Capitolo 3: Ottimizzazione Discreta. E. Amaldi DEIB, Politecnico di Milano

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Capitolo 3: Ottimizzazione Discreta. E. Amaldi DEIB, Politecnico di Milano"

Transcript

1 Capitolo 3: Ottimizzazione Discreta E. Amaldi DEIB, Politecnico di Milano

2 3.1 Modelli di PLI e PLMI Moltissimi problemi decisionali complessi possono essere formulati o approssimati come problemi di Programmazione Lineare in cui tutte (alcune) variabili sono vincolate ad assumere valori interi. Definizione: Programmazione Lineare Intera (PLI): min c t x Ax b x 0 intere dove la matrice A è di dimensione m n, i vettori c e b sono di dimensione n e rispettivamente m. Se tutte le variabili devono assumere valori binari si tratta di Programmazione Lineare Binaria (PL0 1) Programmazione Lineare Mista-Intera (PLMI): min c t 1x + c t 2y A 1 x + A 2 y b x 0, y 0 intere dove le matrici A 1 e A 2 sono di dimensione m n 1 e rispettivamente m n 2, i vettori c 1, c 2 e b sono di dimensione n 1, n 2 e rispettivamente m. 1

3 Alcuni modelli di PLI e PLMI: 1) Problema di Zaino Binario Knapsack Un azienda deve decidere come investire un capitale b. Sono disponibili n investimenti. Sia a i la somma da investire nel caso si scelga di effettuare l i-esimo investimento, con 1 i n. Sia p i il profitto atteso dell i-esimo investimento. Problema: determinare quali investimenti effettuare in modo da massimizzare il profitto atteso totale. 2

4 Alcuni modelli di PLI e PLMI: 1) Problema di Zaino Binario Knapsack Un azienda deve decidere come investire un capitale b. Sono disponibili n investimenti. Sia a i la somma da investire nel caso si scelga di effettuare l i-esimo investimento, con 1 i n. Sia p i il profitto atteso dell i-esimo investimento. Problema: determinare quali investimenti effettuare in modo da massimizzare il profitto atteso totale. Formulazione di PLI Variabili di decisione: x i = 1 se si effettua l i-esimo investimento e x i = 0 altrimenti, con 1 i n max n i=1 p ix i n i=1 a ix i b x i {0, 1} i Svariate applicazioni dirette e indirette (come sotto-problema) 3

5 2) Problema di Assegnamento Assignment Dati n progetti (jobs) e n ingegneri (macchine), supponiamo che ogni progetto possa essere eseguito da qualsiasi ingegnere. Sia c ij il costo se i-esimo progetto è eseguito dal j-esimo ingegnere, con 1 i, j n. Ogni progetto deve essere assegnato esattamente ad un ingegnere e ogni ingegnere deve vedersi assegnare esattamente un progetto. Problema: decidere quale progetto assegnare ad ogni ingegnere in modo da minimizzare il costo totale necessario per completare tutti i progetti. Numero di soluzioni ammissibili = n! 4

6 2) Problema di Assegnamento Assignment Dati n progetti (jobs) e n ingegneri (macchine), supponiamo che ogni progetto possa essere eseguito da qualsiasi ingegnere. Sia c ij il costo se i-esimo progetto è eseguito dal j-esimo ingegnere, con 1 i, j n. Ogni progetto deve essere assegnato esattamente ad un ingegnere e ogni ingegnere deve vedersi assegnare esattamente un progetto. Problema: decidere quale progetto assegnare ad ogni ingegnere in modo da minimizzare il costo totale necessario per completare tutti i progetti. Formulazione di PLI Variabili di decisione: x ij = 1 se i-esimo progetto viene assegnato al j-esimo ingegnere e x ij = 0 altrimenti, con 1 i, j n min n n i=1 j=1 c ijx ij s.v. n i=1 x ij = 1 n j=1 x ij = 1 x ij {0, 1} j i i, j 5

7 3) Problema di Copertura di un Insieme Set Covering Siano insieme M = {1, 2,..., m} famiglia {M 1,..., M n } di n suoi sottoinsiemi ( M j M per ogni j = 1,..., n) per ogni j con 1 j n, costo c j di M j determinare quali sottoinsiemi selezionare per coprire tutti gli elementi di M minimizzando il costo totale. 6

8 3) Problema di Copertura di un Insieme Set Covering Siano insieme M = {1, 2,..., m} famiglia {M 1,..., M n } di n suoi sottoinsiemi ( M j M per ogni j = 1,..., n) per ogni j con 1 j n, costo c j di M j determinare quali sottoinsiemi selezionare per coprire tutti gli elementi di M minimizzando il costo totale. Formulazione di PLI Variabili di decisione: x j = 1 se si seleziona M j e x j = 0 altrimenti, con 1 j n min s.v. n j=1 c jx j j:i M j x j 1 i (1) x j {0, 1} j dove i vincoli (1) sono quelli di copertura 7

9 Set covering : min n c j x j : Ax e, x {0, 1} n j=1 dove A = [a ij ] con a ij = 1 se i M j e a ij = 0 altrimenti, ed e = (1, 1,..., 1) t Esempio: localizzazione di servizi di emergenza (ambulanze o vigili del fuoco) M = { aree da coprire }, M j = { aree raggiungibili in 10 min dal sito candidato j } Set packing : max n c j x j : Ax e, x {0, 1} n j=1 dove i parametri c j rappresentano profitti Esempio: localizzazione di impianti ad elevato impatto ambientale (discariche o inceneritori) M = { città }, M j = { città con impatto ambientale del sito candidato j sopra soglia } 8

10 Set partitioning : min o max n c j x j : Ax = e, x {0, 1} n j=1 dove i parametri c j possono rappresentare sia costi che profitti Esempio: formazione dei turni di volo degli equipaggi di una compagnia aerea Si considera un orizzonte di pianificazione prefissato M = { tappe di volo }, tappa = singola fase di volo (tra decollo e atterraggio) da effettuare secondo orari prestabiliti M j = { turni ammissibili }, turno ammissibile = sottoinsieme di tappe di volo che possono essere concatenate in base alla normativa (durata complessiva e periodi di riposo) 9

11 4) Problema del Commesso Viaggiatore (asimmetrico) Asymmetric Traveling Salesman Problem (ATSP) Dato un grafo orientato G = (V, A) con V = {1, 2,..., n} e un costo c ij R associato ad ogni arco (i, j) A, determinare un ciclo Hamiltoniano, i.e., un ciclo che visita esattamente una volta ogni nodo e torna al nodo di partenza, di costo totale minimo. 10

12 4) Problema del Commesso Viaggiatore (asimmetrico) Asymmetric Traveling Salesman Problem (ATSP) Dato un grafo orientato G = (V, A) con V = {1, 2,..., n} e un costo c ij R associato ad ogni arco (i, j) A, determinare un ciclo Hamiltoniano, i.e., un ciclo che visita esattamente una volta ogni nodo e torna al nodo di partenza, di costo totale minimo. Se il grafo G è completo, il numero di cicli Hamiltoniani = (n 1)! Anche versione simmetrica con grafo non orientato Molte varianti con - vincoli di precedenza - vincoli temporali (istante al più presto e al più tardi di visita per ogni nodo) - vincolo di capacità del veicolo - più veicoli da instradare ( Vehicle Routing Problem ) -... Molteplici applicazioni: logistica, sequenziamento di operazioni, VLSI,... Sito web dedicato al TSP: 11

13 Una formulazione di PLI Variabili di decisione: x ij = 1 se il ciclo Hamiltoniano contiene l arco (i, j) e x ij = 0 altrimenti, per (i, j) A min s.v. (i,j) A c ijx ij i: (i,j) A x ij = 1 j j: (i,j) A x ij = 1 i (i,j) A: i S, j V \S x ij 1 S V, S (2) x ij {0, 1} (i, j) A dove i vincoli (2) sono i cosiddetti vincoli di taglio ( cut-set inequalities ) 12

14 Una formulazione di PLI: Variabili di decisione: x ij = 1 se il ciclo Hamiltoniano contiene l arco (i, j) e x ij = 0 altrimenti, per (i, j) A min (i,j) A c ijx ij s.v. i: (i,j) A x ij = 1 j j: (i,j) A x ij = 1 i (i,j) A: i S, j V \S x ij 1 S V, S (3) x ij {0, 1} (i, j) A dove i vincoli (3) sono i cosiddetti vincoli di taglio ( cut-set inequalities ) Formulazione di PLI alternativa: (i,j) A: i,j S x ij S 1 S V, 2 S n 1 (4) con i cosiddetti vincoli di eliminazione dei sottocicli ( subtour elimination inequalities ) al posto dei vincoli (3) Osservazione: I vincoli (3) e (4) sono in numero esponenziale rispetto alla dimensione di G. 13

15 5) Mix produttivo con costi fissi Un azienda deve decidere quali/quanti articoli produrre il prossimo mese in modo da minimizzare i costi soddisfacendo la domanda. Per ogni articolo i, con 1 i n, c i > 0 indica il costo unitario, f i > 0 il costo fisso (se si produce) e k i > 0 la capacità produttiva. 14

16 5) Mix produttivo con costi fissi Un azienda deve decidere quali/quanti articoli produrre il prossimo mese in modo da minimizzare i costi soddisfacendo la domanda. Per ogni articolo i, con 1 i n, c i > 0 indica il costo unitario, f i > 0 il costo fisso (se si produce) e k i > 0 la capacità produttiva. Formulazione di PLMI Variabili di decisione: x i = quantità di articolo i prodotta, con 1 i n y i = 1 se x i > 0 e y i = 0 altrimenti, con 1 i n min n i=1 (c ix i + f i y i ) s.v. x i k i y i i vincoli di domanda... x i 0 i y i {0, 1} i 15

17 5) Mix produttivo con costi fissi Un azienda deve decidere quali/quanti articoli produrre il prossimo mese in modo da minimizzare i costi soddisfacendo la domanda. Per ogni articolo i, con 1 i n, c i > 0 indica il costo unitario, f i > 0 il costo fisso (se si produce) e k i > 0 la capacità produttiva. Formulazione di PLMI Variabili di decisione: x i = quantità di articolo i prodotta, con 1 i n y i = 1 se x i > 0 e y i = 0 altrimenti, con 1 i n min n i=1 (c ix i + f i y i ) s.v. x i k i y i i vincoli di domanda... x i 0 i y i {0, 1} i N.B.: La formulazione non è del tutto esatta, la soluzione x i = 0 e y i = 1 per ogni i è ammissibile per il PLMI, anche se non può essere ottima (minimizzazione e costi fissi f i positivi). 16

18 6) Localizzazione ottima senza vincoli di capacità Uncapacitated Facility Location (UFL) Siano M = {1, 2,..., m} insieme di clienti N = {1, 2,..., n} insieme di siti nei quali si possono localizzare dei depositi per ogni j N, f j costo fisso di utilizzo del deposito in j per ogni coppia i M e j N, c ij costo di trasporto se tutta la domanda del cliente i è soddisfatta dal deposito j, determinare dove localizzare i depositi in modo da soddisfare la domanda di tutti i clienti minimizzando i costi (costi di trasporto e costi di utilizzo). 17

19 Formulazione di PLMI Variabili di decisione: x ij = frazione della domanda del cliente i soddisfatta dal deposito j, con 1 i m e 1 j n y j = 1 se si utilizza il deposito j e y j = 0 altrimenti, con 1 j n min i M s.v. j N c ijx ij + j N f jy j j N x ij = 1 i M i M x ij my j j N (5) y j {0, 1} j N 0 x ij 1 i M, j N con n vincoli (5) che legano le variabili x ij e y j Variante: Se d i indica la domanda del cliente i e k j la capacità del deposito j, gli eventuali vincoli di capacità: d i x ij k j y j i M j N 18

20 7) Pianificazione della produzione multi-periodo Uncapacitated Lot-Sizing (ULS) Un impresa deve pianificare la produzione di un solo tipo di prodotto per i prossimi n mesi. Si suppone che il magazzino sia vuoto all inizio del periodo di pianificazione e che alla fine del periodo debbano rimanere in magazzino 50 unità. Siano f t costo fisso di produzione nel periodo t p t costo unitario di produzione nel periodo t h t costo unitario di immagazzinamento nel periodo t d t domanda per il periodo t determinare un piano di produzione per i prossimi n mesi che permetta di minimizzare i costi (produzione e magazzino) soddisfacendo la domanda ad ogni periodo. Formulare il problema come un PLMI. 19

21 Formulazione di PLMI Variabili di decisione: x t = quantità prodotta nel periodo t, con 1 t n s t = quantità in magazzino alla fine del periodo t, con 0 t n y t = 1 se si attiva la produzione nel periodo t e y j = 0 altrimenti, con 1 t n min n t=1 p tx t + n t=1 h ts t + n t=1 f ty t s.v. s t = s t 1 + x t d t t x t My t s 0 = 0, s n = 50 s t, x t 0 y t {0, 1} t t t t dove M > 0 è un limite superiore sulla massima quantità prodotta durante qualsiasi periodo. Ad esempio: x t ( n t=1 d t + s n s 0 )y t N.B.: Poiché s t = t i=1 x i t i=1 d i, è possibile eliminare le variabili s t di magazzino 20

22 3.2 Formulazioni alternative ed ideali In Programmazione Lineare (PL) le migliori formulazioni sono le più compatte (con il minor numero di variabili/vincoli) visto che la complessità computazionale dei problemi cresce polinomialmente con n e m. La scelta della formulazione è importante ma non determina in modo critico la possibilità di risolvere o meno il problema. La situazione è molto diversa per i problemi di PLI e PLMI: estese campagne computazionali indicano che la scelta della formulazione è cruciale. Per capire cosa caratterizza le buone formulazioni, partiamo dal concetto di rilassamento continuo (lineare) di un PLI o PLMI. 21

23 Definizione: Dato un qualsiasi problema di PLMI (PLI) z P LMI = min c t 1x + c t 2y s.v. A 1 x + A 2 y b (6) x 0, y 0 intere (7) il suo rilassamento continuo (lineare) è il seguente problema di PL: z P L = min c t 1x + c t 2y s.v. A 1 x + A 2 y b (8) x 0, y 0 (9) dove il vincolo di interezza sulle variabili y j è omesso. Se una variabile intera y j nel PLMI è tale che 0 y j u j, nel rilassamento continuo y j [0, u j ]. Sia X P LMI la regione ammissibile del PLMI definita da (6)-(7) e X P L quella del rilassamento continuo definita da (8)-(9). Conseguenze: Poiché X P LMI X P L e i problemi sono di minimizzazione, abbiamo: z PL z PLMI, ovvero z P L è un limite inferiore rispetto a z P LMI ; se una soluzione ottima x P L del rilassamento continuo è ammissibile per il PLMI (PLI) di partenza, è anche ottima per quest ultimo. Se il PLMI è di massimizzazione, chiaramente z PLMI z PL. 22

24 Qualsiasi problema di PLI/PLMI ammette un numero infinito di formulazioni corrette alternative con regioni ammissibili del rilassamento continuo diverse. Definizione: Un poliedro P R n 1+n 2 (sottoinsieme definito da un numero finito di vincoli lineari) è una formulazione di un insieme X R n 1 Z n 2 se e solo se X = P (R n 1 Z n 2). N.B.: Nel caso dei costi fissi, non abbiamo considerato l insieme X = {(0, 0), (x i, 1) per 0 < x k i } ma X {(0, 1)}. Esempi: 1) Due formulazioni alternative per il TSP con vincoli di taglio o di eliminazione di sotto-cicli. 2) Formulazione di PLMI alternativa per il problema UFL: min i M j N c ijx ij + j N f jy j s.v. j N x ij = 1 i M x ij y j i M, j N (10) y j {0, 1} j N 0 x ij 1 i M, j N con mn vincoli (10) che legano le variabili x ij e y j. 23

25 Le formulazioni alternative possono adoperare variabili aggiuntive o variabili diverse. Nel primo caso si parla di formulazioni estese. Esempio: Formulazione di PLMI estesa per il problema ULS 24

26 Le formulazioni alternative possono adoperare variabili aggiuntive o variabili diverse. Nel primo caso si parla di formulazioni estese. Esempio: Formulazione di PLMI estesa per il problema ULS Variabili di decisione: w it = quantità prodotta nel periodo i e venduta nel periodo t, con 1 i t n + 1 y t = 1 se si attiva la produzione nel periodo t e y j = 0 altrimenti, con 1 t n min n n i=1 t=i c itw it + n t=1 f ty t s.v. t i=1 w it = d t n i=1 w i,n+1 = 50 w it d t y i w it 0 y t {0, 1} t, 1 t n (magazzino alla fine) i, t, i t i, t, i t con i costi aggregati (produzione e magazzino) c it = p i + h i h t 1. N.B.: Per ogni periodo i, si può aggiungere il vincolo x i = n t=i w it che esprime la vecchia variabile x i in funzione delle nuove w it t 25

27 Sia X = {x 1,..., x k } l insieme delle soluzioni ammissibili di un PLI. Supponiamo X sia limitato (finito). Teorema: conv(x) è un poliedro e i punti estremi di conv(x) appartengono a X. Questo risultato, che vale anche per insiemi X illimitati di punti interi e di punti misti interi, implica: min{c t x : x X} = min{c t x : x conv(x)} In teoria, il problema di PLI/PLMI si può ricondurre ad un singolo problema di PL! In pratica, anche per X limitato, la formulazione ideale è spesso di dimensione esponenziale o difficile da determinare. Chiaramente la regione ammissibile P del rilassamento continuo di qualsiasi formulazione soddisfa X = {x Z n : Ax b} conv(x) P. Definizione: La formulazione ideale di un insieme X R n è il poliedro conv(x). Dato un insieme X R n e due formulazioni P 1 e P 2 di X, la formulazione P 1 domina (è più stringente di) quella P 2 se P 1 P 2. Infatti, se z i = min{c t x : x P i Z n }, il bound z 1 è almeno altrettanto stringente di z 2, ovvero z P LI = min{c t x : x X} z 1 z 2. 26

28 1) Localizzazione ottima senza vincoli di capacità Uncapacitated Facility Location (UFL) Proprietà: Il rilassamento continuo della formulazione di PLMI alternativa (con i vincoli x ij y j ) domina quello della prima formulazione di PLMI (con i vincoli aggregati i M x ij my j ). Siano P 1 = e P 2 = { (x, y) R nm+n : { (x, y) R nm+n : } j N x ij = 1 i, x ij y j i, j, 0 x ij 1 i, j, 0 y j 1 j j N x ij = 1 i, } i M x ij my j j, 0 x ij 1 i, j, 0 y j 1 j, chiaramente P 1 P 2 (sommando gli m vincoli x ij y j per un dato j si ottiene i M x ij my j per quel j). Inoltre è facile esibire un (x, y) che appartiene a P 2 ma non appartiene a P 1 2) TSP simmetrico Confronto tra le due formulazioni alternative nella seconda serie di esercizi 27

29 Confronto tra formulazioni con variabili diverse Consideriamo una prima formulazione con tutte variabili intere (PLI) min{c t x : x P 1 Z n 1 } con P 1 R n 1, e una formulazione estesa min{c t (x, w) : (x, w) P 2 (Z n 1 R n 2 )} con P 2 R n 1 R n 2. Definizione: Dato un insieme convesso P R n 1 R n 2, la proiezione di P sul sottospazio R n 1 è Π x (P ) = {x R n 1 : (x, w) P per qualche w R n 2 } Esempio: proiezione di un poliedro tridimensionale Per confrontare una formulazione P 1 R n 1 e una formulazione estesa P 2 R n 1 R n 2, si confrontando quindi P 1 e Π x (P 2 ). 28

30 Come determinare le proiezioni dei poliedri sui sottospazi di R n? Metodo di eliminazione di Fourier-Motzkin (inizio 800): Prima procedura per determinare una soluzione ammissibile di un sistema di disuguaglianze lineari Idea: Ad ogni iterazione viene eliminata una variable, combinando in tutti i modi possibili le disuguaglianze correnti, fino ad ottenere un sistema in una sola variabile. Descrizione 29

31 Esempio: x 1 +x 2 3 (11) 1 2 x 1 +x 2 0 (12) x 2 2 (13) Eliminazione di x 2 (proiezione del poliedro delle soluzioni ammissibili di (11)-(13) sul sottospazio di x 1 ): 3 x 1 x x 1 x 2 x 2 2 considerando tutte le coppie di disuguaglianze (... x 2 e x 2... ) si ottiene 3 x x 1 2 ovvero 1 x 1 4, quindi la proiezione [1, 4]. Eliminazione di x 1 (proiezione del poliedro delle soluzioni ammissibili di (11)-(13) sul sottospazio di x 2 ): si ottiene 1 x 2 2 quindi la proiezione [1, 2]. Complessità: il numero di vincoli aggiuntivi può crescere esponenzialmente rispetto al numero delle variabili originarie 30

32 Confronto con formulazione estesa: Pianificazione della produzione multi-periodo (ULS) Consideriamo la formulazione P 1 descritta da e Π x,s,y (P 2 ), con P 2 descritto da s t = s t 1 + x t d t x t My t s 0 = 0, s t, x t 0 t t t 0 y t 1 t t i=1 w it = d t t w it d t y i i, t, i t x i = n t=i w it i (14) w it 0 i, t, i t 0 y t 1 t E facile verificare che Π x,s,y (P 2 ) P 1. Ad esempio, il punto x t = d t, y t = d t /M per ogni t è un punto estremo di P 1 che non appartiene a Π x,s,y (P 2 ). Proposizione: P 2 è la formulazione ideale, ovvero descrive il guscio convesso di tutte le soluzioni ammissibili (misto intere) di ULS. 31

Capitolo 5: Ottimizzazione Discreta. E. Amaldi DEI, Politecnico di Milano

Capitolo 5: Ottimizzazione Discreta. E. Amaldi DEI, Politecnico di Milano Capitolo 5: Ottimizzazione Discreta E. Amaldi DEI, Politecnico di Milano 5.1 Modelli di PLI, formulazioni equivalenti ed ideali Il modello matematico di un problema di Ottimizzazione Discreta è molto spesso

Dettagli

Esercizi di Ricerca Operativa I

Esercizi di Ricerca Operativa I Esercizi di Ricerca Operativa I Dario Bauso, Raffaele Pesenti May 10, 2006 Domande Programmazione lineare intera 1. Gli algoritmi per la programmazione lineare continua possono essere usati per la soluzione

Dettagli

Modelli di Programmazione Lineare Intera

Modelli di Programmazione Lineare Intera 8 Modelli di Programmazione Lineare Intera Come è stato già osservato in precedenza, quando tutte le variabili di un problema di Programmazione Lineare sono vincolate ad assumere valori interi, si parla

Dettagli

Problemi di Programmazione Lineare Intera

Problemi di Programmazione Lineare Intera Capitolo 4 Problemi di Programmazione Lineare Intera La Programmazione Lineare Intera (PLI) tratta il problema della massimizzazione (minimizzazione) di una funzione di più variabili, soggetta a vincoli

Dettagli

Ricerca Operativa A.A. 2007/2008

Ricerca Operativa A.A. 2007/2008 Ricerca Operativa A.A. 2007/2008 9. Cenni su euristiche e metaeuristiche per ottimizzazione combinatoria Motivazioni L applicazione di metodi esatti non è sempre possibile a causa della complessità del

Dettagli

Lezioni di Ricerca Operativa. Corso di Laurea in Informatica Università di Salerno. Lezione n 4

Lezioni di Ricerca Operativa. Corso di Laurea in Informatica Università di Salerno. Lezione n 4 Lezioni di Ricerca Operativa Lezione n 4 - Problemi di Programmazione Matematica - Problemi Lineari e Problemi Lineari Interi - Forma Canonica. Forma Standard Corso di Laurea in Informatica Università

Dettagli

Progetto di Reti di Telecomunicazione Modelli in Programmazione Lineare Problemi di flusso

Progetto di Reti di Telecomunicazione Modelli in Programmazione Lineare Problemi di flusso Progetto di Reti di Telecomunicazione Modelli in Programmazione Lineare Problemi di flusso Flusso di costo minimo È dato un grafo direzionato G = (N, A). Ad ogni arco (i, j) A è associato il costo c ij

Dettagli

TSP con eliminazione di sottocicli

TSP con eliminazione di sottocicli TSP con eliminazione di sottocicli Un commesso viaggiatore deve visitare 7 clienti in modo da minimizzare la distanza percorsa. Le distanze (in Km) tra ognuno dei clienti sono come segue: 3 5 7-8 9 57

Dettagli

Ricerca Operativa e Logistica Dott. F.Carrabs e Dott.ssa M.Gentili. Introduzione

Ricerca Operativa e Logistica Dott. F.Carrabs e Dott.ssa M.Gentili. Introduzione Ricerca Operativa e Logistica Dott. F.Carrabs e Dott.ssa M.Gentili Introduzione La Ricerca Operativa La Ricerca Operativa è una disciplina relativamente recente. Il termine Ricerca Operativa è stato coniato

Dettagli

Esempi di modelli di programmazione lineare (intera) 2014

Esempi di modelli di programmazione lineare (intera) 2014 Esempi di modelli di programmazione lineare (intera) 2014 1) Combinando risorse Una ditta produce due tipi di prodotto, A e B, combinando e lavorando opportunamente tre risorse, R, S e T. In dettaglio:

Dettagli

Contenuto e scopo presentazione. Crew Scheduling e Crew Rostering. Gestione del personale. Motivazioni

Contenuto e scopo presentazione. Crew Scheduling e Crew Rostering. Gestione del personale. Motivazioni Contenuto e scopo presentazione Crew Scheduling e Crew Rostering Contenuto vengono introdotti modelli e metodi per problemi di turnazione del personale Raffaele Pesenti 07/02/2002 14.41 Scopo fornire strumenti

Dettagli

Gestione della produzione e della supply chain Logistica distributiva. Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena

Gestione della produzione e della supply chain Logistica distributiva. Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena Gestione della produzione e della supply chain Logistica distributiva Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena Problemi di Distribuzione: Il problema del Vehicle Rou:ng

Dettagli

Ricerca Operativa Branch-and-Bound per problemi di Programmazione Lineare Intera

Ricerca Operativa Branch-and-Bound per problemi di Programmazione Lineare Intera Ricerca Operativa Branch-and-Bound per problemi di Programmazione Lineare Intera L. De Giovanni AVVERTENZA: le note presentate di seguito non hanno alcuna pretesa di completezza, né hanno lo scopo di sostituirsi

Dettagli

Ricerca Operativa Dualità e programmazione lineare

Ricerca Operativa Dualità e programmazione lineare Ricerca Operativa Dualità e programmazione lineare L. De Giovanni AVVERTENZA: le note presentate di seguito non hanno alcuna pretesa di completezza, né hanno lo scopo di sostituirsi alle spiegazioni del

Dettagli

1. Considerazioni preliminari

1. Considerazioni preliminari 1. Considerazioni preliminari Uno dei principali aspetti decisionali della gestione logistica è decidere dove localizzare nuove facility, come impianti, magazzini, rivenditori. Ad esempio, consideriamo

Dettagli

Contenuto e scopo presentazione. Vehicle Scheduling. Motivazioni VSP

Contenuto e scopo presentazione. Vehicle Scheduling. Motivazioni VSP Contenuto e scopo presentazione Vehicle Scheduling 08/03/2005 18.00 Contenuto vengono introdotti modelli e metodi per problemi di Vehicle Scheduling Problem (VSP) Scopo fornire strumenti di supporto alle

Dettagli

Problemi di localizzazione impianti

Problemi di localizzazione impianti Problemi di localizzazione impianti Laura Galli Dipartimento di Informatica Largo B. Pontecorvo 3, 56127 Pisa laura.galli@unipi.it http://www.di.unipi.it/~galli 2 Dicembre 2014 Ricerca Operativa 2 Laurea

Dettagli

Problemi di trasporto merci

Problemi di trasporto merci Problemi di routing di veicoli: 1 - Introduzione Daniele Vigo DEIS, Università di Bologna dvigo@deis.unibo.it Problemi di trasporto merci Trasporto merci 10% - 25% del costo totale dei beni di consumo

Dettagli

MRP. Pianificazione della produzione. Distinta base Bill Of Materials (BOM) MPS vs. MRP. Materials Requirements Planning (MRP)

MRP. Pianificazione della produzione. Distinta base Bill Of Materials (BOM) MPS vs. MRP. Materials Requirements Planning (MRP) MRP Pianificazione della produzione Materials Requirements Planning (MRP) 15/11/2002 16.58 Con l MRP si decide la tempificazione delle disponibilità dei materiali, delle risorse e delle lavorazioni. MRP

Dettagli

Modelli di Ottimizzazione

Modelli di Ottimizzazione Capitolo 2 Modelli di Ottimizzazione 2.1 Introduzione In questo capitolo ci occuperemo più nel dettaglio di quei particolari modelli matematici noti come Modelli di Ottimizzazione che rivestono un ruolo

Dettagli

Metodi e Modelli per l Ottimizzazione Combinatoria Ripasso sulla Modellazione in Programmazione Lineare

Metodi e Modelli per l Ottimizzazione Combinatoria Ripasso sulla Modellazione in Programmazione Lineare Metodi e Modelli per l Ottimizzazione Combinatoria Ripasso sulla Modellazione in Programmazione Lineare Luigi De Giovanni 1 Modelli di programmazione lineare I modelli di programmazione lineare sono una

Dettagli

METODI MATEMATICI PER LE DECISIONI ECONOMICHE E AZIENDALI 12 CANDIDATO.. VOTO

METODI MATEMATICI PER LE DECISIONI ECONOMICHE E AZIENDALI 12 CANDIDATO.. VOTO METODI MATEMATICI PER LE DECISIONI ECONOMICHE E AZIENDALI 12 1) In un problema multiattributo i pesi assegnati ai vari obiettivi ed i risultati che essi assumono in corrispondenza alle varie alternative

Dettagli

Modelli di Programmazione Lineare. PRTLC - Modelli

Modelli di Programmazione Lineare. PRTLC - Modelli Modelli di Programmazione Lineare PRTLC - Modelli Schema delle esercitazioni Come ricavare la soluzione ottima Modelli Solver commerciali Come ricavare una stima dell ottimo Rilassamento continuo - generazione

Dettagli

Appunti di Ricerca Operativa

Appunti di Ricerca Operativa Appunti di Ricerca Operativa 0/0 Prefazione La Ricerca Operativa è un campo in continua evoluzione, il cui impatto sulle realtà aziendali ed organizzative è in costante crescita. L insegnamento di questa

Dettagli

Metodi e Modelli per l Ottimizzazione Combinatoria Ripasso sulla Modellazione in Programmazione Lineare

Metodi e Modelli per l Ottimizzazione Combinatoria Ripasso sulla Modellazione in Programmazione Lineare Metodi e Modelli per l Ottimizzazione Combinatoria Ripasso sulla Modellazione in Programmazione Lineare Luigi De Giovanni 1 Modelli di programmazione lineare I modelli di programmazione lineare sono una

Dettagli

Ricerca Operativa Prima Parte

Ricerca Operativa Prima Parte 1 Prima Parte 2 Testi didattici M. Caramia, S. Giordani, F. Guerriero, R. Musmanno, D. Pacciarelli, Ricerca Operativa, ISEDI, 2014. S. Martello, M.G. Speranza, Ricerca Operativa per l Economia e l Impresa,

Dettagli

Metodi e Modelli per l Ottimizzazione Combinatoria Metodi euristici di ottimizzazione combinatoria

Metodi e Modelli per l Ottimizzazione Combinatoria Metodi euristici di ottimizzazione combinatoria Metodi e Modelli per l Ottimizzazione Combinatoria Metodi euristici di ottimizzazione combinatoria L. De Giovanni 1 Introduzione I metodi visti finora garantiscono, almeno in linea teorica, di risolvere

Dettagli

Parte 3: Gestione dei progetti, Shop scheduling

Parte 3: Gestione dei progetti, Shop scheduling Parte : Gestione dei progetti, Shop scheduling Rappresentazione reticolare di un progetto Insieme di attività {,...,n} p i durata (nota e deterministica dell attività i) relazione di precedenza fra attività:

Dettagli

Indirizzo Giuridico Economico Aziendale

Indirizzo Giuridico Economico Aziendale Premessa Questa breve trattazione non vuole costituire una guida completa ed esauriente sull argomento, ma vuole fornire solamente i concetti fondamentali necessari per il raggiungimento degli obiettivi

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Corso di Calcolo Numerico Dottssa MC De Bonis Università degli Studi della Basilicata, Potenza Facoltà di Ingegneria Corso di Laurea in Ingegneria Meccanica Corso di Calcolo Numerico - Dottssa MC De Bonis

Dettagli

Approcci esatti per il job shop

Approcci esatti per il job shop Approcci esatti per il job shop Riferimenti lezione: Carlier, J. (1982) The one-machine sequencing problem, European Journal of Operational Research, Vol. 11, No. 1, pp. 42-47 Carlier, J. & Pinson, E.

Dettagli

Management Sanitario. Modulo di Ricerca Operativa

Management Sanitario. Modulo di Ricerca Operativa Management Sanitario per il corso di Laurea Magistrale SCIENZE RIABILITATIVE DELLE PROFESSIONI SANITARIE Modulo di Ricerca Operativa Prof. Laura Palagi http://www.dis.uniroma1.it/ palagi Dipartimento di

Dettagli

Modelli di Programmazione Lineare Intera

Modelli di Programmazione Lineare Intera 8 Modelli di Programmazione Lineare Intera 8.1 MODELLI DI PROGRAMMAZIONE LINEARE INTERA Esercizio 8.1.1 Una compagnia petrolifera dispone di 5 pozzi (P1, P2, P3, P4, P5) dai quali può estrarre petrolio.

Dettagli

Funzioni di più variabili. Ottimizzazione libera e vincolata

Funzioni di più variabili. Ottimizzazione libera e vincolata libera e vincolata Generalità. Limiti e continuità per funzioni di 2 o Piano tangente. Derivate successive Formula di Taylor libera vincolata Lo ordinario è in corrispondenza biunivoca con i vettori di

Dettagli

Tecniche di decomposizione e rilassamenti Lagrangiani

Tecniche di decomposizione e rilassamenti Lagrangiani Tecniche di decomposizione e rilassamenti Lagrangiani Antonio Frangioni Sommario Una tecnica molto diffusa per costruire rilassamenti di problemi di Programmazione Lineare Intera (PLI) o mista, ed anche

Dettagli

Produzione e forza lavoro

Produzione e forza lavoro Produzione e forza lavoro Testo Un azienda produce i modelli I, II e III di un certo prodotto a partire dai materiali grezzi A e B, di cui sono disponibili 4000 e 6000 unità, rispettivamente. In particolare,

Dettagli

Contenuto e scopo presentazione. Decisioni tattiche. Decisioni tattiche. Decisioni tattiche

Contenuto e scopo presentazione. Decisioni tattiche. Decisioni tattiche. Decisioni tattiche Contenuto e scopo presentazione Decisioni tattiche 21/05/2002 12.01 Contenuto vengono discusse alcune problematiche decisionali tattiche tipicamente affrontate dalle aziende di trasporto. Scopo fornire

Dettagli

Appunti delle esercitazioni di Ricerca Operativa

Appunti delle esercitazioni di Ricerca Operativa Appunti delle esercitazioni di Ricerca Operativa a cura di P. Detti e G. Ciaschetti 1 Esercizi sulle condizioni di ottimalità per problemi di ottimizzazione non vincolata Esempio 1 Sia data la funzione

Dettagli

Flusso a costo minimo e simplesso su reti

Flusso a costo minimo e simplesso su reti Flusso a costo minimo e simplesso su reti La particolare struttura di alcuni problemi di PL può essere talvolta utilizzata per la progettazione di tecniche risolutive molto più efficienti dell algoritmo

Dettagli

Funzioni in due variabili Raccolta di FAQ by Andrea Prevete

Funzioni in due variabili Raccolta di FAQ by Andrea Prevete Funzioni in due variabili Raccolta di FAQ by Andrea Prevete 1) Cosa intendiamo, esattamente, quando parliamo di funzione reale di due variabili reali? Quando esiste una relazione fra tre variabili reali

Dettagli

Modelli di Programmazione Lineare

Modelli di Programmazione Lineare Capitolo 2 Modelli di Programmazione Lineare 2.1 Modelli di allocazione ottima di risorse Esercizio 2.1.1 Un industria manifatturiera può fabbricare 5 tipi di prodotti che indichiamo genericamente con

Dettagli

Contenuto e scopo presentazione. Modelli Lineari. Problemi e Istanze. Problemi di ottimizzazione. Esempi Versione 07/03/2006

Contenuto e scopo presentazione. Modelli Lineari. Problemi e Istanze. Problemi di ottimizzazione. Esempi Versione 07/03/2006 Contenuto e scopo presentazione Modelli Lineari Esempi Versione 07/03/2006 Contenuto esempi di modelli lineari per problemi pratici Scopo presentare i passi che conducono allo sviluppo di modelli a partire

Dettagli

APPLICAZIONI DELLA RICERCA OPERATIVA

APPLICAZIONI DELLA RICERCA OPERATIVA Università degli Studi della Calabria Laurea in Informatica A.A. 2004/2005 Appunti di supporto didattico al corso di APPLICAZIONI DELLA RICERCA OPERATIVA Indice 1 Introduzione alla teoria dello Scheduling

Dettagli

VC-dimension: Esempio

VC-dimension: Esempio VC-dimension: Esempio Quale è la VC-dimension di. y b = 0 f() = 1 f() = 1 iperpiano 20? VC-dimension: Esempio Quale è la VC-dimension di? banale. Vediamo cosa succede con 2 punti: 21 VC-dimension: Esempio

Dettagli

1. Considerazioni generali

1. Considerazioni generali 1. Considerazioni generali Modelli di shop scheduling In molti ambienti produttivi l esecuzione di un job richiede l esecuzione non simultanea di un certo numero di operazioni su macchine dedicate. Ogni

Dettagli

Ricerca Operativa e Logistica

Ricerca Operativa e Logistica Ricerca Operativa e Logistica Dott. F.Carrabs e Dott.ssa M.Gentili A.A. 2011/2012 Lezione 10: Variabili e vincoli logici Variabili logiche Spesso nei problemi reali che dobbiamo affrontare ci sono dei

Dettagli

Esame di Ricerca Operativa del 20/12/13. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

Esame di Ricerca Operativa del 20/12/13. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare: Esame di Ricerca Operativa del 0// (Cognome) (Nome) (Corso di laurea) Esercizio. Completare la seguente tabella considerando il problema di programmazione lineare: max x x x + x x +x x x x x x x 0 x x

Dettagli

Complessità e Approssimazione

Complessità e Approssimazione 1 Complessità e Approssimazione Corso di Laurea in Scienze dell'informazione Corso di Laurea Specialistica in Matematica Docente: Mauro Leoncini 2 Aspetti organizzativi Sito web: http://algo.ing.unimo.it/people/mauro

Dettagli

Modelli per la gestione delle scorte

Modelli per la gestione delle scorte Modelli per la gestione delle scorte Claudio Arbib Università di L Aquila Seconda Parte Sommario Sui problemi di gestione aperiodica equazioni di stato Funzioni di costo Un modello convesso formulazione

Dettagli

LEZIONE 31. B i : R n R. R m,n, x = (x 1,..., x n ). Allora sappiamo che è definita. j=1. a i,j x j.

LEZIONE 31. B i : R n R. R m,n, x = (x 1,..., x n ). Allora sappiamo che è definita. j=1. a i,j x j. LEZIONE 31 31.1. Domini di funzioni di più variabili. Sia ora U R n e consideriamo una funzione f: U R m. Una tale funzione associa a x = (x 1,..., x n ) U un elemento f(x 1,..., x n ) R m : tale elemento

Dettagli

montagna ai trasporti internazionali Luca Bertazzi

montagna ai trasporti internazionali Luca Bertazzi Il problema dello zaino: dalla gita in montagna ai trasporti internazionali Luca Bertazzi 0 Il problema dello zaino Zaino: - capacità B Oggetti (items): - numero n - indice i =1,2,...,n - valore p i -

Dettagli

rassegna 16 n.20 novembre 2015 Optit Srl, Cesena (FC), www.optit.net

rassegna 16 n.20 novembre 2015 Optit Srl, Cesena (FC), www.optit.net Ottimizzazione primaria e secon Claudio Caremi 1, Fabio Lombardi 1, Mattia Manfroni 1, Tiziano Parriani 1, Lorenzo Ravaglia 1, Gessica Zarri 1, Daniele Vigo 1,2, Giorgia Volta 3, Fabrizio Salieri 3, Adriano

Dettagli

Gestione delle Scorte

Gestione delle Scorte Sapienza Università di Roma - Dipartimento di Ingegneria Informatica, Automatica e Gestionale Gestione delle Scorte Renato Bruni bruni@dis.uniroma.it Il materiale presentato è derivato da quello dei proff.

Dettagli

Introduzione alla teoria dello scheduling

Introduzione alla teoria dello scheduling 1. Generalità I problemi di scheduling riguardano l allocazione di risorse limitate ad attività nel tempo. In generale il processo di decisione associato richiede la determinazione dell ordine in cui l

Dettagli

Ricerca Operativa. Facoltà di Ingegneria dell Informazione, Informatica e Statistica. Esercizi svolti di. Giovanni Fasano. fasano@unive.

Ricerca Operativa. Facoltà di Ingegneria dell Informazione, Informatica e Statistica. Esercizi svolti di. Giovanni Fasano. fasano@unive. Facoltà di Ingegneria dell Informazione, Informatica e Statistica Esercizi svolti di Ricerca Operativa Sede di Latina Giovanni Fasano fasano@unive.it http://venus.unive.it/ fasano anno accademico 213-214

Dettagli

ANALISI NUMERICA. Elementi finiti bidimensionali. a.a. 2014 2015. Maria Lucia Sampoli. ANALISI NUMERICA p.1/23

ANALISI NUMERICA. Elementi finiti bidimensionali. a.a. 2014 2015. Maria Lucia Sampoli. ANALISI NUMERICA p.1/23 ANALISI NUMERICA Elementi finiti bidimensionali a.a. 2014 2015 Maria Lucia Sampoli ANALISI NUMERICA p.1/23 Elementi Finiti 2D Consideriamo 3 aspetti per la descrizione di elementi finiti bidimensionali:

Dettagli

PROVA FINALE V. AULETTA G. PERSIANO ALGORITMI II - -MAGIS INFO

PROVA FINALE V. AULETTA G. PERSIANO ALGORITMI II - -MAGIS INFO PROVA FINALE V. AULETTA G. PERSIANO ALGORITMI II - -MAGIS INFO 1. Load Balancing Un istanza del problema del load balancing consiste di una sequenza p 1,..., p n di interi positivi (pesi dei job) e un

Dettagli

Richiami di algebra lineare e geometria di R n

Richiami di algebra lineare e geometria di R n Richiami di algebra lineare e geometria di R n combinazione lineare, conica e convessa spazi lineari insiemi convessi, funzioni convesse rif. BT.5 Combinazione lineare, conica, affine, convessa Un vettore

Dettagli

Ricerca Operativa e Logistica

Ricerca Operativa e Logistica Ricerca Operativa e Logistica Dott. F.Carrabs e Dott.ssa M.Gentili A.A. 20/202 Lezione 6-8 Rappresentazione di funzioni non lineari: - Costi fissi - Funzioni lineari a tratti Funzioni obiettivo non lineari:

Dettagli

Ricerca Operativa e Logistica Dott. F.Carrabs e Dott.ssa M.Gentili. Introduzione alla Logistica: Definizioni principali Problemi di decisione

Ricerca Operativa e Logistica Dott. F.Carrabs e Dott.ssa M.Gentili. Introduzione alla Logistica: Definizioni principali Problemi di decisione Ricerca Operativa e Logistica Dott. F.Carrabs e Dott.ssa M.Gentili Introduzione alla Logistica: Definizioni principali Problemi di decisione Introduzione La logistica è la disciplina che studia le procedure

Dettagli

LE FIBRE DI UNA APPLICAZIONE LINEARE

LE FIBRE DI UNA APPLICAZIONE LINEARE LE FIBRE DI UNA APPLICAZIONE LINEARE Sia f:a B una funzione tra due insiemi. Se y appartiene all immagine di f si chiama fibra di f sopra y l insieme f -1 y) ossia l insieme di tutte le controimmagini

Dettagli

Algoritmi esatti per la ricerca di strategie ottime nel problema di pattugliamento con singolo pattugliatore

Algoritmi esatti per la ricerca di strategie ottime nel problema di pattugliamento con singolo pattugliatore POLITECNICO DI MILANO FACOLTÀ DI INGEGNERIA DELL INFORMAZIONE Corso di Laurea Specialistica in Ingegneria Informatica Algoritmi esatti per la ricerca di strategie ottime nel problema di pattugliamento

Dettagli

Fondamenti di Ricerca Operativa

Fondamenti di Ricerca Operativa Politecnico di Milano Anno Accademico 2010/2011 Fondamenti di Ricerca Operativa Corso del Prof. Edoardo Amaldi Stefano Invernizzi Facoltà di Ingegneria dell Informazione Corso di Laurea Magistrale in Ingegneria

Dettagli

3 GRAFICI DI FUNZIONI

3 GRAFICI DI FUNZIONI 3 GRAFICI DI FUNZIONI Particolari sottoinsiemi di R che noi studieremo sono i grafici di funzioni. Il grafico di una funzione f (se non è specificato il dominio di definizione) è dato da {(x, y) : x dom

Dettagli

Appendice D Soluzioni degli esercizi proposti

Appendice D Soluzioni degli esercizi proposti Appendice D Soluzioni degli esercizi proposti Capitolo 1 1. Si occupa di metodologie per la soluzione di problemi decisionali complessi. 2. È un problema che possiede diverse alternative (o soluzioni)

Dettagli

3. Gli algoritmi di ottimizzazione.

3. Gli algoritmi di ottimizzazione. Marcello Salmeri - Progettazione Automatica di Circuiti e Sistemi Elettronici Capitolo 3-3. Gli algoritmi di ottimizzazione. I grafi. La teoria dei grafi è un comodo strumento per la definizione e la formalizzazione

Dettagli

METODI ITERATIVI PER SISTEMI LINEARI

METODI ITERATIVI PER SISTEMI LINEARI METODI ITERATIVI PER SISTEMI LINEARI LUCIA GASTALDI 1. Metodi iterativi classici Sia A R n n una matrice non singolare e sia b R n. Consideriamo il sistema (1) Ax = b. Un metodo iterativo per la soluzione

Dettagli

Feature Selection per la Classificazione

Feature Selection per la Classificazione 1 1 Dipartimento di Informatica e Sistemistica Sapienza Università di Roma Corso di Algoritmi di Classificazione e Reti Neurali 20/11/2009, Roma Outline Feature Selection per problemi di Classificazione

Dettagli

Seconda Prova di Ricerca Operativa. Cognome Nome Numero Matricola A 1/12 A 2/12

Seconda Prova di Ricerca Operativa. Cognome Nome Numero Matricola A 1/12 A 2/12 A / A / Seconda Prova di Ricerca Operativa Cognome Nome Numero Matricola Nota: LA RISOLUZIONE CORRETTA DEGLI ESERCIZI CONTRADDISTINTI DA UN ASTERISCO È CONDIZIONE NECESSARIA PER IL RAGGIUNGIMENTO DELLA

Dettagli

I Modelli della Ricerca Operativa

I Modelli della Ricerca Operativa Capitolo 1 I Modelli della Ricerca Operativa 1.1 L approccio modellistico Il termine modello è di solito usato per indicare una costruzione artificiale realizzata per evidenziare proprietà specifiche di

Dettagli

2.1 Definizione di applicazione lineare. Siano V e W due spazi vettoriali su R. Un applicazione

2.1 Definizione di applicazione lineare. Siano V e W due spazi vettoriali su R. Un applicazione Capitolo 2 MATRICI Fra tutte le applicazioni su uno spazio vettoriale interessa esaminare quelle che mantengono la struttura di spazio vettoriale e che, per questo, vengono dette lineari La loro importanza

Dettagli

Progetto di Reti di Telecomunicazione Modelli in Programmazione Lineare Problemi di Network design

Progetto di Reti di Telecomunicazione Modelli in Programmazione Lineare Problemi di Network design Progetto di Reti di Telecomunicazione Modelli in Programmazione Lineare Problemi di Network design Network Design È data una rete rappresentata su da un grafo G = (V, A) e un insieme di domande K, ciascuna

Dettagli

Algebra e Geometria. Ingegneria Meccanica e dei Materiali Sez (2) Ingegneria dell Automazione Industriale Sez (2)

Algebra e Geometria. Ingegneria Meccanica e dei Materiali Sez (2) Ingegneria dell Automazione Industriale Sez (2) Algebra e Geometria Ingegneria Meccanica e dei Materiali Sez (2) Ingegneria dell Automazione Industriale Sez (2) Traccia delle lezioni che saranno svolte nell anno accademico 2012/13 I seguenti appunti

Dettagli

Modelli di PL: allocazione ottima di risorse. Un esempio Modelli a risorse condivise Modelli a risorse alternative Modelli multi-periodo

Modelli di PL: allocazione ottima di risorse. Un esempio Modelli a risorse condivise Modelli a risorse alternative Modelli multi-periodo Modelli di PL: allocazione ottima di risorse Un esempio Modelli a risorse condivise Modelli a risorse alternative Modelli multi-periodo Allocazione ottima di robot Un azienda automobilistica produce tre

Dettagli

RISOLUZIONE TRAMITE ALGORITMO EURISTICO DEL PROBLEMA DEL TRASPORTO DELLE PELLI FRESCHE DAI MACELLI ALLA CONCERIA

RISOLUZIONE TRAMITE ALGORITMO EURISTICO DEL PROBLEMA DEL TRASPORTO DELLE PELLI FRESCHE DAI MACELLI ALLA CONCERIA UNIVERSITÀ DEGLI STUDI DI PADOVA Facoltà di Ingegneria Gestionale DIPARTIMENTO DI TECNICA E GESTIONE DEI SISTEMI INDUSTRIALI Tesi di Laurea Triennale RISOLUZIONE TRAMITE ALGORITMO EURISTICO DEL PROBLEMA

Dettagli

Politecnico di Milano. Reti Wireless. Seminari didattici. Dalla teoria alla soluzione. Ilario Filippini

Politecnico di Milano. Reti Wireless. Seminari didattici. Dalla teoria alla soluzione. Ilario Filippini Politecnico di Milano Reti Wireless Seminari didattici Dalla teoria alla soluzione Ilario Filippini 2 Approccio euristico 3 Obiettivo dell approccio euristico 4 Tipi di euristiche Dalla teoria alla soluzione

Dettagli

Sono casi particolari di MCF : SPT (cammini minimi) non vi sono vincoli di capacità superiore (solo x ij > 0) (i, j) A : c ij, costo di percorrenza

Sono casi particolari di MCF : SPT (cammini minimi) non vi sono vincoli di capacità superiore (solo x ij > 0) (i, j) A : c ij, costo di percorrenza Il problema di flusso di costo minimo (MCF) Dati : grafo orientato G = ( N, A ) i N, deficit del nodo i : b i (i, j) A u ij, capacità superiore (max quantità di flusso che può transitare) c ij, costo di

Dettagli

Tecniche di DM: Link analysis e Association discovery

Tecniche di DM: Link analysis e Association discovery Tecniche di DM: Link analysis e Association discovery Vincenzo Antonio Manganaro vincenzomang@virgilio.it, www.statistica.too.it Indice 1 Architettura di un generico algoritmo di DM. 2 2 Regole di associazione:

Dettagli

Corso di Geometria e Algebra Lineare - Sezione di Metodi Numerici

Corso di Geometria e Algebra Lineare - Sezione di Metodi Numerici Corso di Geometria e Algebra Lineare - Sezione di Metodi Numerici C. Vergara 3. Metodo della fattorizzazione LU per la risoluzione di un sistema lineare Errori di arrotondamento. Prima di affrontare la

Dettagli

Programmazione Quadratica. 2009 by A. Bemporad Controllo di Processo e dei Sistemi di Produzione A.a. 2008/09

Programmazione Quadratica. 2009 by A. Bemporad Controllo di Processo e dei Sistemi di Produzione A.a. 2008/09 Programmazione Quadratica 1/82 Programmazione lineare minimizza o massimizza funzione obiettivo soggetto a 2/82 Programmazione quadratica minimize or maximize funzione obiettivo soggetto a STESSI VINCOLI

Dettagli

9 Metodi diretti per la risoluzione di sistemi lineari: fattorizzazione P A = LU

9 Metodi diretti per la risoluzione di sistemi lineari: fattorizzazione P A = LU 9 Metodi diretti per la risoluzione di sistemi lineari: fattorizzazione P A LU 9.1 Il metodo di Gauss Come si è visto nella sezione 3.3, per la risoluzione di un sistema lineare si può considerare al posto

Dettagli

Parte 2. Determinante e matrice inversa

Parte 2. Determinante e matrice inversa Parte. Determinante e matrice inversa A. Savo Appunti del Corso di Geometria 013-14 Indice delle sezioni 1 Determinante di una matrice, 1 Teorema di Cramer (caso particolare), 3 3 Determinante di una matrice

Dettagli

PROPRIETÀ DEI CIRCUITI DI RESISTORI

PROPRIETÀ DEI CIRCUITI DI RESISTORI CAPITOLO 5 PROPRIETÀ DEI CIRCUITI DI RESISTORI Nel presente Capitolo, verrà introdotto il concetto di equivalenza tra bipoli statici e verranno enunciati e dimostrati alcuni teoremi (proprietà) generali

Dettagli

Politecnico di Milano. Reti Wireless. Seminari didattici. Introduzione all ottimizzazione. Ilario Filippini

Politecnico di Milano. Reti Wireless. Seminari didattici. Introduzione all ottimizzazione. Ilario Filippini Politecnico di Milano Reti Wireless Seminari didattici Introduzione all ottimizzazione Ilario Filippini 2 Esempio 1! 3 Esempio 1!! 4 Esempio 2!!? 5 Ottimizzazione!!!!!! Ottimizzazione 6 Approccio matematico

Dettagli

Programmazione lineare

Programmazione lineare Programmazione lineare Dualitá: definizione, teoremi ed interpretazione economica Raffaele Pesenti 1 Dualità 1.1 Definizione e teoremi Definizione 1 Dato un problema di LP in forma canonica max x = ct

Dettagli

A i è un aperto in E. i=1

A i è un aperto in E. i=1 Proposizione 1. A è aperto se e solo se A c è chiuso. Dimostrazione. = : se x o A c, allora x o A = A o e quindi esiste r > 0 tale che B(x o, r) A; allora x o non può essere di accumulazione per A c. Dunque

Dettagli

SISTEMI LINEARI QUADRATI: METODI ITERATIVI

SISTEMI LINEARI QUADRATI: METODI ITERATIVI SISTEMI LINEARI QUADRATI: METODI ITERATIVI CALCOLO NUMERICO e PROGRAMMAZIONE SISTEMI LINEARI QUADRATI:METODI ITERATIVI p./54 RICHIAMI di ALGEBRA LINEARE DEFINIZIONI A R n n simmetrica se A = A T ; A C

Dettagli

Analisi 2. Argomenti. Raffaele D. Facendola

Analisi 2. Argomenti. Raffaele D. Facendola Analisi 2 Argomenti Successioni di funzioni Definizione Convergenza puntuale Proprietà della convergenza puntuale Convergenza uniforme Continuità e limitatezza Teorema della continuità del limite Teorema

Dettagli

Alcuni Preliminari. Prodotto Cartesiano

Alcuni Preliminari. Prodotto Cartesiano Alcuni Preliminari Prodotto Cartesiano Dati due insiemi A e B, si definisce il loro prodotto cartesiano A x B come l insieme di tutte le coppie ordinate (a,b) con a! A e b! B. Es: dati A= {a,b,c} e B={,2,3}

Dettagli

Introduzione alla Programmazione Lineare

Introduzione alla Programmazione Lineare Introduzione alla Programmazione Lineare. Proprietà geometriche Si definiscono come problemi di Programmazione Lineare (PL) tutti quei problemi di ottimizzazione in cui la funzione obiettivo è lineare

Dettagli

4. Matrici e Minimi Quadrati

4. Matrici e Minimi Quadrati & C. Di Natale: Matrici e sistemi di equazioni di lineari Formulazione matriciale del metodo dei minimi quadrati Regressione polinomiale Regressione non lineare Cross-validazione e overfitting Regressione

Dettagli

STRUTTURE NON LINEARI

STRUTTURE NON LINEARI PR1 Lezione 13: STRUTTURE NON LINEARI Michele Nappi mnappi@unisa.it www.dmi.unisa.it/people/nappi Per la realizzazione della presentazione è stato utilizzato in parte materiale didattico prodotto da Oronzo

Dettagli

Metodi diretti per la soluzione di sistemi lineari

Metodi diretti per la soluzione di sistemi lineari Metodi diretti per la soluzione di sistemi lineari N Del Buono 1 Introduzione Consideriamo un sistema di n equazioni in n incognite a 11 x 1 + a 12 x 2 + a 13 x 3 + + a 1n x n = b 1, a 21 x 1 + a 22 x

Dettagli

Se x* e punto di minimo (locale) per la funzione nell insieme Ω, Ω = { x / g i (x) 0 i I, h j (x)= 0 j J } lo e anche per F(x) = f o (x) + c x x 2

Se x* e punto di minimo (locale) per la funzione nell insieme Ω, Ω = { x / g i (x) 0 i I, h j (x)= 0 j J } lo e anche per F(x) = f o (x) + c x x 2 NLP -OPT 1 CONDIZION DI OTTIMO [ Come ricavare le condizioni di ottimo. ] Si suppone x* sia punto di ottimo (minimo) per il problema min f o (x) con vincoli g i (x) 0 i I h j (x) = 0 j J la condizione

Dettagli

SVILUPPO DI UN SISTEMA DI SORVEGLIANZA MEDIANTE ROBOT MOBILI.

SVILUPPO DI UN SISTEMA DI SORVEGLIANZA MEDIANTE ROBOT MOBILI. SVILUPPO DI UN SISTEMA DI SORVEGLIANZA MEDIANTE ROBOT MOBILI. 1. ABSTRACT In questo progetto si intende costruire un sistema di sorveglianza mediante l uso di robot mobili. L idea base è quella di usare

Dettagli

Selezione di un portafoglio di titoli in presenza di rischio. Testo

Selezione di un portafoglio di titoli in presenza di rischio. Testo Selezione di un portafoglio di titoli in presenza di rischio Testo E ormai pratica comune per gli operatori finanziari usare modelli e metodi basati sulla programmazione non lineare come guida nella gestione

Dettagli

Corso di Analisi Numerica - AN1. Parte 2: metodi diretti per sistemi lineari. Roberto Ferretti

Corso di Analisi Numerica - AN1. Parte 2: metodi diretti per sistemi lineari. Roberto Ferretti Corso di Analisi Numerica - AN1 Parte 2: metodi diretti per sistemi lineari Roberto Ferretti Richiami sulle norme e sui sistemi lineari Il Metodo di Eliminazione di Gauss Il Metodo di Eliminazione con

Dettagli

Angela GHIRALDINI. Formulata dalla OPERTIONS RESEARCH SOCIETY of AMERICA. Questa definizione fa riferimento a due concetti in particolare :

Angela GHIRALDINI. Formulata dalla OPERTIONS RESEARCH SOCIETY of AMERICA. Questa definizione fa riferimento a due concetti in particolare : Angela GHIRALDINI RICERCA OPERATIVA DEFINIZIONE Procedimento della scienza moderna di fronte ai complessi problemi di scelta che sorgono nella direzione dei grandi sistemi di uomini, macchine, materiale

Dettagli

4 Quarta lezione: Spazi di Banach e funzionali lineari. Spazio duale

4 Quarta lezione: Spazi di Banach e funzionali lineari. Spazio duale 4 Quarta lezione: Spazi di Banach e funzionali lineari. Spazio duale Spazi Metrici Ricordiamo che uno spazio metrico è una coppia (X, d) dove X è un insieme e d : X X [0, + [ è una funzione, detta metrica,

Dettagli

PROGRAMMAZIONE LINEARE:

PROGRAMMAZIONE LINEARE: PROGRAMMAZIONE LINEARE: Definizione:la programmazione lineare serve per determinare l'allocazione ottimale di risorse disponibili in quantità limitata, per ottimizzare il raggiungimento di un obiettivo

Dettagli