Ottimizzazione Multi Obiettivo

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Ottimizzazione Multi Obiettivo"

Transcript

1 Ottimizzazione Multi Obiettivo 1 Ottimizzazione Multi Obiettivo I problemi affrontati fino ad ora erano caratterizzati da una unica (e ben definita) funzione obiettivo. I problemi di ottimizzazione reali possono, invece, presentare vari obiettivi. Esempi: Trasporto merci e/o persone: Costo totale Tempo totale Bilanciamento del carico di lavoro... Scheduling: Costo totale Makespan (istante di fine operazioni) Tardiness (ritardi nelle consegne)... Portfolio: Profitto Rischio Diversificazione... Telecomunicazioni, bio-informatica, ambiente,...

2 Ottimizzazione Multi Obiettivo 2 Ottimizzazione Multi Obiettivo (2) I metodi utilizzati fino ad ora trovano una soluzione che minimizza (o massimizza) una data funzione obiettivo. Per risolvere i problemi multiobiettivo bisogna sviluppare nuovi metodi ad hoc. Questi metodi si basano generalmente sui metodi mono-obiettivo, o su loro varianti, eventualmente iterate più volte. Spesso, invece di fornire un unica soluzione, devono fornirne molte. Questo può complicare notevolmente la difficoltà dei problemi: Problema Mono-Obiettivo Multi-Obiettivo Cammino minimo Facile Difficile Assegnamento lineare Facile Difficile Nel seguito considereremo un generico problema Mono-Obiettivo: min (z 1 ) = (c T 1 x) Ax = b x 0... e un generico problema Multi-Obiettivo: min (z 1, z 2,..., z p ) = (c T 1 x, c T 2 x,..., c T p x) Ax = b x 0 In generale, indichiamo con p il numero di obiettivi.

3 Ottimizzazione Multi Obiettivo 3 Esempio (1) Un azienda produce tre prodotti P i, i = 1, 2, 3. Nella tabella sono riportati per ogni unità di prodotto il profitto unitario, le ore di lavoro necessarie, la quantità di materia prima utilizzata e il livello di inquinamento generato. profitto unitario ore lavoro materia prima inquinamento P P P L azienda ha a disposizione operai per 1300 ore di lavoro e 1000 unità di materia prima. L azienda ha due obiettivi: massimizzazione del profitto; minimizzazione del livello di inquinamento. (p = 2: problema Bi-Obiettivo)

4 Ottimizzazione Multi Obiettivo 4 Esempio (2) Per formulare il problema introduciamo le varibili x i, i = 1, 2, 3: x i rappresenta le unità di P i prodotte. Modello matematico: min (z 1, z 2 ) = ( 10x 1 9x 2 8x 3, 10x 1 + 6x 2 + 3x 3 ) 4x 1 + 3x 2 + 2x x 1 + 2x 2 + 2x x 1, x 2, x 3 {0, 1} Soluzione ottenuta massimizzando singolarmente il profitto ( z 1 ): z 1 = 4300 z 2 = 2400 x 1 = 0, x 2 = 300, x 3 = 200 Soluzione ottenuta minimizzando singolarmente l inquinamento (z 2 ): z 1 = 0 z 2 = 0 x 1 = 0, x 2 = 0, x 3 = 0 Come spesso accade nei problemi multi-obiettivo, le due soluzioni sono in netto contrasto tra loro.

5 Ottimizzazione Multi Obiettivo 5 Dominanza e Frontiera di Pareto Definizione di dominanza: In un problema di minimo, una soluzione y domina una soluzione w se: 1. c T i y ct i w i = 1,..., p 2. k {1,..., p} : c T k y < ct k w In un problema di massimo, una soluzione y domina una soluzione w se: 1. c T i y ct i w i = 1,..., p 2. k {1,..., p} : c T k y > ct k w Definizione di ottimo di Pareto: Una soluzione y è un ottimo di Pareto (punto non dominato) se non esiste nessuna soluzione w che domina y. ottimo di Pareto soluzione dominata z 2 z 2 minimo z 1 massimo z 1 Definizione di Frontiera di Pareto: La Frontiera di Pareto è l insieme degli ottimi di Pareto.

6 Ottimizzazione Multi Obiettivo 6 Metodi Risolutivi Tipicamente, l obiettivo è individuare uno specifico ottimo di Pareto. Questo può tuttavia richiedere di generare tutta la frontiera (ammesso che ci si riesca) o un suo sottoinsieme. In ogni caso, si assume l esistenza di un decisore in grado di selezionare o caratterizzare la soluzione considerata migliore. In base al ruolo svolto dal decisore nella strategia di soluzione del problema, i metodi risolutivi possono essere suddivisi in quattro grandi categorie. Metodi senza preferenze, nei quali il decisore non ha nessun ruolo e si considera soddisfacente l aver trovato un qualunque ottimo di Pareto. Metodi a posteriori, nei quali si genera l insieme di tutti gli ottimi di Pareto e poi lo si presenta al decisore che sceglie la soluzione per lui migliore. Metodi a priori, nei quali il decisore specifica le sue preferenze prima che abbia inizio il processo risolutivo. In base alle informazioni avute dal decisore viene direttamente trovata la soluzione migliore, senza dover (necessariamente) generare tutti gli ottimi di Pareto. Metodi interattivi, nei quali il decisore specifica le sue preferenze mano a mano che il processo risolutivo procede, guidando in tal modo il processo stesso verso la soluzione per lui più soddisfacente.

7 Ottimizzazione Multi Obiettivo 7 Si tratta di un metodo a priori. Goal Programming Per ognuna delle p funzioni obiettivo, il decisore definisce un valore target: T 1, T 2,..., T p. L obiettivo diventa la minimizzazione della distanza totale delle funzioni obiettivo dai loro valori target. Dato il problema: min (z 1, z 2,..., z p ) = (c T 1 x, c T 2 x,..., c T p x) Ax = b x 0 definiamo l eventuale scarto in eccesso dal target T i come: d + i = max{c T i x T i, 0} i = 1,..., p e l eventuale scarto in difetto dal target T i come: d i = max{t i c T i x, 0} i = 1,..., p e formuliamo la distanza dal target come: c T i x d + i + d i = T i i = 1,..., p Il problema (mono-obiettivo) risultante è: min p i=1 d+ i + d i c T i x d+ i + d i = T i i = 1,..., p Ax = b d +, d, x 0

8 Ottimizzazione Multi Obiettivo 8 Goal Programming Es. Assegnamento Lineare Bi-Obiettivo Si consideri il seguente problema di assegnamento lineare. Sono dati n lavoratori e n compiti. Ogni lavoratore deve svolgere un compito e ogni compito deve essere svolto da un lavoratore. Gli assegnamenti lavoratore/compito hanno un costo, riportato in seguito dalla matrice c. Notare che un costo 0 nella matrice implica che l assegnamento corrispondente non è possibile. Un obiettivo del problema è quello di minimizzare il costo totale. I lavoratori possono esprimere una certa avversione ai compiti che possono svolgere. In particolare, ogni lavoratore definisce un indice di avversione che va da 5 (avversione massima) a 1, per al massimo 5 compiti possibili. Tali valori sono dati nella sottostante tabella a. Un obiettivo del problema è anche quello di minimizzare l avversione totale dei lavoratori. Ottimizzando i due obiettivi separatamente, si ottiene: - costo minimo 54, con avversione totale 26; - avversione minima 15, con costo 96. Si vuole applicare il metodo Goal Programming, ponendo: 1. il target di costo T c = 70; 2. il target di avversione T a = 20.

9 Ottimizzazione Multi Obiettivo 9 Goal Programming Es. Ass. Lineare Bi-Obiettivo (2) Costi: Indici di avversione: c ij : a ij : I compiti corrispondono alle righe, i lavoratori alle colonne.

10 Ottimizzazione Multi Obiettivo 10 Goal Programming Es. Ass. Lineare Bi-Obiettivo (3) Formulazione matematica: min d + c + d c + d + a + d a n n c ij x ij d + c + d c T c = 0 i=0 n i=0 j=0 n a ij x ij d + a + d a T a = 0 j=0 8 x ij = 1 j = 1,..., 8 i=1 8 x ij = 1 i = 1,..., 8 j=1 x ij = 0 i, j = 1,..., 8 : c ij = 0 x ij {0, 1} i, j = 1,..., 8 Risolvendo otteniamo: Distanza totale dai target 3: d + c = 1, d a = 2, d c = d + a = 0 Costo totale 71 Avversione totale 18 Assegnamenti scelti: (1,6), (2,1), (3,2), (4,8), (5,7), (6,4), (7,5), (8,3).

11 Ottimizzazione Multi Obiettivo 11 Algoritmo ε constrained Si tratta di un metodo a posteriori. Si seleziona una funzione obiettivo k e la si ottimizza, mentre le altre funzioni (i = 1,..., p, i k) vengono trasformate in vincoli, limitando opportunamente i loro valori. In dettaglio, dato il problema di minimo: min (z 1, z 2,..., z p ) = (c T 1 x, c T 2 x,..., c T p x) (1) Ax = b (2) x 0 (3) Scelto k {1,..., p} definiamo per ogni altra funzioni obiettivo i k un upper bound ε i. Il problema (mono-obiettivo) risultante è: min c T k x (4) c T i x ε i i = 1,..., p, i k (5) Ax = b (6) x 0 (7) La soluzione ottima del modello (4) (7) non appartiene necessariamente alla frontiera di Pareto del modello (1) (3); tuttavia, risolvendo iterativamente con valori ε i opportunamente aggiornati, è possibile generare tutta la frontiera. il metodo risulta particolarmente semplice e intuitivo se p = 2, come vedremo nei prossimi esempi. Nota: nei problemi di massimo si usano lower bound (c T i x ε i)

12 Ottimizzazione Multi Obiettivo 12 Algoritmo ε constrained Esempio Knapsack Bi-Obiettivo (1) Consideriamo una applicazione del problema all ottimizzazione finanziaria. Sia dato un insieme di n possibili investimenti i, ognuno richiedente un esborso in denaro w i, e con un profitto p i e un indice di sicurezza o affidabilità (inversamente proporzionale al rischio) s i. Sia dato inoltre un limite massimo di budget W per l esborso iniziale. L obiettivo è quello di selezionare l insieme di investimenti il cui esborso totale non ecceda W e per cui siano massimi il profitto totale e la sicurezza totale. Si consideri il caso in cui n = 14, W = 100 e i dati sono quelli nella tabella sottostante. i w i p i s i Determiniamo la frontiera di Pareto con il seguente metodo ε-constrained: 1. Risolviamo un problema di knapsack massimizzando il profitto; siano P ed S il profitto e la sicurezza ottenuti; 2. massimizziamo nuovamente il profitto, ma imponendo come vincolo che la sicurezza totale sia maggiore o uguale a S + 1; 3. iteriamo aggiornando il vincolo sulla sicurezza con l ultimo valore S ottenuto, fino a quando il modello risulta non ammissibile.

13 Ottimizzazione Multi Obiettivo 13 Algoritmo ε constrained Esempio Knapsack Bi-Obiettivo (2) Iterazione 1: risolviamo il problema di zaino max p T x w T x 100 x j {0, 1} j = 1,..., 14 ottenendo profitto massimo P= 159 e sicurezza S = 40, con gli investimenti: 3,7,8,14. Iterazione 2: risolviamo il modello max p T x w T x 100 s T x LB S x j {0, 1} j = 1,..., 14 con LB S = S + 1 = 41, dove S è il valore di sicurezza ottenuto all iterazione precedente; in questo modo otteniamo i nuovi valori P = 154 e S = 105, con gli investimenti: 1,3,5,7,9,14. Iterazione 3: risolviamo il modello (8) con LB S = 106, ottenendo P= 154 e S = 122, con gli investimenti: 1,2,3,5,7,14. Notare che P è rimasto invariato! (8)

14 Ottimizzazione Multi Obiettivo 14 Algoritmo ε constrained Esempio Knapsack Bi-Obiettivo (3) Iterazione 4: risolviamo il modello (8) con LB S = 123, ottenendo P= 154 e S = 133, con gli investimenti: 1,2,3,4,7,14. Notare che P è rimasto di nuovo invariato! Iterazione 5: risolviamo il modello (8) con LB S = 134, ottenendo P= 145 e S = 143, con gli investimenti: 1,2,3,7,9,11. Iterazione 6: risolviamo il modello (8) con LB S = 144, ottenendo P= 137 e S = 150, con gli investimenti: 1,2,3,4,7,9. Iterazione 7: risolviamo il modello (8) con LB S = 151, ottenendo P=116 e S = 167, con gli investimenti: 1,2,3,4,5,9,11. Iterazione 8: risolviamo il modello (8) con LB S = 168, ottenendo P=69 e S = 170, con gli investimenti: 1,2,4,6,9,11. Iterazione 9: risolviamo il modello (8) con LB S = 171, e non otteniamo nessuna soluzione ammissibile. Il metodo termina.

15 Ottimizzazione Multi Obiettivo 15 Algoritmo ε constrained Esempio Knapsack Bi-Obiettivo (4) Le coppie (P, S) generate dall algoritmo sono: (159, 40), (154, 105), (154, 122), (154, 133), (145, 143), (137, 150), (116, 167), (69, 170) Il grafico dei punti corrispondenti a queste coppie è il seguente 180 Grafico dei risultati Come risulta evidente dal grafico, l insieme di coppie ottenuto non è la frontiera di Pareto, perché contiene le due soluzioni (154, 105) e (154, 122) dominate dalla soluzione (154, 133)

16 Ottimizzazione Multi Obiettivo 16 Algoritmo ε constrained Esempio Knapsack Bi-Obiettivo (5) Il grafico della frontiera di Pareto si ottiene eliminando le due soluzioni dominate; in sostanza, tra tutte le soluzioni con valore di profitto P = 154, si mantiene solo quella non dominata (154, 133) 180 Frontiera di Pareto Sicurezza S Profitto P Osservazione: l eventualità di generare soluzioni dominate dipende non solo dal modello che si sta risolvendo, ma anche dal solutore impiegato. Nel nostro esempio, un diverso solutore avrebbe potuto generare la soluzione non dominata (154, 133) già all iterazione 2 (rendendo quindi superflue le iterazioni 3 e 4).

17 Ottimizzazione Multi Obiettivo 17 Algoritmo ε constrained Es. Cammino Minimo Bi-obiettivo Si consideri il seguente problema di trasporto di materiale pericoloso. Un singolo veicolo parte da un deposito iniziale (vertice 0) per visitare un dato insieme di n vertici j (j = 1,..., n) e concludere poi il viaggio ad un deposito finale (vertice n + 1). Gli spostamenti da un vertice all altro hanno un costo, riportato in seguito nella matrice c. Ogni c ij = 0 nella matrice implica che il collegamento diretto da i a j non esiste. Analogamente, gli spostamenti da un vertice all altro comportano un rischio per la popolazione; il grado di rischio per ciascun spostamento è rappresentato dalla matrice r (tabella successiva). Determinare l insieme di cammini dal deposito iniziale a quello finale che minimizza la somma dei costi e la somma dei rischi. A tal fine esplorare la frontiera di Pareto nel seguente modo: 1. Risolvere il problema di cammino di costo minimo (considerando quindi solo i costi c nella funzione obiettivo), determinando un costo totale C e un rischio totale R; 2. risolvere nuovamente il problema minimizzando sempre il costo, ma imponendo come vincolo che il rischio totale non superi R 1; 3. iterare imponendo un vincolo sempre più stringente sul rischio, fino a quando il problema ottenuto risulta non ammissibile.

18 Ottimizzazione Multi Obiettivo 18 Algoritmo ε constrained Es. Cammino Minimo Bi-obiettivo (2) Costi: Rischi: c ij : r ij : Deposito di partenza: vertice 0; deposito di arrivo: vertice 7.

19 Ottimizzazione Multi Obiettivo 19 Algoritmo ε constrained Es. Cammino Minimo Bi-obiettivo (3) Formulazione matematica: 7 7 min C = c ij x ij i=0 7 i=0 j=0 7 r ij x ij j=0 UB R 7 (x 0i x i0 ) = 1 i=0 7 (x 7i x i7 ) = 1 i=0 7 (x ji x ij ) = 0 j = 1,..., 6 i=0 x ij = 0 i, j = 0,..., 7, c ij = 0 x ij {0, 1} i, j = 0,..., 7 Iterazione 1: risolviamo il modello con UB R = + (in pratica, UB R maggiore della somma dei valori di rischio) ottenendo C= 11 e R = 24, con il cammino: (0,4), (4,7). Iterazione 2: risolviamo il modello con UB R = 23, ottenendo C= 16 e R = 22, con il cammino: (0,3), (3,7). Iterazione 3: risolviamo il modello con UB R = 21, ottenendo C= 33 e R = 21, con il cammino: (0,2), (2,1), (1,7).

20 Ottimizzazione Multi Obiettivo 20 Algoritmo ε constrained Es. Cammino Minimo Bi-obiettivo (4) Iterazione 4: risolviamo il modello con UB R = 20, ottenendo C= 35 e R = 12, con il cammino: (0,1), (1,5), (5,3), (3,7). Iterazione 5: risolviamo il modello con UB R = 11, ottenendo C= 37 e R = 7, con il cammino: (0,1), (1,7). Iterazione 6: risolviamo il modello con UB R = 6 e e non otteniamo nessuna soluzione ammissibile. Fermiamo quindi le iterazioni. L insieme delle soluzioni (C, R) ottenute fornisce la frontiera di Pareto (non ci sono soluzioni dominate); il grafico risultante è: 30 Frontiera di Pareto

Ottimizzazione Multi Obiettivo

Ottimizzazione Multi Obiettivo Ottimizzazione Multi Obiettivo 1 Ottimizzazione Multi Obiettivo La Programmazione Matematica classica, lineare (PL) o intera (PLI), tratta problemi caratterizzati da una unica e ben definita funzione obiettivo.

Dettagli

ESEMPIO P.L. : PIANIFICAZIONE DI INVESTIMENTI

ESEMPIO P.L. : PIANIFICAZIONE DI INVESTIMENTI ESEMPIO P.L. : PIANIFICAZIONE DI INVESTIMENTI PROBLEMA: un azienda deve scegliere fra due possibili investimenti al fine di massimizzare il profitto netto nel rispetto delle condizioni interne e di mercato

Dettagli

La Programmazione Lineare

La Programmazione Lineare 4 La Programmazione Lineare 4.1 INTERPRETAZIONE GEOMETRICA DI UN PROBLEMA DI PROGRAMMAZIONE LINEARE Esercizio 4.1.1 Fornire una rappresentazione geometrica e risolvere graficamente i seguenti problemi

Dettagli

Esempi di modelli di programmazione lineare (intera) 2014

Esempi di modelli di programmazione lineare (intera) 2014 Esempi di modelli di programmazione lineare (intera) 2014 1) Combinando risorse Una ditta produce due tipi di prodotto, A e B, combinando e lavorando opportunamente tre risorse, R, S e T. In dettaglio:

Dettagli

Ottimizzazione nella gestione dei progetti Capitolo 4: la gestione dei costi (Programmazione multimodale): formulazioni

Ottimizzazione nella gestione dei progetti Capitolo 4: la gestione dei costi (Programmazione multimodale): formulazioni Ottimizzazione nella gestione dei progetti Capitolo 4: la gestione dei costi (Programmazione multimodale): formulazioni CARLO MANNINO Università di Roma La Sapienza Dipartimento di Informatica e Sistemistica

Dettagli

Capitolo 5: Ottimizzazione Discreta. E. Amaldi DEI, Politecnico di Milano

Capitolo 5: Ottimizzazione Discreta. E. Amaldi DEI, Politecnico di Milano Capitolo 5: Ottimizzazione Discreta E. Amaldi DEI, Politecnico di Milano 5.1 Modelli di PLI, formulazioni equivalenti ed ideali Il modello matematico di un problema di Ottimizzazione Discreta è molto spesso

Dettagli

Esercitazione 23 maggio 2016

Esercitazione 23 maggio 2016 Esercitazione 5 maggio 016 Esercitazione 3 maggio 016 In questa esercitazione, nei primi tre esercizi, analizzeremo il problema del moral hazard nel mercato. In questo caso prenderemo in considerazione

Dettagli

Esercizi di Ricerca Operativa I

Esercizi di Ricerca Operativa I Esercizi di Ricerca Operativa I Dario Bauso, Raffaele Pesenti May 10, 2006 Domande Programmazione lineare intera 1. Gli algoritmi per la programmazione lineare continua possono essere usati per la soluzione

Dettagli

Schedulazione di attività in presenza di attività interrompibili

Schedulazione di attività in presenza di attività interrompibili Schedulazione di attività in presenza di attività interrompibili Maria Silvia Pini Resp. accademico: Prof.ssa Francesca Rossi Università di Padova Attività FSE DGR 1102/2010 La gestione dell informazione

Dettagli

Capitolo 3: Ottimizzazione Discreta. E. Amaldi DEIB, Politecnico di Milano

Capitolo 3: Ottimizzazione Discreta. E. Amaldi DEIB, Politecnico di Milano Capitolo 3: Ottimizzazione Discreta E. Amaldi DEIB, Politecnico di Milano 3.1 Modelli di PLI e PLMI Moltissimi problemi decisionali complessi possono essere formulati o approssimati come problemi di Programmazione

Dettagli

Gestione della produzione e della supply chain Logistica distributiva. Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena

Gestione della produzione e della supply chain Logistica distributiva. Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena Gestione della produzione e della supply chain Logistica distributiva Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena Problemi di Distribuzione: Il problema del Vehicle Rou:ng

Dettagli

mese 1 2 3 4 5 richiesta 6000 7000 8000 9500 11000

mese 1 2 3 4 5 richiesta 6000 7000 8000 9500 11000 1.7 Servizi informatici. Un negozio di servizi informatici stima la richiesta di ore di manutenzione/consulenza per i prossimi cinque mesi: mese 1 2 3 4 5 richiesta 6000 7000 8000 9500 11000 All inizio

Dettagli

b i 1,1,1 1,1,1 0,1,2 0,3,4

b i 1,1,1 1,1,1 0,1,2 0,3,4 V o Appello // RICERCA OPERATIVA - Corso A (a.a. 9/) Nome Cognome: Corso di Laurea: L C6 LS LM Matricola: ) Si consideri il problema di flusso di costo minimo in figura. Si verifichi se il flusso ammissibile

Dettagli

Logistica - Il problema del trasporto

Logistica - Il problema del trasporto Logistica - Il problema del trasporto Federico Di Palma December 17, 2009 Il problema del trasporto sorge ogniqualvolta si debba movimentare della merce da una o più sorgenti verso una o più destinazioni

Dettagli

Ricerca Operativa 2. Introduzione al metodo del Simplesso

Ricerca Operativa 2. Introduzione al metodo del Simplesso Ricerca Operativa 2. Introduzione al metodo del Simplesso Luigi De Giovanni Giacomo Zambelli 1 Problemi di programmazione lineare Un problema di ottimizzazione vincolata è definito dalla massimizzazione

Dettagli

Capitolo 4: Ottimizzazione non lineare non vincolata parte II. E. Amaldi DEIB, Politecnico di Milano

Capitolo 4: Ottimizzazione non lineare non vincolata parte II. E. Amaldi DEIB, Politecnico di Milano Capitolo 4: Ottimizzazione non lineare non vincolata parte II E. Amaldi DEIB, Politecnico di Milano 4.3 Algoritmi iterativi e convergenza Programma non lineare (PNL): min f(x) s.v. g i (x) 0 1 i m x S

Dettagli

1. Considerazioni generali

1. Considerazioni generali 1. Considerazioni generali Modelli di shop scheduling In molti ambienti produttivi l esecuzione di un job richiede l esecuzione non simultanea di un certo numero di operazioni su macchine dedicate. Ogni

Dettagli

Esercizi di Gestione della Produzione Industriale. Tabella 1: tempi di lavorazione di un set di job.

Esercizi di Gestione della Produzione Industriale. Tabella 1: tempi di lavorazione di un set di job. Esercizio 1: schedulazione con il modello di Johnson...2 Soluzione dell esercizio 1 (schedulazione con il modello di Johnson)...2 Esercizio 2: schedulazione con il modello di Hodgson...3 Soluzione dell

Dettagli

1. Sia dato un poliedro. Dire quali delle seguenti affermazioni sono corrette.

1. Sia dato un poliedro. Dire quali delle seguenti affermazioni sono corrette. . Sia dato un poliedro. (a) Un vettore x R n è un vertice di P se soddisfa alla seguenti condizioni: x P e comunque presi due punti distinti x, x 2 P tali che x x e x x 2 si ha x = ( β)x + βx 2 con β [0,

Dettagli

Dimensionamento dei lotti di produzione: il caso con variabilità nota

Dimensionamento dei lotti di produzione: il caso con variabilità nota Dimensionamento dei lotti di produzione: il caso con variabilità nota A. Agnetis In questi appunti studieremo alcuni modelli per il problema del lot sizing, vale a dire il problema di programmare la dimensione

Dettagli

Il Metodo Branch and Bound

Il Metodo Branch and Bound Il Laura Galli Dipartimento di Informatica Largo B. Pontecorvo 3, 56127 Pisa laura.galli@unipi.it http://www.di.unipi.it/~galli 4 Novembre 2014 Ricerca Operativa 2 Laurea Magistrale in Ingegneria Gestionale

Dettagli

Modelli di Programmazione Lineare e Programmazione Lineare Intera

Modelli di Programmazione Lineare e Programmazione Lineare Intera Modelli di Programmazione Lineare e Programmazione Lineare Intera 1 Azienda Dolciaria Un azienda di cioccolatini deve pianificare la produzione per i prossimi m mesi. In ogni mese l azienda ha a disposizione

Dettagli

Ricerca Operativa (Compito A) Appello del 16/06/2014 Andrea Scozzari

Ricerca Operativa (Compito A) Appello del 16/06/2014 Andrea Scozzari Ricerca Operativa (Compito A) Appello del 16/06/2014 Andrea Scozzari Esercizio n.1 Un agenzia finanziaria deve investire 1000000 di euro di un suo cliente in fondi di investimento. Il mercato offre cinque

Dettagli

Ricerca Operativa A.A. 2007/2008. 10. Dualità in Programmazione Lineare

Ricerca Operativa A.A. 2007/2008. 10. Dualità in Programmazione Lineare Ricerca Operativa A.A. 2007/2008 10. Dualità in Programmazione Lineare Luigi De Giovanni - Ricerca Operativa - 10. Dualità in Programmazione Lineare 10.1 Soluzione di un problema di PL: punti di vista

Dettagli

Prodotto Disponibilità Costo 1 3000 3 2 2000 6 3 4000 4. e rispettando le seguenti regole di composizione delle benzine:

Prodotto Disponibilità Costo 1 3000 3 2 2000 6 3 4000 4. e rispettando le seguenti regole di composizione delle benzine: 1.1 Pianificazione degli investimenti. Una banca deve investire C milioni di Euro, e dispone di due tipi di investimento: (a) con interesse annuo del 15%; (b) con interesse annuo del 25%. Almeno 1 di C

Dettagli

Modelli di Ottimizzazione

Modelli di Ottimizzazione Capitolo 2 Modelli di Ottimizzazione 2.1 Introduzione In questo capitolo ci occuperemo più nel dettaglio di quei particolari modelli matematici noti come Modelli di Ottimizzazione che rivestono un ruolo

Dettagli

ALGORITMO DEL SIMPLESSO

ALGORITMO DEL SIMPLESSO ALGORITMO DEL SIMPLESSO ESERCITAZIONI DI RICERCA OPERATIVA 1 ESERCIZIO 1. Risolvere il seguente programma lineare (a) con il metodo del simplesso e (b) con il metodo grafico. (1) min x 1 x () (3) (4) (5)

Dettagli

Strumenti della Teoria dei Giochi per l Informatica A.A. 2009/10. Lecture 22: 1 Giugno 2010. Meccanismi Randomizzati

Strumenti della Teoria dei Giochi per l Informatica A.A. 2009/10. Lecture 22: 1 Giugno 2010. Meccanismi Randomizzati Strumenti della Teoria dei Giochi per l Informatica AA 2009/10 Lecture 22: 1 Giugno 2010 Meccanismi Randomizzati Docente Vincenzo Auletta Note redatte da: Davide Armidoro Abstract In questa lezione descriveremo

Dettagli

3 CENNI DI TEORIA DELLA COMPLESSITA COMPUTAZIONALE. E. Amaldi Fondamenti di R.O. Politecnico di Milano 1

3 CENNI DI TEORIA DELLA COMPLESSITA COMPUTAZIONALE. E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 3 CENNI DI TEORIA DELLA COMPLESSITA COMPUTAZIONALE E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 Scopo: Stimare l onere computazionale per risolvere problemi di ottimizzazione e di altra natura

Dettagli

Approcci esatti per il job shop

Approcci esatti per il job shop Approcci esatti per il job shop Riferimenti lezione: Carlier, J. (1982) The one-machine sequencing problem, European Journal of Operational Research, Vol. 11, No. 1, pp. 42-47 Carlier, J. & Pinson, E.

Dettagli

Esercitazione in Laboratorio: risoluzione di problemi di programmazione lineare tramite Excel il mix di produzione

Esercitazione in Laboratorio: risoluzione di problemi di programmazione lineare tramite Excel il mix di produzione Esercitazione in Laboratorio: risoluzione di problemi di programmazione lineare tramite Excel il mix di produzione Versione 11/03/2004 Contenuto e scopo esercitazione Contenuto esempi di problema di programmazione

Dettagli

Università del Salento

Università del Salento Università del Salento Dipartimento di Matematica DAI SISTEMI DI DISEQUAZIONI LINEARI.. ALLA PROGRAMMAZIONE LINEARE Chefi Triki La Ricerca Operativa Fornisce strumenti matematici di supporto alle attività

Dettagli

1. Classificazione delle risorse

1. Classificazione delle risorse 1. Classificazione delle risorse Classificazione delle risorse in base alla disponibilità. - Risorse rinnovabili Sono risorse utilizzate per l esecuzione di una attività per tutta la sua durata, ma sono

Dettagli

Teoria dei Giochi. Teoria dei Giochi

Teoria dei Giochi. Teoria dei Giochi Teoria dei Giochi E uno strumento decisionale, utile per operare previsioni sul risultato quando un decisore deve operare in concorrenza con altri decisori. L ipotesi principale su cui si basa la TdG è

Dettagli

Ricerca Operativa e Logistica Dott. F.Carrabs e Dott.ssa M.Gentili. Uso di Excel nella Programmazione Matematica

Ricerca Operativa e Logistica Dott. F.Carrabs e Dott.ssa M.Gentili. Uso di Excel nella Programmazione Matematica Ricerca Operativa e Logistica Dott. F.Carrabs e Dott.ssa M.Gentili Uso di Ecel nella Programmazione Matematica Uso degli spreadsheet (formulazione nel formato richiesto da Ecel) Conversione della formulazione

Dettagli

Programmazione lineare

Programmazione lineare Programmazione lineare Dualitá: definizione, teoremi ed interpretazione economica Raffaele Pesenti 1 Dualità 1.1 Definizione e teoremi Definizione 1 Dato un problema di LP in forma canonica max x = ct

Dettagli

Management Sanitario. Modulo di Ricerca Operativa

Management Sanitario. Modulo di Ricerca Operativa Management Sanitario per il corso di Laurea Magistrale SCIENZE RIABILITATIVE DELLE PROFESSIONI SANITARIE Modulo di Ricerca Operativa Prof. Laura Palagi http://www.dis.uniroma1.it/ palagi Dipartimento di

Dettagli

Seconda Prova di Ricerca Operativa. Cognome Nome Numero Matricola A 1/12 A 2/12

Seconda Prova di Ricerca Operativa. Cognome Nome Numero Matricola A 1/12 A 2/12 A / A / Seconda Prova di Ricerca Operativa Cognome Nome Numero Matricola Nota: LA RISOLUZIONE CORRETTA DEGLI ESERCIZI CONTRADDISTINTI DA UN ASTERISCO È CONDIZIONE NECESSARIA PER IL RAGGIUNGIMENTO DELLA

Dettagli

Formulazioni PLI di problemi di decisione. 1 Introduzione: La formulazione dei problemi di ottimizzazione combinatoria

Formulazioni PLI di problemi di decisione. 1 Introduzione: La formulazione dei problemi di ottimizzazione combinatoria Formulazioni PLI di problemi di decisione Dispensa per il modulo di Analisi e Ottimizzazione dei Processi di Produzione Università di Roma Tor Vergata a cura di Andrea Pacifici, Claudio Cavalletti, Daniela

Dettagli

Laboratorio di Ricerca Operativa Cad Ingegneria Gestionale (BGER3 - I semestre) a.a. 2012-13 Homework n 33. Docente: Laura Palagi

Laboratorio di Ricerca Operativa Cad Ingegneria Gestionale (BGER3 - I semestre) a.a. 2012-13 Homework n 33. Docente: Laura Palagi Laboratorio di Ricerca Operativa Cad Ingegneria Gestionale (BGER3 - I semestre) a.a. 2012-13 Homework n 33 Docente: Laura Palagi Homework in Ricerca Operativa gruppo n 33 Turni del Personale Martina Conti

Dettagli

Un modello matematico di investimento ottimale

Un modello matematico di investimento ottimale Un modello matematico di investimento ottimale Tiziano Vargiolu 1 1 Università degli Studi di Padova Liceo Scientifico Benedetti Venezia, giovedì 30 marzo 2011 Outline 1 Investimento per un singolo agente

Dettagli

Modelli di Programmazione Lineare Intera

Modelli di Programmazione Lineare Intera 8 Modelli di Programmazione Lineare Intera Come è stato già osservato in precedenza, quando tutte le variabili di un problema di Programmazione Lineare sono vincolate ad assumere valori interi, si parla

Dettagli

Produzione e forza lavoro

Produzione e forza lavoro Produzione e forza lavoro Testo Un azienda produce i modelli I, II e III di un certo prodotto a partire dai materiali grezzi A e B, di cui sono disponibili 4000 e 6000 unità, rispettivamente. In particolare,

Dettagli

min 4x 1 +x 2 +x 3 2x 1 +x 2 +2x 3 = 4 3x 1 +3x 2 +x 3 = 3 x 1 +x 2 3x 3 = 5 Innanzitutto scriviamo il problema in forma standard: x 1 x 2 +3x 3 = 5

min 4x 1 +x 2 +x 3 2x 1 +x 2 +2x 3 = 4 3x 1 +3x 2 +x 3 = 3 x 1 +x 2 3x 3 = 5 Innanzitutto scriviamo il problema in forma standard: x 1 x 2 +3x 3 = 5 IL METODO DEL SIMPLESSO 65 Esercizio 7.4.4 Risolvere utilizzando il metodo del simplesso il seguente problema di PL: min 4 + + + + = 4 + + = + = 5 Innanzitutto scriviamo il problema in forma standard:

Dettagli

La Minimizzazione dei costi

La Minimizzazione dei costi La Minimizzazione dei costi Il nostro obiettivo è lo studio del comportamento di un impresa che massimizza il profitto sia in mercati concorrenziali che non concorrenziali. Ora vedremo la fase della minimizzazione

Dettagli

5.4 Solo titoli rischiosi

5.4 Solo titoli rischiosi 56 Capitolo 5. Teoria matematica del portafoglio finanziario II: analisi media-varianza 5.4 Solo titoli rischiosi Suppongo che sul mercato siano presenti n titoli rischiosi i cui rendimenti aleatori sono

Dettagli

I Modelli della Ricerca Operativa

I Modelli della Ricerca Operativa Capitolo 1 I Modelli della Ricerca Operativa 1.1 L approccio modellistico Il termine modello è di solito usato per indicare una costruzione artificiale realizzata per evidenziare proprietà specifiche di

Dettagli

Prof. Ing. Michele Marra - Appunti delle Lezioni di Ricerca Operativa Sequenze CAPITOLO II

Prof. Ing. Michele Marra - Appunti delle Lezioni di Ricerca Operativa Sequenze CAPITOLO II CAPITOLO II 2. - PROBLEMI DI SEQUENZA I problemi di sequenza si presentano ogni qualvolta vi sono delle attività che richiedono delle risorse limitate ed indivisibili e bisogna definire l'ordine secondo

Dettagli

METODI MATEMATICI PER LE DECISIONI ECONOMICHE E AZIENDALI 12 CANDIDATO.. VOTO

METODI MATEMATICI PER LE DECISIONI ECONOMICHE E AZIENDALI 12 CANDIDATO.. VOTO METODI MATEMATICI PER LE DECISIONI ECONOMICHE E AZIENDALI 12 1) In un problema multiattributo i pesi assegnati ai vari obiettivi ed i risultati che essi assumono in corrispondenza alle varie alternative

Dettagli

Scelte in condizione di incertezza

Scelte in condizione di incertezza Scelte in condizione di incertezza Tutti i problemi di decisione che abbiamo considerato finora erano caratterizzati dal fatto che ogni possibile scelta dei decisori portava a un esito certo. In questo

Dettagli

Ricerca Operativa Branch-and-Bound per problemi di Programmazione Lineare Intera

Ricerca Operativa Branch-and-Bound per problemi di Programmazione Lineare Intera Ricerca Operativa Branch-and-Bound per problemi di Programmazione Lineare Intera L. De Giovanni AVVERTENZA: le note presentate di seguito non hanno alcuna pretesa di completezza, né hanno lo scopo di sostituirsi

Dettagli

1) Descrivere dettagliatamente a quale problema di scheduling corrisponde il problema.

1) Descrivere dettagliatamente a quale problema di scheduling corrisponde il problema. Un veicolo viene utilizzato da una società di trasporti per trasportare beni a partire da un unico deposito verso prefissate località di destinazione. Si supponga che occorre trasportare singolarmente

Dettagli

Fondamenti di Economia Aziendale ed Impiantistica Industriale

Fondamenti di Economia Aziendale ed Impiantistica Industriale Politecnico di Milano IV Facoltà di Ingegneria Fondamenti di Economia Aziendale ed Impiantistica Industriale Impiego della programmazione lineare nella progettazione degli impianti Cosa significa progettare

Dettagli

PROGRAMMAZIONE LINEARE IN DUE VARIABILI

PROGRAMMAZIONE LINEARE IN DUE VARIABILI 1 PROGRAMMAZIONE LINEARE IN DUE VARIABILI La ricerca operativa nata durante la seconda guerra mondiale ed utilizzata in ambito militare, oggi viene applicata all industria, nel settore pubblico e nell

Dettagli

Ricerca Operativa Esercizi sul metodo del simplesso. Luigi De Giovanni, Laura Brentegani

Ricerca Operativa Esercizi sul metodo del simplesso. Luigi De Giovanni, Laura Brentegani Ricerca Operativa Esercizi sul metodo del simplesso Luigi De Giovanni, Laura Brentegani 1 1) Risolvere il seguente problema di programmazione lineare. ma + + 3 s.t. 2 + + 2 + 2 + 3 5 2 + 2 + 6,, 0 Soluzione.

Dettagli

Regressione non lineare con un modello neurale feedforward

Regressione non lineare con un modello neurale feedforward Reti Neurali Artificiali per lo studio del mercato Università degli studi di Brescia - Dipartimento di metodi quantitativi Marco Sandri (sandri.marco@gmail.com) Regressione non lineare con un modello neurale

Dettagli

Ottimizzazione non Vincolata

Ottimizzazione non Vincolata Dipartimento di Informatica e Sitemistica Università di Roma Corso Dottorato Ingegneria dei Sistemi 15/02/2010, Roma Outline Ottimizzazione Non Vincolata Introduzione Ottimizzazione Non Vincolata Algoritmi

Dettagli

SIMULAZIONE ESAME di OTTIMIZZAZIONE Corso di Laurea in Ingegneria Gestionale 2 o anno

SIMULAZIONE ESAME di OTTIMIZZAZIONE Corso di Laurea in Ingegneria Gestionale 2 o anno SIMULAZIONE ESAME di OTTIMIZZAZIONE 28 novembre 2005 SIMULAZIONE ESAME di OTTIMIZZAZIONE Corso di Laurea in Ingegneria Gestionale 2 o anno Cognome : XXXXXXXXXXXXXXXXX Nome : XXXXXXXXXXXXXX VALUTAZIONE

Dettagli

Esame di Ricerca Operativa del 20/12/13. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

Esame di Ricerca Operativa del 20/12/13. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare: Esame di Ricerca Operativa del 0// (Cognome) (Nome) (Corso di laurea) Esercizio. Completare la seguente tabella considerando il problema di programmazione lineare: max x x x + x x +x x x x x x x 0 x x

Dettagli

Parte 2. Determinante e matrice inversa

Parte 2. Determinante e matrice inversa Parte. Determinante e matrice inversa A. Savo Appunti del Corso di Geometria 013-14 Indice delle sezioni 1 Determinante di una matrice, 1 Teorema di Cramer (caso particolare), 3 3 Determinante di una matrice

Dettagli

I costi. Costi economici vs. costi contabili

I costi. Costi economici vs. costi contabili I costi Costi economici vs. costi contabili I costi economici connessi alla produzione di una certa quantità di output Y includono tutte le spese per i fattori produttivi. In altre parole, i costi economici

Dettagli

PROGRAMMAZIONE LINEARE IN DUE VARIABILI

PROGRAMMAZIONE LINEARE IN DUE VARIABILI 1 PROGRAMMAZIONE LINEARE IN DUE VARIABILI La ricerca operativa nata durante la seconda guerra mondiale ed utilizzata in ambito militare, oggi viene applicata all industria, nel settore pubblico e nell

Dettagli

Contenuto e scopo presentazione. Problemi di Zaino e di Caricamento. Gestione delle operazioni ai terminali. Motivazioni

Contenuto e scopo presentazione. Problemi di Zaino e di Caricamento. Gestione delle operazioni ai terminali. Motivazioni Contenuto e scopo presentazione Problemi di Zaino e di Caricamento Contenuto vengono introdotti dei modelli e degli algoritmi di soluzione per problemi di zaino e di caricamento 09/01/2006 8.00 Scopo fornire

Dettagli

LA RICERCA OPERATIVA

LA RICERCA OPERATIVA LA RICERCA OPERATIVA Il termine Ricerca Operativa, dall inglese Operations Research, letteralmente ricerca delle operazioni, fu coniato per esprimere il significato di determinazione delle attività da

Dettagli

Chiusura lineare. N.B. A può essere indifferentemente un insieme, finito o no, o un sistema. Es.1. Es.2

Chiusura lineare. N.B. A può essere indifferentemente un insieme, finito o no, o un sistema. Es.1. Es.2 Chiusura lineare Def. Sia A V (K) con A. Si dice copertura lineare (o chiusura lineare) di A, e si indica con L(A), l insieme dei vettori di V che risultano combinazioni lineari di un numero finito di

Dettagli

Esercizio 1: Automobili

Esercizio 1: Automobili Esercizio 1: Automobili Le variabili decisionali sono i quattro pesi da attribuire alle quattro caratteristiche. Si tratta di variabili intere maggiori o uguali a 1, minori o uguali a 5, che sommate devono

Dettagli

Lezione 3 Esercitazioni

Lezione 3 Esercitazioni Lezione 3 Esercitazioni Forlì, 26 Marzo 2013 Teoria della produzione Esercizio 1 Impiegando un fattore produttivo (input) sono stati ottenuti i livelli di produzione (output) riportati in tabella. Fattore

Dettagli

Barriere assorbenti nelle catene di Markov e una loro applicazione al web

Barriere assorbenti nelle catene di Markov e una loro applicazione al web Università Roma Tre Facoltà di Scienze M.F.N Corso di Laurea in Matematica a.a. 2001/2002 Barriere assorbenti nelle catene di Markov e una loro applicazione al web Giulio Simeone 1 Sommario Descrizione

Dettagli

Sistemi Informativi Territoriali. Map Algebra

Sistemi Informativi Territoriali. Map Algebra Paolo Mogorovich Sistemi Informativi Territoriali Appunti dalle lezioni Map Algebra Cod.735 - Vers.E57 1 Definizione di Map Algebra 2 Operatori locali 3 Operatori zonali 4 Operatori focali 5 Operatori

Dettagli

2 + (σ2 - ρσ 1 ) 2 > 0 [da -1 ρ 1] b = (σ 2. 2 - ρσ1 σ 2 ) = (σ 1

2 + (σ2 - ρσ 1 ) 2 > 0 [da -1 ρ 1] b = (σ 2. 2 - ρσ1 σ 2 ) = (σ 1 1 PORTAFOGLIO Portafoglio Markowitz (2 titoli) (rischiosi) due titoli rendimento/varianza ( μ 1, σ 1 ), ( μ 2, σ 2 ) Si suppone μ 1 > μ 2, σ 1 > σ 2 portafoglio con pesi w 1, w 2 w 1 = w, w 2 = 1- w 1

Dettagli

190 LA DUALITÀ NELLA PROGRAMMAZIONE LINEARE 7.2 INTERPRETAZIONE DELLA DUALITÀ

190 LA DUALITÀ NELLA PROGRAMMAZIONE LINEARE 7.2 INTERPRETAZIONE DELLA DUALITÀ 190 LA DUALITÀ NELLA PROGRAMMAZIONE LINEARE 7.2 INTERPRETAZIONE DELLA DUALITÀ [Questo paragrafo non fa parte del programma di esame] Nei modelli reali le variabili (primali) possono rappresentare, ad esempio,

Dettagli

RICERCA OPERATIVA. Questi due tipi di costi contribuiscono a determinare il costo totale di produzione così definito:

RICERCA OPERATIVA. Questi due tipi di costi contribuiscono a determinare il costo totale di produzione così definito: RICERCA OPERATIVA Prerequisiti Rappresentazione retta Rappresentazione parabola Equazioni e disequazioni Ricerca Operativa Studio dei metodi e delle strategie al fine di operare scelte e prendere decisioni

Dettagli

INTRODUZIONE. Cplex è un software per la risoluzione di Problemi di Programmazione Lineare e Lineare Intera;

INTRODUZIONE. Cplex è un software per la risoluzione di Problemi di Programmazione Lineare e Lineare Intera; INTRODUZIONE Cplex è un software per la risoluzione di Problemi di Programmazione Lineare e Lineare Intera; L interfaccia con il quale viene utilizzato è Microsoft Excel 1 Installazione CPLEX Dopo aver

Dettagli

Problema del trasporto

Problema del trasporto p. 1/1 Problema del trasporto Supponiamo di avere m depositi in cui è immagazzinato un prodotto e n negozi che richiedono tale prodotto. Nel deposito i è immagazzinata la quantità a i di prodotto. Nel

Dettagli

TSP con eliminazione di sottocicli

TSP con eliminazione di sottocicli TSP con eliminazione di sottocicli Un commesso viaggiatore deve visitare 7 clienti in modo da minimizzare la distanza percorsa. Le distanze (in Km) tra ognuno dei clienti sono come segue: 7-8 9 7 9-8 79

Dettagli

Insegnamento di Gestione e Organizzazione dei Progetti A.A. 2008/9

Insegnamento di Gestione e Organizzazione dei Progetti A.A. 2008/9 Insegnamento di Gestione e Organizzazione dei Progetti A.A. 2008/9 Lezione 11: valutazione costi diagramma di PERT Prof.ssa R. Folgieri email: folgieri@dico.unimi.it folgieri@mtcube.com 1 Da ricordare:

Dettagli

Discuteremo di. Domanda individuale e domanda di mercato. Scelta razionale

Discuteremo di. Domanda individuale e domanda di mercato. Scelta razionale Discuteremo di. La determinazione dell insieme delle alternative all interno del quale sceglie il consumatore La descrizione e la rappresentazione delle sue preferenze Come si determina la scelta ottima

Dettagli

Economia Pubblica il Monopolio Naturale

Economia Pubblica il Monopolio Naturale Economia Pubblica il Monopolio Naturale Giuseppe De Feo Università degli Studi di Pavia email: giuseppe.defeo@unipv.it Secondo Semestre 2011-12 Outline il Monopolio Naturale Il problema del Monopolio Naturale

Dettagli

Sistemi Organizzativi

Sistemi Organizzativi Sistemi Organizzativi Lezione 12/12/2004 Introduzione al corso e definizioni di base Informazioni generali Pre-requisiti: lassi di complessità Metodi enumerativi: - programmazione dinamica - branch-and-bound

Dettagli

Massimi e minimi vincolati di funzioni in due variabili

Massimi e minimi vincolati di funzioni in due variabili Massimi e minimi vincolati di funzioni in due variabili I risultati principali della teoria dell ottimizzazione, il Teorema di Fermat in due variabili e il Test dell hessiana, si applicano esclusivamente

Dettagli

Esame di Ricerca Operativa del 19/01/2016

Esame di Ricerca Operativa del 19/01/2016 Esame di Ricerca Operativa del 19/01/201 (Cognome) (Nome) (Matricola) Esercizio 1. Una banca offre ai suoi clienti diversi tipi di prestito: mutuo casa, credito auto, credito famiglia, che rendono un interesse

Dettagli

Introduzione al MATLAB c Parte 2

Introduzione al MATLAB c Parte 2 Introduzione al MATLAB c Parte 2 Lucia Gastaldi Dipartimento di Matematica, http://dm.ing.unibs.it/gastaldi/ 18 gennaio 2008 Outline 1 M-file di tipo Script e Function Script Function 2 Costrutti di programmazione

Dettagli

Teoria dei Giochi. Dr. Giuseppe Rose Università degli Studi della Calabria Corso di Laurea Magistrale in Economia Applicata a.a 2011/2012 Handout 2

Teoria dei Giochi. Dr. Giuseppe Rose Università degli Studi della Calabria Corso di Laurea Magistrale in Economia Applicata a.a 2011/2012 Handout 2 Teoria dei Giochi Dr. Giuseppe Rose Università degli Studi della Calabria Corso di Laurea Magistrale in Economia Applicata a.a 2011/2012 Handout 2 1 Concetti risolutivi per i giochi in forma normale I

Dettagli

Capitolo 12. La strategia di espansione globale. Caso di apertura

Capitolo 12. La strategia di espansione globale. Caso di apertura EDITORE ULRICO HOEPLI MILANO Capitolo 12 La strategia di espansione globale Caso di apertura 12-3 La Wal-Mart si è rivolta verso altri paesi per tre ragioni - Le opportunità di crescita interna stavano

Dettagli

Ricerca Operativa (Compito A) Appello del 18/06/2013 Andrea Scozzari

Ricerca Operativa (Compito A) Appello del 18/06/2013 Andrea Scozzari Ricerca Operativa (Compito A) Appello del 18/06/2013 Andrea Scozzari Esercizio n.1 Un azienda intende incrementare il proprio organico per ricoprire alcuni compiti scoperti. I dati relativi ai compiti

Dettagli

ELASTICITÀ. Sarebbe conveniente per il produttore aumentare ulteriormente il prezzo nella stessa misura del caso

ELASTICITÀ. Sarebbe conveniente per il produttore aumentare ulteriormente il prezzo nella stessa misura del caso Esercizio 1 Data la funzione di domanda: ELASTICITÀ Dire se partendo da un livello di prezzo p 1 = 1.5, al produttore converrà aumentare il prezzo fino al livello p 2 = 2. Sarebbe conveniente per il produttore

Dettagli

Economia Applicata ai sistemi produttivi. 06.05.05 Lezione II Maria Luisa Venuta 1

Economia Applicata ai sistemi produttivi. 06.05.05 Lezione II Maria Luisa Venuta 1 Economia Applicata ai sistemi produttivi 06.05.05 Lezione II Maria Luisa Venuta 1 Schema della lezione di oggi Argomento della lezione: il comportamento del consumatore. Gli economisti assumono che il

Dettagli

montagna ai trasporti internazionali Luca Bertazzi

montagna ai trasporti internazionali Luca Bertazzi Il problema dello zaino: dalla gita in montagna ai trasporti internazionali Luca Bertazzi 0 Il problema dello zaino Zaino: - capacità B Oggetti (items): - numero n - indice i =1,2,...,n - valore p i -

Dettagli

Metodi e Modelli per l Ottimizzazione Combinatoria Ripasso sulla Modellazione in Programmazione Lineare

Metodi e Modelli per l Ottimizzazione Combinatoria Ripasso sulla Modellazione in Programmazione Lineare Metodi e Modelli per l Ottimizzazione Combinatoria Ripasso sulla Modellazione in Programmazione Lineare Luigi De Giovanni 1 Modelli di programmazione lineare I modelli di programmazione lineare sono una

Dettagli

Esame di Ricerca Operativa del 19/01/2016

Esame di Ricerca Operativa del 19/01/2016 Esame di Ricerca Operativa del 9/0/06 (Cognome) (Nome) (Matricola) Esercizio. Una banca offre ai suoi clienti diversi tipi di prestito: mutuo casa, credito auto, credito famiglia, che rendono un interesse

Dettagli

CAPITOLO IX 9. - PROGRAMMAZIONE LINEARE INTERA

CAPITOLO IX 9. - PROGRAMMAZIONE LINEARE INTERA CAPITOLO IX 9. - PROGRAMMAZIONE LINEARE INTERA Molto spesso i risultati che si desidera ottenere come soluzione di un problema di programmazione lineare sono numeri interi, ad es. il numero di vagoni ferroviari

Dettagli

CAPITOLO 6 La programmazione operativa (operations scheduling)

CAPITOLO 6 La programmazione operativa (operations scheduling) CAPITOLO 6 La programmazione operativa (operations scheduling) Contenuti Le funzioni della PO Gli obiettivi della PO Il job loading Il metodo dell assegnazione Il job sequencing Regole e tecniche di priorità

Dettagli

Problemi di Programmazione Lineare Intera

Problemi di Programmazione Lineare Intera Capitolo 4 Problemi di Programmazione Lineare Intera La Programmazione Lineare Intera (PLI) tratta il problema della massimizzazione (minimizzazione) di una funzione di più variabili, soggetta a vincoli

Dettagli

LE FUNZIONI A DUE VARIABILI

LE FUNZIONI A DUE VARIABILI Capitolo I LE FUNZIONI A DUE VARIABILI In questo primo capitolo introduciamo alcune definizioni di base delle funzioni reali a due variabili reali. Nel seguito R denoterà l insieme dei numeri reali mentre

Dettagli

Modelli di programmazione lineare. Il metodo grafico è basato su linearità della funzione obiettivo linearità dei vincoli

Modelli di programmazione lineare. Il metodo grafico è basato su linearità della funzione obiettivo linearità dei vincoli Ricerca Operativa 2. Modelli di Programmazione Lineare Modelli di programmazione lineare Il metodo grafico è basato su linearità della funzione obiettivo linearità dei vincoli Sotto queste ipotesi (come

Dettagli

Progetto di Reti di Telecomunicazione Modelli in Programmazione Lineare Problemi di Localizzazione

Progetto di Reti di Telecomunicazione Modelli in Programmazione Lineare Problemi di Localizzazione Progetto di Reti di Telecomunicazione Modelli in Programmazione Lineare Problemi di Localizzazione Posizionamento di antenne È dato un insieme A di possibili siti in cui installare antenne, a ciascuno

Dettagli

Luigi De Giovanni Esercizi di modellazione matematica Ricerca Operativa

Luigi De Giovanni Esercizi di modellazione matematica Ricerca Operativa Piani di investimento Un finanziere ha due piani di investimento A e B disponibili all inizio di ciascuno dei prossimi cinque anni. Ogni euro investito in A all inizio di ogni anno garantisce, due anni

Dettagli

1 Breve introduzione ad AMPL

1 Breve introduzione ad AMPL 1 Breve introduzione ad AMPL Il primo passo per risolvere un problema reale attraverso strumenti matematici consiste nel passare dalla descrizione a parole del problema al modello matematico dello stesso.

Dettagli

Modellazione delle preferenze

Modellazione delle preferenze Modellazione delle preferenze Roberto Cordone 1 1 Sono debitore delle dispense di B. Simeone e F. Patrone Sistemazione assiomatica Dato un insieme non vuoto di impatti F, esprimere una preferenza fra due

Dettagli

Schedulazione delle attività di un progetto in presenza di multi-calendari

Schedulazione delle attività di un progetto in presenza di multi-calendari Schedulazione delle attività di un progetto in presenza di multi-calendari Maria Silvia Pini Resp. accademico: Prof.ssa Francesca Rossi Università di Padova Attività FSE DGR 1102/2010 La gestione dell

Dettagli