Capitolo 3: Ottimizzazione Discreta. E. Amaldi DEIB, Politecnico di Milano

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Capitolo 3: Ottimizzazione Discreta. E. Amaldi DEIB, Politecnico di Milano"

Transcript

1 Capitolo 3: Ottimizzazione Discreta E. Amaldi DEIB, Politecnico di Milano

2 3.1 Modelli di PLI e PLMI Moltissimi problemi decisionali complessi possono essere formulati o approssimati come problemi di Programmazione Lineare in cui tutte (alcune) variabili sono vincolate ad assumere valori interi. Definizione: Programmazione Lineare Intera (PLI): min c t x Ax b x 0 intere dove la matrice A è di dimensione m n, i vettori c e b sono di dimensione n e rispettivamente m. Se tutte le variabili devono assumere valori binari si tratta di Programmazione Lineare Binaria (PL0 1) Programmazione Lineare Mista-Intera (PLMI): min c t 1x + c t 2y A 1 x + A 2 y b x 0, y 0 intere dove le matrici A 1 e A 2 sono di dimensione m n 1 e rispettivamente m n 2, i vettori c 1, c 2 e b sono di dimensione n 1, n 2 e rispettivamente m. 1

3 Alcuni modelli di PLI e PLMI: 1) Problema di Zaino Binario Knapsack Un azienda deve decidere come investire un capitale b. Sono disponibili n investimenti. Sia a i la somma da investire nel caso si scelga di effettuare l i-esimo investimento, con 1 i n. Sia p i il profitto atteso dell i-esimo investimento. Problema: determinare quali investimenti effettuare in modo da massimizzare il profitto atteso totale. 2

4 Alcuni modelli di PLI e PLMI: 1) Problema di Zaino Binario Knapsack Un azienda deve decidere come investire un capitale b. Sono disponibili n investimenti. Sia a i la somma da investire nel caso si scelga di effettuare l i-esimo investimento, con 1 i n. Sia p i il profitto atteso dell i-esimo investimento. Problema: determinare quali investimenti effettuare in modo da massimizzare il profitto atteso totale. Formulazione di PLI Variabili di decisione: x i = 1 se si effettua l i-esimo investimento e x i = 0 altrimenti, con 1 i n max n i=1 p ix i n i=1 a ix i b x i {0, 1} i Svariate applicazioni dirette e indirette (come sotto-problema) 3

5 2) Problema di Assegnamento Assignment Dati n progetti (jobs) e n ingegneri (macchine), supponiamo che ogni progetto possa essere eseguito da qualsiasi ingegnere. Sia c ij il costo se i-esimo progetto è eseguito dal j-esimo ingegnere, con 1 i, j n. Ogni progetto deve essere assegnato esattamente ad un ingegnere e ogni ingegnere deve vedersi assegnare esattamente un progetto. Problema: decidere quale progetto assegnare ad ogni ingegnere in modo da minimizzare il costo totale necessario per completare tutti i progetti. Numero di soluzioni ammissibili = n! 4

6 2) Problema di Assegnamento Assignment Dati n progetti (jobs) e n ingegneri (macchine), supponiamo che ogni progetto possa essere eseguito da qualsiasi ingegnere. Sia c ij il costo se i-esimo progetto è eseguito dal j-esimo ingegnere, con 1 i, j n. Ogni progetto deve essere assegnato esattamente ad un ingegnere e ogni ingegnere deve vedersi assegnare esattamente un progetto. Problema: decidere quale progetto assegnare ad ogni ingegnere in modo da minimizzare il costo totale necessario per completare tutti i progetti. Formulazione di PLI Variabili di decisione: x ij = 1 se i-esimo progetto viene assegnato al j-esimo ingegnere e x ij = 0 altrimenti, con 1 i, j n min n n i=1 j=1 c ijx ij s.v. n i=1 x ij = 1 n j=1 x ij = 1 x ij {0, 1} j i i, j 5

7 3) Problema di Copertura di un Insieme Set Covering Siano insieme M = {1, 2,..., m} famiglia {M 1,..., M n } di n suoi sottoinsiemi ( M j M per ogni j = 1,..., n) per ogni j con 1 j n, costo c j di M j determinare quali sottoinsiemi selezionare per coprire tutti gli elementi di M minimizzando il costo totale. 6

8 3) Problema di Copertura di un Insieme Set Covering Siano insieme M = {1, 2,..., m} famiglia {M 1,..., M n } di n suoi sottoinsiemi ( M j M per ogni j = 1,..., n) per ogni j con 1 j n, costo c j di M j determinare quali sottoinsiemi selezionare per coprire tutti gli elementi di M minimizzando il costo totale. Formulazione di PLI Variabili di decisione: x j = 1 se si seleziona M j e x j = 0 altrimenti, con 1 j n min s.v. n j=1 c jx j j:i M j x j 1 i (1) x j {0, 1} j dove i vincoli (1) sono quelli di copertura 7

9 Set covering : min n c j x j : Ax e, x {0, 1} n j=1 dove A = [a ij ] con a ij = 1 se i M j e a ij = 0 altrimenti, ed e = (1, 1,..., 1) t Esempio: localizzazione di servizi di emergenza (ambulanze o vigili del fuoco) M = { aree da coprire }, M j = { aree raggiungibili in 10 min dal sito candidato j } Set packing : max n c j x j : Ax e, x {0, 1} n j=1 dove i parametri c j rappresentano profitti Esempio: localizzazione di impianti ad elevato impatto ambientale (discariche o inceneritori) M = { città }, M j = { città con impatto ambientale del sito candidato j sopra soglia } 8

10 Set partitioning : min o max n c j x j : Ax = e, x {0, 1} n j=1 dove i parametri c j possono rappresentare sia costi che profitti Esempio: formazione dei turni di volo degli equipaggi di una compagnia aerea Si considera un orizzonte di pianificazione prefissato M = { tappe di volo }, tappa = singola fase di volo (tra decollo e atterraggio) da effettuare secondo orari prestabiliti M j = { turni ammissibili }, turno ammissibile = sottoinsieme di tappe di volo che possono essere concatenate in base alla normativa (durata complessiva e periodi di riposo) 9

11 4) Problema del Commesso Viaggiatore (asimmetrico) Asymmetric Traveling Salesman Problem (ATSP) Dato un grafo orientato G = (V, A) con V = {1, 2,..., n} e un costo c ij R associato ad ogni arco (i, j) A, determinare un ciclo Hamiltoniano, i.e., un ciclo che visita esattamente una volta ogni nodo e torna al nodo di partenza, di costo totale minimo. 10

12 4) Problema del Commesso Viaggiatore (asimmetrico) Asymmetric Traveling Salesman Problem (ATSP) Dato un grafo orientato G = (V, A) con V = {1, 2,..., n} e un costo c ij R associato ad ogni arco (i, j) A, determinare un ciclo Hamiltoniano, i.e., un ciclo che visita esattamente una volta ogni nodo e torna al nodo di partenza, di costo totale minimo. Se il grafo G è completo, il numero di cicli Hamiltoniani = (n 1)! Anche versione simmetrica con grafo non orientato Molte varianti con - vincoli di precedenza - vincoli temporali (istante al più presto e al più tardi di visita per ogni nodo) - vincolo di capacità del veicolo - più veicoli da instradare ( Vehicle Routing Problem ) -... Molteplici applicazioni: logistica, sequenziamento di operazioni, VLSI,... Sito web dedicato al TSP: 11

13 Una formulazione di PLI Variabili di decisione: x ij = 1 se il ciclo Hamiltoniano contiene l arco (i, j) e x ij = 0 altrimenti, per (i, j) A min s.v. (i,j) A c ijx ij i: (i,j) A x ij = 1 j j: (i,j) A x ij = 1 i (i,j) A: i S, j V \S x ij 1 S V, S (2) x ij {0, 1} (i, j) A dove i vincoli (2) sono i cosiddetti vincoli di taglio ( cut-set inequalities ) 12

14 Una formulazione di PLI: Variabili di decisione: x ij = 1 se il ciclo Hamiltoniano contiene l arco (i, j) e x ij = 0 altrimenti, per (i, j) A min (i,j) A c ijx ij s.v. i: (i,j) A x ij = 1 j j: (i,j) A x ij = 1 i (i,j) A: i S, j V \S x ij 1 S V, S (3) x ij {0, 1} (i, j) A dove i vincoli (3) sono i cosiddetti vincoli di taglio ( cut-set inequalities ) Formulazione di PLI alternativa: (i,j) A: i,j S x ij S 1 S V, 2 S n 1 (4) con i cosiddetti vincoli di eliminazione dei sottocicli ( subtour elimination inequalities ) al posto dei vincoli (3) Osservazione: I vincoli (3) e (4) sono in numero esponenziale rispetto alla dimensione di G. 13

15 5) Mix produttivo con costi fissi Un azienda deve decidere quali/quanti articoli produrre il prossimo mese in modo da minimizzare i costi soddisfacendo la domanda. Per ogni articolo i, con 1 i n, c i > 0 indica il costo unitario, f i > 0 il costo fisso (se si produce) e k i > 0 la capacità produttiva. 14

16 5) Mix produttivo con costi fissi Un azienda deve decidere quali/quanti articoli produrre il prossimo mese in modo da minimizzare i costi soddisfacendo la domanda. Per ogni articolo i, con 1 i n, c i > 0 indica il costo unitario, f i > 0 il costo fisso (se si produce) e k i > 0 la capacità produttiva. Formulazione di PLMI Variabili di decisione: x i = quantità di articolo i prodotta, con 1 i n y i = 1 se x i > 0 e y i = 0 altrimenti, con 1 i n min n i=1 (c ix i + f i y i ) s.v. x i k i y i i vincoli di domanda... x i 0 i y i {0, 1} i 15

17 5) Mix produttivo con costi fissi Un azienda deve decidere quali/quanti articoli produrre il prossimo mese in modo da minimizzare i costi soddisfacendo la domanda. Per ogni articolo i, con 1 i n, c i > 0 indica il costo unitario, f i > 0 il costo fisso (se si produce) e k i > 0 la capacità produttiva. Formulazione di PLMI Variabili di decisione: x i = quantità di articolo i prodotta, con 1 i n y i = 1 se x i > 0 e y i = 0 altrimenti, con 1 i n min n i=1 (c ix i + f i y i ) s.v. x i k i y i i vincoli di domanda... x i 0 i y i {0, 1} i N.B.: La formulazione non è del tutto esatta, la soluzione x i = 0 e y i = 1 per ogni i è ammissibile per il PLMI, anche se non può essere ottima (minimizzazione e costi fissi f i positivi). 16

18 6) Localizzazione ottima senza vincoli di capacità Uncapacitated Facility Location (UFL) Siano M = {1, 2,..., m} insieme di clienti N = {1, 2,..., n} insieme di siti nei quali si possono localizzare dei depositi per ogni j N, f j costo fisso di utilizzo del deposito in j per ogni coppia i M e j N, c ij costo di trasporto se tutta la domanda del cliente i è soddisfatta dal deposito j, determinare dove localizzare i depositi in modo da soddisfare la domanda di tutti i clienti minimizzando i costi (costi di trasporto e costi di utilizzo). 17

19 Formulazione di PLMI Variabili di decisione: x ij = frazione della domanda del cliente i soddisfatta dal deposito j, con 1 i m e 1 j n y j = 1 se si utilizza il deposito j e y j = 0 altrimenti, con 1 j n min i M s.v. j N c ijx ij + j N f jy j j N x ij = 1 i M i M x ij my j j N (5) y j {0, 1} j N 0 x ij 1 i M, j N con n vincoli (5) che legano le variabili x ij e y j Variante: Se d i indica la domanda del cliente i e k j la capacità del deposito j, gli eventuali vincoli di capacità: d i x ij k j y j i M j N 18

20 7) Pianificazione della produzione multi-periodo Uncapacitated Lot-Sizing (ULS) Un impresa deve pianificare la produzione di un solo tipo di prodotto per i prossimi n mesi. Si suppone che il magazzino sia vuoto all inizio del periodo di pianificazione e che alla fine del periodo debbano rimanere in magazzino 50 unità. Siano f t costo fisso di produzione nel periodo t p t costo unitario di produzione nel periodo t h t costo unitario di immagazzinamento nel periodo t d t domanda per il periodo t determinare un piano di produzione per i prossimi n mesi che permetta di minimizzare i costi (produzione e magazzino) soddisfacendo la domanda ad ogni periodo. Formulare il problema come un PLMI. 19

21 Formulazione di PLMI Variabili di decisione: x t = quantità prodotta nel periodo t, con 1 t n s t = quantità in magazzino alla fine del periodo t, con 0 t n y t = 1 se si attiva la produzione nel periodo t e y j = 0 altrimenti, con 1 t n min n t=1 p tx t + n t=1 h ts t + n t=1 f ty t s.v. s t = s t 1 + x t d t t x t My t s 0 = 0, s n = 50 s t, x t 0 y t {0, 1} t t t t dove M > 0 è un limite superiore sulla massima quantità prodotta durante qualsiasi periodo. Ad esempio: x t ( n t=1 d t + s n s 0 )y t N.B.: Poiché s t = t i=1 x i t i=1 d i, è possibile eliminare le variabili s t di magazzino 20

22 3.2 Formulazioni alternative ed ideali In Programmazione Lineare (PL) le migliori formulazioni sono le più compatte (con il minor numero di variabili/vincoli) visto che la complessità computazionale dei problemi cresce polinomialmente con n e m. La scelta della formulazione è importante ma non determina in modo critico la possibilità di risolvere o meno il problema. La situazione è molto diversa per i problemi di PLI e PLMI: estese campagne computazionali indicano che la scelta della formulazione è cruciale. Per capire cosa caratterizza le buone formulazioni, partiamo dal concetto di rilassamento continuo (lineare) di un PLI o PLMI. 21

23 Definizione: Dato un qualsiasi problema di PLMI (PLI) z P LMI = min c t 1x + c t 2y s.v. A 1 x + A 2 y b (6) x 0, y 0 intere (7) il suo rilassamento continuo (lineare) è il seguente problema di PL: z P L = min c t 1x + c t 2y s.v. A 1 x + A 2 y b (8) x 0, y 0 (9) dove il vincolo di interezza sulle variabili y j è omesso. Se una variabile intera y j nel PLMI è tale che 0 y j u j, nel rilassamento continuo y j [0, u j ]. Sia X P LMI la regione ammissibile del PLMI definita da (6)-(7) e X P L quella del rilassamento continuo definita da (8)-(9). Conseguenze: Poiché X P LMI X P L e i problemi sono di minimizzazione, abbiamo: z PL z PLMI, ovvero z P L è un limite inferiore rispetto a z P LMI ; se una soluzione ottima x P L del rilassamento continuo è ammissibile per il PLMI (PLI) di partenza, è anche ottima per quest ultimo. Se il PLMI è di massimizzazione, chiaramente z PLMI z PL. 22

24 Qualsiasi problema di PLI/PLMI ammette un numero infinito di formulazioni corrette alternative con regioni ammissibili del rilassamento continuo diverse. Definizione: Un poliedro P R n 1+n 2 (sottoinsieme definito da un numero finito di vincoli lineari) è una formulazione di un insieme X R n 1 Z n 2 se e solo se X = P (R n 1 Z n 2). N.B.: Nel caso dei costi fissi, non abbiamo considerato l insieme X = {(0, 0), (x i, 1) per 0 < x k i } ma X {(0, 1)}. Esempi: 1) Due formulazioni alternative per il TSP con vincoli di taglio o di eliminazione di sotto-cicli. 2) Formulazione di PLMI alternativa per il problema UFL: min i M j N c ijx ij + j N f jy j s.v. j N x ij = 1 i M x ij y j i M, j N (10) y j {0, 1} j N 0 x ij 1 i M, j N con mn vincoli (10) che legano le variabili x ij e y j. 23

25 Le formulazioni alternative possono adoperare variabili aggiuntive o variabili diverse. Nel primo caso si parla di formulazioni estese. Esempio: Formulazione di PLMI estesa per il problema ULS 24

26 Le formulazioni alternative possono adoperare variabili aggiuntive o variabili diverse. Nel primo caso si parla di formulazioni estese. Esempio: Formulazione di PLMI estesa per il problema ULS Variabili di decisione: w it = quantità prodotta nel periodo i e venduta nel periodo t, con 1 i t n + 1 y t = 1 se si attiva la produzione nel periodo t e y j = 0 altrimenti, con 1 t n min n n i=1 t=i c itw it + n t=1 f ty t s.v. t i=1 w it = d t n i=1 w i,n+1 = 50 w it d t y i w it 0 y t {0, 1} t, 1 t n (magazzino alla fine) i, t, i t i, t, i t con i costi aggregati (produzione e magazzino) c it = p i + h i h t 1. N.B.: Per ogni periodo i, si può aggiungere il vincolo x i = n t=i w it che esprime la vecchia variabile x i in funzione delle nuove w it t 25

27 Sia X = {x 1,..., x k } l insieme delle soluzioni ammissibili di un PLI. Supponiamo X sia limitato (finito). Teorema: conv(x) è un poliedro e i punti estremi di conv(x) appartengono a X. Questo risultato, che vale anche per insiemi X illimitati di punti interi e di punti misti interi, implica: min{c t x : x X} = min{c t x : x conv(x)} In teoria, il problema di PLI/PLMI si può ricondurre ad un singolo problema di PL! In pratica, anche per X limitato, la formulazione ideale è spesso di dimensione esponenziale o difficile da determinare. Chiaramente la regione ammissibile P del rilassamento continuo di qualsiasi formulazione soddisfa X = {x Z n : Ax b} conv(x) P. Definizione: La formulazione ideale di un insieme X R n è il poliedro conv(x). Dato un insieme X R n e due formulazioni P 1 e P 2 di X, la formulazione P 1 domina (è più stringente di) quella P 2 se P 1 P 2. Infatti, se z i = min{c t x : x P i Z n }, il bound z 1 è almeno altrettanto stringente di z 2, ovvero z P LI = min{c t x : x X} z 1 z 2. 26

28 1) Localizzazione ottima senza vincoli di capacità Uncapacitated Facility Location (UFL) Proprietà: Il rilassamento continuo della formulazione di PLMI alternativa (con i vincoli x ij y j ) domina quello della prima formulazione di PLMI (con i vincoli aggregati i M x ij my j ). Siano P 1 = e P 2 = { (x, y) R nm+n : { (x, y) R nm+n : } j N x ij = 1 i, x ij y j i, j, 0 x ij 1 i, j, 0 y j 1 j j N x ij = 1 i, } i M x ij my j j, 0 x ij 1 i, j, 0 y j 1 j, chiaramente P 1 P 2 (sommando gli m vincoli x ij y j per un dato j si ottiene i M x ij my j per quel j). Inoltre è facile esibire un (x, y) che appartiene a P 2 ma non appartiene a P 1 2) TSP simmetrico Confronto tra le due formulazioni alternative nella seconda serie di esercizi 27

29 Confronto tra formulazioni con variabili diverse Consideriamo una prima formulazione con tutte variabili intere (PLI) min{c t x : x P 1 Z n 1 } con P 1 R n 1, e una formulazione estesa min{c t (x, w) : (x, w) P 2 (Z n 1 R n 2 )} con P 2 R n 1 R n 2. Definizione: Dato un insieme convesso P R n 1 R n 2, la proiezione di P sul sottospazio R n 1 è Π x (P ) = {x R n 1 : (x, w) P per qualche w R n 2 } Esempio: proiezione di un poliedro tridimensionale Per confrontare una formulazione P 1 R n 1 e una formulazione estesa P 2 R n 1 R n 2, si confrontando quindi P 1 e Π x (P 2 ). 28

30 Come determinare le proiezioni dei poliedri sui sottospazi di R n? Metodo di eliminazione di Fourier-Motzkin (inizio 800): Prima procedura per determinare una soluzione ammissibile di un sistema di disuguaglianze lineari Idea: Ad ogni iterazione viene eliminata una variable, combinando in tutti i modi possibili le disuguaglianze correnti, fino ad ottenere un sistema in una sola variabile. Descrizione 29

31 Esempio: x 1 +x 2 3 (11) 1 2 x 1 +x 2 0 (12) x 2 2 (13) Eliminazione di x 2 (proiezione del poliedro delle soluzioni ammissibili di (11)-(13) sul sottospazio di x 1 ): 3 x 1 x x 1 x 2 x 2 2 considerando tutte le coppie di disuguaglianze (... x 2 e x 2... ) si ottiene 3 x x 1 2 ovvero 1 x 1 4, quindi la proiezione [1, 4]. Eliminazione di x 1 (proiezione del poliedro delle soluzioni ammissibili di (11)-(13) sul sottospazio di x 2 ): si ottiene 1 x 2 2 quindi la proiezione [1, 2]. Complessità: il numero di vincoli aggiuntivi può crescere esponenzialmente rispetto al numero delle variabili originarie 30

32 Confronto con formulazione estesa: Pianificazione della produzione multi-periodo (ULS) Consideriamo la formulazione P 1 descritta da e Π x,s,y (P 2 ), con P 2 descritto da s t = s t 1 + x t d t x t My t s 0 = 0, s t, x t 0 t t t 0 y t 1 t t i=1 w it = d t t w it d t y i i, t, i t x i = n t=i w it i (14) w it 0 i, t, i t 0 y t 1 t E facile verificare che Π x,s,y (P 2 ) P 1. Ad esempio, il punto x t = d t, y t = d t /M per ogni t è un punto estremo di P 1 che non appartiene a Π x,s,y (P 2 ). Proposizione: P 2 è la formulazione ideale, ovvero descrive il guscio convesso di tutte le soluzioni ammissibili (misto intere) di ULS. 31

Capitolo 5: Ottimizzazione Discreta. E. Amaldi DEI, Politecnico di Milano

Capitolo 5: Ottimizzazione Discreta. E. Amaldi DEI, Politecnico di Milano Capitolo 5: Ottimizzazione Discreta E. Amaldi DEI, Politecnico di Milano 5.1 Modelli di PLI, formulazioni equivalenti ed ideali Il modello matematico di un problema di Ottimizzazione Discreta è molto spesso

Dettagli

Esercizi di Ricerca Operativa I

Esercizi di Ricerca Operativa I Esercizi di Ricerca Operativa I Dario Bauso, Raffaele Pesenti May 10, 2006 Domande Programmazione lineare intera 1. Gli algoritmi per la programmazione lineare continua possono essere usati per la soluzione

Dettagli

3 CENNI DI TEORIA DELLA COMPLESSITA COMPUTAZIONALE. E. Amaldi Fondamenti di R.O. Politecnico di Milano 1

3 CENNI DI TEORIA DELLA COMPLESSITA COMPUTAZIONALE. E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 3 CENNI DI TEORIA DELLA COMPLESSITA COMPUTAZIONALE E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 Scopo: Stimare l onere computazionale per risolvere problemi di ottimizzazione e di altra natura

Dettagli

Problemi di Programmazione Lineare Intera

Problemi di Programmazione Lineare Intera Capitolo 4 Problemi di Programmazione Lineare Intera La Programmazione Lineare Intera (PLI) tratta il problema della massimizzazione (minimizzazione) di una funzione di più variabili, soggetta a vincoli

Dettagli

Modelli di Programmazione Lineare Intera

Modelli di Programmazione Lineare Intera 8 Modelli di Programmazione Lineare Intera Come è stato già osservato in precedenza, quando tutte le variabili di un problema di Programmazione Lineare sono vincolate ad assumere valori interi, si parla

Dettagli

ESEMPIO P.L. : PIANIFICAZIONE DI INVESTIMENTI

ESEMPIO P.L. : PIANIFICAZIONE DI INVESTIMENTI ESEMPIO P.L. : PIANIFICAZIONE DI INVESTIMENTI PROBLEMA: un azienda deve scegliere fra due possibili investimenti al fine di massimizzare il profitto netto nel rispetto delle condizioni interne e di mercato

Dettagli

Progetto di Reti di Telecomunicazione Modelli in Programmazione Lineare Problemi di Localizzazione

Progetto di Reti di Telecomunicazione Modelli in Programmazione Lineare Problemi di Localizzazione Progetto di Reti di Telecomunicazione Modelli in Programmazione Lineare Problemi di Localizzazione Posizionamento di antenne È dato un insieme A di possibili siti in cui installare antenne, a ciascuno

Dettagli

Ricerca Operativa A.A. 2007/2008

Ricerca Operativa A.A. 2007/2008 Ricerca Operativa A.A. 2007/2008 9. Cenni su euristiche e metaeuristiche per ottimizzazione combinatoria Motivazioni L applicazione di metodi esatti non è sempre possibile a causa della complessità del

Dettagli

Dimensionamento dei lotti di produzione: il caso con variabilità nota

Dimensionamento dei lotti di produzione: il caso con variabilità nota Dimensionamento dei lotti di produzione: il caso con variabilità nota A. Agnetis In questi appunti studieremo alcuni modelli per il problema del lot sizing, vale a dire il problema di programmare la dimensione

Dettagli

Esempi di modelli di programmazione lineare (intera) 2014

Esempi di modelli di programmazione lineare (intera) 2014 Esempi di modelli di programmazione lineare (intera) 2014 1) Combinando risorse Una ditta produce due tipi di prodotto, A e B, combinando e lavorando opportunamente tre risorse, R, S e T. In dettaglio:

Dettagli

Ricerca Operativa e Logistica Dott. F.Carrabs e Dott.ssa M.Gentili. Introduzione

Ricerca Operativa e Logistica Dott. F.Carrabs e Dott.ssa M.Gentili. Introduzione Ricerca Operativa e Logistica Dott. F.Carrabs e Dott.ssa M.Gentili Introduzione La Ricerca Operativa La Ricerca Operativa è una disciplina relativamente recente. Il termine Ricerca Operativa è stato coniato

Dettagli

Lezioni di Ricerca Operativa. Corso di Laurea in Informatica Università di Salerno. Lezione n 4

Lezioni di Ricerca Operativa. Corso di Laurea in Informatica Università di Salerno. Lezione n 4 Lezioni di Ricerca Operativa Lezione n 4 - Problemi di Programmazione Matematica - Problemi Lineari e Problemi Lineari Interi - Forma Canonica. Forma Standard Corso di Laurea in Informatica Università

Dettagli

Ricerca Operativa A.A. 2007/2008. 10. Dualità in Programmazione Lineare

Ricerca Operativa A.A. 2007/2008. 10. Dualità in Programmazione Lineare Ricerca Operativa A.A. 2007/2008 10. Dualità in Programmazione Lineare Luigi De Giovanni - Ricerca Operativa - 10. Dualità in Programmazione Lineare 10.1 Soluzione di un problema di PL: punti di vista

Dettagli

Ottimizzazione Multi Obiettivo

Ottimizzazione Multi Obiettivo Ottimizzazione Multi Obiettivo 1 Ottimizzazione Multi Obiettivo I problemi affrontati fino ad ora erano caratterizzati da una unica (e ben definita) funzione obiettivo. I problemi di ottimizzazione reali

Dettagli

Il problema del commesso viaggiatore

Il problema del commesso viaggiatore ITTS Vito Volterra Progetto ABACUS Ottimizzazione combinatoria Il problema del commesso viaggiatore Studente: Davide Talon Esame di stato 2013 Anno scolastico 2012-2013 Indice 1. Introduzione........................................

Dettagli

Modelli di Programmazione Lineare e Programmazione Lineare Intera

Modelli di Programmazione Lineare e Programmazione Lineare Intera Modelli di Programmazione Lineare e Programmazione Lineare Intera 1 Azienda Dolciaria Un azienda di cioccolatini deve pianificare la produzione per i prossimi m mesi. In ogni mese l azienda ha a disposizione

Dettagli

Problema del trasporto

Problema del trasporto p. 1/1 Problema del trasporto Supponiamo di avere m depositi in cui è immagazzinato un prodotto e n negozi che richiedono tale prodotto. Nel deposito i è immagazzinata la quantità a i di prodotto. Nel

Dettagli

mese 1 2 3 4 5 richiesta 6000 7000 8000 9500 11000

mese 1 2 3 4 5 richiesta 6000 7000 8000 9500 11000 1.7 Servizi informatici. Un negozio di servizi informatici stima la richiesta di ore di manutenzione/consulenza per i prossimi cinque mesi: mese 1 2 3 4 5 richiesta 6000 7000 8000 9500 11000 All inizio

Dettagli

Progetto di Reti di Telecomunicazione Modelli in Programmazione Lineare Problemi di flusso

Progetto di Reti di Telecomunicazione Modelli in Programmazione Lineare Problemi di flusso Progetto di Reti di Telecomunicazione Modelli in Programmazione Lineare Problemi di flusso Flusso di costo minimo È dato un grafo direzionato G = (N, A). Ad ogni arco (i, j) A è associato il costo c ij

Dettagli

TSP con eliminazione di sottocicli

TSP con eliminazione di sottocicli TSP con eliminazione di sottocicli Un commesso viaggiatore deve visitare 7 clienti in modo da minimizzare la distanza percorsa. Le distanze (in Km) tra ognuno dei clienti sono come segue: 7-8 9 7 9-8 79

Dettagli

Formulazioni PLI di problemi di decisione. 1 Introduzione: La formulazione dei problemi di ottimizzazione combinatoria

Formulazioni PLI di problemi di decisione. 1 Introduzione: La formulazione dei problemi di ottimizzazione combinatoria Formulazioni PLI di problemi di decisione Dispensa per il modulo di Analisi e Ottimizzazione dei Processi di Produzione Università di Roma Tor Vergata a cura di Andrea Pacifici, Claudio Cavalletti, Daniela

Dettagli

Modelli di programmazione matematica Produzione Bin packing (Zaino) Trasporto Magazzino Assegnazione Commesso viaggiatore Scheduling Supply Chain

Modelli di programmazione matematica Produzione Bin packing (Zaino) Trasporto Magazzino Assegnazione Commesso viaggiatore Scheduling Supply Chain 1 PROGRAMMAZIONE LINEARE 1 1 Programmazione lineare 1.1 Modelli matematici Modelli di programmazione matematica Produzione Bin packing (Zaino) Trasporto Magazzino Assegnazione Commesso viaggiatore Scheduling

Dettagli

TSP con eliminazione di sottocicli

TSP con eliminazione di sottocicli TSP con eliminazione di sottocicli Un commesso viaggiatore deve visitare 7 clienti in modo da minimizzare la distanza percorsa. Le distanze (in Km) tra ognuno dei clienti sono come segue: 3 5 7-8 9 57

Dettagli

Ricerca Operativa 2. Introduzione al metodo del Simplesso

Ricerca Operativa 2. Introduzione al metodo del Simplesso Ricerca Operativa 2. Introduzione al metodo del Simplesso Luigi De Giovanni Giacomo Zambelli 1 Problemi di programmazione lineare Un problema di ottimizzazione vincolata è definito dalla massimizzazione

Dettagli

Problemi di localizzazione impianti

Problemi di localizzazione impianti Problemi di localizzazione impianti Laura Galli Dipartimento di Informatica Largo B. Pontecorvo 3, 56127 Pisa laura.galli@unipi.it http://www.di.unipi.it/~galli 2 Dicembre 2014 Ricerca Operativa 2 Laurea

Dettagli

Ricerca Operativa Branch-and-Bound per problemi di Programmazione Lineare Intera

Ricerca Operativa Branch-and-Bound per problemi di Programmazione Lineare Intera Ricerca Operativa Branch-and-Bound per problemi di Programmazione Lineare Intera L. De Giovanni AVVERTENZA: le note presentate di seguito non hanno alcuna pretesa di completezza, né hanno lo scopo di sostituirsi

Dettagli

Lezioni di Ricerca Operativa

Lezioni di Ricerca Operativa Lezioni di Ricerca Operativa Massimo Paolucci Dipartimento di Informatica, Sistemistica e elematica (DIS) Università di Genova paolucci@dist.unige.it http://www.dattero.dist.unige.it Estratto per la parte

Dettagli

Ricerca Operativa Prima Parte

Ricerca Operativa Prima Parte 1 2 fasi Prima Parte 2 Testi didattici S. Martello, M.G. Speranza, Ricerca Operativa per l Economia e l Impresa, Ed. Esculapio, 2012. F.S. Hillier, G.J. Lieberman, Ricerca operativa - Fondamenti, 9/ed,

Dettagli

Modelli di Ottimizzazione

Modelli di Ottimizzazione Capitolo 2 Modelli di Ottimizzazione 2.1 Introduzione In questo capitolo ci occuperemo più nel dettaglio di quei particolari modelli matematici noti come Modelli di Ottimizzazione che rivestono un ruolo

Dettagli

Università del Salento

Università del Salento Università del Salento Dipartimento di Matematica DAI SISTEMI DI DISEQUAZIONI LINEARI.. ALLA PROGRAMMAZIONE LINEARE Chefi Triki La Ricerca Operativa Fornisce strumenti matematici di supporto alle attività

Dettagli

1. Considerazioni preliminari

1. Considerazioni preliminari 1. Considerazioni preliminari Uno dei principali aspetti decisionali della gestione logistica è decidere dove localizzare nuove facility, come impianti, magazzini, rivenditori. Ad esempio, consideriamo

Dettagli

Algoritmi Euristici introduzione. Vittorio Maniezzo Università di Bologna

Algoritmi Euristici introduzione. Vittorio Maniezzo Università di Bologna 9 Algoritmi Euristici introduzione Vittorio Maniezzo Università di Bologna 1 Molti problemi reali richiedono soluzioni algoritmiche I camion devono essere instradati VRP, NP-hard I depositi o i punti di

Dettagli

Capitolo 4: Ottimizzazione non lineare non vincolata parte II. E. Amaldi DEIB, Politecnico di Milano

Capitolo 4: Ottimizzazione non lineare non vincolata parte II. E. Amaldi DEIB, Politecnico di Milano Capitolo 4: Ottimizzazione non lineare non vincolata parte II E. Amaldi DEIB, Politecnico di Milano 4.3 Algoritmi iterativi e convergenza Programma non lineare (PNL): min f(x) s.v. g i (x) 0 1 i m x S

Dettagli

Gestione della produzione e della supply chain Logistica distributiva. Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena

Gestione della produzione e della supply chain Logistica distributiva. Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena Gestione della produzione e della supply chain Logistica distributiva Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena Problemi di Distribuzione: Il problema del Vehicle Rou:ng

Dettagli

190 LA DUALITÀ NELLA PROGRAMMAZIONE LINEARE 7.2 INTERPRETAZIONE DELLA DUALITÀ

190 LA DUALITÀ NELLA PROGRAMMAZIONE LINEARE 7.2 INTERPRETAZIONE DELLA DUALITÀ 190 LA DUALITÀ NELLA PROGRAMMAZIONE LINEARE 7.2 INTERPRETAZIONE DELLA DUALITÀ [Questo paragrafo non fa parte del programma di esame] Nei modelli reali le variabili (primali) possono rappresentare, ad esempio,

Dettagli

La Programmazione Lineare

La Programmazione Lineare 4 La Programmazione Lineare 4.1 INTERPRETAZIONE GEOMETRICA DI UN PROBLEMA DI PROGRAMMAZIONE LINEARE Esercizio 4.1.1 Fornire una rappresentazione geometrica e risolvere graficamente i seguenti problemi

Dettagli

5. Problemi di Ottimizzazione e Programmazione Matematica

5. Problemi di Ottimizzazione e Programmazione Matematica Dispense del corso di Ottimizzazione Combinatoria (IN440) 5. Problemi di Ottimizzazione e Programmazione Matematica Marco Liverani Università degli Studi Roma Tre Dipartimento di Matematica e Fisica Corso

Dettagli

1. Sia dato un poliedro. Dire quali delle seguenti affermazioni sono corrette.

1. Sia dato un poliedro. Dire quali delle seguenti affermazioni sono corrette. . Sia dato un poliedro. (a) Un vettore x R n è un vertice di P se soddisfa alla seguenti condizioni: x P e comunque presi due punti distinti x, x 2 P tali che x x e x x 2 si ha x = ( β)x + βx 2 con β [0,

Dettagli

Logistica - Il problema del trasporto

Logistica - Il problema del trasporto Logistica - Il problema del trasporto Federico Di Palma December 17, 2009 Il problema del trasporto sorge ogniqualvolta si debba movimentare della merce da una o più sorgenti verso una o più destinazioni

Dettagli

METODI MATEMATICI PER LE DECISIONI ECONOMICHE E AZIENDALI 12 CANDIDATO.. VOTO

METODI MATEMATICI PER LE DECISIONI ECONOMICHE E AZIENDALI 12 CANDIDATO.. VOTO METODI MATEMATICI PER LE DECISIONI ECONOMICHE E AZIENDALI 12 1) In un problema multiattributo i pesi assegnati ai vari obiettivi ed i risultati che essi assumono in corrispondenza alle varie alternative

Dettagli

MRP. Pianificazione della produzione. Distinta base Bill Of Materials (BOM) MPS vs. MRP. Materials Requirements Planning (MRP)

MRP. Pianificazione della produzione. Distinta base Bill Of Materials (BOM) MPS vs. MRP. Materials Requirements Planning (MRP) MRP Pianificazione della produzione Materials Requirements Planning (MRP) 15/11/2002 16.58 Con l MRP si decide la tempificazione delle disponibilità dei materiali, delle risorse e delle lavorazioni. MRP

Dettagli

Contenuto e scopo presentazione. Crew Scheduling e Crew Rostering. Gestione del personale. Motivazioni

Contenuto e scopo presentazione. Crew Scheduling e Crew Rostering. Gestione del personale. Motivazioni Contenuto e scopo presentazione Crew Scheduling e Crew Rostering Contenuto vengono introdotti modelli e metodi per problemi di turnazione del personale Raffaele Pesenti 07/02/2002 14.41 Scopo fornire strumenti

Dettagli

Ricerca Operativa Dualità e programmazione lineare

Ricerca Operativa Dualità e programmazione lineare Ricerca Operativa Dualità e programmazione lineare L. De Giovanni AVVERTENZA: le note presentate di seguito non hanno alcuna pretesa di completezza, né hanno lo scopo di sostituirsi alle spiegazioni del

Dettagli

b i 1,1,1 1,1,1 0,1,2 0,3,4

b i 1,1,1 1,1,1 0,1,2 0,3,4 V o Appello // RICERCA OPERATIVA - Corso A (a.a. 9/) Nome Cognome: Corso di Laurea: L C6 LS LM Matricola: ) Si consideri il problema di flusso di costo minimo in figura. Si verifichi se il flusso ammissibile

Dettagli

Un applicazione della programmazione lineare ai problemi di trasporto

Un applicazione della programmazione lineare ai problemi di trasporto Un applicazione della programmazione lineare ai problemi di trasporto Corso di Ricerca Operativa per il Corso di Laurea Magistrale in Ingegneria della Sicurezza: Trasporti e Sistemi Territoriali AA 2012-2013

Dettagli

SIMULAZIONE ESAME di OTTIMIZZAZIONE Corso di Laurea in Ingegneria Gestionale 2 o anno

SIMULAZIONE ESAME di OTTIMIZZAZIONE Corso di Laurea in Ingegneria Gestionale 2 o anno SIMULAZIONE ESAME di OTTIMIZZAZIONE 28 novembre 2005 SIMULAZIONE ESAME di OTTIMIZZAZIONE Corso di Laurea in Ingegneria Gestionale 2 o anno Cognome : XXXXXXXXXXXXXXXXX Nome : XXXXXXXXXXXXXX VALUTAZIONE

Dettagli

Problemi complessi : come trovare una soluzione soddisfacente?

Problemi complessi : come trovare una soluzione soddisfacente? Informatica nel futuro, sfide e prospettive - evento scientifico per i 40 anni di ated Manno, 7 ottobre 2011 Problemi complessi : come trovare una soluzione soddisfacente? Marino Widmer Università di Friburgo

Dettagli

Modelli di Programmazione Lineare Intera

Modelli di Programmazione Lineare Intera 8 Modelli di Programmazione Lineare Intera 8.1 MODELLI DI PROGRAMMAZIONE LINEARE INTERA Esercizio 8.1.1 Una compagnia petrolifera dispone di 5 pozzi (P1, P2, P3, P4, P5) dai quali può estrarre petrolio.

Dettagli

Modelli di Programmazione Lineare. PRTLC - Modelli

Modelli di Programmazione Lineare. PRTLC - Modelli Modelli di Programmazione Lineare PRTLC - Modelli Schema delle esercitazioni Come ricavare la soluzione ottima Modelli Solver commerciali Come ricavare una stima dell ottimo Rilassamento continuo - generazione

Dettagli

Indice. Nota degli autori. 1 Capitolo 1 Introduzione alla ricerca operativa

Indice. Nota degli autori. 1 Capitolo 1 Introduzione alla ricerca operativa XI Nota degli autori 1 Capitolo 1 Introduzione alla ricerca operativa 1 1.1 Premessa 1 1.2 Problemi di ottimizzazione 6 1.3 Primi approcci ai modelli di ottimizzazione 13 1.4 Uso del risolutore della Microsoft

Dettagli

Metodi e Modelli per l Ottimizzazione Combinatoria Ripasso sulla Modellazione in Programmazione Lineare

Metodi e Modelli per l Ottimizzazione Combinatoria Ripasso sulla Modellazione in Programmazione Lineare Metodi e Modelli per l Ottimizzazione Combinatoria Ripasso sulla Modellazione in Programmazione Lineare Luigi De Giovanni 1 Modelli di programmazione lineare I modelli di programmazione lineare sono una

Dettagli

Metodi e Modelli per l Ottimizzazione Combinatoria Ripasso sulla Modellazione in Programmazione Lineare

Metodi e Modelli per l Ottimizzazione Combinatoria Ripasso sulla Modellazione in Programmazione Lineare Metodi e Modelli per l Ottimizzazione Combinatoria Ripasso sulla Modellazione in Programmazione Lineare Luigi De Giovanni 1 Modelli di programmazione lineare I modelli di programmazione lineare sono una

Dettagli

RICERCA OPERATIVA GRUPPO B prova scritta del 22 marzo 2007

RICERCA OPERATIVA GRUPPO B prova scritta del 22 marzo 2007 RICERCA OPERATIVA GRUPPO B prova scritta del 22 marzo 2007 Rispondere alle seguenti domande marcando a penna la lettera corrispondente alla risposta ritenuta corretta (una sola tra quelle riportate). Se

Dettagli

La dualità nella Programmazione Lineare

La dualità nella Programmazione Lineare Capitolo 5 La dualità nella Programmazione Lineare In questo capitolo verrà introdotto un concetto di fondamentale importanza sia per l analisi dei problemi di Programmazione Lineare, sia per lo sviluppo

Dettagli

(3,4) (1,3) (2,2) (0,2) (3,4) (2,4) t (2,3) (3,5) (2,4) (3,5) (6,8) (3,4) (1,2) 1 (1,3)

(3,4) (1,3) (2,2) (0,2) (3,4) (2,4) t (2,3) (3,5) (2,4) (3,5) (6,8) (3,4) (1,2) 1 (1,3) Prova Scritta di RICERCA OPERATIVA èinformaticiè 2èè98 - Esame æ Cognome: æ Nome:. Una compagnia petrolifera possiede 3 depositi dai quali puço prelevare benzina e trasportarla ai 5 impianti di distribuzione.

Dettagli

Ricerca Operativa (Compito A) Appello del 18/06/2013 Andrea Scozzari

Ricerca Operativa (Compito A) Appello del 18/06/2013 Andrea Scozzari Ricerca Operativa (Compito A) Appello del 18/06/2013 Andrea Scozzari Esercizio n.1 Un azienda intende incrementare il proprio organico per ricoprire alcuni compiti scoperti. I dati relativi ai compiti

Dettagli

Management Sanitario. Modulo di Ricerca Operativa

Management Sanitario. Modulo di Ricerca Operativa Management Sanitario per il corso di Laurea Magistrale SCIENZE RIABILITATIVE DELLE PROFESSIONI SANITARIE Modulo di Ricerca Operativa Prof. Laura Palagi http://www.dis.uniroma1.it/ palagi Dipartimento di

Dettagli

Problemi di trasporto merci

Problemi di trasporto merci Problemi di routing di veicoli: 1 - Introduzione Daniele Vigo DEIS, Università di Bologna dvigo@deis.unibo.it Problemi di trasporto merci Trasporto merci 10% - 25% del costo totale dei beni di consumo

Dettagli

Il Metodo Branch and Bound

Il Metodo Branch and Bound Il Laura Galli Dipartimento di Informatica Largo B. Pontecorvo 3, 56127 Pisa laura.galli@unipi.it http://www.di.unipi.it/~galli 4 Novembre 2014 Ricerca Operativa 2 Laurea Magistrale in Ingegneria Gestionale

Dettagli

Appunti delle esercitazioni di Ricerca Operativa

Appunti delle esercitazioni di Ricerca Operativa Appunti delle esercitazioni di Ricerca Operativa a cura di P. Detti e G. Ciaschetti 1 Esercizi sulle condizioni di ottimalità per problemi di ottimizzazione non vincolata Esempio 1 Sia data la funzione

Dettagli

Parte 3: Gestione dei progetti, Shop scheduling

Parte 3: Gestione dei progetti, Shop scheduling Parte : Gestione dei progetti, Shop scheduling Rappresentazione reticolare di un progetto Insieme di attività {,...,n} p i durata (nota e deterministica dell attività i) relazione di precedenza fra attività:

Dettagli

Modelli per la gestione delle scorte

Modelli per la gestione delle scorte Modelli per la gestione delle scorte Claudio Arbib Università di L Aquila Seconda Parte Sommario Sui problemi di gestione aperiodica equazioni di stato Funzioni di costo Un modello convesso formulazione

Dettagli

Richiami di algebra lineare e geometria di R n

Richiami di algebra lineare e geometria di R n Richiami di algebra lineare e geometria di R n combinazione lineare, conica e convessa spazi lineari insiemi convessi, funzioni convesse rif. BT.5 Combinazione lineare, conica, affine, convessa Un vettore

Dettagli

Ricerca Operativa Prima Parte

Ricerca Operativa Prima Parte 1 Prima Parte 2 Testi didattici M. Caramia, S. Giordani, F. Guerriero, R. Musmanno, D. Pacciarelli, Ricerca Operativa, ISEDI, 2014. S. Martello, M.G. Speranza, Ricerca Operativa per l Economia e l Impresa,

Dettagli

Appunti di Ricerca Operativa

Appunti di Ricerca Operativa Appunti di Ricerca Operativa 0/0 Prefazione La Ricerca Operativa è un campo in continua evoluzione, il cui impatto sulle realtà aziendali ed organizzative è in costante crescita. L insegnamento di questa

Dettagli

Ricerca Operativa e Logistica

Ricerca Operativa e Logistica Ricerca Operativa e Logistica Dott. F.Carrabs e Dott.ssa M.Gentili A.A. 2011/2012 Lezione 10: Variabili e vincoli logici Variabili logiche Spesso nei problemi reali che dobbiamo affrontare ci sono dei

Dettagli

Prodotto Disponibilità Costo 1 3000 3 2 2000 6 3 4000 4. e rispettando le seguenti regole di composizione delle benzine:

Prodotto Disponibilità Costo 1 3000 3 2 2000 6 3 4000 4. e rispettando le seguenti regole di composizione delle benzine: 1.1 Pianificazione degli investimenti. Una banca deve investire C milioni di Euro, e dispone di due tipi di investimento: (a) con interesse annuo del 15%; (b) con interesse annuo del 25%. Almeno 1 di C

Dettagli

Metodi e Modelli per l Ottimizzazione Combinatoria Il problema del flusso di costo minimo

Metodi e Modelli per l Ottimizzazione Combinatoria Il problema del flusso di costo minimo Metodi e Modelli per l Ottimizzazione Combinatoria Il problema del flusso di costo minimo L. De Giovanni G. Zambelli 1 Problema del flusso a costo minimo Il problema del flusso a costo minimo é definito

Dettagli

Contenuto e scopo presentazione. Node Routing. Applicazioni. Il problema del commesso viaggiatore

Contenuto e scopo presentazione. Node Routing. Applicazioni. Il problema del commesso viaggiatore ontenuto e scopo presentazione Node Routing ontenuto vengono introdotti modelli e metodi per problemi di ommesso Viaggiatore: Traveling Salesman Problem (TSP) enni di TSP e VRP Scopo fornire strumenti

Dettagli

Laboratorio di Ricerca Operativa Cad Ingegneria Gestionale (BGER3 - I semestre) a.a. 2012-13 Homework n 6. Docente: Laura Palagi

Laboratorio di Ricerca Operativa Cad Ingegneria Gestionale (BGER3 - I semestre) a.a. 2012-13 Homework n 6. Docente: Laura Palagi Laboratorio di Ricerca Operativa Cad Ingegneria Gestionale (BGER3 - I semestre) a.a. 2012-13 Homework n 6 Docente: Laura Palagi PIANIFICAZIONE DELLA PRODUZIONE 2 Si distingue in: PRODUCTION PLANNING: Tentativo

Dettagli

Modelli di Programmazione Lineare

Modelli di Programmazione Lineare Capitolo 2 Modelli di Programmazione Lineare 2.1 Modelli di allocazione ottima di risorse Esercizio 2.1.1 Un industria manifatturiera può fabbricare 5 tipi di prodotti che indichiamo genericamente con

Dettagli

Approcci esatti per il job shop

Approcci esatti per il job shop Approcci esatti per il job shop Riferimenti lezione: Carlier, J. (1982) The one-machine sequencing problem, European Journal of Operational Research, Vol. 11, No. 1, pp. 42-47 Carlier, J. & Pinson, E.

Dettagli

Esame di Ricerca Operativa del 19/01/2016

Esame di Ricerca Operativa del 19/01/2016 Esame di Ricerca Operativa del 19/01/201 (Cognome) (Nome) (Matricola) Esercizio 1. Una banca offre ai suoi clienti diversi tipi di prestito: mutuo casa, credito auto, credito famiglia, che rendono un interesse

Dettagli

Esame di Ricerca Operativa del 20/12/13. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

Esame di Ricerca Operativa del 20/12/13. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare: Esame di Ricerca Operativa del 0// (Cognome) (Nome) (Corso di laurea) Esercizio. Completare la seguente tabella considerando il problema di programmazione lineare: max x x x + x x +x x x x x x x 0 x x

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Corso di Calcolo Numerico Dottssa MC De Bonis Università degli Studi della Basilicata, Potenza Facoltà di Ingegneria Corso di Laurea in Ingegneria Meccanica Corso di Calcolo Numerico - Dottssa MC De Bonis

Dettagli

Indirizzo Giuridico Economico Aziendale

Indirizzo Giuridico Economico Aziendale Premessa Questa breve trattazione non vuole costituire una guida completa ed esauriente sull argomento, ma vuole fornire solamente i concetti fondamentali necessari per il raggiungimento degli obiettivi

Dettagli

Flusso a costo minimo e simplesso su reti

Flusso a costo minimo e simplesso su reti Flusso a costo minimo e simplesso su reti La particolare struttura di alcuni problemi di PL può essere talvolta utilizzata per la progettazione di tecniche risolutive molto più efficienti dell algoritmo

Dettagli

Fondamenti di Economia Aziendale ed Impiantistica Industriale

Fondamenti di Economia Aziendale ed Impiantistica Industriale Politecnico di Milano IV Facoltà di Ingegneria Fondamenti di Economia Aziendale ed Impiantistica Industriale Impiego della programmazione lineare nella progettazione degli impianti Cosa significa progettare

Dettagli

Produzione e forza lavoro

Produzione e forza lavoro Produzione e forza lavoro Testo Un azienda produce i modelli I, II e III di un certo prodotto a partire dai materiali grezzi A e B, di cui sono disponibili 4000 e 6000 unità, rispettivamente. In particolare,

Dettagli

VC-dimension: Esempio

VC-dimension: Esempio VC-dimension: Esempio Quale è la VC-dimension di. y b = 0 f() = 1 f() = 1 iperpiano 20? VC-dimension: Esempio Quale è la VC-dimension di? banale. Vediamo cosa succede con 2 punti: 21 VC-dimension: Esempio

Dettagli

Il risolutore. Docente: M. Sechi - Elementi di informatica e programmazione Università degli studi di Brescia D.I.M.I - A.A.

Il risolutore. Docente: M. Sechi - Elementi di informatica e programmazione Università degli studi di Brescia D.I.M.I - A.A. Università degli Studi di Brescia Elementi di informatica e Dipartimento di Ingegneria Meccanica e Industriale Dipartimento di Ingegneria Meccanica e Industriale Programmazione EXCEL Docente: Marco Sechi

Dettagli

Note del Corso di Modelli Biologici Discreti: Un paio di algoritmi DNA per risolvere SAT

Note del Corso di Modelli Biologici Discreti: Un paio di algoritmi DNA per risolvere SAT Note del Corso di Modelli Biologici Discreti: Un paio di algoritmi DNA per risolvere SAT Giuditta Franco Corso di Laurea in Bioinformatica - AA 2012/2013 Uno dei più grossi risultati nell informatica degli

Dettagli

Esame di Ricerca Operativa del 19/01/2016

Esame di Ricerca Operativa del 19/01/2016 Esame di Ricerca Operativa del 9/0/06 (Cognome) (Nome) (Matricola) Esercizio. Una banca offre ai suoi clienti diversi tipi di prestito: mutuo casa, credito auto, credito famiglia, che rendono un interesse

Dettagli

Funzioni in due variabili Raccolta di FAQ by Andrea Prevete

Funzioni in due variabili Raccolta di FAQ by Andrea Prevete Funzioni in due variabili Raccolta di FAQ by Andrea Prevete 1) Cosa intendiamo, esattamente, quando parliamo di funzione reale di due variabili reali? Quando esiste una relazione fra tre variabili reali

Dettagli

montagna ai trasporti internazionali Luca Bertazzi

montagna ai trasporti internazionali Luca Bertazzi Il problema dello zaino: dalla gita in montagna ai trasporti internazionali Luca Bertazzi 0 Il problema dello zaino Zaino: - capacità B Oggetti (items): - numero n - indice i =1,2,...,n - valore p i -

Dettagli

Tecniche di decomposizione e rilassamenti Lagrangiani

Tecniche di decomposizione e rilassamenti Lagrangiani Tecniche di decomposizione e rilassamenti Lagrangiani Antonio Frangioni Sommario Una tecnica molto diffusa per costruire rilassamenti di problemi di Programmazione Lineare Intera (PLI) o mista, ed anche

Dettagli

I Modelli della Ricerca Operativa

I Modelli della Ricerca Operativa Capitolo 1 I Modelli della Ricerca Operativa 1.1 L approccio modellistico Il termine modello è di solito usato per indicare una costruzione artificiale realizzata per evidenziare proprietà specifiche di

Dettagli

Problemi computazionali

Problemi computazionali Problemi computazionali Intrattabilità e classi computazionali Decidibilità e Trattabilità Problemi decidibili possono richiedere tempi di risoluzione elevati: Torri di Hanoi Decidibilità e Trattabilità

Dettagli

Metodi e Modelli per l Ottimizzazione Combinatoria Metodi euristici di ottimizzazione combinatoria

Metodi e Modelli per l Ottimizzazione Combinatoria Metodi euristici di ottimizzazione combinatoria Metodi e Modelli per l Ottimizzazione Combinatoria Metodi euristici di ottimizzazione combinatoria L. De Giovanni 1 Introduzione I metodi visti finora garantiscono, almeno in linea teorica, di risolvere

Dettagli

Contenuto e scopo presentazione. Vehicle Scheduling. Motivazioni VSP

Contenuto e scopo presentazione. Vehicle Scheduling. Motivazioni VSP Contenuto e scopo presentazione Vehicle Scheduling 08/03/2005 18.00 Contenuto vengono introdotti modelli e metodi per problemi di Vehicle Scheduling Problem (VSP) Scopo fornire strumenti di supporto alle

Dettagli

Ottimizzazione non Vincolata

Ottimizzazione non Vincolata Dipartimento di Informatica e Sitemistica Università di Roma Corso Dottorato Ingegneria dei Sistemi 15/02/2010, Roma Outline Ottimizzazione Non Vincolata Introduzione Ottimizzazione Non Vincolata Algoritmi

Dettagli

Ricerca Operativa e Logistica

Ricerca Operativa e Logistica Ricerca Operativa e Logistica Dott. F.Carrabs e Dott.ssa M.Gentili A.A. 20/202 Lezione 6-8 Rappresentazione di funzioni non lineari: - Costi fissi - Funzioni lineari a tratti Funzioni obiettivo non lineari:

Dettagli

1. Classificazione delle risorse

1. Classificazione delle risorse 1. Classificazione delle risorse Classificazione delle risorse in base alla disponibilità. - Risorse rinnovabili Sono risorse utilizzate per l esecuzione di una attività per tutta la sua durata, ma sono

Dettagli

Chiusura lineare. N.B. A può essere indifferentemente un insieme, finito o no, o un sistema. Es.1. Es.2

Chiusura lineare. N.B. A può essere indifferentemente un insieme, finito o no, o un sistema. Es.1. Es.2 Chiusura lineare Def. Sia A V (K) con A. Si dice copertura lineare (o chiusura lineare) di A, e si indica con L(A), l insieme dei vettori di V che risultano combinazioni lineari di un numero finito di

Dettagli

1. Considerazioni generali

1. Considerazioni generali 1. Considerazioni generali Modelli di shop scheduling In molti ambienti produttivi l esecuzione di un job richiede l esecuzione non simultanea di un certo numero di operazioni su macchine dedicate. Ogni

Dettagli

Ricerca Operativa A.A. 2008/2009

Ricerca Operativa A.A. 2008/2009 Ricerca Operativa A.A. 08/09 2. Modelli di Programmazione Lineare Modelli di programmazione lineare Il metodo grafico è basato su linearità della funzione obiettivo linearità dei vincoli Sotto queste ipotesi

Dettagli

LE FIBRE DI UNA APPLICAZIONE LINEARE

LE FIBRE DI UNA APPLICAZIONE LINEARE LE FIBRE DI UNA APPLICAZIONE LINEARE Sia f:a B una funzione tra due insiemi. Se y appartiene all immagine di f si chiama fibra di f sopra y l insieme f -1 y) ossia l insieme di tutte le controimmagini

Dettagli

Per formalizzare il concetto sono necessarie alcune nozioni relative ai poliedri e alla loro descrizione.

Per formalizzare il concetto sono necessarie alcune nozioni relative ai poliedri e alla loro descrizione. 3.7.4 Disuguaglianze valide forti Cerchiamo disuguaglianze valide forti, ovvero disuguaglianze valide che forniscano migliori formulazioni (più stringenti). Per formalizzare il concetto sono necessarie

Dettagli

Modello matematico PROGRAMMAZIONE LINEARE PROGRAMMAZIONE LINEARE

Modello matematico PROGRAMMAZIONE LINEARE PROGRAMMAZIONE LINEARE PRGRMMZIN LINR Problemi di P.L. in due variabili metodo grafico efinizione: la programmazione lineare serve per determinare l allocazione ottimale di risorse disponibili in quantità limitata, per ottimizzare

Dettagli

Ricerca Operativa. Facoltà di Ingegneria dell Informazione, Informatica e Statistica. Esercizi svolti di. Giovanni Fasano. fasano@unive.

Ricerca Operativa. Facoltà di Ingegneria dell Informazione, Informatica e Statistica. Esercizi svolti di. Giovanni Fasano. fasano@unive. Facoltà di Ingegneria dell Informazione, Informatica e Statistica Esercizi svolti di Ricerca Operativa Sede di Latina Giovanni Fasano fasano@unive.it http://venus.unive.it/ fasano anno accademico 213-214

Dettagli