Statistica Applicata all edilizia: alcune distribuzioni di probabilità

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Statistica Applicata all edilizia: alcune distribuzioni di probabilità"

Transcript

1 Statistica Applicata all edilizia: Alcune distribuzioni di probabilità 7 marzo 20

2 Indice Indici di curtosi e simmetria Indici di curtosi e simmetria 2 3 Distribuzione Bernulliana Distribuzione Binomiale La variabile casuale di Poisson 4

3 Indice Indici di curtosi e simmetria Indici di curtosi e simmetria 2 3 Distribuzione Bernulliana Distribuzione Binomiale La variabile casuale di Poisson 4

4 Indice di simmetria β = E[(X µ)3 ] σ 3 dove - β = 0, nel caso di perfetta simmetria; - β < 0, per l asimmetria a destra; - β > 0, per l asimmetria a sinistra. Indice di curtosi e se γ 2 = β 2 3 dove β 2 = E[(X µ)4 ] σ 4 - γ 2 > 0, la curva si definisce leptocurtica (più appuntita ); - γ 2 < 0, la curva si definisce platicurtica, cioè più piatta di una normale; - γ 2 = 0, la curva si definisce normocurtica, cioè piatta come una normale.

5 Indice Indici di curtosi e simmetria Indici di curtosi e simmetria 2 3 Distribuzione Bernulliana Distribuzione Binomiale La variabile casuale di Poisson 4

6 Esempio: Variazioni del tasso Euribor

7 Distribuzioni di probabilità L istogramma serve a descrivere i dati del campionamento. Il campione è un insieme scelti da una popolazione più ampia. La distribuzione di probabilità è un modello matematico che collega il valore della variabile alla probabilità che tale valore si trovi all interno della popolazione Esempio: è possibile considerare le variazioni del tasso Euribor come variabile casuale poichè assume valori diversi nella popolazione in conseguenza di meccanismi casuali.

8 Variabile casuale: è una funzione che associa ad ogni evento elementare A dello spazio campionario Ω uno ed un solo numero reale X. Ω A X P:x->P(x) P(x) L insieme dei valori di X costituisce uno spazio campionario numerico, su cui si può definire una misura di probabilità. Distribuzioni di frequenza e distribuzioni di probabilità Può essere utile approssimare la 80 distribuzione empirica dei dati con 70 una distribuzione teorica (funzione matematica) R 0 Esempio Esperimento: lancio 3 volte di una moneta Variabile casuale X = numero delle teste uscite. Distribuzione di Probabilità: Probabilità che sia uscita testa X volte LEGGE DI PROBABILITA I dati sono considerati delle variabili casuali

9 Variabili casuali Discrete sono definite in uno spazio campionario discreto e possono assumere un numero finito (o un infinità numerabile) di valori. Continue Sono definite in uno spazio campionario continuo e possono assumere tutti i valori di un certo intervallo. Valore atteso (o media aritmetica): n E( X ) = µ = xi Pr( X = x i ) i= Varianza: 2 V(X) = σ = k i= 2 (x µ ) Pr(X = x ) i i Il valore atteso di X è dato da Varianza: V x χ M ( X ) = µ = x p( x) dx µ V(X) = σ = (x x χ 2 ) p(x)dx ( X ) E( X ) E( X ) = 2 x p( x) dx x p( x) dx 2 x χ x χ = Scarto qudratico medio o deviazione standard SQM ( X ) = σ = V ( X ) Scarto qudratico medio o deviazione standard SQM ( X ) = σ = V ( X )

10 Indice Indici di curtosi e simmetria Distribuzione Bernulliana Distribuzione Binomiale La variabile casuale di Poisson Indici di curtosi e simmetria 2 3 Distribuzione Bernulliana Distribuzione Binomiale La variabile casuale di Poisson 4

11 Alcuni esempi Indici di curtosi e simmetria Distribuzione Bernulliana Distribuzione Binomiale La variabile casuale di Poisson Esempio ( Controllo di qualità di un processo produttivo). Un azienda produttrice di materiale per l edilizia ispeziona ogni prodotto che esce dalla sua linea produttiva. Il prodotto può essere ritenuto buono o difettoso. L esperienza passata indica che il 5% dei pezzi prodotti è difettoso. Se si estraggono a caso 4 pezzi (in modo indipendente), determinare qual è la probabilità di non estrarre alcun pezzo difettoso? 2 qual è la probabilità che ci siano più di due pezzi difettosi? 3 qual è il valore atteso e la varianza dei pezzi difettosi; Esempio 2: Il 70% delle case è costruito in cemento armato e il restante 30% con altri materiali. Qual è la probabilità che estraendo casulamente due case entrambe siano state costruite in cemento armato?

12 La VCD Bernulliana Distribuzione Bernulliana Distribuzione Binomiale La variabile casuale di Poisson La v.c. Bernulliana indica il numero di successi in una prova. Si considera un esperimento casuale che può dar luogo a due possibili risultati S: successo e S: insuccesso e sia p la probabilità di S. Definizione La variabile casuale Bernullliana (o indicatore) assume valore uno se si verifica S e zero altrimenti, ossia Distribuzione X = se è vero S X = 0 se è vero S p (x) = { p se x = 0 p se x = Momenti E (X) = p; Var (X) = p( p).

13 La VCD Binomiale Bin(n, p) Distribuzione Bernulliana Distribuzione Binomiale La variabile casuale di Poisson La v.c. Binomiale indica il numero di successi in n prove indipendenti Si ripete n volte un esperimento casuale che può dar luogo a due possibili risultati S: successo e S: insuccesso. Sia p la probabilità di S. L esperimento è ripetuto in modo che le n prove sono indipendenti; la probabilità di successo p non cambia di prova in prova. Definizione La variabile casuale discreta semplice X, numero di ripetizioni dell esperimento che danno luogo ad un successo, è chiamata variabile casuale Binomiale. Le possibili determinazioni della Binomiale sono: 0,, 2,..., n

14 Distribuzione Bernulliana Distribuzione Binomiale La variabile casuale di Poisson Distribuzione binomiale: ( ) n p (x) = p x ( p) n x, x = 0,,..., n x Momenti: E (X) = n xp (x) = x=0 n ( ) n x p x ( p) n x = np x x=0 Additività: Var (X) = np ( p) X Bin (n, p) indip Y Bin (m, p) Z = X + Y Bin (n + m, p)

15 Distribuzione Bernulliana Distribuzione Binomiale La variabile casuale di Poisson Soluzione esercizio: Controllo di qualità di un processo produttivo Si tratta di calcolare P(X = 0): p=0.05; n=4; x=0; Y = BINOPDF(x, n, p); Risp: Y = Si tratta di calcolare P(X > 2) = P(X 3) = P(X = 2): x=2; Y = -BINOCDF(x, n, p); Risp: Y = Il valore atteso e la varianza sono dati da: [m v]=binostat(4,0.05) Risp: m =0.2 Risp: v = 0.9

16 Esempi Indici di curtosi e simmetria Distribuzione Bernulliana Distribuzione Binomiale La variabile casuale di Poisson Estrazioni da un urna con rimessa 2 Se n = si ha Bin (, p) = B (p) 3 Distribuzione binomiale di parametri n = 5 e p = /3 con MATLAB: y = binopdf (0 : 5, 5, /3), bar([0 : 5], y), gridon)

17 Distribuzione Bernulliana Distribuzione Binomiale La variabile casuale di Poisson Esempio. Un azienda ha in media 4 ordini al giorno. a) Qual è la probabilità che in un certo giorno, si abbiano esattamente 5 ordini? b) Qual è la probabilità che si abbiano meno di 3 ordini al giorno? c) Se l azienda ha più di 8 ordini al giorno guadagna un premio dalla casa madre di 000 euro. Qual è il guadagno atteso in un mese (30gg)? ordini Poiss(4) -> la v.c. è il numero di ordini in un mese!!!

18 Distribuzione Bernulliana Distribuzione Binomiale La variabile casuale di Poisson Altri esempi sulla distribuzione di Poisson Esempio : numero di guasti Il numero di guasti di una macchina utilizzata per la produzione di materiale edile può essere considerata una variabile di Poisson. Sapendo che la macchina si guasta in media 5 volte al giorno, determinare: che in una giornata non abbia nessun guasto; 2 la probabilità che ci siano almeno due guasti in mezza giornata. Esempio 2: analisi del fenomeno infortunistico Da alcuni studi è emerso che il numero di medio di incidenti mortali nel settore edile è pari a 2 incidenti alla settimana. Qual è la probabilità che in due settimane ci siano più di 5 incidenti?

19 La VCD di Poisson (λ) Distribuzione Bernulliana Distribuzione Binomiale La variabile casuale di Poisson La variabile di Poisson X è una variabile casuale discreta che descrive il numero di realizzazioni di un evento aleatorio E per unità di tempo, superficie o volume. Si considera un evento che ricorre nel tempo in modo casuale (es: interruzioni di energia elettrica, chiamate a un centralino di pronto intervento, infortuni sul lavoro, incidenti stradali, richieste di intervento per manutenzione ecc.) in modo che: Le variabili casuali N(t, t + t), numero di ricorrenze nell intervallo (t, t + t), hanno funzione di probabilità che dipende dall ampiezza dell intervallo t ma non dalla origine t ( assunzione di stazionarietà); 2 le variabili casuali N(t, t 2 ) e N(t, t 2 ) sono indipendenti se si riferiscono ad intervalli disgiunti.

20 Distribuzione Bernulliana Distribuzione Binomiale La variabile casuale di Poisson Funzione di probabilità: Momenti: p(x) = (λ t)x e λ t x! Var(X) = E(X) = x=0 = λ t x=0 x (λ t)x e λ t = λ t x! x(x ) (λ t)x e λ t + λ t (λ t) 2 = x!

21 Distribuzione Bernulliana Distribuzione Binomiale La variabile casuale di Poisson Approssimazione della Binomiale: se n grande e p è piccolo Bin (n, p) = (λ = np) lim n np=λ ( n )p x ( p) n x = λx x x! e λ Esempio: Dal punto di vista pratico se X è una binomiale con n = e π = 0000 è un problema calcolare p(x > 5) ma in base al precedente risultato tale probabilità può essere approssimata usando la f.d.p. di una Poisson con parametro λ = nπ = = 5.. matlab: y = poisspdf (0 : 20, 5), bar([0 : 20], y))

22 Esercizio Indici di curtosi e simmetria Distribuzione Bernulliana Distribuzione Binomiale La variabile casuale di Poisson Il numero di guasti di una macchina utilizzata per la produzione di materiale edile può essere considerata una variabile di Poisson. Sapendo che la macchina si guasta in media 5 volte al giorno, determinare: che in una giornata non abbia nessun guasto; 2 la probabilità che ci siano almeno due guasti in mezza giornata.

23 Indice Indici di curtosi e simmetria Indici di curtosi e simmetria 2 3 Distribuzione Bernulliana Distribuzione Binomiale La variabile casuale di Poisson 4

24 Un ingegnere deve studiare la resistenza alla compressione del cemento. Ipotizzando che la resistenza alla compressione sia una variabile casuale distribuita come una Normale con media µ = 3000 psi e varianza σ 2 = 000psi, determinare la probabilità che un provino estratto a caso abbia una resistenza maggiore di 3050 psi Probability Greater than Lower Bound is Density Critical Value

25 Normale Standard e Normale generica

26 La VCC Normale Standard N (0, ) Densità di Z Ripartizione di Z Momenti φ (x) = 2π e 2 x 2 Φ (x) = x E (Z ) = 0 φ (t) dt Var (Z ) = E ( Z 2) =

27 Problema diretto: Aree = Probabilità: P (a < X < b) = b a φ (x) dx = Φ (b) Φ (a) Problema inverso: Quantili (Percentili): z α = Φ ( α) = z α SIMMETRIA: P (Z < a) = P (Z > a) Kurtosi Φ (z) = Φ ( z) z α = z α EZ 4 = 3.

28 VCC Normale generica N ( µ, σ 2) Densità di X N ( µ, σ 2) Ripartizione di X Momenti Standardizzazione f ( x; µ, σ 2) = σ φ ( x µ σ ) F ( x; µ, σ 2) ( ) x µ = Φ σ = σ 2π e 2( x µ σ ) 2 E (X) = µ e Var (X) = σ 2 X N ( µ, σ 2) Z = X µ σ N (0, ) Z N (0, ) X = µ + σz N ( µ, σ 2)

29 Problema diretto: Aree = Probabilità: ( a µ P (a < X < b) = P < Z < b µ ) σ σ b µ ( ) ( ) σ b µ a µ = φ (x) dx = Φ Φ σ σ a µ σ Problema inverso: Quantili (Percentili): x α = µ + σφ ( α) = µ + σz α = x α Unità di misura della gaussiana N ( µ, σ 2) è σ : P (µ σ < X < µ + σ) = 0.68 P (µ 2σ < X < µ + 2σ) = 0.95 P (µ 3σ < X < µ + 3σ) = 0.997

30 99.73% 95.46% µ-3σ µ+3σ µ-2σ µ+2σ 68.26% µ-σ µ+σ

31 La distribuzione T-Student Sia Z una variabile casuale normale standard e X una chi quadro con k gradi di libertà. Se Z e X sono indipendenti in probabilità allora il rapporto T = Z V k è una variabile casuale di Student con k gradi di libertà. Per curiosità notiamo che questa variabile casuale ha una densità che ad occhio è difficilmente distinguibile da quella della normale standard sopratutto per k > 30. La V.C. T di Student ha valore atteso nullo e la varianza per k > 2 è pari a k k 2

32 La distribuzione t-student E caratterizzata dal parametro k che indica i gradi di libertà

33 La distribuzione Chi-quadro La variabile casuale χ 2 è una v.c. continua ottenuta dalla somma di un numero k di v.c. normali standardizzate e indipendenti al quadrato: χ 2 = i= kz i

34 Esempio: la variabile casuale Esponenziale La durata X in ore di una macchina, prima che si verifichi un guasto, segue una legge Esponenziale di valore atteso E(X) = 2 ore. Calcolare la probabilità che il primo guasto si verifichi prima di un ora. 2 Calcolare la probabilità che il terzo guasto si verifichi dopo 3.45 ore, nell ipotesi che la realizzazione di due guasti successivi siano eventi indipendenti.

35 La VCC Esponenziale Exp(λ) Sia X t un processo di Poisson di media λ > 0. Si chiama v.c. Esponenziale la v.c. X che misura l istante del primo arrivo, X Exp(λ). Esempio: Se X t rappresenta il numero di guasti di un macchinario nell intervallo [0, t] e λ è il numero medio di guasti nellunità di tempo, la v.c. X = istante in cui avviene il primo guasto è una v.c. Esponenziale di parametro λ.

36 La densità di probabilità è f (x) = λe λx La funzione di ripartizione è F(x) = e λx Momenti E(X) = λ Var(X) = λ 2 La somma di n v.c. esponenziali, X, X 2,..., X n, indipendenti di parametro λ è una variabile Gamma di parametri n e λ X + X X n = Y Ga(n, λ)

37 Distribuzione esponenziale di parametro λ=/ f(x) F(x)

38 Esercizio: Un apparecchio elettronico è soggetto a guasti casuali che si realizzano nel tempo secondo un processo di Poisson. In media si ha un guasto ogni 3 giorni (il tempo medio tra un guasto e il successivo è di 3 giorni). Qual è la probabilità: che il primo guasto avvenga prima di 3 gg.? Che il primo guasto avvenga dopo 5 gg.? Che in 5 gg. non si abbia alcun guasto? Che in 5 gg.si realizzino esattamente due guasti? Che il secondo guasto avvenga prima di 5 gg?

39 Soluzione: P(X < 3) = exp( 3/3) = exp( ) = In MatLab: expcdf(3,3) 2 P(X > 5) = P(X < 5) = 0.8 = In MatLab: -expcdf(5,3) 3 E uguale alla probabilità precedente ed equivale ad una v.c. di Poisson dove X t è il numero di guasti nellintervallo [0, 5], P(X 5 = 0) = In MatLab: poisscdf(0,/3*5) 4 Si tratta di una v.c. di Poisson, P(X 5 = 2) = In MatLab: poisspdf(2,/3*5) 5 Si tratta di una variabile casuale Gamma di parametri n = 2 e λ = /3 ed è uguale a

40 La v.c. GAMMA Sia X t la v.c che rappresenta il numero di guasti di un apparecchio elettronico nell intervallo di tempo [0,t] e λ il numero medio di guasti nell unità di tempo. La v.c. X= istante in cui avviene l n-esimo guasto è una v.c. gamma di parametri (n, λ) X ~ Γ(n, λ ) D is t r. p ro b. n = n = 2 n = 3 n = D is tr. c u m. n = n = 2 n = 3 n = 4 f(x) F(x) g g g g

41 La VC di Weibull Indici di curtosi e simmetria f Distribuzione di Weibull ( t) = βα β t β e t α β t 0, α > 0 Valore atteso e varianza: E( X ) = αγ 2 V ( X ) = α ( + β ) 2 Γ( + 2 β ) Γ ( + β ) [ ] La funzione di Ripartizione (cumulata): F( X t) = e β t α

42 Distribuzione di Weibull con α= D is t r. p ro b. β = 0. 5 β = (E x p ) β = 2 (R a y le ig h ) β = D is t r. c u m. β = 0. 5 β = (E x p ) β = 2 (R a y le ig h ) β =

43 Svolgere in Matlab il seguente esercizio: La v.c. X che esprime il tempo di rottura (in ore) di una partita di lampadine ha una distribuzione di Weibull con a = 625 e β = 2. Trovare la densità e la funzione di ripartizione di X 2 Determinare la probabilità che le lampadine si guastino dopo 500 ore.

Statistica Applicata all edilizia: alcune distribuzioni di probabilità

Statistica Applicata all edilizia: alcune distribuzioni di probabilità Statistica Applicata all edilizia: Alcune distribuzioni di probabilità E-mail: orietta.nicolis@unibg.it 23 marzo 2010 Indice Distribuzioni di probabilità discrete 1 Distribuzioni di probabilità discrete

Dettagli

ELEMENTI DI CALCOLO DELLE PROBABILITA

ELEMENTI DI CALCOLO DELLE PROBABILITA Statistica, CLEA p. 1/55 ELEMENTI DI CALCOLO DELLE PROBABILITA Premessa importante: il comportamento della popolazione rispetto una variabile casuale X viene descritto attraverso una funzione parametrica

Dettagli

Gli eventi sono stati definiti come i possibili risultati di un esperimento. Ogni evento ha una probabilità

Gli eventi sono stati definiti come i possibili risultati di un esperimento. Ogni evento ha una probabilità Probabilità Probabilità Gli eventi sono stati definiti come i possibili risultati di un esperimento. Ogni evento ha una probabilità Se tutti gli eventi fossero ugualmente possibili, la probabilità p(e)

Dettagli

Facciamo qualche precisazione

Facciamo qualche precisazione Abbiamo introdotto alcuni indici statistici (di posizione, di variabilità e di forma) ottenibili da Excel con la funzione Riepilogo Statistiche Facciamo qualche precisazione Al fine della partecipazione

Dettagli

Istituzioni di Statistica e Statistica Economica

Istituzioni di Statistica e Statistica Economica Istituzioni di Statistica e Statistica Economica Università degli Studi di Perugia Facoltà di Economia, Assisi, a.a. 2013/14 Esercitazione n. 3 A. Sia una variabile casuale che si distribuisce secondo

Dettagli

1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario:

1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario: Esempi di domande risposta multipla (Modulo II) 1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario: 1) ha un numero di elementi pari a 5; 2) ha un numero di elementi

Dettagli

Esercitazione n.1 (v.c. Binomiale, Poisson, Normale)

Esercitazione n.1 (v.c. Binomiale, Poisson, Normale) Esercizio 1. Un azienda produce palline da tennis che hanno probabilità 0,02 di essere difettose, indipendentemente l una dall altra. La confezione di vendita contiene 8 palline prese a caso dalla produzione

Dettagli

DISTRIBUZIONI DI PROBABILITÀ

DISTRIBUZIONI DI PROBABILITÀ Metodi statistici e probabilistici per l ingegneria Corso di Laurea in Ingegneria Civile A.A. 2009-10 Facoltà di Ingegneria, Università di Padova Docente: Dott. L. Corain 1 LE PRINCIPALI DISTRIBUZIONI

Dettagli

Probabilità condizionata: p(a/b) che avvenga A, una volta accaduto B. Evento prodotto: Evento in cui si verifica sia A che B ; p(a&b) = p(a) x p(b/a)

Probabilità condizionata: p(a/b) che avvenga A, una volta accaduto B. Evento prodotto: Evento in cui si verifica sia A che B ; p(a&b) = p(a) x p(b/a) Probabilità condizionata: p(a/b) che avvenga A, una volta accaduto B Eventi indipendenti: un evento non influenza l altro Eventi disgiunti: il verificarsi di un evento esclude l altro Evento prodotto:

Dettagli

Esercitazioni di Statistica con Matlab

Esercitazioni di Statistica con Matlab Dalmine, 28 aprile 2004 Esercitazioni di Statistica con Matlab Dott. Orietta Nicolis orietta.nicolis@unibg.it 1 0.8 0.6 0.4 0.2 0-0.2-0.4 40 30 20 10 0 0 5 10 15 20 25 30 35 V.c.d. di Poisson P(X = x)

Dettagli

STATISTICA ESERCITAZIONE 11 Dott. Giuseppe Pandolfo 3 febbraio 2015. Modelli continui di probabilità: la v.c. uniforme continua

STATISTICA ESERCITAZIONE 11 Dott. Giuseppe Pandolfo 3 febbraio 2015. Modelli continui di probabilità: la v.c. uniforme continua STATISTICA ESERCITAZIONE 11 Dott. Giuseppe Pandolfo febbraio 2015 Modelli continui di probabilità: la v.c. uniforme continua Esercizio 1 Anna ha una gift card da 50 euro. Non si sa se sia mai stata utilizzata

Dettagli

STATISTICA (I MODULO INFERENZA STATISTICA) Esercitazione I 27/4/2007

STATISTICA (I MODULO INFERENZA STATISTICA) Esercitazione I 27/4/2007 Esercitazione I 7/4/007 In una scatola contenente 0 pezzi di un articolo elettronico risultano essere difettosi. Si estraggono a caso due pezzi, uno alla volta senza reimmissione. Quale è la probabilità

Dettagli

Analisi statistica degli errori

Analisi statistica degli errori Analisi statistica degli errori I valori numerici di misure ripetute risultano ogni volta diversi l operazione di misura può essere considerata un evento casuale a cui è associata una variabile casuale

Dettagli

E naturale chiedersi alcune cose sulla media campionaria x n

E naturale chiedersi alcune cose sulla media campionaria x n Supponiamo che un fabbricante stia introducendo un nuovo tipo di batteria per un automobile elettrica. La durata osservata x i delle i-esima batteria è la realizzazione (valore assunto) di una variabile

Dettagli

Istituzioni di Statistica e Statistica Economica

Istituzioni di Statistica e Statistica Economica Istituzioni di Statistica e Statistica Economica Università degli Studi di Perugia Facoltà di Economia, Assisi, a.a. 2013/14 Esercitazione n. 4 A. Si supponga che la durata in giorni delle lampadine prodotte

Dettagli

TECNICHE DI SIMULAZIONE

TECNICHE DI SIMULAZIONE TECNICHE DI SIMULAZIONE MODELLI STATISTICI NELLA SIMULAZIONE Francesca Mazzia Dipartimento di Matematica Università di Bari a.a. 2004/2005 TECNICHE DI SIMULAZIONE p. 1 Modelli statistici nella simulazione

Dettagli

La variabile casuale Binomiale

La variabile casuale Binomiale La variabile casuale Binomiale Si costruisce a partire dalla nozione di esperimento casuale Bernoulliano che consiste in un insieme di prove ripetute con le seguenti caratteristiche: i) ad ogni singola

Dettagli

1. Richiami di Statistica. Stefano Di Colli

1. Richiami di Statistica. Stefano Di Colli 1. Richiami di Statistica Metodi Statistici per il Credito e la Finanza Stefano Di Colli Dati: Fonti e Tipi I dati sperimentali sono provenienti da un contesto delimitato, definito per rispettare le caratteristiche

Dettagli

Analisi di dati di frequenza

Analisi di dati di frequenza Analisi di dati di frequenza Fase di raccolta dei dati Fase di memorizzazione dei dati in un foglio elettronico 0 1 1 1 Frequenze attese uguali Si assuma che dalle risposte al questionario sullo stato

Dettagli

Esercitazioni di Statistica

Esercitazioni di Statistica Esercitazioni di Statistica Modelli di Variabili Aleatorie Prof. Livia De Giovanni statistica@dis.uniroma1.it Esercizio 1 Sulla base della passata esperienza il responsabile della produzione di un azienda

Dettagli

PROBABILITÀ - SCHEDA N. 2 LE VARIABILI ALEATORIE

PROBABILITÀ - SCHEDA N. 2 LE VARIABILI ALEATORIE Matematica e statistica: dai dati ai modelli alle scelte www.dima.unige/pls_statistica Responsabili scientifici M.P. Rogantin e E. Sasso (Dipartimento di Matematica Università di Genova) PROBABILITÀ -

Dettagli

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 1

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 1 CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 1 Dott.ssa Antonella Costanzo a.costanzo@unicas.it Esercizio 1. Distribuzione di probabilità, funzione di ripartizione di una v.c. discreta Il tasso di cambio

Dettagli

STATISTICA INFERENZIALE

STATISTICA INFERENZIALE STATISTICA INFERENZIALE Premessa importante: si ipotizza che il comportamento della popolazione rispetto ad una variabile casuale X viene descritto attraverso una funzione parametrica di probabilità p

Dettagli

Lezione n. 2 (a cura di Chiara Rossi)

Lezione n. 2 (a cura di Chiara Rossi) Lezione n. 2 (a cura di Chiara Rossi) QUANTILE Data una variabile casuale X, si definisce Quantile superiore x p : X P (X x p ) = p Quantile inferiore x p : X P (X x p ) = p p p=0.05 x p x p Graficamente,

Dettagli

Le variabili casuali. Variabile statistica e variabile casuale. Distribuzione di probabilità della v.c X: X P(X) 0 ⅛ 1 ⅜ 3 ⅛

Le variabili casuali. Variabile statistica e variabile casuale. Distribuzione di probabilità della v.c X: X P(X) 0 ⅛ 1 ⅜ 3 ⅛ Università di Macerata Facoltà di Scienze Politiche - Anno accademico 009- Una variabile casuale è una variabile che assume determinati valori con determinate probabilità; Ad una variabile casuale è associata

Dettagli

Statistical Process Control

Statistical Process Control Statistical Process Control ESERCIZI Esercizio 1. Per la caratteristica di un processo distribuita gaussianamente sono note media e deviazione standard: µ = 100, σ = 0.2. 1a. Calcolare la linea centrale

Dettagli

La distribuzione Normale. La distribuzione Normale

La distribuzione Normale. La distribuzione Normale La Distribuzione Normale o Gaussiana è la distribuzione più importante ed utilizzata in tutta la statistica La curva delle frequenze della distribuzione Normale ha una forma caratteristica, simile ad una

Dettagli

E NECESSARIO RICORRERE ALLE VARIABILI CASUALI

E NECESSARIO RICORRERE ALLE VARIABILI CASUALI IL CONCETTO DI VARIABILE CASUALE Associare una misura di probabilità al verificarsi di un certo evento (come esito di un esperimento) non sempre è sufficiente a risolvere gran parte dei problemi reali

Dettagli

La distribuzione Gaussiana

La distribuzione Gaussiana Università del Piemonte Orientale Corso di Laurea in Biotecnologie Corso di Statistica Medica La distribuzione Normale (o di Gauss) Corso di laurea in biotecnologie - Corso di Statistica Medica La distribuzione

Dettagli

IN MATLAB distribuzione di frequenza. >> x(1)=7.5; >> for i=2:7 x(i)=x(i-1)+5; end. IN MATLAB distribuzione di frequenza

IN MATLAB distribuzione di frequenza. >> x(1)=7.5; >> for i=2:7 x(i)=x(i-1)+5; end. IN MATLAB distribuzione di frequenza IN MATLAB distribuzione di frequenza 2-1 4. Usare la function histc(dati,x) 2-2 1. Riportare i dati in un file (ad esempio dati.mat); 2. load ascii dati: viene creata una variabile dati contenente il campione;

Dettagli

Statistica Matematica A - Ing. Meccanica, Aerospaziale I prova in itinere - 19 novembre 2004

Statistica Matematica A - Ing. Meccanica, Aerospaziale I prova in itinere - 19 novembre 2004 Statistica Matematica A - Ing. Meccanica, Aerospaziale I prova in itinere - 19 novembre 200 Esercizio 1 Tre apparecchiature M 1, M 2 e M 3 in un anno si guastano, in maniera indipendente, con probabilità

Dettagli

Probabilità II Variabili casuali discrete

Probabilità II Variabili casuali discrete Probabilità II Variabili casuali discrete Definizioni principali. Valore atteso e Varianza. Teorema di Bienaymé - Čebičev. V.C. Notevoli: Bernoulli e Binomiale. Concetto di variabile casuale Cos'è una

Dettagli

Test statistici di verifica di ipotesi

Test statistici di verifica di ipotesi Test e verifica di ipotesi Test e verifica di ipotesi Il test delle ipotesi consente di verificare se, e quanto, una determinata ipotesi (di carattere biologico, medico, economico,...) è supportata dall

Dettagli

VARIABILI ALEATORIE CONTINUE

VARIABILI ALEATORIE CONTINUE VARIABILI ALEATORIE CONTINUE Se X è una variabile aleatoria continua, la probabilità che X assuma un certo valore x fissato è in generale zero, quindi non ha senso definire una distribuzione di probabilità

Dettagli

Esercitazioni di Statistica

Esercitazioni di Statistica Esercitazioni di Statistica Test d ipotesi sul valor medio e test χ 2 di adattamento Prof. Livia De Giovanni statistica@dis.uniroma1.it Esercizio 1 Si supponga che il diametro degli anelli metallici prodotti

Dettagli

RISK MANAGEMENT: MAPPATURA E VALUTAZIONE DEI RISCHI AZIENDALI. UN COSTO O UN OPPORTUNITA?

RISK MANAGEMENT: MAPPATURA E VALUTAZIONE DEI RISCHI AZIENDALI. UN COSTO O UN OPPORTUNITA? Crenca & Associati CORPORATE CONSULTING SERVICES RISK MANAGEMENT: MAPPATURA E VALUTAZIONE DEI RISCHI AZIENDALI. UN COSTO O UN OPPORTUNITA? Ufficio Studi Milano, 3 aprile 2008 Introduzione al Risk Management

Dettagli

Temi di Esame a.a. 2012-2013. Statistica - CLEF

Temi di Esame a.a. 2012-2013. Statistica - CLEF Temi di Esame a.a. 2012-2013 Statistica - CLEF I Prova Parziale di Statistica (CLEF) 11 aprile 2013 Esercizio 1 Un computer è collegato a due stampanti, A e B. La stampante A è difettosa ed il 25% dei

Dettagli

Inferenza Statistica a.a. 2010/2011. Docente Dott.a Daniela Nappo daniela.nappo@unina.it

Inferenza Statistica a.a. 2010/2011. Docente Dott.a Daniela Nappo daniela.nappo@unina.it Inferenza Statistica a.a. 2010/2011 Docente Dott.a Daniela Nappo daniela.nappo@unina.it Programma del corso Richiami delle variabili casuali Richiami di inferenza (stima e stimatore, stima puntuale ed

Dettagli

Esercizi di Calcolo delle Probabilità con Elementi di Statistica Matematica

Esercizi di Calcolo delle Probabilità con Elementi di Statistica Matematica Esercizi di Calcolo delle Probabilità con Elementi di Statistica Matematica Lucio Demeio Dipartimento di Scienze Matematiche Università Politecnica delle Marche 1. Esercizio. Siano X ed Y due variabili

Dettagli

Esercizio 1. Svolgimento

Esercizio 1. Svolgimento Esercizio 1 Vengono lanciate contemporaneamente 6 monete. Si calcoli: a) la probabilità che si presentino esattamente 2 testa ; b) la probabilità di ottenere almeno 4 testa ; c) la probabilità che l evento

Dettagli

CENNI DI METODI STATISTICI

CENNI DI METODI STATISTICI Corso di Laurea in Ingegneria Aerospaziale CENNI DI METODI STATISTICI Docente: Page 1 Page 2 Page 3 Due eventi si dicono indipendenti quando il verificarsi di uno non influisce sulla probabilità di accadimento

Dettagli

Statistica inferenziale

Statistica inferenziale Statistica inferenziale Popolazione e campione Molto spesso siamo interessati a trarre delle conclusioni su persone che hanno determinate caratteristiche (pazienti, atleti, bambini, gestanti, ) Osserveremo

Dettagli

Esercitazione del 14/02/2012 Istituzioni di Calcolo delle Probabilità

Esercitazione del 14/02/2012 Istituzioni di Calcolo delle Probabilità Esercitazione del 14/02/2012 Istituzioni di Calcolo delle Probabilità David Barbato Questa raccolta comprende sia gli esercizi dell esercitazione del 14 febbraio sia gli esercizi di ricapitolazione sulle

Dettagli

UNIVERSITA DEGLI STUDI DI PERUGIA STATISTICA MEDICA. Prof.ssa Donatella Siepi donatella.siepi@unipg.it tel: 075 5853525.

UNIVERSITA DEGLI STUDI DI PERUGIA STATISTICA MEDICA. Prof.ssa Donatella Siepi donatella.siepi@unipg.it tel: 075 5853525. UNIVERSITA DEGLI STUDI DI PERUGIA STATISTICA MEDICA Prof.ssa Donatella Siepi donatella.siepi@unipg.it tel: 075 5853525 15 dicembre 2014 7 LEZIONE PROBABILITA L incertezza Nella misura di una qualsiasi

Dettagli

Università di Firenze - Corso di laurea in Statistica Seconda prova intermedia di Statistica. 18 dicembre 2008

Università di Firenze - Corso di laurea in Statistica Seconda prova intermedia di Statistica. 18 dicembre 2008 Università di Firenze - Corso di laurea in Statistica Seconda prova intermedia di Statistica 18 dicembre 008 Esame sull intero programma: esercizi da A a D Esame sulla seconda parte del programma: esercizi

Dettagli

CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 7

CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 7 CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 7 Dott.ssa Antonella Costanzo a.costanzo@unicas.it Esercizio 1. Calcolo delle probabilità Il Sig. Rossi abita nella città X e lavora nella città Y, poco distante.

Dettagli

CP110 Probabilità: Esame del 3 giugno 2010. Testo e soluzione

CP110 Probabilità: Esame del 3 giugno 2010. Testo e soluzione Dipartimento di Matematica, Roma Tre Pietro Caputo 2009-2010, II semestre 8 luglio, 2010 CP110 Probabilità: Esame del 3 giugno 2010 Testo e soluzione 1. (6 pts 12 monete da 1 euro vengono distribuite tra

Dettagli

La Distribuzione Normale (Curva di Gauss)

La Distribuzione Normale (Curva di Gauss) 1 DISTRIBUZIONE NORMALE o CURVA DI GAUSS 1. E la più importante distribuzione statistica continua e trova numerose applicazioni nello studio dei fenomeni biologici. 2. Fu proposta da Gauss (1809) nell'ambito

Dettagli

Indice Prefazione xiii 1 Probabilità

Indice Prefazione xiii 1 Probabilità Prefazione xiii 1 Probabilità 1 1.1 Origini del Calcolo delle Probabilità e della Statistica 1 1.2 Eventi, stato di conoscenza, probabilità 4 1.3 Calcolo Combinatorio 11 1.3.1 Disposizioni di n elementi

Dettagli

Esercitazione n.2 Inferenza su medie

Esercitazione n.2 Inferenza su medie Esercitazione n.2 Esercizio L ufficio del personale di una grande società intende stimare le spese mediche familiari dei suoi impiegati per valutare la possibilità di attuare un programma di assicurazione

Dettagli

Inferenza statistica. Inferenza statistica

Inferenza statistica. Inferenza statistica Spesso l informazione a disposizione deriva da un osservazione parziale del fenomeno studiato. In questo caso lo studio di un fenomeno mira solitamente a trarre, sulla base di ciò che si è osservato, considerazioni

Dettagli

VARIABILI ALEATORIE MULTIPLE E TEOREMI ASSOCIATI. Dopo aver trattato delle distribuzioni di probabilità di una variabile aleatoria, che

VARIABILI ALEATORIE MULTIPLE E TEOREMI ASSOCIATI. Dopo aver trattato delle distribuzioni di probabilità di una variabile aleatoria, che VARIABILI ALATORI MULTIPL TORMI ASSOCIATI Fonti: Cicchitelli Dall Aglio Mood-Grabill. Moduli 6 9 0 del programma. VARIABILI ALATORI DOPPI Dopo aver trattato delle distribuzioni di probabilità di una variabile

Dettagli

2. Un carattere misurato in un campione: elementi di statistica descrittiva e inferenziale

2. Un carattere misurato in un campione: elementi di statistica descrittiva e inferenziale BIOSTATISTICA 2. Un carattere misurato in un campione: elementi di statistica descrittiva e inferenziale Marta Blangiardo, Imperial College, London Department of Epidemiology and Public Health m.blangiardo@imperial.ac.uk

Dettagli

Lezione 6: Forma di distribuzione Corso di Statistica Facoltà di Economia Università della Basilicata. Prof. Massimo Aria

Lezione 6: Forma di distribuzione Corso di Statistica Facoltà di Economia Università della Basilicata. Prof. Massimo Aria Lezione 6: Forma di distribuzione Corso di Statistica Facoltà di Economia Università della Basilicata Prof. Massimo Aria aria@unina.it Standardizzazione di una variabile Standardizzare una variabile statistica

Dettagli

Continua sul retro 42.1 39.7 38.0 38.7 41.4 37.5 38.6 40.5 39.8 38.0 36.9 40.3 42.0 41.3 40.4 39.1 38.4 42.0

Continua sul retro 42.1 39.7 38.0 38.7 41.4 37.5 38.6 40.5 39.8 38.0 36.9 40.3 42.0 41.3 40.4 39.1 38.4 42.0 Statistica per l azienda Esame del 19.06.12 COGNOME NOME Matr. Firma Modulo: singolo con Informatica con StatII & PDRM con Mat. & PDRM altro (specificare) Attenzione: Il presente foglio deve essere compilato

Dettagli

Metodi statistici per le ricerche di mercato

Metodi statistici per le ricerche di mercato Metodi statistici per le ricerche di mercato Prof.ssa Isabella Mingo A.A. 2013-2014 Facoltà di Scienze Politiche, Sociologia, Comunicazione Corso di laurea Magistrale in «Organizzazione e marketing per

Dettagli

Matematica II: Calcolo delle Probabilità e Statistica Matematica

Matematica II: Calcolo delle Probabilità e Statistica Matematica Matematica II: Calcolo delle Probabilità e Statistica Matematica ELT A-Z Docente: dott. F. Zucca Esercitazione # Esercizi Statistica Descrittiva Esercizio I gruppi sanguigni di persone sono B, B, AB, O,

Dettagli

Corso di Automazione Industriale 1. Capitolo 4

Corso di Automazione Industriale 1. Capitolo 4 Simona Sacone - DIST Corso di Automazione Corso Industriale di 1 Automazione Industriale 1 Capitolo 4 Analisi delle prestazioni tramite l approccio simulativo Aspetti statistici della simulazione: generazione

Dettagli

Indirizzo Fisico Informatico Matematico matematica per le classi 47A, 48A, 49A

Indirizzo Fisico Informatico Matematico matematica per le classi 47A, 48A, 49A Indirizzo Fisico Informatico Matematico matematica per le classi 47A, 48A, 49A 1. L'intersezione di tre insiemi contiene 1 solo elemento (cioè esiste un unico elemento comune a tutti e tre gli insiemi).

Dettagli

Corso di Laurea in Ingegneria Informatica Anno Accademico 2014/2015 Calcolo delle Probabilità e Statistica Matematica

Corso di Laurea in Ingegneria Informatica Anno Accademico 2014/2015 Calcolo delle Probabilità e Statistica Matematica Corso di Laurea in Ingegneria Informatica Anno Accademico 2014/2015 Calcolo delle Probabilità e Statistica Matematica Nome N. Matricola Ancona, 14 luglio 2015 1. Tre macchine producono gli stessi pezzi

Dettagli

11. Analisi statistica degli eventi idrologici estremi

11. Analisi statistica degli eventi idrologici estremi . Analisi statistica degli eventi idrologici estremi I processi idrologici evolvono, nello spazio e nel tempo, secondo modalità che sono in parte predicibili (deterministiche) ed in parte casuali (stocastiche

Dettagli

Esercizi riassuntivi di probabilità

Esercizi riassuntivi di probabilità Esercizi riassuntivi di probabilità Esercizio 1 Una ditta produttrice di fotocopiatrici sa che la durata di una macchina (in migliaia di copie) si distribuisce come una normale con µ = 1600 e 2 = 3600.

Dettagli

Statistica inferenziale, Varese, 18 novembre 2009 Prima parte - Modalità C

Statistica inferenziale, Varese, 18 novembre 2009 Prima parte - Modalità C Statistica inferenziale, Varese, 18 novembre 2009 Prima parte - Modalità C Cognome Nome: Part time: Numero di matricola: Diurno: ISTRUZIONI: Il punteggio relativo alla prima parte dell esame viene calcolato

Dettagli

Esercizi di Probabilità e Statistica

Esercizi di Probabilità e Statistica Esercizi di Probabilità e Statistica Samuel Rota Bulò 19 marzo 2007 Spazi di probabilità finiti e uniformi Esercizio 1 Un urna contiene due palle nere e una rossa. Una seconda urna ne contiene una bianca

Dettagli

Esercitazione #5 di Statistica. Test ed Intervalli di Confidenza (per una popolazione)

Esercitazione #5 di Statistica. Test ed Intervalli di Confidenza (per una popolazione) Esercitazione #5 di Statistica Test ed Intervalli di Confidenza (per una popolazione) Dicembre 00 1 Esercizi 1.1 Test su media (con varianza nota) Esercizio n. 1 Il calore (in calorie per grammo) emesso

Dettagli

ELEMENTI DI STATISTICA

ELEMENTI DI STATISTICA Dipartimento di Ingegneria Meccanica Chimica e dei Materiali PROGETTAZIONE E GESTIONE DEGLI IMPIANTI INDUSTRIALI Esercitazione 6 ORE ELEMENTI DI STATISTICA Prof. Ing. Maria Teresa Pilloni Anno Accademico

Dettagli

Elementi di Calcolo delle Probabilità e Statistica per il corso di Analisi Matematica B

Elementi di Calcolo delle Probabilità e Statistica per il corso di Analisi Matematica B Elementi di Calcolo delle Probabilità e Statistica per il corso di Analisi Matematica B Laurea in Ingegneria Meccatronica A.A. 2010 2011 n-dimensionali Riepilogo. Gli esiti di un esperimento aleatorio

Dettagli

1. Distribuzioni campionarie

1. Distribuzioni campionarie Università degli Studi di Basilicata Facoltà di Economia Corso di Laurea in Economia Aziendale - a.a. 2012/2013 lezioni di statistica del 3 e 6 giugno 2013 - di Massimo Cristallo - 1. Distribuzioni campionarie

Dettagli

SOLUZIONI ESERCITAZIONE NR. 6 Variabili casuali binomiale e normale

SOLUZIONI ESERCITAZIONE NR. 6 Variabili casuali binomiale e normale SOLUZIONI ESERCITAZIONE NR. 6 Variabili casuali binomiale e normale ESERCIZIO nr. 1 I Presidi delle scuole medie superiori di una certa cittá italiana hanno indetto tra gli studenti dell ultimo anno una

Dettagli

ESAME DI STATISTICA Nome: Cognome: Matricola:

ESAME DI STATISTICA Nome: Cognome: Matricola: ESAME DI STATISTICA Nome: Cognome: Matricola: ISTRUZIONI: Per la prova è consentito esclusivamente l uso di una calcolatrice tascabile, delle tavole della normale e della t di Student. I risultati degli

Dettagli

ESERCIZI DI RIEPILOGO 2. 7 jj(addi

ESERCIZI DI RIEPILOGO 2. 7 jj(addi ESERCIZI DI RIEPILOGO 2 ESERCIZIO 1 Da un comune mazzo di 52 carte francesi (13 carte per ognuno dei quattro semi: picche, cuori, fiori e quadri) viene estratta casualmente una carta. Definiti gli eventi:

Dettagli

Esercizi del Corso di Statistica. Parte I - Variabili Aleatorie Continue

Esercizi del Corso di Statistica. Parte I - Variabili Aleatorie Continue Esercizi del Corso di Statistica Parte I - Variabili Aleatorie Continue 1. Costruire la variabile uniforme U sull intervallo [a, b], con a IR e b IR. 2. Sia X una variabile aleatoria tale che: 0 x < 1

Dettagli

Riassunto 24 Parole chiave 24 Commenti e curiosità 25 Esercizi 27 Appendice

Riassunto 24 Parole chiave 24 Commenti e curiosità 25 Esercizi 27 Appendice cap 0 Romane - def_layout 1 12/06/12 07.51 Pagina V Prefazione xiii Capitolo 1 Nozioni introduttive 1 1.1 Introduzione 1 1.2 Cenni storici sullo sviluppo della Statistica 2 1.3 La Statistica nelle scienze

Dettagli

Dai dati al modello teorico

Dai dati al modello teorico Dai dati al modello teorico Analisi descrittiva univariata in R 1 Un po di terminologia Popolazione: (insieme dei dispositivi che verranno messi in produzione) finito o infinito sul quale si desidera avere

Dettagli

Esercizi sulle variabili aleatorie Corso di Probabilità e Inferenza Statistica, anno 2007-2008, Prof. Mortera

Esercizi sulle variabili aleatorie Corso di Probabilità e Inferenza Statistica, anno 2007-2008, Prof. Mortera Esercizi sulle variabili aleatorie Corso di Probabilità e Inferenza Statistica, anno 2007-2008, Prof. Mortera 1. Avete risparmiato 10 dollari che volete investire per un anno in azioni e/o buoni del tesoro

Dettagli

19txtI_BORRA_2013 18/11/13 10:52 Pagina 449 TAVOLE STATISTICHE

19txtI_BORRA_2013 18/11/13 10:52 Pagina 449 TAVOLE STATISTICHE 19txtI_BORRA_2013 18/11/13 10:52 Pagina 449 TAVOLE STATISTICHE Nell inferenza è spesso richiesto il calcolo di alcuni valori critici o di alcune probabilità per le variabili casuali che sono state introdotte

Dettagli

VARIABILI ALEATORIE E VALORE ATTESO

VARIABILI ALEATORIE E VALORE ATTESO VARIABILI ALEATORIE E VALORE ATTESO Variabili aleatorie Variabili discrete e continue Coppie e vettori di variabili aleatorie Valore atteso Proprietà del valore atteso Varianza Covarianza e varianza della

Dettagli

Metodi statistici per le ricerche di mercato

Metodi statistici per le ricerche di mercato Metodi statistici per le ricerche di mercato Prof.ssa Isabella Mingo A.A. 2014-2015 Facoltà di Scienze Politiche, Sociologia, Comunicazione Corso di laurea Magistrale in «Organizzazione e marketing per

Dettagli

Esercitazioni 2013/14

Esercitazioni 2013/14 Esercitazioni 2013/14 Esercizio 1 Due ditte V e W partecipano ad una gara di appalto per la costruzione di un tratto di autostrada che viene assegnato a seconda del prezzo. L offerta fatta dalla ditta

Dettagli

Introduzione alla Teoria degli Errori

Introduzione alla Teoria degli Errori Introduzione alla Teoria degli Errori 1 Gli errori di misura sono inevitabili Una misura non ha significato se non viene accompagnata da una ragionevole stima dell errore ( Una scienza si dice esatta non

Dettagli

Esercizio 1. Proprietà desiderabili degli stimatori (piccoli campioni)

Esercizio 1. Proprietà desiderabili degli stimatori (piccoli campioni) STATISTICA (2) ESERCITAZIONE 4 18.02.2013 Dott.ssa Antonella Costanzo Esercizio 1. Proprietà desiderabili degli stimatori (piccoli campioni) Sia X una popolazione distribuita secondo la legge Bernoulliana

Dettagli

UNIVERSITA DEGLI STUDI DI BRESCIA-FACOLTA DI MEDICINA E CHIRURGIA CORSO DI LAUREA IN INFERMIERISTICA SEDE DI DESENZANO dg STATISTICA MEDICA

UNIVERSITA DEGLI STUDI DI BRESCIA-FACOLTA DI MEDICINA E CHIRURGIA CORSO DI LAUREA IN INFERMIERISTICA SEDE DI DESENZANO dg STATISTICA MEDICA Seconda Lezione DISTRIBUZIONE DI FREQUENZA Frequenza assoluta: è il numero puro di casi per quella modalità Frequenze relative: sono il rapporto tra la frequenza assoluta con cui si manifesta una modalità

Dettagli

Slide Cerbara parte1 5. Le distribuzioni teoriche

Slide Cerbara parte1 5. Le distribuzioni teoriche Slide Cerbara parte1 5 Le distribuzioni teoriche I fenomeni biologici, demografici, sociali ed economici, che sono il principale oggetto della statistica, non sono retti da leggi matematiche. Però dalle

Dettagli

Esercizio 1. Verifica di ipotesi sulla media (varianza nota), p-value del test

Esercizio 1. Verifica di ipotesi sulla media (varianza nota), p-value del test STATISTICA (2) ESERCITAZIONE 6 05.03.2014 Dott.ssa Antonella Costanzo Esercizio 1. Verifica di ipotesi sulla media (varianza nota), p-value del test Il preside della scuola elementare XYZ sospetta che

Dettagli

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 8

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 8 CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 8 Dott.ssa Antonella Costanzo a.costanzo@unicas.it Esercizio 1. Test delle ipotesi sulla varianza In un azienda che produce componenti meccaniche, è stato

Dettagli

LA STATISTICA si interessa del rilevamento, dell elaborazione e dello studio dei dati; studia ciò che accade o come è fatto un gruppo numeroso di

LA STATISTICA si interessa del rilevamento, dell elaborazione e dello studio dei dati; studia ciò che accade o come è fatto un gruppo numeroso di STATISTICA LA STATISTICA si interessa del rilevamento, dell elaborazione e dello studio dei dati; studia ciò che accade o come è fatto un gruppo numeroso di oggetti; cerca, attraverso l uso della matematica

Dettagli

MATEMATICA 5 PERIODI

MATEMATICA 5 PERIODI BAC EUROPEO 2008 MATEMATICA 5 PERIODI DATA 5 giugno 2008 DURATA DELL ESAME : 4 ore (240 minuti) MATERIALE AUTORIZZATO Formulario delle scuole europee Calcolatrice non grafica e non programmabile AVVERTENZE

Dettagli

1 Valore atteso o media

1 Valore atteso o media 1 Valore atteso o media Definizione 1.1. Sia X una v.a., si chiama valore atteso (o media o speranza matematica) il numero, che indicheremo con E[X] o con µ X, definito come E[X] = i x i f(x i ) se X è

Dettagli

Tenendo conto che la funzione di probabilità per una v.c. binomiale X è definita dalla seguente notazione

Tenendo conto che la funzione di probabilità per una v.c. binomiale X è definita dalla seguente notazione APPENDICE I. TAVOLE STATISTICHE Si ribadisce al lettore che in questa Appendice si riportano le procedure di Excel e di R.2.12.1 che gli permettono di trovare qualsiasi valore di probabilità cercato e

Dettagli

Brugnaro Luca Boscaro Gianni (2009) 1

Brugnaro Luca Boscaro Gianni (2009) 1 STATISTICA PER LE PROFESSIONI SANITARIE - LIVELLO BASE Brugnaro Luca Boscaro Gianni (2009) 1 Perché la statistica Prendere decisioni Bibliografia non soddisfacente Richieste nuove conoscenze Raccolta delle

Dettagli

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 6

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 6 CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 6 Dott.ssa Antonella Costanzo a.costanzo@unicas.it Esercizio 1. Stima puntuale per la proporzione Da un lotto di arance se ne estraggono 400, e di queste 180

Dettagli

VERIFICA DELLE IPOTESI

VERIFICA DELLE IPOTESI VERIFICA DELLE IPOTESI Introduzione Livelli di significatività Verifica di ipotesi sulla media di una popolazione normale Verifica di ipotesi sulla varianza di una popolazione normale Verifica di ipotesi

Dettagli

1 Modelli di variabili aleatorie continue

1 Modelli di variabili aleatorie continue Modelli di variabili aleatorie continue. Variabili aleatorie continue uniformi (o rettangolari) Una v.a. X è detta uniforme (o rettangolare) sull intervallo [a, b] se la sua densità è data da se x [a,

Dettagli

Misure della dispersione o della variabilità

Misure della dispersione o della variabilità QUARTA UNITA Misure della dispersione o della variabilità Abbiamo visto che un punteggio di per sé non ha alcun significato e lo acquista solo quando è posto a confronto con altri punteggi o con una statistica.

Dettagli

Inferenza statistica I Alcuni esercizi. Stefano Tonellato

Inferenza statistica I Alcuni esercizi. Stefano Tonellato Inferenza statistica I Alcuni esercizi Stefano Tonellato Anno Accademico 2006-2007 Avvertenza Una parte del materiale è stato tratto da Grigoletto M. e Ventura L. (1998). Statistica per le scienze economiche,

Dettagli

Stima per intervalli Nei metodi di stima puntuale è sempre presente un ^ errore θ θ dovuto al fatto che la stima di θ in genere non coincide con il parametro θ. Sorge quindi l esigenza di determinare una

Dettagli

Grafici delle distribuzioni di frequenza

Grafici delle distribuzioni di frequenza Grafici delle distribuzioni di frequenza L osservazione del grafico può far notare irregolarità o comportamenti anomali non direttamente osservabili sui dati; ad esempio errori di misurazione 1) Diagramma

Dettagli

PARTE PRIMA PROBABILITA

PARTE PRIMA PROBABILITA i PARTE PRIMA PROBABILITA CAPITOLO I - Gli assiomi della probabilità 1.1 Introduzione........................................................... pag. 1 1.2 Definizione assiomatica di probabilità.......................................

Dettagli

Tutorato di Probabilità e Statistica

Tutorato di Probabilità e Statistica Università Ca Foscari di Venezia Dipartimento di informatica 20 aprile 2006 Variabili aleatorie... Example Giochiamo alla roulette per tre volte 1 milione sull uscita del numero 29. Qual è la probabilità

Dettagli

Statistica descrittiva

Statistica descrittiva Statistica descrittiva La statistica descrittiva mette a disposizione il calcolo di indicatori sintetici che individuano, con un singolo valore, proprieta` statistiche di un campione/popolazione rispetto

Dettagli