricordo dei miei genitori
In ricordo dei miei genitori Daniele Mundici Logica: Metodo Breve B Daniele Mundici Dipartimento di Matematica U. Dini Università di Firenze UNITEXT La Matematica per il 3+2 ISSN print edition: 2038-5722
DISORGANIZZAZIONE DISLESSIA CONCENTRAZIONE DISGRAFIA DSA DISORTOGRAFIA LENTEZZA MEMORIA DISCALCULIA DISPRASSIA DISNOMIA.
DISORGANIZZAZIONE DISLESSIA CONCENTRAZIONE DISGRAFIA LENTEZZA DSA DISORTOGRAFIA MEMORIA DISCALCULIA DISPRASSIA DISNOMIA 2 DISLESSIA difficoltà Studio della teoria sul libro. Comprensione del testo di un
4.1 Modelli di calcolo analisi asintotica e ricorrenze
4 Esercizi Prima Parte 4.1 Modelli di calcolo analisi asintotica e ricorrenze Esercizio 4 1 Rispondere alle seguenti domande: 1. Come misuriamo l efficienza di un algoritmo?. Quali sono gli algoritmi più
Algebra e Geometria. Ingegneria Meccanica e dei Materiali Sez (2) Ingegneria dell Automazione Industriale Sez (2)
Algebra e Geometria Ingegneria Meccanica e dei Materiali Sez (2) Ingegneria dell Automazione Industriale Sez (2) Traccia delle lezioni che saranno svolte nell anno accademico 2012/13 I seguenti appunti
Calcolo Relazionale Basi di dati e sistemi informativi 1. Calcolo Relazionale. Angelo Montanari
Calcolo Relazionale Basi di dati e sistemi informativi 1 Calcolo Relazionale Angelo Montanari Dipartimento di Matematica e Informatica Università di Udine Calcolo Relazionale Basi di dati e sistemi informativi
b) Costruire direttamente le relazioni e poi correggere quelle che presentano anomalie
TEORIA RELAZIONALE: INTRODUZIONE 1 Tre metodi per produrre uno schema relazionale: a) Partire da un buon schema a oggetti e tradurlo b) Costruire direttamente le relazioni e poi correggere quelle che presentano
Fondamenti di Intelligenza Artificiale M. Altri possibili esercizi
Fondamenti di Intelligenza Artificiale M Altri possibili esercizi 1 Esempi di possibili esercizi Description Logic e SW e domande sui seminari in generale Introdurre brevemente la differenza tra Open World
Ricorsione in SQL-99. Introduzione. Idea di base
Ricorsione in SQL-99 Introduzione In SQL2 non è possibile definire interrogazioni che facciano uso della ricorsione Esempio Voli(lineaAerea, da, a, parte, arriva) non è possibile esprimere l interrogazione
Informatica 3. LEZIONE 23: Indicizzazione. Modulo 1: Indicizzazione lineare, ISAM e ad albero Modulo 2: 2-3 trees, B-trees e B + -trees
Informatica 3 LEZIONE 23: Indicizzazione Modulo 1: Indicizzazione lineare, ISAM e ad albero Modulo 2: 2-3 trees, B-trees e B + -trees Informatica 3 Lezione 23 - Modulo 1 Indicizzazione lineare, ISAM e
Logica del primo ordine
Università di Bergamo Facoltà di Ingegneria Intelligenza Artificiale Paolo Salvaneschi A7_4 V1.3 Logica del primo ordine Il contenuto del documento è liberamente utilizzabile dagli studenti, per studio
Introduzione al MATLAB c Parte 2
Introduzione al MATLAB c Parte 2 Lucia Gastaldi Dipartimento di Matematica, http://dm.ing.unibs.it/gastaldi/ 18 gennaio 2008 Outline 1 M-file di tipo Script e Function Script Function 2 Costrutti di programmazione
Progettaz. e sviluppo Data Base
Progettaz. e sviluppo Data Base! Progettazione Basi Dati: Metodologie e modelli!modello Entita -Relazione Progettazione Base Dati Introduzione alla Progettazione: Il ciclo di vita di un Sist. Informativo
Algoritmi e strutture dati. Codici di Huffman
Algoritmi e strutture dati Codici di Huffman Memorizzazione dei dati Quando un file viene memorizzato, esso va memorizzato in qualche formato binario Modo più semplice: memorizzare il codice ASCII per
In Prolog predicati (programmi) e termini (dati) hanno la stessa struttura e possono essere utilizzati in modo interscambiabile
META-PREDICATI In Prolog predicati (programmi) e termini (dati) hanno la stessa struttura e possono essere utilizzati in modo interscambiabile sum(0,x,x). sum(s(x),y,s(z)):- sum(x,y,z). Operatore (non
PROGRAMMAZIONE di MATEMATICA CLASSE PRIMA
PROGRAMMAZIONE di MATEMATICA 1.NUMERI CLASSE PRIMA Comprende il significato Comprendere il significato Insiemi numerici NQZ Utilizzare le tecniche e le procedure del calcolo aritmetico e algebrico rappresentandole
COGNOME... NOME... Classe... Data... 1.a Calcolare le seguenti espressioni: 3. 220 245
Capitolo I radicali Risoluzione algebrica erifica per la classe seconda Espressioni numeriche Equazioni lineari Esistenza Operazioni Espressioni letterali.a Calcolare le seguenti espressioni:. 5. 8 3.
Appunti del corso di Informatica 1 (IN1 Fondamenti) 2 Introduzione alla programmazione
Università Roma Tre Facoltà di Scienze M.F.N. Corso di Laurea in Matematica Appunti del corso di Informatica 1 (IN1 Fondamenti) 2 Introduzione alla programmazione Marco Liverani (liverani@mat.uniroma3.it)
Introduzione ai problemi NP-completi
Corso di Algoritmi e Strutture Dati Introduzione ai problemi NP-completi Nuova versione del capitolo 13 delle dispense (basata sui modelli non deterministici) Anno accademico 2007/2008 Corso di laurea
Introduzione alla Programmazione Logica ed al linguaggio PROLOG
Introduzione alla Programmazione Logica ed al linguaggio PROLOG Esercitazioni per il corso di Logica ed Intelligenza Artificiale a.a. 2014/15 Paolo Tomeo http://sisinflab.poliba.it/tomeo Programmazione
La Progettazione Concettuale
La Progettazione Concettuale Università degli Studi del Sannio Facoltà di Ingegneria Corso di Laurea in Ingegneria Informatica CorsodiBasidiDati Anno Accademico 2006/2007 docente: ing. Corrado Aaron Visaggio
MATEMATICA DEL DISCRETO elementi di teoria dei grafi. anno acc. 2009/2010
elementi di teoria dei grafi anno acc. 2009/2010 Grafi semplici Un grafo semplice G è una coppia ordinata (V(G), L(G)), ove V(G) è un insieme finito e non vuoto di elementi detti vertici o nodi di G, mentre
Esercizi per il corso di Algoritmi e Strutture Dati
1 Esercizi per il corso di Algoritmi e Strutture Dati Esercizi sulla Tecnica Divide et Impera N.B. Tutti gli algoritmi vanno scritti in pseudocodice (non in Java, né in C++, etc. ). Di tutti gli algoritmi
Sono casi particolari di MCF : SPT (cammini minimi) non vi sono vincoli di capacità superiore (solo x ij > 0) (i, j) A : c ij, costo di percorrenza
Il problema di flusso di costo minimo (MCF) Dati : grafo orientato G = ( N, A ) i N, deficit del nodo i : b i (i, j) A u ij, capacità superiore (max quantità di flusso che può transitare) c ij, costo di
Prerequisiti Matematici
Prerequisiti Matematici Richiami di teoria degli insiemi Relazioni d ordine, d equivalenza Richiami di logica Logica proposizionale, tabelle di verità, calcolo dei predicati Importante: Principio di Induzione
Analisi dei requisiti e casi d uso
Analisi dei requisiti e casi d uso Indice 1 Introduzione 2 1.1 Terminologia........................... 2 2 Modello del sistema 4 2.1 Requisiti hardware........................ 4 2.2 Requisiti software.........................
L algebra di Boole. Cenni Corso di Reti Logiche B. Mariagiovanna Sami
L algebra di Boole Cenni Corso di Reti Logiche B Mariagiovanna Sami Algebra Booleana: sistema algebrico Operazione: Operazione α sull'insieme S={s1,s2,...} = funzione che da SxS (prodotto cartesiano S
Data mining: classificazione DataBase and Data Mining Group of Politecnico di Torino
DataBase and Data Mining Group of Database and data mining group, Database and data mining group, DataBase and Data Mining Group of DataBase and Data Mining Group of So dati insieme di classi oggetti etichettati
Algoritmi e Strutture Dati
Alberi Binari di Ricerca (BST) Maria Rita Di Berardini, Emanuela Merelli 1 1 Dipartimento di Matematica e Informatica Università di Camerino A.A. 2006/07 Alberi Binari di Ricerca (Binary Search Trees BST)
b i 1,1,1 1,1,1 0,1,2 0,3,4
V o Appello // RICERCA OPERATIVA - Corso A (a.a. 9/) Nome Cognome: Corso di Laurea: L C6 LS LM Matricola: ) Si consideri il problema di flusso di costo minimo in figura. Si verifichi se il flusso ammissibile
SCUOLA SECONDARIA DI I GRADO
Operare in situazioni reali e/o disciplinari con tecniche e procedure di calcolo L alunno si muove con sicurezza nel calcolo anche con i numeri razionali, ne padroneggia le diverse e stima la grandezza
FONDAMENTI DI INTELLIGENZA ARTIFICIALE (8 CFU)
FONDAMENTI DI INTELLIGENZA ARTIFICIALE (8 CFU) 12 Giugno 2014 Tempo a disposizione: 2 h Risultato: 32/32 punti Esercizio 1 (6 punti) Si esprimano in logica dei predicati del I ordine le seguenti frasi:
Basi di dati. Una visione d insieme. Classificazione. Linguaggi di interrogazione. Algebra relazionale. selezione σ
a linguaggi formali Classificazione Basi di dati Linguaggi di interrogazione Docente: tefano Paraboschi parabosc@elet.polimi.it Algebra relazionale Calcolo relazionale Programmazione logica b linguaggi
Esame di Ricerca Operativa del 20/12/13. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:
Esame di Ricerca Operativa del 0// (Cognome) (Nome) (Corso di laurea) Esercizio. Completare la seguente tabella considerando il problema di programmazione lineare: max x x x + x x +x x x x x x x 0 x x
Ricerca non informata in uno spazio di stati
Università di Bergamo Facoltà di Ingegneria Intelligenza Artificiale Paolo Salvaneschi A5_2 V2.4 Ricerca non informata in uno spazio di stati Il contenuto del documento è liberamente utilizzabile dagli
Sintesi di reti combinatorie. Sommario. Motivazioni. Sommario. Funzioni Espressioni. M. Favalli
Sommario Sintesi di reti combinatorie Funzioni Espressioni 1 Teorema di espansione di Shannon (Boole) M. Favalli Engineering Department in Ferrara 2 Forme canoniche 3 Metriche per il costo di una rete
Problemi di soddisfacimento di vincoli. Formulazione di problemi CSP. Colorazione di una mappa. Altri problemi
Problemi di soddisfacimento di vincoli Maria Simi a.a. 2014/2015 Problemi di soddisfacimento di vincoli (CSP) Sono problemi con una struttura particolare, per cui conviene pensare ad algoritmi specializzati
Il Metodo Branch and Bound
Il Laura Galli Dipartimento di Informatica Largo B. Pontecorvo 3, 56127 Pisa laura.galli@unipi.it http://www.di.unipi.it/~galli 4 Novembre 2014 Ricerca Operativa 2 Laurea Magistrale in Ingegneria Gestionale
Elementi di Informatica e Programmazione
Elementi di Informatica e Programmazione Il concetto di Algoritmo e di Calcolatore Corsi di Laurea in: Ingegneria Civile Ingegneria per l Ambiente e il Territorio Università degli Studi di Brescia Cos
Tipologie di macchine di Turing
Tipologie di macchine di Turing - Macchina di Turing standard - Macchina di Turing con un nastro illimitato in una sola direzione - Macchina di Turing multinastro - Macchina di Turing non deterministica
Ottimizzazione in ECLiPSe
OTTIMIZZAZIONE In molte applicazioni non siamo interessati a soluzioni ammissibili, ili, ma alla soluzione ottima rispetto a un certo criterio. ENUMERAZIONE trova tutte le soluzioni ammissibili scegli
STRUTTURE NON LINEARI
PR1 Lezione 13: STRUTTURE NON LINEARI Michele Nappi mnappi@unisa.it www.dmi.unisa.it/people/nappi Per la realizzazione della presentazione è stato utilizzato in parte materiale didattico prodotto da Oronzo
ALGEBRA RELAZIONALE RIEPILOGO
ALGEBRA RELAZIONALE RIEPILOGO PROIEZIONE: (notazione ) Operatore unario per estrarre colonne da una relazione: lista_attributi (R) Lo schema del risultato contiene i soli attributi contenuti in lista_attributi.