Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 13: 24 aprile 2013

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa 2012-2013 lezione 13: 24 aprile 2013"

Transcript

1 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa lezone 13: 24 aprle 2013 professor Danele Rtell 1/23?

2 reammortamento uò accadere che, dopo l erogazone del prestto d mporto A, prma d nzare l ammortamento del debto, s rmbors per un certo perodo la sola quota nteress calcolata sul debto. L ammortamento vero e propro nza alla fne del perodo d preammortamento. In pratca se c sono p rate d preammortamento le rate a rmborso sono: α 1 = α 2 = = α p = A α p+1 = α p+2 = = α p+n = A α n 2/23?

3 Scadenza meda artmetca n ammortamento unforme C s = α = Aα n 3/23?

4 Scadenza meda artmetca n ammortamento unforme C s = α = Aα n t = n s C s s=1 n s=1 C s = n /23?

5 Scadenza meda fnanzara n ammortamento unforme C s = α = Aα n nel caso d valutazone allo stesso tasso cu è erogato l prestto ( n ) ( n ) ln C s ln C s (1 + ) s t = s=1 s=1 ln (1 + ) 4/23?

6 Scadenza meda fnanzara n ammortamento unforme C s = α = Aα n nel caso d valutazone allo stesso tasso cu è erogato l prestto ( n ) ( n ) ln C s ln C s (1 + ) s t = t = s=1 s=1 ln (1 + ) ( ) n ln (nα) ln α (1 + ) s s=1 ln (1 + ) 4/23?

7 t = ln (nα) ln ( αa n ) ln (1 + ) 5/23?

8 t = ln (nα) ln ( αa n ) ln (1 + ) t = ln (nα) ln (A) ln (1 + ) 5/23?

9 t = ln (nα) ln ( αa n ) ln (1 + ) t ln (nα) ln (A) = ln (1 + ) t = ln ( ) nα n ln (1 + ) 5/23?

10 S dmostra che t = ln (nα) ln ( αa n ) ln (1 + ) t ln (nα) ln (A) = ln (1 + ) t = ln ( ) nα n ln (1 + ) ( ) ln nαn lm 0 + ln (1 + ) = n /23?

11 Se la scadenza meda fnanzara è valutata ad un tasso j dverso dal tasso d prestto s rtrova la medesma formula t = ln (nα) ln ( αa n j ) ln (1 + j) 6/23?

12 Se la scadenza meda fnanzara è valutata ad un tasso j dverso dal tasso d prestto s rtrova la medesma formula t = ln (nα) ln ( αa n j ) ln (1 + j) t = ln ( nα n j ) ln (1 + j) 6/23?

13 Ammortamento a due tass Supponamo che al tempo 0 sa prestata la somma A, che va resttuta al tempo n. L ammortamento a due tass (amercano) s basa su due potes: per cascuna delle scadenze da 1 fno a n 1 l debtore resttusce la sola quota nteress A, mentre alla scadenza del prestto n l debtore resttusce oltre agl nteress la somma prestata (1 + )A 7/23?

14 Ammortamento a due tass Supponamo che al tempo 0 sa prestata la somma A, che va resttuta al tempo n. L ammortamento a due tass (amercano) s basa su due potes: per cascuna delle scadenze da 1 fno a n 1 l debtore resttusce la sola quota nteress A, mentre alla scadenza del prestto n l debtore resttusce oltre agl nteress la somma prestata (1 + )A a temp 1,..., n l debtore versa presso terz una rata atta a costture al tasso j la somma A al tempo n. 7/23?

15 In sostanza vengono pagate dal debtore n rate costant d mporto: α = ( + σ n j ) A 8/23?

16 In sostanza vengono pagate dal debtore n rate costant d mporto: α = ( ) + σ n j A essendo σ n j l recproco d s n j. Se = j s rtrova la rata costante dell ammortamento unforme. 8/23?

17 In sostanza vengono pagate dal debtore n rate costant d mporto: α = ( ) + σ n j A essendo σ n j l recproco d s n j. Se = j s rtrova la rata costante dell ammortamento unforme. Il debtore ha convenenza ad usare questo metodo d rmborso solo nel caso n cu l tasso d costtuzone del captale j sa maggore del tasso a debto. 8/23?

18 In sostanza vengono pagate dal debtore n rate costant d mporto: α = ( ) + σ n j A essendo σ n j l recproco d s n j. Se = j s rtrova la rata costante dell ammortamento unforme. Il debtore ha convenenza ad usare questo metodo d rmborso solo nel caso n cu l tasso d costtuzone del captale j sa maggore del tasso a debto. er provare cò s deve dmostrare che se j > allora: 8/23?

19 In sostanza vengono pagate dal debtore n rate costant d mporto: α = ( ) + σ n j A essendo σ n j l recproco d s n j. Se = j s rtrova la rata costante dell ammortamento unforme. Il debtore ha convenenza ad usare questo metodo d rmborso solo nel caso n cu l tasso d costtuzone del captale j sa maggore del tasso a debto. er provare cò s deve dmostrare che se j > allora: + σ n j < α n 8/23?

20 Ammortamento talano restata una somma A al tempo zero, questa vene rmborsata a temp 1,..., t = n n modo che, ad ogn rmborso, la quota captale rmborsata sa costante: c m = A n, m = 1,..., n 9/23?

21 Ammortamento talano restata una somma A al tempo zero, questa vene rmborsata a temp 1,..., t = n n modo che, ad ogn rmborso, la quota captale rmborsata sa costante: c m = A n, m = 1,..., n La quota nteress è, allora: h m = δ m 1 = A n m + 1 n 9/23?

22 Ammortamento talano restata una somma A al tempo zero, questa vene rmborsata a temp 1,..., t = n n modo che, ad ogn rmborso, la quota captale rmborsata sa costante: c m = A n, m = 1,..., n La quota nteress è, allora: h m = δ m 1 = A n m + 1 n ertanto la rata all epoca m è: α m = A [ ] 1 + (n + 1) A n n m (1) 9/23?

23 Ammortamento talano restata una somma A al tempo zero, questa vene rmborsata a temp 1,..., t = n n modo che, ad ogn rmborso, la quota captale rmborsata sa costante: c m = A n, m = 1,..., n La quota nteress è, allora: h m = δ m 1 = A n m + 1 n ertanto la rata all epoca m è: α m = A [ ] 1 + (n + 1) A n n m (1) Le rate sono n progressone artmetca d ragone (A/n) e prmo termne (A/n) [1 + (n + 1) ]. 9/23?

24 L ammortamento talano è un partcolare ammortamento n progressone artmetca. Il debto estnto dopo m pagament è: m ε m = α k = A m n l debto resduo δ m è dato da: k=1 δ m = A ε m = A ( 1 m n ) (2) 10/23?

25 L ammortamento talano è un partcolare ammortamento n progressone artmetca. Il debto estnto dopo m pagament è: m ε m = α k = A m n l debto resduo δ m è dato da: k=1 δ m = A ε m = A ( 1 m n In questo tpo d rmborso tanto l debto estnto, quanto l debto resduo non dpendono da tasso d nteresse. ) (2) 10/23?

26 Ad esempo l rmborso d n 5 ann al tasso del 5% porta alla tavola d ammortamento: m R m c m h m δ m ε m , 00 0, , , , , , , , , , , , , , , , , , , , , , , , 00 0, , 00 11/23?

27 Nella pratca quotdana l metodo talano è scarsamente usato per l rmborso d mport consstent. Infatt la struttura stessa del rmborso porta a rate nzal molto onerose e rate fnal pù pccole. Ad esempo per rmborsare la somma d n dec ann con rate mensl al tasso 12 = 0, che, s not, corrsponde al 5,00047% annuo, ottenamo, ad esempo, che la prma rata è d 930, 59, la dodcesma d 902, 58, mentre la prma rata dell ultmo anno è d 655, 56 e l ultma d 620, /23?

28 Nella pratca quotdana l metodo talano è scarsamente usato per l rmborso d mport consstent. Infatt la struttura stessa del rmborso porta a rate nzal molto onerose e rate fnal pù pccole. Ad esempo per rmborsare la somma d n dec ann con rate mensl al tasso 12 = 0, che, s not, corrsponde al 5,00047% annuo, ottenamo, ad esempo, che la prma rata è d 930, 59, la dodcesma d 902, 58, mentre la prma rata dell ultmo anno è d 655, 56 e l ultma d 620, 55. È naturale confrontare con l ammortamento francese: n questo caso la rata costante è d 791, /23?

29 Indce d onerostà Se α k, c k, h k, 1 k n, n N sono le rate d ammortamento, quote captale e quote nteress d un debto A, che s rmborsa n n rate al tasso, l ndce d onerostà γ del prestto s defnsce come: n γ = k=1 h k A. (γ) 13/23?

30 Indce d onerostà Se α k, c k, h k, 1 k n, n N sono le rate d ammortamento, quote captale e quote nteress d un debto A, che s rmborsa n n rate al tasso, l ndce d onerostà γ del prestto s defnsce come: n k=1 γ = A. (γ) γ può essere espresso con quozente fra la dfferenza della somma delle rate e la somma prestata sulla somma prestata: n n n n α k A c k + h k A k=1 = A k=1 k=1 A h k 13/23? = k=1 h k A = γ.

31 Teorema Se T è la scadenza meda fnanzara, calcolata allo stesso tasso del prestto, delle rate d ammortamento α k allora: γ + 1 = (1 + ) T. (µ) 14/23?

32 Teorema Se T è la scadenza meda fnanzara, calcolata allo stesso tasso del prestto, delle rate d ammortamento α k allora: γ + 1 = (1 + ) T. (µ) Dmostrazone La scadenza meda fnanzara è l tempo T tale per cu l valore attuale delle rate è uguale alla somma delle rate stesse: ( n n ) α k (1 + ) k = α k (1 + ) T. (γ ) k=1 k=1 14/23?

33 Ma, essendo n n α k (1 + ) k = A, c k = A, k=1 possamo scrvere (γ ) come: k=1 n n n n (1 + ) T A = α k = c k + h k = A + h k. k=1 k=1 k=1 k=1 15/23?

34 Ma, essendo n n α k (1 + ) k = A, c k = A, k=1 k=1 possamo scrvere (γ ) come: n n n n (1 + ) T A = α k = c k + h k = A + h k. k=1 k=1 k=1 k=1 n er concludere rcavamo h k da (γ) e sosttuamo nella precedente uguaglanza trovando: e da qu segue (µ). k=1 (1 + ) T A = A + γa 15/23?

35 Corollaro In un ammortamento unforme d n rate d mporto α al tasso s ha: γ = nα n 1. 16/23?

36 Corollaro In un ammortamento unforme d n rate d mporto α al tasso s ha: γ = nα n 1. Infatt nell ammortamento unforme, s ha: n h k = nα A = naα n A k=1 16/23?

37 Corollaro In un ammortamento talano d n rate al tasso s ha: γ = n /23?

38 Corollaro In un ammortamento talano d n rate al tasso s ha: γ = n Se A è la somma prestata, la k-esma quota nteress è: h k = A n (n + 1 k), qund usando (γ) s trova: γ = n (n + 1 k) = n n k=1 da cu segue la tes. [ n(n + 1) ] n(n + 1), 2 17/23?

39 Corollaro In un ammortamento talano d n rate al tasso la scadenza meda fnanzara è ln(1 + n + 1 ) T = 2 ln(1 + ) 18/23?

40 Corollaro In un ammortamento talano d n rate al tasso la scadenza meda fnanzara è T = ln(1 + n ln(1 + ) È maggore la scadenza meda fnanzara dell ammortamento francese o d quello talano? ln ( nα n ) ln (1 + )? > ) ln(1 + n + 1 ) 2 ln(1 + ) 18/23?

41 maggore onerostà dell ammortamento francese rspetto a quello talano: sussste la dsuguaglanza: nα n 1 > n (d) 19/23?

42 maggore onerostà dell ammortamento francese rspetto a quello talano: sussste la dsuguaglanza: nα n 1 > n (d) se s svluppa n sere d Taylor, rspetto ad l lato destro d (d) s trova, arrestandos al secondo ordne: nα n 1 = n n (f) 19/23?

43 Rmborso n progressone artmetca Regme composto S rmborsa la somma A con n rate costtuent una progressone artmetca d prmo termne α 1 e ragone ρ. Il rmborso del debto vene determnato uguaglando l valore attuale della rendta annua mmedata d n termn α k = α 1 + (k 1) ρ, 1 k n alla somma prestata 20/23?

44 rcordando la formula per l valore attuale mponamo l condzone: ( α 1 + nρ + ρ ) a n n ρ = A (3) 21/23?

45 rcordando la formula per l valore attuale mponamo l condzone: ( α 1 + nρ + ρ ) a n n ρ = A (3) una equazone n due ncognte ha nfnte soluzon. Se s fssa α 1, rcavando ρ s trova: ρ = A α 1 a n (1 + n) a n n (3 a ) 21/23?

46 rcordando la formula per l valore attuale mponamo l condzone: ( α 1 + nρ + ρ ) a n n ρ = A (3) una equazone n due ncognte ha nfnte soluzon. Se s fssa α 1, rcavando ρ s trova: ρ = se s fssa ρ l prmo termne è: A α 1 a n (1 + n) a n n α 1 = A α n ρ (1 + n) a n n a n (3 a ) 21/23?

47 α 1 e ρ non possono essere fssat n modo completamente arbtraro. er prma cosa α 1 non può superare la quanttà A (1 + ) altrment la prma rata supererebbe l montante del debto, noltre occorre tutte le rate sano postve, qund s dovrà mporre anche che la quanttà α 1 + (n 1)ρ, che rappresenta l ultma rata, sa postva. 22/23?

48 Se s scegle d prendere l prmo termne α 1 concdente con la rata d ammortamento francese, α = A α n da (3 a ) s trova che deve essere ρ = 0 n sostanza s rtrova l ammortamento a rate costant. Inoltre, da (3 a ) s vede che: { α1 < Aα n = ρ > 0, α 1 > Aα n = ρ < 0. 23/23?

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa 2012-2013 Esercitazione: 4 aprile 2013

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa 2012-2013 Esercitazione: 4 aprile 2013 Dpartmento d Statstca Unverstà d Bologna Matematca Fnanzara aa 2012-2013 Eserctazone: 4 aprle 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/41? Aula "Ranzan B" 255 post 1 2 3 4 5 6 7 8 9

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa 2011-2012 Esercitazione: 16 marzo 2012

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa 2011-2012 Esercitazione: 16 marzo 2012 Dpartmento d Statstca Unverstà d Bologna Matematca Fnanzara aa 2011-2012 Eserctazone: 16 marzo 2012 professor Danele Rtell www.unbo.t/docdent/danele.rtell 1/8? Eserczo Un prestto d d 24 350 è rmborsable

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa 2011-2012 lezione 22: 30 maggio 2013

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa 2011-2012 lezione 22: 30 maggio 2013 Dpartmento d Statstca Unverstà d Bologna Matematca Fnanzara aa 2011-2012 lezone 22: 30 maggo 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/27? Eserczo Dmostrare che l equazone della frontera

Dettagli

Risoluzione quesiti I esonero 2011

Risoluzione quesiti I esonero 2011 Rsoluzone quest I esonero 011 1) Compto 1 Q3 Un azenda a a dsposzone due progett d nvestmento tra d loro alternatv. Il prmo prevede l pagamento d un mporto par a 100 all epoca 0 e fluss par a 60 all epoca

Dettagli

Valore attuale di una rendita. Valore attuale in Excel: funzione VA

Valore attuale di una rendita. Valore attuale in Excel: funzione VA Valore attuale d una rendta Nella scorsa lezone c samo concentrat sul problema del calcolo del alore attuale d una rendta S che è dato n generale da V ( S) { R ; t, 0,,,..., n,... } n 0 R ( t ), doe (t

Dettagli

Lezione 10. L equilibrio del mercato finanziario: la struttura dei tassi d interesse

Lezione 10. L equilibrio del mercato finanziario: la struttura dei tassi d interesse Lezone 1. L equlbro del mercato fnanzaro: la struttura de tass d nteresse Ttol con scadenza dversa hanno prezz (e tass d nteresse) dfferent. Due ttol d durata dversa emess dallo stesso soggetto (stesso

Dettagli

Cenni di matematica finanziaria Unità 61

Cenni di matematica finanziaria Unità 61 Prerequst: - Rsolvere equazon algebrche d 1 grado ed equazon esponenzal Questa untà è rvolta al 2 benno del seguente ndrzzo dell Isttuto Tecnco, settore Tecnologco: Agrara, Agroalmentare e Agrondustra.

Dettagli

PROBLEMA DI SCELTA FRA DUE REGIMI DI

PROBLEMA DI SCELTA FRA DUE REGIMI DI PROBLEMA DI SCELTA FRA DUE REGIMI DI CAPITALIZZAZIONE Prerequst: legge d captalzzazone semplce legge d captalzzazone composta logartm e loro propretà dervate d una funzone pendenza d una curva n un punto

Dettagli

Algebra 2. 6 4. Sia A un anello commutativo. Si ricorda che in un anello commutativo vale il teorema binomiale, cioè. (a + b) n = a i b n i i.

Algebra 2. 6 4. Sia A un anello commutativo. Si ricorda che in un anello commutativo vale il teorema binomiale, cioè. (a + b) n = a i b n i i. Testo Fac-smle 2 Durata prova: 2 ore 8 1. Un gruppo G s dce semplce se suo unc sottogrupp normal sono 1 e G stesso. Sa G un gruppo d ordne pq con p e q numer prm tal che p < q. (a) Il gruppo G può essere

Dettagli

Indicatori di rendimento per i titoli obbligazionari

Indicatori di rendimento per i titoli obbligazionari Indcator d rendmento per ttol obblgazonar LA VALUTAZIONE DEGLI INVESTIMENTI A TASSO FISSO Per valutare la convenenza d uno strumento fnanzaro è necessaro precsare: /4 Le specfche esgenze d un nvesttore

Dettagli

Statistica e calcolo delle Probabilità. Allievi INF

Statistica e calcolo delle Probabilità. Allievi INF Statstca e calcolo delle Probabltà. Allev INF Proff. L. Ladell e G. Posta 06.09.10 I drtt d autore sono rservat. Ogn sfruttamento commercale non autorzzato sarà perseguto. Cognome e Nome: Matrcola: Docente:

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 5: 24 febbraio 2014

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 5: 24 febbraio 2014 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2013-2014 lezone 5: 24 febbrao 2014 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/24? Eserczo Trovare quale legge d captalzzazone

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 3:

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 3: Dpartmento d Statstca Unverstà d Bologna Matematca Fnanzara aa 2011-2012 lezone 3: 21022012 professor Danele Rtell www.unbo.t/docdent/danele.rtell 1/31? Captalzzazone msta S usa l regme composto per l

Dettagli

Mauro Vettorello. Vi veneto. come Calcolare la Rata di un Finanziamento o di un Leasing senza calcolatrice STUDIO VETTORELLO

Mauro Vettorello. Vi veneto. come Calcolare la Rata di un Finanziamento o di un Leasing senza calcolatrice STUDIO VETTORELLO Mauro Vettorello V veneto come Calcolare la Rata d un Fnanzamento o d un Leasng senza calcolatrce STUDIO VETTORELLO V veneto come Calcolare la Rata d un Fnanzamento o d un Leasng senza calcolatrce Mauro

Dettagli

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2016/2017. Esercizi 3

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2016/2017. Esercizi 3 ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2016/2017 Esercz 3 Pan d ammortamento Eserczo 1. Un prestto d 12000e vene rmborsato n 10 ann con rate mensl e pano all

Dettagli

MATEMATICA FINANZIARIA 1 ECONOMIA AZIENDALE. Cognome... Nome Matricola..

MATEMATICA FINANZIARIA 1 ECONOMIA AZIENDALE. Cognome... Nome Matricola.. MATEMATICA FINANZIARIA PROVA SCRITTA DEL 0 FEBBRAIO 009 ECONOMIA AZIENDALE Cognome... Nome Matrcola.. ESERCIZIO Un ndduo ha ogg a dsposzone una somma S0.000 che ha accumulato negl ultm ann tramte l ersamento

Dettagli

Test delle ipotesi Parte 2

Test delle ipotesi Parte 2 Test delle potes arte Test delle potes sulla dstrbuzone: Introduzone Test χ sulla dstrbuzone b Test χ sulla dstrbuzone: Eserczo Test delle potes sulla dstrbuzone Molte concluson tratte nell nferenza parametrca

Dettagli

STATISTICA DESCRITTIVA - SCHEDA N. 5 REGRESSIONE LINEARE

STATISTICA DESCRITTIVA - SCHEDA N. 5 REGRESSIONE LINEARE Matematca e statstca: da dat a modell alle scelte www.dma.unge/pls_statstca Responsabl scentfc M.P. Rogantn e E. Sasso (Dpartmento d Matematca Unverstà d Genova) STATISTICA DESCRITTIVA - SCHEDA N. REGRESSIONE

Dettagli

Condensatori e resistenze

Condensatori e resistenze Condensator e resstenze Lucano attaa Versone del 22 febbrao 2007 Indce In questa nota presento uno schema replogatvo relatvo a condensator e alle resstenze, con partcolare rguardo a collegament n sere

Dettagli

Dipartimento di Economia Aziendale e Studi Giusprivatistici. Università degli Studi di Bari Aldo Moro. Corso di Macroeconomia 2014

Dipartimento di Economia Aziendale e Studi Giusprivatistici. Università degli Studi di Bari Aldo Moro. Corso di Macroeconomia 2014 Dpartmento d Economa Azendale e Stud Gusprvatstc Unverstà degl Stud d Bar Aldo Moro Corso d Macroeconoma 2014 1.Consderate l seguente grafco: LM Partà de tass d nteresse LM B A IS IS Y E E E Immagnate

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa Lezione 1: Martedì 17/2/2015

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa Lezione 1: Martedì 17/2/2015 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2014-2015 Lezone 1: Martedì 17/2/2015 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/40? Codce docente 030508 Codce corso 00675 Matematca

Dettagli

Elementi di matematica finanziaria

Elementi di matematica finanziaria APPENDICE ATEATICA Elemen d maemaca fnanzara. Il regme dell neresse semplce L neresse è l fruo reso dall nvesmeno del capale. Nel corso dell esposzone s farà rfermeno a due regm o pologe d calcolo dell

Dettagli

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2016/ Esercizi 2

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2016/ Esercizi 2 ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE AA 2016/2017 1 Esercz 2 Regme d sconto commercale Eserczo 1 Per quale durata una somma a scadenza S garantsce lo stesso valore

Dettagli

Metodi e Modelli per l Ottimizzazione Combinatoria Progetto: Metodo di soluzione basato su generazione di colonne

Metodi e Modelli per l Ottimizzazione Combinatoria Progetto: Metodo di soluzione basato su generazione di colonne Metod e Modell per l Ottmzzazone Combnatora Progetto: Metodo d soluzone basato su generazone d colonne Lug De Govann Vene presentato un modello alternatvo per l problema della turnazone delle farmace che

Dettagli

NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI CONFRONTO DI PIU MEDIE IL METODO DI ANALISI DELLA VARIANZA

NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI CONFRONTO DI PIU MEDIE IL METODO DI ANALISI DELLA VARIANZA NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI CONFRONTO DI PIU MEDIE IL METODO DI ANALISI DELLA VARIANZA IL PROBLEMA Supponamo d voler studare l effetto d 4 dverse dete su un campone casuale d 4

Dettagli

Il modello markoviano per la rappresentazione del Sistema Bonus Malus. Prof. Cerchiara Rocco Roberto. Materiale e Riferimenti

Il modello markoviano per la rappresentazione del Sistema Bonus Malus. Prof. Cerchiara Rocco Roberto. Materiale e Riferimenti Il modello marovano per la rappresentazone del Sstema Bonus Malus rof. Cercara Rocco Roberto Materale e Rferment. Lucd dstrbut n aula. Lemare 995 (pag.6- e pag. 74-78 3. Galatoto G. 4 (tt del VI Congresso

Dettagli

Capitolo 7. La «sintesi neoclassica» e il modello IS-LM. 2. La curva IS

Capitolo 7. La «sintesi neoclassica» e il modello IS-LM. 2. La curva IS Captolo 7 1. Il modello IS-LM La «sntes neoclassca» e l modello IS-LM Defnzone: ndvdua tutte le combnazon d reddto e saggo d nteresse per le qual l mercato de ben (curva IS) e l mercato della moneta (curva

Dettagli

Ministero della Salute D.G. della programmazione sanitaria --- GLI ACC - L ANALISI DELLA VARIABILITÀ METODOLOGIA

Ministero della Salute D.G. della programmazione sanitaria --- GLI ACC - L ANALISI DELLA VARIABILITÀ METODOLOGIA Mnstero della Salute D.G. della programmazone santara --- GLI ACC - L ANALISI DELLA VARIABILITÀ METODOLOGIA La valutazone del coeffcente d varabltà dell mpatto economco consente d ndvduare gl ACC e DRG

Dettagli

PROCEDURA INFORMATIZZATA PER LA COMPENSAZIONE DELLE RETI DI LIVELLAZIONE. (Metodo delle Osservazioni Indirette) - 1 -

PROCEDURA INFORMATIZZATA PER LA COMPENSAZIONE DELLE RETI DI LIVELLAZIONE. (Metodo delle Osservazioni Indirette) - 1 - PROCEDURA INFORMATIZZATA PER LA COMPENSAZIONE DELLE RETI DI LIVELLAZIONE (Metodo delle Osservazon Indrette) - - SPECIFICHE DI CALCOLO Procedura software per la compensazone d una rete d lvellazone collegata

Dettagli

Università di Napoli Parthenope Facoltà di Ingegneria

Università di Napoli Parthenope Facoltà di Ingegneria Unverstà d Napol Parthenope acoltà d Ingegnera Corso d Metod Probablstc Statstc e Process Stocastc docente: Pro. Vto Pascazo 20 a Lezone: /2/2003 Sommaro Dstrbuzon condzonate: CD, pd, pm Teorema della

Dettagli

VA TIR - TA - TAEG Introduzione

VA TIR - TA - TAEG Introduzione VA TIR - TA - TAEG Introduzone La presente trattazone s pone come obettvo d analzzare due prncpal crter d scelta degl nvestment e fnanzament per valutare la convenenza tra due o pù operazon fnanzare. S

Dettagli

Allenamenti di matematica: Teoria dei numeri e algebra modulare Soluzioni esercizi

Allenamenti di matematica: Teoria dei numeri e algebra modulare Soluzioni esercizi Allenament d matematca: Teora de numer e algebra modulare Soluzon esercz 29 novembre 2013 1. Canguro salterno. Un canguro salterno s trova a ped d una scala nfnta che ntende salre nel seguente modo: Salta

Dettagli

Verifica termoigrometrica delle pareti

Verifica termoigrometrica delle pareti Unverstà Medterranea d Reggo Calabra Facoltà d Archtettura Corso d Tecnca del Controllo Ambentale A.A. 2009-200 Verfca termogrometrca delle paret Prof. Marna Mstretta ANALISI IGROTERMICA DEGLI ELEMENTI

Dettagli

1 La domanda di moneta

1 La domanda di moneta La domanda d moneta Eserczo.4 (a) Keynes elenca tre motv per detenere moneta: Scopo transattvo Scopo precauzonale Scopo speculatvo Il modello d domanda d moneta a scopo speculatvo d Keynes consdera la

Dettagli

Esercitazioni del corso: STATISTICA

Esercitazioni del corso: STATISTICA A. A. 0-0 Eserctazon del corso: STATISTICA Sommaro Eserctazone : Moda Medana Meda Artmetca Varabltà: Varanza, Devazone Standard, Coefcente d Varazone ESERCIZIO : UNIVERSITÀ DEGLI STUDI DI MILANO BICOCCA

Dettagli

Indici di misurazione del potere di mercato

Indici di misurazione del potere di mercato Indc d msurazone del potere d mercato Metod tradzonal: tass d rendmento, margn e q d Tobn Indc d concentrazone Metod presuntv d Ganmara Martn Introduzone Le teore de mercat concorrenzal e non concorrenzal

Dettagli

LA COMPATIBILITA tra due misure:

LA COMPATIBILITA tra due misure: LA COMPATIBILITA tra due msure: 0.4 Due msure, supposte affette da error casual, s dcono tra loro compatbl quando la loro dfferenza può essere rcondotta ad una pura fluttuazone statstca attorno al valore

Dettagli

Calcolo della caduta di tensione con il metodo vettoriale

Calcolo della caduta di tensione con il metodo vettoriale Calcolo della caduta d tensone con l metodo vettorale Esempo d rete squlbrata ed effett del neutro nel calcolo. In Ampère le cadute d tensone sono calcolate vettoralmente. Per ogn utenza s calcola la caduta

Dettagli

Corso di laurea in Ingegneria Meccatronica. DINAMICI CA - 04 ModiStabilita

Corso di laurea in Ingegneria Meccatronica. DINAMICI CA - 04 ModiStabilita Automaton Robotcs and System CONTROL Unverstà degl Stud d Modena e Reggo Emla Corso d laurea n Ingegnera Meccatronca MODI E STABILITA DEI SISTEMI DINAMICI CA - 04 ModStablta Cesare Fantuzz (cesare.fantuzz@unmore.t)

Dettagli

MODELLO MONOINDICE. R = a + β R. R M = è variabile aleatoria di rendimento del mercato (in Italia può essere usato il MIB 30).

MODELLO MONOINDICE. R = a + β R. R M = è variabile aleatoria di rendimento del mercato (in Italia può essere usato il MIB 30). ODELLO ONOINDICE Il rendmento d un ttolo uò essere scrtto come: R = a + β R (1) dove: R = rendmento dell -mo ttolo; a = comonente aleatora del rendmento, ndendente dall andamento del mercato; R = è varable

Dettagli

Università degli Studi di Urbino Facoltà di Economia

Università degli Studi di Urbino Facoltà di Economia Unverstà degl Stud d Urbno Facoltà d Economa Lezon d Statstca Descrttva svolte durante la prma parte del corso d corso d Statstca / Statstca I A.A. 004/05 a cura d: F. Bartolucc Lez. 8/0/04 Statstca descrttva

Dettagli

Macchine. 5 Esercitazione 5

Macchine. 5 Esercitazione 5 ESERCITAZIONE 5 Lavoro nterno d una turbomacchna. Il lavoro nterno massco d una turbomacchna può essere determnato not trangol d veloctà che s realzzano all'ngresso e all'uscta della macchna stessa. Infatt

Dettagli

Lezioni di Statistica (25 marzo 2013) Docente: Massimo Cristallo

Lezioni di Statistica (25 marzo 2013) Docente: Massimo Cristallo UNIVERSITA DEGLI STUDI DI BASILICATA FACOLTA DI ECONOMIA Corso d laurea n Economa Azendale Lezon d Statstca (25 marzo 2013) Docente: Massmo Crstallo QUARTILI Dvdono la dstrbuzone n quattro part d uguale

Dettagli

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna. Matematica aa lezione febbraio 2009

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna. Matematica aa lezione febbraio 2009 Dpartmento d Matematca per le scenze economche e socal Unverstà d Bologna Matematca aa 2008-2009 lezone 17 13 febbrao 2009 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/19? 2/19? Fgura 1: ( 5y

Dettagli

Analisi dei flussi 182

Analisi dei flussi 182 Programmazone e Controllo Anals de fluss Clent SERVIZIO Uscta Quanto al massmo produce l mo sstema produttvo? Quanto al massmo produce la ma macchna? Anals de fluss 82 Programmazone e Controllo Teora delle

Dettagli

SU UNA CLASSE DI EQUAZIONI CONSERVATIVE ED IPERBOLICHE COMPLETAMENTE ECCEZIONALI E COMPATIBILI CON UNA LEGGE DI CONSERVAZIONE SUPPLEMENTARE

SU UNA CLASSE DI EQUAZIONI CONSERVATIVE ED IPERBOLICHE COMPLETAMENTE ECCEZIONALI E COMPATIBILI CON UNA LEGGE DI CONSERVAZIONE SUPPLEMENTARE SU UNA CLASSE DI EQUAZIONI CONSERVATIVE ED IPERBOLICHE COMPLETAMENTE ECCEZIONALI E COMPATIBILI CON UNA LEGGE DI CONSERVAZIONE SUPPLEMENTARE GIOVANNI CRUPI, ANDREA DONATO SUMMARY. We characterze a set of

Dettagli

Moduli su un dominio a ideali principali Maurizio Cornalba versione 15/5/2013

Moduli su un dominio a ideali principali Maurizio Cornalba versione 15/5/2013 Modul su un domno a deal prncpal Maurzo Cornalba versone 15/5/2013 Sa A un anello commutatvo con 1. Indchamo con A k l modulo somma dretta d k cope d A. Un A-modulo fntamente generato M s dce lbero se

Dettagli

Le obbligazioni: misure di rendimento e rischio La curva dei rendimenti per scadenze

Le obbligazioni: misure di rendimento e rischio La curva dei rendimenti per scadenze Le obblgazon: msure d rendmento e rscho La curva de rendment per scadenze Economa del Mercato Moblare A.A. 2017-2018 La curva de rendment (yeld curve) (1) Il rendmento d un ttolo obblgazonaro dpende da

Dettagli

CAPITOLO 3 Incertezza di misura Pagina 26

CAPITOLO 3 Incertezza di misura Pagina 26 CAPITOLO 3 Incertezza d msura Pagna 6 CAPITOLO 3 INCERTEZZA DI MISURA Le operazon d msurazone sono tutte nevtablmente affette da ncertezza e coè da un grado d ndetermnazone con l quale l processo d msurazone

Dettagli

Studio grafico-analitico di una funzioni reale in una variabile reale

Studio grafico-analitico di una funzioni reale in una variabile reale Studo grafco-analtco d una funzon reale n una varable reale f : R R a = f ( ) n Sequenza de pass In pratca 1 Stablre l tpo d funzone da studare es. f ( ) Determnare l domno D (o campo d esstenza) della

Dettagli

LEZIONE 2 e 3. La teoria della selezione di portafoglio di Markowitz

LEZIONE 2 e 3. La teoria della selezione di portafoglio di Markowitz LEZIONE e 3 La teora della selezone d portafoglo d Markowtz Unverstà degl Stud d Bergamo Premessa Unverstà degl Stud d Bergamo Premessa () È puttosto frequente osservare come gl nvesttor tendano a non

Dettagli

Leggere i dati da file

Leggere i dati da file Esempo %soluzon d una equazone d secondo grado dsp('soluzon d a^+b+c') anput('damm l coeffcente a '); bnput('damm l coeffcente b '); cnput('damm l coeffcente c '); deltab^-4*a*c; f delta0 dsp('soluzon

Dettagli

urto v 2f v 2i e forza impulsiva F r F dt = i t

urto v 2f v 2i e forza impulsiva F r F dt = i t 7. Urt Sstem a due partcelle Defnzone d urto elastco, urto anelastco e mpulso L urto è un nterazone fra corp che avvene n un ntervallo d tempo normalmente molto breve, al termne del quale le quanttà d

Dettagli

Codice di Stoccaggio Capitolo 7 Bilanciamento e reintegrazione dello stoccaggio

Codice di Stoccaggio Capitolo 7 Bilanciamento e reintegrazione dello stoccaggio Codce d Stoccaggo Captolo 7 Blancamento e rentegrazone dello stoccaggo 7.4 Corrspettv per servz d stoccaggo L UTENTE è tenuto a corrspondere a STOGIT, per la prestazone de servz, gl mport dervant dall

Dettagli

A. AUMENTO DELLA SPESA PUBBLICA FINANZIATO ESCLUSIVAMENTE TRAMITE INDEBITAMENTO

A. AUMENTO DELLA SPESA PUBBLICA FINANZIATO ESCLUSIVAMENTE TRAMITE INDEBITAMENTO 4. SCHMI ALTRNATIVI DI FINANZIAMNTO DLLA SPSA PUBBLICA. Se l Governo decde d aumentare la Spesa Pubblca G (o Trasferment TR), allora deve anche reperre fond necessar per fnanzare questa sua maggore spesa.

Dettagli

CAPITOLO IV CENNI SULLE MACCHINE SEQUENZIALI

CAPITOLO IV CENNI SULLE MACCHINE SEQUENZIALI Cenn sulle macchne seuenzal CAPITOLO IV CENNI SULLE MACCHINE SEQUENZIALI 4.) La macchna seuenzale. Una macchna seuenzale o macchna a stat fnt M e' un automatsmo deale a n ngress e m uscte defnto da: )

Dettagli

Statistica descrittiva

Statistica descrittiva Statstca descrttva. Indc d poszone. Per ndc d poszone d un nseme d dat, ordnat secondo la loro randezza, s ntendono alcun valor che cadono all nterno dell nseme. Gl ndc pù usat sono: I. eda. II. edana.

Dettagli

Relazione funzionale e statistica tra due variabili Modello di regressione lineare semplice Stima puntuale dei coefficienti di regressione

Relazione funzionale e statistica tra due variabili Modello di regressione lineare semplice Stima puntuale dei coefficienti di regressione 1 La Regressone Lneare (Semplce) Relazone funzonale e statstca tra due varabl Modello d regressone lneare semplce Stma puntuale de coeffcent d regressone Decomposzone della varanza Coeffcente d determnazone

Dettagli

Principi di ingegneria elettrica. Lezione 6 a. Analisi delle reti resistive

Principi di ingegneria elettrica. Lezione 6 a. Analisi delle reti resistive Prncp d ngegnera elettrca Lezone 6 a Anals delle ret resste Anals delle ret resste L anals d una rete elettrca (rsoluzone della rete) consste nel determnare tutte le corrent ncognte ne ram e tutt potenzal

Dettagli

POLITECNICO DI BARI - DICATECh Corso di Laurea in Ingegneria Ambientale e del Territorio IDRAULICA AMBIENTALE - A.A. 2015/2016 ESONERO 15/01/2016

POLITECNICO DI BARI - DICATECh Corso di Laurea in Ingegneria Ambientale e del Territorio IDRAULICA AMBIENTALE - A.A. 2015/2016 ESONERO 15/01/2016 POLITECNICO DI BARI - DICATECh Corso d Laurea n Ingegnera Ambentale e del Terrtoro IDRAULICA AMBIENTALE - A.A. 015/016 ESONERO 15/01/016 ESERCIZIO 1 S consder la rete aperta n fgura, nella quale le portate

Dettagli

Il logaritmo discreto in Z p Il gruppo moltiplicativo Z p delle classi resto modulo un primo p è un gruppo ciclico.

Il logaritmo discreto in Z p Il gruppo moltiplicativo Z p delle classi resto modulo un primo p è un gruppo ciclico. Il logartmo dscreto n Z p Il gruppo moltplcatvo Z p delle class resto modulo un prmo p è un gruppo cclco. Defnzone (Logartmo dscreto). Sa p un numero prmo e sa ā una radce prmtva n Z p. Sa ȳ Z p. Il logartmo

Dettagli

Integrazione numerica dell equazione del moto per un sistema lineare viscoso a un grado di libertà. Prof. Adolfo Santini - Dinamica delle Strutture 1

Integrazione numerica dell equazione del moto per un sistema lineare viscoso a un grado di libertà. Prof. Adolfo Santini - Dinamica delle Strutture 1 Integrazone numerca dell equazone del moto per un sstema lneare vscoso a un grado d lbertà Prof. Adolfo Santn - Dnamca delle Strutture 1 Introduzone 1/2 L equazone del moto d un sstema vscoso a un grado

Dettagli

Intorduzione alla teoria delle Catene di Markov

Intorduzione alla teoria delle Catene di Markov Intorduzone alla teora delle Catene d Markov Mchele Ganfelce a.a. 2014/2015 Defnzone 1 Sa ( Ω, F, {F n } n 0, P uno spazo d probabltà fltrato. Una successone d v.a. {ξ n } n 0 defnta su ( Ω, F, {F n }

Dettagli

Analisi Matenatica Lezione 5 1 ottobre 2013

Analisi Matenatica Lezione 5 1 ottobre 2013 Dpartmento d Scenze Statstche Anals Matenatca Lezone 5 1 ottobre 2013 prof. Danele Rtell danele.rtell@unbo.t 1/13? Fattorale d un numero naturale Sa n N {0}. Il fattorale d n, n! s defnsce nduttvamente

Dettagli

Sintesi della policy di valutazione e pricing delle obbligazioni emesse da Banca Emilveneta S.p.A.

Sintesi della policy di valutazione e pricing delle obbligazioni emesse da Banca Emilveneta S.p.A. Sntes della polcy d valutazone e prcng delle obblgazon emesse da Banca Emlveneta S.p.A. INDICE 1. PREMESSA...1 2. METODOLOGIA DI PRICING...1 2.1 PRICING...3 1. PREMESSA Il presente documento ha lo scopo

Dettagli

Esercitazioni del corso di Relazioni tra variabili. Giancarlo Manzi Facoltà di Sociologia Università degli Studi di Milano-Bicocca

Esercitazioni del corso di Relazioni tra variabili. Giancarlo Manzi Facoltà di Sociologia Università degli Studi di Milano-Bicocca Eserctazon del corso d Relazon tra varabl Gancarlo Manz Facoltà d Socologa Unverstà degl Stud d Mlano-Bcocca e-mal: gancarlo.manz@statstca.unmb.t Terza eserctazone Mlano, 8 febbrao 7 SOMMARIO TERZA ESERCITAZIONE

Dettagli

... ... ... DI GIOIOSA MAREA (ME) PORTO TURISTICO NELLA FRAZIONE SAN GIORGIO DEL COMUNE. 3. RICAVI E COSTI DI GESTIONE... l

... ... ... DI GIOIOSA MAREA (ME) PORTO TURISTICO NELLA FRAZIONE SAN GIORGIO DEL COMUNE. 3. RICAVI E COSTI DI GESTIONE... l PORTO TURSTCO NELLA FRAZONE SAN GORGO DEL COMUNE D GOOSA MAREA (ME) PROGETTO PRELMNARE PANO ECOVOb'TCO E FNANZAF0 NDCE 1. PREMESSA...,.l 2. COSTO DELL'NTERVENTO...,...,...,..,,.,...,,.,,~...,.,.,.,,...l

Dettagli

Predimensionamento reti chiuse

Predimensionamento reti chiuse Predmensonamento ret chuse Rspetto ad una rete aperta, ogn magla aggunge un grado d lbertà (una nfntà d soluzon) nella determnazone delle portate Q,Q 1, e Q 2, utlzzando le sole equazon d contnutà. a dfferenza

Dettagli

Laboratorio 2B A.A. 2012/2013. Elaborazione Dati. Lab 2B CdL Fisica

Laboratorio 2B A.A. 2012/2013. Elaborazione Dati. Lab 2B CdL Fisica Laboratoro B A.A. 01/013 Elaborazone Dat Lab B CdL Fsca Lab B CdL Fsca Elaborazone dat spermental Prncpo della massma verosmglanza Quando eseguamo una sere d msure relatve ad una data grandezza fsca, quanto

Dettagli

Matematica Generale a.a. 2016/17 Teoremi dimostrati nel corso. 1 Funzioni ad una variabile

Matematica Generale a.a. 2016/17 Teoremi dimostrati nel corso. 1 Funzioni ad una variabile Matematca Generale a.a. 2016/17 Teorem dmostrat nel corso. ATTENZIONE!!!!. Nel corso d matematca generale sono stat presentat teorem per qual è rchesta la conoscenza del solo enuncato e teorem de qual

Dettagli

Generalità. Problema: soluzione di una equazione differenziale alle derivate ordinarie di ordine n: ( )

Generalità. Problema: soluzione di una equazione differenziale alle derivate ordinarie di ordine n: ( ) Generaltà Problema: soluzone d una equazone derenzale alle dervate ordnare d ordne n: n n K soggetta alle n condzon nzal: K n Ovvero rcercare la soluzone d un sstema d n equazon derenzal ordnare del prmo

Dettagli

Programmazione e Controllo della Produzione. Analisi dei flussi

Programmazione e Controllo della Produzione. Analisi dei flussi Programmazone e Controllo della Produzone Anals de fluss Clent SERVIZIO Uscta Quanto al massmo produce l mo sstema produttvo? Quanto al massmo produce la ma macchna? Lo rsolvo con la smulazone? Sarebbe

Dettagli

MATEMATICA FINANZIARIA 1 PROVA SCRITTA DEL 17 NOVEMBRE 2009 ECONOMIA AZIENDALE

MATEMATICA FINANZIARIA 1 PROVA SCRITTA DEL 17 NOVEMBRE 2009 ECONOMIA AZIENDALE MATEMATICA FINANZIARIA PROVA SCRITTA DEL 7 NOVEMBRE 009 ECONOMIA AZIENDALE ESERCIZIO Un ndduo contrae un prestto d.000 da rborsare edante rate annual costant postcpate al tasso annuo del,%. Dopo l pagaento

Dettagli

I MODELLI MULTISTATO PER LE ASSICURAZIONI DI PERSONE

I MODELLI MULTISTATO PER LE ASSICURAZIONI DI PERSONE Facoltà d Economa Valutazone de prodott e dell mpresa d asscurazone I MODELLI MULTISTATO PER LE ASSICURAZIONI DI PERSONE Clauda Colucc Letza Monno Gordano Caporal Martna Ragg I Modell Multstato sono un

Dettagli

MODELLISTICA DI SISTEMI DINAMICI

MODELLISTICA DI SISTEMI DINAMICI CONTROLLI AUTOMATICI Ingegnera Gestonale http://www.automazone.ngre.unmore.t/pages/cors/controllautomatcgestonale.htm MODELLISTICA DI SISTEMI DINAMICI Ing. Federca Gross Tel. 059 2056333 e-mal: federca.gross@unmore.t

Dettagli

31/03/2012. Collusione (Cabral cap.8 PRN capp. 13-14) Il modello standard. Collusione nel modello di Bertrand. Collusione nel modello di Bertrand

31/03/2012. Collusione (Cabral cap.8 PRN capp. 13-14) Il modello standard. Collusione nel modello di Bertrand. Collusione nel modello di Bertrand Collusone (Cabral cap.8 PRN capp. 13-14) Accord tact o esplct per aumentare l potere d mercato e pratcare prezz pù elevat rspetto all equlbro non cooperatvo corrspondente Esste un vantaggo dalla collusone

Dettagli

Lezione n. 10. Legge di Raoult Legge di Henry Soluzioni ideali Deviazioni dall idealit. idealità Convenzioni per le soluzioni reali

Lezione n. 10. Legge di Raoult Legge di Henry Soluzioni ideali Deviazioni dall idealit. idealità Convenzioni per le soluzioni reali Chmca Fsca - Chmca e Tecnologa Farmaceutche Lezone n. 10 Legge d Raoult Legge d Henry Soluzon deal Devazon dall dealt dealtà Convenzon per le soluzon real Relazon tra coeffcent d attvtà 02/03/2008 Antonno

Dettagli

Lezione n.13. Regime sinusoidale

Lezione n.13. Regime sinusoidale Lezone 3 Regme snusodale Lezone n.3 Regme snusodale. Rcham sulle funzon snusodal. etodo de fasor e fasor. mpedenza ed ammettenza. Dagramm fasoral 3. Potenza n regme snusodale 3. Potenza attva e reattva

Dettagli

Capitolo 33 TRASPORTO IN PRESSIONE

Capitolo 33 TRASPORTO IN PRESSIONE Captolo 33 TRASPORTO IN PRESSIONE 1 INTRODUZIONE I sstem d condotte n pressone destnat all'approvvgonamento drco comprendono: - gl acquedott estern, che adducono l'acqua dalle font d'almentazone alle zone

Dettagli

B - ESERCIZI: IP e TCP:

B - ESERCIZI: IP e TCP: Unverstà d Bergamo Dpartmento d Ingegnera dell Informazone e Metod Matematc B - ESERCIZI: IP e TCP: F. Martgnon Archtetture e Protocoll per Internet Eserczo b. S consder l collegamento n fgura A C =8 kbt/s

Dettagli

La verifica delle ipotesi

La verifica delle ipotesi La verfca delle potes In molte crcostanze l rcercatore s trova a dover decdere quale, tra le dverse stuazon possbl rferbl alla popolazone, è quella meglo sostenuta dalle evdenze emprche. Ipotes statstca:

Dettagli

Analisi e confronto tra metodi di regolarizzazione diretti per la risoluzione di problemi discreti mal-posti

Analisi e confronto tra metodi di regolarizzazione diretti per la risoluzione di problemi discreti mal-posti UNIVERSIA DEGLI SUDI DI CAGLIARI Facoltà d Ingegnera Elettronca Corso d Calcolo Numerco 1 A.A. 00/003 Anals e confronto tra metod d regolarzzazone drett per la rsoluzone d prolem dscret mal-post Docente:

Dettagli

Soluzioni 3.1. n(n 1) (n k + 1) z n k! k + 1 n k. lim k

Soluzioni 3.1. n(n 1) (n k + 1) z n k! k + 1 n k. lim k (1) La sere bnomale è B n (z) = k=0 Con l metodo del rapporto s ottene R = lm k Soluzon 3.1 n(n 1) (n k + 1) z n k! c k c k+1 = lm k k + 1 n k lm k c k z k. k=0 1 + 1 k 1 n k = 1 (2) La multfunzone f(z)

Dettagli

SISTEMI PREVISIVI PER IL FLUSSO DI CLIENTELA IN POSTE ITALIANE

SISTEMI PREVISIVI PER IL FLUSSO DI CLIENTELA IN POSTE ITALIANE Statstca Applcata Vol. 17, n. 3, 2005 377 SISTEMI PREVISIVI PER IL FLUSSO DI CLIENTELA IN POSTE ITALIANE Gan Pero Cervellera Poste Italane, Dvsone Rete Terrtorale, Drezone Operazon, Svluppo Process Ducco

Dettagli

Valutazione delle opzioni col modello di Black e Scholes

Valutazione delle opzioni col modello di Black e Scholes Valutazone delle opzon col modello d Black e Scholes Rosa Mara Mnnn a.a. 2014-2015 1 Introduzone L applcazone del moto Brownano all economa é stata nnescata prncpalmente da due cause. Attorno agl ann 70,

Dettagli

Problemi variazionali invarianti 1

Problemi variazionali invarianti 1 Problem varazonal nvarant 1 A F. Klen per l cnquantesmo annversaro del dottorato. Emmy Noether a Gottnga. Comuncazone presentata da F. Klen nella seduta del 26 luglo 1918 2. 1 Invarante Varatonsprobleme,

Dettagli

Modelli di base per la politica economica

Modelli di base per la politica economica Marcella Mulno Modell d base per la poltca economca Corso d Poltca economca a.a. 22-23 Captolo 2 Modello - e poltche scal e monetare In questo captolo rchamamo brevemente l modello macroeconomco a prezz

Dettagli

Prova di verifica n.0 Elettronica I (26/2/2015)

Prova di verifica n.0 Elettronica I (26/2/2015) Proa d erfca n.0 lettronca I (26/2/2015) OUT he hfe + L OUT - Fgura 1 Con rfermento alla rete elettrca d Fg.1, determnare: OUT / OUT / la resstenza sta dal generatore ( V ) la resstenza sta dall uscta

Dettagli

Dai circuiti ai grafi

Dai circuiti ai grafi Da crcut a graf Il grafo è una schematzzazone grafca semplfcata che rappresenta le propretà d nterconnessone del crcuto ad esso assocato Il grafo è costtuto da un nseme d nod e d lat Se lat sono orentat

Dettagli

6.1. Moody s KMV Credit Portfolio Manager

6.1. Moody s KMV Credit Portfolio Manager 6.. Moody s MV Credt Portfolo Manager 6... La struttura del modello L mpanto d Moody s MV (MMV) è costtuto dal modello d Merton e da un approcco d tpo fattorale per la stma delle correlazon. Attualmente,

Dettagli

S O L U Z I O N I + 100

S O L U Z I O N I + 100 S O L U Z I O N I Nl 00 un farmaco vnva vnduto a 70 a) Nll pots ch ogn anno l przzo aumnt dl 3% rsptto all anno prcdnt quanto vrrbb a costar lo stsso farmaco nl 0? b) Supponamo ch l przzo dl farmaco nl

Dettagli

Elementi di Matematica Finanziaria. Rendite e ammortamenti. Università Parthenope 1

Elementi di Matematica Finanziaria. Rendite e ammortamenti. Università Parthenope 1 Elemet d Matematca Fazara Redte e ammortamet Uverstà Partheope 1 S chama redta ua successoe d captal da rscuotere (o da pagare) a scadeze determate S chamao rate della redta sgol captal da rscuotere (o

Dettagli

Sommario 2. Introduzione 3. Capitalizzazione semplice 4 Esercizi sulla capitalizzazione semplice 5 Primo livello 5 Secondo livello 5

Sommario 2. Introduzione 3. Capitalizzazione semplice 4 Esercizi sulla capitalizzazione semplice 5 Primo livello 5 Secondo livello 5 Sommaro Sommaro 2 Introduzone 3 Captalzzazone semplce 4 Esercz sulla captalzzazone semplce 5 Prmo lvello 5 Secondo lvello 5 Sconto commercale 6 Esercz sullo sconto commercale 7 Sconto razonale 7 Esercz

Dettagli

* * * Nota inerente il calcolo della concentrazione rappresentativa della sorgente. Aprile 2006 RL/SUO-TEC 166/2006 1

* * * Nota inerente il calcolo della concentrazione rappresentativa della sorgente. Aprile 2006 RL/SUO-TEC 166/2006 1 APAT Agenza per la Protezone dell Ambente e per Servz Tecnc Dpartmento Dfesa del Suolo / Servzo Geologco D Itala Servzo Tecnologe del sto e St Contamnat * * * Nota nerente l calcolo della concentrazone

Dettagli

La rappresentazione dei numeri. La rappresentazione dei numeri. Aritmetica dei calcolatori. La rappresentazione dei numeri

La rappresentazione dei numeri. La rappresentazione dei numeri. Aritmetica dei calcolatori. La rappresentazione dei numeri Artmetca de calcolator Rappresentazone de numer natural e relatv Addzone e sommator: : a propagazone d rporto, veloce, con segno Moltplcazone e moltplcator: senza segno, con segno e algortmo d Booth Rappresentazone

Dettagli

Modelli descrittivi, statistica e simulazione

Modelli descrittivi, statistica e simulazione Modell descrttv, statstca e smulazone Master per Smart Logstcs specalst Roberto Cordone (roberto.cordone@unm.t) Statstca descrttva Cernusco S.N., govedì 28 gennao 2016 (9.00/13.00) 1 / 15 Indc d poszone

Dettagli

I Appello di Calcolo delle Probabilità Cognome: Laurea Triennale in Matematica 2014/15 Nome: 29 gennaio

I Appello di Calcolo delle Probabilità Cognome: Laurea Triennale in Matematica 2014/15 Nome: 29 gennaio I Appello d Calcolo delle Probabltà Cognome: Laurea Trennale n Matematca 24/5 Nome: 29 gennao 25 Emal: Se non è espressamente ndcato l contraro, per la soluzone degl esercz è possble usare tutt rsultat

Dettagli

Capitolo 3 Covarianza, correlazione, bestfit lineari e non lineari

Capitolo 3 Covarianza, correlazione, bestfit lineari e non lineari Captolo 3 Covaranza, correlazone, bestft lnear e non lnear ) Covaranza e correlazone Ad un problema s assoca spesso pù d una varable quanttatva (es.: d una persona possamo determnare peso e altezza, oppure

Dettagli

2 Modello IS-LM. 2.1 Gli e etti della politica monetaria

2 Modello IS-LM. 2.1 Gli e etti della politica monetaria 2 Modello IS-LM 2. Gl e ett della poltca monetara S consderun modello IS-LM senzastatocon seguent datc = 0:8, I = 00( ), L d = 0:5 500, M s = 00 e P =. ) S calcolno valor d equlbro del reddto e del tasso

Dettagli

3.1 Successioni. R Definizione (Successione numerica) E Esempio 3.1 CAPITOLO 3

3.1 Successioni. R Definizione (Successione numerica) E Esempio 3.1 CAPITOLO 3 CAPITOLO 3 Successioni e serie 3. Successioni Un caso particolare di applicazione da un insieme numerico ad un altro insieme numerico è quello delle successioni, che risultano essere definite nell insieme

Dettagli