Capitolo 3: Ottimizzazione Discreta. E. Amaldi DEIB, Politecnico di Milano

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Capitolo 3: Ottimizzazione Discreta. E. Amaldi DEIB, Politecnico di Milano"

Transcript

1 Capitolo 3: Ottimizzazione Discreta E. Amaldi DEIB, Politecnico di Milano

2 3.1 Modelli di PLI e PLMI Moltissimi problemi decisionali complessi possono essere formulati o approssimati come problemi di Programmazione Lineare in cui tutte (alcune) variabili sono vincolate ad assumere valori interi. Definizione: Programmazione Lineare Intera (PLI): min c t x Ax b x 0 intere dove la matrice A è di dimensione m n, i vettori c e b sono di dimensione n e rispettivamente m. Se tutte le variabili devono assumere valori binari si tratta di Programmazione Lineare Binaria (PL0 1) Programmazione Lineare Mista-Intera (PLMI): min c t 1x + c t 2y A 1 x + A 2 y b x 0, y 0 intere dove le matrici A 1 e A 2 sono di dimensione m n 1 e rispettivamente m n 2, i vettori c 1, c 2 e b sono di dimensione n 1, n 2 e rispettivamente m. 1

3 Alcuni modelli di PLI e PLMI: 1) Problema di Zaino Binario Knapsack Un azienda deve decidere come investire un capitale b. Sono disponibili n investimenti. Sia a i la somma da investire nel caso si scelga di effettuare l i-esimo investimento, con 1 i n. Sia p i il profitto atteso dell i-esimo investimento. Problema: determinare quali investimenti effettuare in modo da massimizzare il profitto atteso totale. 2

4 Alcuni modelli di PLI e PLMI: 1) Problema di Zaino Binario Knapsack Un azienda deve decidere come investire un capitale b. Sono disponibili n investimenti. Sia a i la somma da investire nel caso si scelga di effettuare l i-esimo investimento, con 1 i n. Sia p i il profitto atteso dell i-esimo investimento. Problema: determinare quali investimenti effettuare in modo da massimizzare il profitto atteso totale. Formulazione di PLI Variabili di decisione: x i = 1 se si effettua l i-esimo investimento e x i = 0 altrimenti, con 1 i n max n i=1 p ix i n i=1 a ix i b x i {0, 1} i Svariate applicazioni dirette e indirette (come sotto-problema) 3

5 2) Problema di Assegnamento Assignment Dati n progetti (jobs) e n ingegneri (macchine), supponiamo che ogni progetto possa essere eseguito da qualsiasi ingegnere. Sia c ij il costo se i-esimo progetto è eseguito dal j-esimo ingegnere, con 1 i, j n. Ogni progetto deve essere assegnato esattamente ad un ingegnere e ogni ingegnere deve vedersi assegnare esattamente un progetto. Problema: decidere quale progetto assegnare ad ogni ingegnere in modo da minimizzare il costo totale necessario per completare tutti i progetti. Numero di soluzioni ammissibili = n! 4

6 2) Problema di Assegnamento Assignment Dati n progetti (jobs) e n ingegneri (macchine), supponiamo che ogni progetto possa essere eseguito da qualsiasi ingegnere. Sia c ij il costo se i-esimo progetto è eseguito dal j-esimo ingegnere, con 1 i, j n. Ogni progetto deve essere assegnato esattamente ad un ingegnere e ogni ingegnere deve vedersi assegnare esattamente un progetto. Problema: decidere quale progetto assegnare ad ogni ingegnere in modo da minimizzare il costo totale necessario per completare tutti i progetti. Formulazione di PLI Variabili di decisione: x ij = 1 se i-esimo progetto viene assegnato al j-esimo ingegnere e x ij = 0 altrimenti, con 1 i, j n min n n i=1 j=1 c ijx ij s.v. n i=1 x ij = 1 n j=1 x ij = 1 x ij {0, 1} j i i, j 5

7 3) Problema di Copertura di un Insieme Set Covering Siano insieme M = {1, 2,..., m} famiglia {M 1,..., M n } di n suoi sottoinsiemi ( M j M per ogni j = 1,..., n) per ogni j con 1 j n, costo c j di M j determinare quali sottoinsiemi selezionare per coprire tutti gli elementi di M minimizzando il costo totale. 6

8 3) Problema di Copertura di un Insieme Set Covering Siano insieme M = {1, 2,..., m} famiglia {M 1,..., M n } di n suoi sottoinsiemi ( M j M per ogni j = 1,..., n) per ogni j con 1 j n, costo c j di M j determinare quali sottoinsiemi selezionare per coprire tutti gli elementi di M minimizzando il costo totale. Formulazione di PLI Variabili di decisione: x j = 1 se si seleziona M j e x j = 0 altrimenti, con 1 j n min s.v. n j=1 c jx j j:i M j x j 1 i (1) x j {0, 1} j dove i vincoli (1) sono quelli di copertura 7

9 Set covering : min n c j x j : Ax e, x {0, 1} n j=1 dove A = [a ij ] con a ij = 1 se i M j e a ij = 0 altrimenti, ed e = (1, 1,..., 1) t Esempio: localizzazione di servizi di emergenza (ambulanze o vigili del fuoco) M = { aree da coprire }, M j = { aree raggiungibili in 10 min dal sito candidato j } Set packing : max n c j x j : Ax e, x {0, 1} n j=1 dove i parametri c j rappresentano profitti Esempio: localizzazione di impianti ad elevato impatto ambientale (discariche o inceneritori) M = { città }, M j = { città con impatto ambientale del sito candidato j sopra soglia } 8

10 Set partitioning : min o max n c j x j : Ax = e, x {0, 1} n j=1 dove i parametri c j possono rappresentare sia costi che profitti Esempio: formazione dei turni di volo degli equipaggi di una compagnia aerea Si considera un orizzonte di pianificazione prefissato M = { tappe di volo }, tappa = singola fase di volo (tra decollo e atterraggio) da effettuare secondo orari prestabiliti M j = { turni ammissibili }, turno ammissibile = sottoinsieme di tappe di volo che possono essere concatenate in base alla normativa (durata complessiva e periodi di riposo) 9

11 4) Problema del Commesso Viaggiatore (asimmetrico) Asymmetric Traveling Salesman Problem (ATSP) Dato un grafo orientato G = (V, A) con V = {1, 2,..., n} e un costo c ij R associato ad ogni arco (i, j) A, determinare un ciclo Hamiltoniano, i.e., un ciclo che visita esattamente una volta ogni nodo e torna al nodo di partenza, di costo totale minimo. 10

12 4) Problema del Commesso Viaggiatore (asimmetrico) Asymmetric Traveling Salesman Problem (ATSP) Dato un grafo orientato G = (V, A) con V = {1, 2,..., n} e un costo c ij R associato ad ogni arco (i, j) A, determinare un ciclo Hamiltoniano, i.e., un ciclo che visita esattamente una volta ogni nodo e torna al nodo di partenza, di costo totale minimo. Se il grafo G è completo, il numero di cicli Hamiltoniani = (n 1)! Anche versione simmetrica con grafo non orientato Molte varianti con - vincoli di precedenza - vincoli temporali (istante al più presto e al più tardi di visita per ogni nodo) - vincolo di capacità del veicolo - più veicoli da instradare ( Vehicle Routing Problem ) -... Molteplici applicazioni: logistica, sequenziamento di operazioni, VLSI,... Sito web dedicato al TSP: 11

13 Una formulazione di PLI Variabili di decisione: x ij = 1 se il ciclo Hamiltoniano contiene l arco (i, j) e x ij = 0 altrimenti, per (i, j) A min s.v. (i,j) A c ijx ij i: (i,j) A x ij = 1 j j: (i,j) A x ij = 1 i (i,j) A: i S, j V \S x ij 1 S V, S (2) x ij {0, 1} (i, j) A dove i vincoli (2) sono i cosiddetti vincoli di taglio ( cut-set inequalities ) 12

14 Una formulazione di PLI: Variabili di decisione: x ij = 1 se il ciclo Hamiltoniano contiene l arco (i, j) e x ij = 0 altrimenti, per (i, j) A min (i,j) A c ijx ij s.v. i: (i,j) A x ij = 1 j j: (i,j) A x ij = 1 i (i,j) A: i S, j V \S x ij 1 S V, S (3) x ij {0, 1} (i, j) A dove i vincoli (3) sono i cosiddetti vincoli di taglio ( cut-set inequalities ) Formulazione di PLI alternativa: (i,j) A: i,j S x ij S 1 S V, 2 S n 1 (4) con i cosiddetti vincoli di eliminazione dei sottocicli ( subtour elimination inequalities ) al posto dei vincoli (3) Osservazione: I vincoli (3) e (4) sono in numero esponenziale rispetto alla dimensione di G. 13

15 5) Mix produttivo con costi fissi Un azienda deve decidere quali/quanti articoli produrre il prossimo mese in modo da minimizzare i costi soddisfacendo la domanda. Per ogni articolo i, con 1 i n, c i > 0 indica il costo unitario, f i > 0 il costo fisso (se si produce) e k i > 0 la capacità produttiva. 14

16 5) Mix produttivo con costi fissi Un azienda deve decidere quali/quanti articoli produrre il prossimo mese in modo da minimizzare i costi soddisfacendo la domanda. Per ogni articolo i, con 1 i n, c i > 0 indica il costo unitario, f i > 0 il costo fisso (se si produce) e k i > 0 la capacità produttiva. Formulazione di PLMI Variabili di decisione: x i = quantità di articolo i prodotta, con 1 i n y i = 1 se x i > 0 e y i = 0 altrimenti, con 1 i n min n i=1 (c ix i + f i y i ) s.v. x i k i y i i vincoli di domanda... x i 0 i y i {0, 1} i 15

17 5) Mix produttivo con costi fissi Un azienda deve decidere quali/quanti articoli produrre il prossimo mese in modo da minimizzare i costi soddisfacendo la domanda. Per ogni articolo i, con 1 i n, c i > 0 indica il costo unitario, f i > 0 il costo fisso (se si produce) e k i > 0 la capacità produttiva. Formulazione di PLMI Variabili di decisione: x i = quantità di articolo i prodotta, con 1 i n y i = 1 se x i > 0 e y i = 0 altrimenti, con 1 i n min n i=1 (c ix i + f i y i ) s.v. x i k i y i i vincoli di domanda... x i 0 i y i {0, 1} i N.B.: La formulazione non è del tutto esatta, la soluzione x i = 0 e y i = 1 per ogni i è ammissibile per il PLMI, anche se non può essere ottima (minimizzazione e costi fissi f i positivi). 16

18 6) Localizzazione ottima senza vincoli di capacità Uncapacitated Facility Location (UFL) Siano M = {1, 2,..., m} insieme di clienti N = {1, 2,..., n} insieme di siti nei quali si possono localizzare dei depositi per ogni j N, f j costo fisso di utilizzo del deposito in j per ogni coppia i M e j N, c ij costo di trasporto se tutta la domanda del cliente i è soddisfatta dal deposito j, determinare dove localizzare i depositi in modo da soddisfare la domanda di tutti i clienti minimizzando i costi (costi di trasporto e costi di utilizzo). 17

19 Formulazione di PLMI Variabili di decisione: x ij = frazione della domanda del cliente i soddisfatta dal deposito j, con 1 i m e 1 j n y j = 1 se si utilizza il deposito j e y j = 0 altrimenti, con 1 j n min i M s.v. j N c ijx ij + j N f jy j j N x ij = 1 i M i M x ij my j j N (5) y j {0, 1} j N 0 x ij 1 i M, j N con n vincoli (5) che legano le variabili x ij e y j Variante: Se d i indica la domanda del cliente i e k j la capacità del deposito j, gli eventuali vincoli di capacità: d i x ij k j y j i M j N 18

20 7) Pianificazione della produzione multi-periodo Uncapacitated Lot-Sizing (ULS) Un impresa deve pianificare la produzione di un solo tipo di prodotto per i prossimi n mesi. Si suppone che il magazzino sia vuoto all inizio del periodo di pianificazione e che alla fine del periodo debbano rimanere in magazzino 50 unità. Siano f t costo fisso di produzione nel periodo t p t costo unitario di produzione nel periodo t h t costo unitario di immagazzinamento nel periodo t d t domanda per il periodo t determinare un piano di produzione per i prossimi n mesi che permetta di minimizzare i costi (produzione e magazzino) soddisfacendo la domanda ad ogni periodo. Formulare il problema come un PLMI. 19

21 Formulazione di PLMI Variabili di decisione: x t = quantità prodotta nel periodo t, con 1 t n s t = quantità in magazzino alla fine del periodo t, con 0 t n y t = 1 se si attiva la produzione nel periodo t e y j = 0 altrimenti, con 1 t n min n t=1 p tx t + n t=1 h ts t + n t=1 f ty t s.v. s t = s t 1 + x t d t t x t My t s 0 = 0, s n = 50 s t, x t 0 y t {0, 1} t t t t dove M > 0 è un limite superiore sulla massima quantità prodotta durante qualsiasi periodo. Ad esempio: x t ( n t=1 d t + s n s 0 )y t N.B.: Poiché s t = t i=1 x i t i=1 d i, è possibile eliminare le variabili s t di magazzino 20

22 3.2 Formulazioni alternative ed ideali In Programmazione Lineare (PL) le migliori formulazioni sono le più compatte (con il minor numero di variabili/vincoli) visto che la complessità computazionale dei problemi cresce polinomialmente con n e m. La scelta della formulazione è importante ma non determina in modo critico la possibilità di risolvere o meno il problema. La situazione è molto diversa per i problemi di PLI e PLMI: estese campagne computazionali indicano che la scelta della formulazione è cruciale. Per capire cosa caratterizza le buone formulazioni, partiamo dal concetto di rilassamento continuo (lineare) di un PLI o PLMI. 21

23 Definizione: Dato un qualsiasi problema di PLMI (PLI) z P LMI = min c t 1x + c t 2y s.v. A 1 x + A 2 y b (6) x 0, y 0 intere (7) il suo rilassamento continuo (lineare) è il seguente problema di PL: z P L = min c t 1x + c t 2y s.v. A 1 x + A 2 y b (8) x 0, y 0 (9) dove il vincolo di interezza sulle variabili y j è omesso. Se una variabile intera y j nel PLMI è tale che 0 y j u j, nel rilassamento continuo y j [0, u j ]. Sia X P LMI la regione ammissibile del PLMI definita da (6)-(7) e X P L quella del rilassamento continuo definita da (8)-(9). Conseguenze: Poiché X P LMI X P L e i problemi sono di minimizzazione, abbiamo: z PL z PLMI, ovvero z P L è un limite inferiore rispetto a z P LMI ; se una soluzione ottima x P L del rilassamento continuo è ammissibile per il PLMI (PLI) di partenza, è anche ottima per quest ultimo. Se il PLMI è di massimizzazione, chiaramente z PLMI z PL. 22

24 Qualsiasi problema di PLI/PLMI ammette un numero infinito di formulazioni corrette alternative con regioni ammissibili del rilassamento continuo diverse. Definizione: Un poliedro P R n 1+n 2 (sottoinsieme definito da un numero finito di vincoli lineari) è una formulazione di un insieme X R n 1 Z n 2 se e solo se X = P (R n 1 Z n 2). N.B.: Nel caso dei costi fissi, non abbiamo considerato l insieme X = {(0, 0), (x i, 1) per 0 < x k i } ma X {(0, 1)}. Esempi: 1) Due formulazioni alternative per il TSP con vincoli di taglio o di eliminazione di sotto-cicli. 2) Formulazione di PLMI alternativa per il problema UFL: min i M j N c ijx ij + j N f jy j s.v. j N x ij = 1 i M x ij y j i M, j N (10) y j {0, 1} j N 0 x ij 1 i M, j N con mn vincoli (10) che legano le variabili x ij e y j. 23

25 Le formulazioni alternative possono adoperare variabili aggiuntive o variabili diverse. Nel primo caso si parla di formulazioni estese. Esempio: Formulazione di PLMI estesa per il problema ULS 24

26 Le formulazioni alternative possono adoperare variabili aggiuntive o variabili diverse. Nel primo caso si parla di formulazioni estese. Esempio: Formulazione di PLMI estesa per il problema ULS Variabili di decisione: w it = quantità prodotta nel periodo i e venduta nel periodo t, con 1 i t n + 1 y t = 1 se si attiva la produzione nel periodo t e y j = 0 altrimenti, con 1 t n min n n i=1 t=i c itw it + n t=1 f ty t s.v. t i=1 w it = d t n i=1 w i,n+1 = 50 w it d t y i w it 0 y t {0, 1} t, 1 t n (magazzino alla fine) i, t, i t i, t, i t con i costi aggregati (produzione e magazzino) c it = p i + h i h t 1. N.B.: Per ogni periodo i, si può aggiungere il vincolo x i = n t=i w it che esprime la vecchia variabile x i in funzione delle nuove w it t 25

27 Sia X = {x 1,..., x k } l insieme delle soluzioni ammissibili di un PLI. Supponiamo X sia limitato (finito). Teorema: conv(x) è un poliedro e i punti estremi di conv(x) appartengono a X. Questo risultato, che vale anche per insiemi X illimitati di punti interi e di punti misti interi, implica: min{c t x : x X} = min{c t x : x conv(x)} In teoria, il problema di PLI/PLMI si può ricondurre ad un singolo problema di PL! In pratica, anche per X limitato, la formulazione ideale è spesso di dimensione esponenziale o difficile da determinare. Chiaramente la regione ammissibile P del rilassamento continuo di qualsiasi formulazione soddisfa X = {x Z n : Ax b} conv(x) P. Definizione: La formulazione ideale di un insieme X R n è il poliedro conv(x). Dato un insieme X R n e due formulazioni P 1 e P 2 di X, la formulazione P 1 domina (è più stringente di) quella P 2 se P 1 P 2. Infatti, se z i = min{c t x : x P i Z n }, il bound z 1 è almeno altrettanto stringente di z 2, ovvero z P LI = min{c t x : x X} z 1 z 2. 26

28 1) Localizzazione ottima senza vincoli di capacità Uncapacitated Facility Location (UFL) Proprietà: Il rilassamento continuo della formulazione di PLMI alternativa (con i vincoli x ij y j ) domina quello della prima formulazione di PLMI (con i vincoli aggregati i M x ij my j ). Siano P 1 = e P 2 = { (x, y) R nm+n : { (x, y) R nm+n : } j N x ij = 1 i, x ij y j i, j, 0 x ij 1 i, j, 0 y j 1 j j N x ij = 1 i, } i M x ij my j j, 0 x ij 1 i, j, 0 y j 1 j, chiaramente P 1 P 2 (sommando gli m vincoli x ij y j per un dato j si ottiene i M x ij my j per quel j). Inoltre è facile esibire un (x, y) che appartiene a P 2 ma non appartiene a P 1 2) TSP simmetrico Confronto tra le due formulazioni alternative nella seconda serie di esercizi 27

29 Confronto tra formulazioni con variabili diverse Consideriamo una prima formulazione con tutte variabili intere (PLI) min{c t x : x P 1 Z n 1 } con P 1 R n 1, e una formulazione estesa min{c t (x, w) : (x, w) P 2 (Z n 1 R n 2 )} con P 2 R n 1 R n 2. Definizione: Dato un insieme convesso P R n 1 R n 2, la proiezione di P sul sottospazio R n 1 è Π x (P ) = {x R n 1 : (x, w) P per qualche w R n 2 } Esempio: proiezione di un poliedro tridimensionale Per confrontare una formulazione P 1 R n 1 e una formulazione estesa P 2 R n 1 R n 2, si confrontando quindi P 1 e Π x (P 2 ). 28

30 Come determinare le proiezioni dei poliedri sui sottospazi di R n? Metodo di eliminazione di Fourier-Motzkin (inizio 800): Prima procedura per determinare una soluzione ammissibile di un sistema di disuguaglianze lineari Idea: Ad ogni iterazione viene eliminata una variable, combinando in tutti i modi possibili le disuguaglianze correnti, fino ad ottenere un sistema in una sola variabile. Descrizione 29

31 Esempio: x 1 +x 2 3 (11) 1 2 x 1 +x 2 0 (12) x 2 2 (13) Eliminazione di x 2 (proiezione del poliedro delle soluzioni ammissibili di (11)-(13) sul sottospazio di x 1 ): 3 x 1 x x 1 x 2 x 2 2 considerando tutte le coppie di disuguaglianze (... x 2 e x 2... ) si ottiene 3 x x 1 2 ovvero 1 x 1 4, quindi la proiezione [1, 4]. Eliminazione di x 1 (proiezione del poliedro delle soluzioni ammissibili di (11)-(13) sul sottospazio di x 2 ): si ottiene 1 x 2 2 quindi la proiezione [1, 2]. Complessità: il numero di vincoli aggiuntivi può crescere esponenzialmente rispetto al numero delle variabili originarie 30

32 Confronto con formulazione estesa: Pianificazione della produzione multi-periodo (ULS) Consideriamo la formulazione P 1 descritta da e Π x,s,y (P 2 ), con P 2 descritto da s t = s t 1 + x t d t x t My t s 0 = 0, s t, x t 0 t t t 0 y t 1 t t i=1 w it = d t t w it d t y i i, t, i t x i = n t=i w it i (14) w it 0 i, t, i t 0 y t 1 t E facile verificare che Π x,s,y (P 2 ) P 1. Ad esempio, il punto x t = d t, y t = d t /M per ogni t è un punto estremo di P 1 che non appartiene a Π x,s,y (P 2 ). Proposizione: P 2 è la formulazione ideale, ovvero descrive il guscio convesso di tutte le soluzioni ammissibili (misto intere) di ULS. 31

Ricerca Operativa Branch-and-Bound per problemi di Programmazione Lineare Intera

Ricerca Operativa Branch-and-Bound per problemi di Programmazione Lineare Intera Ricerca Operativa Branch-and-Bound per problemi di Programmazione Lineare Intera L. De Giovanni AVVERTENZA: le note presentate di seguito non hanno alcuna pretesa di completezza, né hanno lo scopo di sostituirsi

Dettagli

Esame di Ricerca Operativa del 20/12/13. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

Esame di Ricerca Operativa del 20/12/13. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare: Esame di Ricerca Operativa del 0// (Cognome) (Nome) (Corso di laurea) Esercizio. Completare la seguente tabella considerando il problema di programmazione lineare: max x x x + x x +x x x x x x x 0 x x

Dettagli

VC-dimension: Esempio

VC-dimension: Esempio VC-dimension: Esempio Quale è la VC-dimension di. y b = 0 f() = 1 f() = 1 iperpiano 20? VC-dimension: Esempio Quale è la VC-dimension di? banale. Vediamo cosa succede con 2 punti: 21 VC-dimension: Esempio

Dettagli

Flusso a costo minimo e simplesso su reti

Flusso a costo minimo e simplesso su reti Flusso a costo minimo e simplesso su reti La particolare struttura di alcuni problemi di PL può essere talvolta utilizzata per la progettazione di tecniche risolutive molto più efficienti dell algoritmo

Dettagli

Funzioni di più variabili. Ottimizzazione libera e vincolata

Funzioni di più variabili. Ottimizzazione libera e vincolata libera e vincolata Generalità. Limiti e continuità per funzioni di 2 o Piano tangente. Derivate successive Formula di Taylor libera vincolata Lo ordinario è in corrispondenza biunivoca con i vettori di

Dettagli

Seconda Prova di Ricerca Operativa. Cognome Nome Numero Matricola A 1/12 A 2/12

Seconda Prova di Ricerca Operativa. Cognome Nome Numero Matricola A 1/12 A 2/12 A / A / Seconda Prova di Ricerca Operativa Cognome Nome Numero Matricola Nota: LA RISOLUZIONE CORRETTA DEGLI ESERCIZI CONTRADDISTINTI DA UN ASTERISCO È CONDIZIONE NECESSARIA PER IL RAGGIUNGIMENTO DELLA

Dettagli

Richiami di algebra lineare e geometria di R n

Richiami di algebra lineare e geometria di R n Richiami di algebra lineare e geometria di R n combinazione lineare, conica e convessa spazi lineari insiemi convessi, funzioni convesse rif. BT.5 Combinazione lineare, conica, affine, convessa Un vettore

Dettagli

METODI ITERATIVI PER SISTEMI LINEARI

METODI ITERATIVI PER SISTEMI LINEARI METODI ITERATIVI PER SISTEMI LINEARI LUCIA GASTALDI 1. Metodi iterativi classici Sia A R n n una matrice non singolare e sia b R n. Consideriamo il sistema (1) Ax = b. Un metodo iterativo per la soluzione

Dettagli

SISTEMI LINEARI QUADRATI: METODI ITERATIVI

SISTEMI LINEARI QUADRATI: METODI ITERATIVI SISTEMI LINEARI QUADRATI: METODI ITERATIVI CALCOLO NUMERICO e PROGRAMMAZIONE SISTEMI LINEARI QUADRATI:METODI ITERATIVI p./54 RICHIAMI di ALGEBRA LINEARE DEFINIZIONI A R n n simmetrica se A = A T ; A C

Dettagli

Esame di Ricerca Operativa del 18/12/12. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

Esame di Ricerca Operativa del 18/12/12. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare: Esame di Ricerca Operativa del 8// (Cognome) (Nome) (Corso di laurea) Esercizio. Completare la seguente tabella considerando il problema di programmazione lineare: max x x x x x x x + x x x + x 8 x Base

Dettagli

Se x* e punto di minimo (locale) per la funzione nell insieme Ω, Ω = { x / g i (x) 0 i I, h j (x)= 0 j J } lo e anche per F(x) = f o (x) + c x x 2

Se x* e punto di minimo (locale) per la funzione nell insieme Ω, Ω = { x / g i (x) 0 i I, h j (x)= 0 j J } lo e anche per F(x) = f o (x) + c x x 2 NLP -OPT 1 CONDIZION DI OTTIMO [ Come ricavare le condizioni di ottimo. ] Si suppone x* sia punto di ottimo (minimo) per il problema min f o (x) con vincoli g i (x) 0 i I h j (x) = 0 j J la condizione

Dettagli

LIVELLO STRATEGICO E TATTICO

LIVELLO STRATEGICO E TATTICO Corso di Laurea Triennale in INGEGNERIA GESTIONALE Anno Accademico 2012/13 Prof. Davide GIGLIO 1 ESEMPI DI PROBLEMI DECISIONALI LIVELLO STRATEGICO Capacity growth planning LIVELLO TATTICO Aggregate planning

Dettagli

PROGRAMMAZIONE LINEARE IN DUE VARIABILI

PROGRAMMAZIONE LINEARE IN DUE VARIABILI 1 PROGRAMMAZIONE LINEARE IN DUE VARIABILI La ricerca operativa nata durante la seconda guerra mondiale ed utilizzata in ambito militare, oggi viene applicata all industria, nel settore pubblico e nell

Dettagli

x 1 + x 2 3x 4 = 0 x1 + x 2 + x 3 = 0 x 1 + x 2 3x 4 = 0.

x 1 + x 2 3x 4 = 0 x1 + x 2 + x 3 = 0 x 1 + x 2 3x 4 = 0. Problema. Sia W il sottospazio dello spazio vettoriale R 4 dato da tutte le soluzioni dell equazione x + x 2 + x = 0. (a. Sia U R 4 il sottospazio dato da tutte le soluzioni dell equazione Si determini

Dettagli

Programmazione Non Lineare Ottimizzazione vincolata

Programmazione Non Lineare Ottimizzazione vincolata DINFO-Università di Palermo Programmazione Non Lineare Ottimizzazione vincolata D. Bauso, R. Pesenti Dipartimento di Ingegneria Informatica Università di Palermo DINFO-Università di Palermo 1 Sommario

Dettagli

4. Operazioni elementari per righe e colonne

4. Operazioni elementari per righe e colonne 4. Operazioni elementari per righe e colonne Sia K un campo, e sia A una matrice m n a elementi in K. Una operazione elementare per righe sulla matrice A è una operazione di uno dei seguenti tre tipi:

Dettagli

A i è un aperto in E. i=1

A i è un aperto in E. i=1 Proposizione 1. A è aperto se e solo se A c è chiuso. Dimostrazione. = : se x o A c, allora x o A = A o e quindi esiste r > 0 tale che B(x o, r) A; allora x o non può essere di accumulazione per A c. Dunque

Dettagli

Alberi binari. Ilaria Castelli castelli@dii.unisi.it A.A. 2009/2010. Università degli Studi di Siena Dipartimento di Ingegneria dell Informazione

Alberi binari. Ilaria Castelli castelli@dii.unisi.it A.A. 2009/2010. Università degli Studi di Siena Dipartimento di Ingegneria dell Informazione Alberi binari Ilaria Castelli castelli@dii.unisi.it Università degli Studi di Siena Dipartimento di Ingegneria dell Informazione A.A. 2009/2010 I. Castelli Alberi binari, A.A. 2009/2010 1/20 Alberi binari

Dettagli

Parte 2. Determinante e matrice inversa

Parte 2. Determinante e matrice inversa Parte. Determinante e matrice inversa A. Savo Appunti del Corso di Geometria 013-14 Indice delle sezioni 1 Determinante di una matrice, 1 Teorema di Cramer (caso particolare), 3 3 Determinante di una matrice

Dettagli

Quando A e B coincidono una coppia ordinata é determinata anche dalla loro posizione.

Quando A e B coincidono una coppia ordinata é determinata anche dalla loro posizione. Grafi ed Alberi Pag. /26 Grafi ed Alberi In questo capitolo richiameremo i principali concetti di due ADT che ricorreranno puntualmente nel corso della nostra trattazione: i grafi e gli alberi. Naturale

Dettagli

f(x, y, z) = (x + ky + z, x y + 2z, x + y z) f(x, y, z) = (x + 2y z, x + y z, x + 2y) F (f(x)) = (f(0), f(1), f(2))

f(x, y, z) = (x + ky + z, x y + 2z, x + y z) f(x, y, z) = (x + 2y z, x + y z, x + 2y) F (f(x)) = (f(0), f(1), f(2)) Algebra Lineare e Geometria Analitica Politecnico di Milano Ingegneria Applicazioni Lineari 1. Sia f : R 3 R 3 l applicazione lineare definita da f(x, y, z) = (x + ky + z, x y + 2z, x + y z) per ogni (x,

Dettagli

Appunti dalle lezioni di

Appunti dalle lezioni di Università di Roma La Sapienza Sede di Latina (Università Pontina) Corso di Laurea in Ingegneria Informatica Appunti dalle lezioni di Ricerca Operativa Anno Accademico 2003-2004 Indice Introduzione 5 Che

Dettagli

Dimensione di uno Spazio vettoriale

Dimensione di uno Spazio vettoriale Capitolo 4 Dimensione di uno Spazio vettoriale 4.1 Introduzione Dedichiamo questo capitolo ad un concetto fondamentale in algebra lineare: la dimensione di uno spazio vettoriale. Daremo una definizione

Dettagli

Nota su Crescita e Convergenza

Nota su Crescita e Convergenza Nota su Crescita e Convergenza S. Modica 28 Ottobre 2007 Nella prima sezione si considerano crescita lineare ed esponenziale e le loro proprietà elementari. Nella seconda sezione si spiega la misura di

Dettagli

Funzioni in più variabili

Funzioni in più variabili Funzioni in più variabili Corso di Analisi 1 di Andrea Centomo 27 gennaio 2011 Indichiamo con R n, n 1, l insieme delle n-uple ordinate di numeri reali R n4{(x 1, x 2,,x n ), x i R, i =1,,n}. Dato X R

Dettagli

Approssimazione polinomiale di funzioni e dati

Approssimazione polinomiale di funzioni e dati Approssimazione polinomiale di funzioni e dati Approssimare una funzione f significa trovare una funzione f di forma più semplice che possa essere usata al posto di f. Questa strategia è utilizzata nell

Dettagli

Particelle identiche : schema (per uno studio più dettagliato vedi lezione 2) φ 1

Particelle identiche : schema (per uno studio più dettagliato vedi lezione 2) φ 1 Particelle identiche : schema (per uno studio più dettagliato vedi lezione ) Funzioni d onda di un sistema composto Sistema costituito da due particelle (eventualmente identiche) H φ q H φ H ψ φ φ stato

Dettagli

Esercizi su lineare indipendenza e generatori

Esercizi su lineare indipendenza e generatori Esercizi su lineare indipendenza e generatori Per tutto il seguito, se non specificato esplicitamente K indicherà un campo e V uno spazio vettoriale su K Cose da ricordare Definizione Dei vettori v,,v

Dettagli

ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE

ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE 1 DIPENDENZA E INDIPENDENZA LINEARE Se ho alcuni vettori v 1, v 2,, v n in uno spazio vettoriale V, il sottospazio 1 W = v 1,, v n di V da loro generato è

Dettagli

EQUAZIONI non LINEARI

EQUAZIONI non LINEARI EQUAZIONI non LINEARI Francesca Pelosi Dipartimento di Matematica, Università di Roma Tor Vergata CALCOLO NUMERICO e PROGRAMMAZIONE http://www.mat.uniroma2.it/ pelosi/ EQUAZIONI non LINEARI p.1/44 EQUAZIONI

Dettagli

IL PROBLEMA DELLO SHORTEST SPANNING TREE

IL PROBLEMA DELLO SHORTEST SPANNING TREE IL PROBLEMA DELLO SHORTEST SPANNING TREE n. 1 - Formulazione del problema Consideriamo il seguente problema: Abbiamo un certo numero di città a cui deve essere fornito un servizio, quale può essere l energia

Dettagli

Rango: Rouchè-Capelli, dimensione e basi di spazi vettoriali.

Rango: Rouchè-Capelli, dimensione e basi di spazi vettoriali. CAPITOLO 7 Rango: Rouchè-Capelli, dimensione e basi di spazi vettoriali. Esercizio 7.1. Determinare il rango delle seguenti matrici al variare del parametro t R. 1 4 2 1 4 2 A 1 = 0 t+1 1 A 2 = 0 t+1 1

Dettagli

Modelli di Sistemi di Produzione

Modelli di Sistemi di Produzione Modelli di Sistemi di Produzione 2 Indice 1 I sistemi di produzione 1 1.1 Generalità............................. 1 1.2 I principi dei sistemi manifatturieri............... 4 1.3 Descrizione dei principali

Dettagli

1 Numeri Complessi, Formula di Eulero, Decomposizioni Notevoli,... ecc.

1 Numeri Complessi, Formula di Eulero, Decomposizioni Notevoli,... ecc. Classi Numeriche 1 1 Numeri Complessi, Formula di Eulero, Decomposizioni Notevoli,... ecc. In questo breve capitolo richiamiamo le definizioni delle classi numeriche fondamentali, già note al lettore,

Dettagli

Gli uni e gli altri. Strategie in contesti di massa

Gli uni e gli altri. Strategie in contesti di massa Gli uni e gli altri. Strategie in contesti di massa Alessio Porretta Universita di Roma Tor Vergata Gli elementi tipici di un gioco: -un numero di agenti (o giocatori): 1,..., N -Un insieme di strategie

Dettagli

OGNI SPAZIO VETTORIALE HA BASE

OGNI SPAZIO VETTORIALE HA BASE 1 Mimmo Arezzo OGNI SPAZIO VETTORIALE HA BASE CONVERSAZIONE CON ALCUNI STUDENTI DI FISICA 19 DICEMBRE 2006 2 1 Preliminari Definizione 1.0.1 Un ordinamento parziale (o una relazione d ordine parziale)

Dettagli

Matematica B - a.a 2006/07 p. 1

Matematica B - a.a 2006/07 p. 1 Matematica B - a.a 2006/07 p. 1 Definizione 1. Un sistema lineare di m equazioni in n incognite, in forma normale, è del tipo a 11 x 1 + + a 1n x n = b 1 a 21 x 1 + + a 2n x n = b 2 (1) = a m1 x 1 + +

Dettagli

Da una a più variabili: derivate

Da una a più variabili: derivate Da una a più variabili: derivate ( ) 5 gennaio 2011 Scopo di questo articolo è di evidenziare le analogie e le differenze, relativamente al calcolo differenziale, fra le funzioni di una variabile reale

Dettagli

2 Formulazione dello shortest path come problema di flusso

2 Formulazione dello shortest path come problema di flusso Strumenti della Teoria dei Giochi per l Informatica A.A. 2009/10 Lecture 20: 28 Maggio 2010 Cycle Monotonicity Docente: Vincenzo Auletta Note redatte da: Annibale Panichella Abstract In questa lezione

Dettagli

γ (t), e lim γ (t) cioè esistono la tangente destra e sinistra negli estremi t j e t j+1.

γ (t), e lim γ (t) cioè esistono la tangente destra e sinistra negli estremi t j e t j+1. Capitolo 6 Integrali curvilinei In questo capitolo definiamo i concetti di integrali di campi scalari o vettoriali lungo curve. Abbiamo bisogno di precisare le curve e gli insiemi che verranno presi in

Dettagli

4 Quarta lezione: Spazi di Banach e funzionali lineari. Spazio duale

4 Quarta lezione: Spazi di Banach e funzionali lineari. Spazio duale 4 Quarta lezione: Spazi di Banach e funzionali lineari. Spazio duale Spazi Metrici Ricordiamo che uno spazio metrico è una coppia (X, d) dove X è un insieme e d : X X [0, + [ è una funzione, detta metrica,

Dettagli

Esercizi per il corso di Algoritmi e Strutture Dati

Esercizi per il corso di Algoritmi e Strutture Dati 1 Esercizi per il corso di Algoritmi e Strutture Dati Esercizi sulla Tecnica Divide et Impera N.B. Tutti gli algoritmi vanno scritti in pseudocodice (non in Java, né in C++, etc. ). Di tutti gli algoritmi

Dettagli

Minimizzazione di Reti Logiche Combinatorie Multi-livello

Minimizzazione di Reti Logiche Combinatorie Multi-livello Minimizzazione di Reti Logiche Combinatorie Multi-livello Maurizio Palesi Maurizio Palesi 1 Introduzione Obiettivo della sintesi logica: ottimizzazione delle cifre di merito area e prestazioni Prestazioni:

Dettagli

ALGEBRA I: CARDINALITÀ DI INSIEMI

ALGEBRA I: CARDINALITÀ DI INSIEMI ALGEBRA I: CARDINALITÀ DI INSIEMI 1. CONFRONTO DI CARDINALITÀ E chiaro a tutti che esistono insiemi finiti cioè con un numero finito di elementi) ed insiemi infiniti. E anche chiaro che ogni insieme infinito

Dettagli

Esistenza di funzioni continue non differenziabili in alcun punto

Esistenza di funzioni continue non differenziabili in alcun punto UNIVERSITÀ DEGLI STUDI DI CAGLIARI FACOLTÀ DI SCIENZE MATEMATICHE, FISICHE E NATURALI CORSO DI LAUREA IN MATEMATICA Esistenza di funzioni continue non differenziabili in alcun punto Relatore Prof. Andrea

Dettagli

Massimo Paolucci (paolucci@dist.unige.it) DIST Università di Genova. Metodi per supportare le decisioni relative alla gestione di progetti

Massimo Paolucci (paolucci@dist.unige.it) DIST Università di Genova. Metodi per supportare le decisioni relative alla gestione di progetti Project Management Massimo Paolucci (paolucci@dist.unige.it) DIST Università di Genova Project Management 2 Metodi per supportare le decisioni relative alla gestione di progetti esempi sono progetti nell

Dettagli

LEZIONE 17. B : kn k m.

LEZIONE 17. B : kn k m. LEZIONE 17 17.1. Isomorfismi tra spazi vettoriali finitamente generati. Applichiamo quanto visto nella lezione precedente ad isomorfismi fra spazi vettoriali di dimensione finita. Proposizione 17.1.1.

Dettagli

Il problema del massimo flusso. Preflow-push e augmenting path: un approccio unificante

Il problema del massimo flusso. Preflow-push e augmenting path: un approccio unificante Introduzione Il problema del massimo flusso. Preflow-push e augmenting path: un approccio unificante Il problema del massimo flusso è uno dei fondamentali problemi nell ottimizzazione su rete. Esso è presente

Dettagli

LA FUNZIONE ESPONENZIALE E IL LOGARITMO

LA FUNZIONE ESPONENZIALE E IL LOGARITMO LA FUNZIONE ESPONENZIALE E IL LOGARITMO APPUNTI PER IL CORSO DI ANALISI MATEMATICA I G. MAUCERI Indice 1. Introduzione 1 2. La funzione esponenziale 2 3. Il numero e di Nepero 9 4. L irrazionalità di e

Dettagli

10. Insiemi non misurabili secondo Lebesgue.

10. Insiemi non misurabili secondo Lebesgue. 10. Insiemi non misurabili secondo Lebesgue. Lo scopo principale di questo capitolo è quello di far vedere che esistono sottoinsiemi di R h che non sono misurabili secondo Lebesgue. La costruzione di insiemi

Dettagli

Corso di Politica Economica

Corso di Politica Economica Corso di Politica Economica Lezione 6: Equilibrio economico generale (part 2) David Bartolini Università Politecnica delle Marche (Sede di S.Benedetto del Tronto) d.bartolini@univpm.it (email) http://utenti.dea.univpm.it/politica

Dettagli

APPLICAZIONI LINEARI

APPLICAZIONI LINEARI APPLICAZIONI LINEARI 1. Esercizi Esercizio 1. Date le seguenti applicazioni lineari (1) f : R 2 R 3 definita da f(x, y) = (x 2y, x + y, x + y); (2) g : R 3 R 2 definita da g(x, y, z) = (x + y, x y); (3)

Dettagli

Geometria nel piano complesso

Geometria nel piano complesso Geometria nel piano complesso Giorgio Ottaviani Contents Un introduzione formale del piano complesso 2 Il teorema di Napoleone 5 L inversione circolare 6 4 Le trasformazioni di Möbius 7 5 Il birapporto

Dettagli

LEZIONE 14. a 1,1 v 1 + a 1,2 v 2 + a 1,3 v 3 + + a 1,n 1 v n 1 + a 1,n v n = w 1

LEZIONE 14. a 1,1 v 1 + a 1,2 v 2 + a 1,3 v 3 + + a 1,n 1 v n 1 + a 1,n v n = w 1 LEZIONE 14 141 Dimensione di uno spazio vettoriale Abbiamo visto come l esistenza di una base in uno spazio vettoriale V su k = R, C, permetta di sostituire a V, che può essere complicato da trattare,

Dettagli

Modelli Binomiali per la valutazione di opzioni

Modelli Binomiali per la valutazione di opzioni Modelli Binomiali per la valutazione di opzioni Rosa Maria Mininni a.a. 2014-2015 1 Introduzione ai modelli binomiali La valutazione degli strumenti finanziari derivati e, in particolare, la valutazione

Dettagli

MATEMATICA. { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un numero x ed un numero y che risolvano entrambe le equazioni.

MATEMATICA. { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un numero x ed un numero y che risolvano entrambe le equazioni. MATEMATICA. Sistemi lineari in due equazioni due incognite. Date due equazioni lineari nelle due incognite x, y come ad esempio { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un

Dettagli

ESERCIZI SVOLTI PER LA PROVA DI STATISTICA

ESERCIZI SVOLTI PER LA PROVA DI STATISTICA ESERCIZI SVOLTI PER LA PROVA DI STATISTICA Stefania Naddeo (anno accademico 4/5) INDICE PARTE PRIMA: STATISTICA DESCRITTIVA. DISTRIBUZIONI DI FREQUENZA E FUNZIONE DI RIPARTIZIONE. VALORI CARATTERISTICI

Dettagli

Convessità e derivabilità

Convessità e derivabilità Convessità e derivabilità Definizione 1 (convessità per funzioni derivabili) Sia f : (a, b) R derivabile su (a, b). Diremo che f è convessa o concava su (a, b) se per ogni 0 (a,b) il grafico di f sta tutto

Dettagli

1. Intorni di un punto. Punti di accumulazione.

1. Intorni di un punto. Punti di accumulazione. 1. Intorni di un punto. Punti di accumulazione. 1.1. Intorni circolari. Assumiamo come distanza di due numeri reali x e y il numero non negativo x y (che, come sappiamo, esprime la distanza tra i punti

Dettagli

3. TEORIA DELL INFORMAZIONE

3. TEORIA DELL INFORMAZIONE 3. TEORIA DELL INFORMAZIONE INTRODUZIONE MISURA DI INFORMAZIONE SORGENTE DISCRETA SENZA MEMORIA ENTROPIA DI UNA SORGENTE NUMERICA CODIFICA DI SORGENTE 1 TEOREMA DI SHANNON CODICI UNIVOCAMENTE DECIFRABILI

Dettagli

ALGEBRA I: NUMERI INTERI, DIVISIBILITÀ E IL TEOREMA FONDAMENTALE DELL ARITMETICA

ALGEBRA I: NUMERI INTERI, DIVISIBILITÀ E IL TEOREMA FONDAMENTALE DELL ARITMETICA ALGEBRA I: NUMERI INTERI, DIVISIBILITÀ E IL TEOREMA FONDAMENTALE DELL ARITMETICA 1. RICHIAMI SULLE PROPRIETÀ DEI NUMERI NATURALI Ho mostrato in un altra dispensa come ricavare a partire dagli assiomi di

Dettagli

Teoria dei giochi Gioco Interdipendenza strategica

Teoria dei giochi Gioco Interdipendenza strategica Teoria dei giochi Gioco Interdipendenza strategica soggetti decisionali autonomi con obiettivi (almeno parzialmente) contrapposti guadagno di ognuno dipende dalle scelte sue e degli altri Giocatori razionali

Dettagli

Per lo svolgimento del corso risulta particolarmente utile considerare l insieme

Per lo svolgimento del corso risulta particolarmente utile considerare l insieme 1. L insieme R. Per lo svolgimento del corso risulta particolarmente utile considerare l insieme R = R {, + }, detto anche retta reale estesa, che si ottiene aggiungendo all insieme dei numeri reali R

Dettagli

Note integrative ed Esercizi consigliati

Note integrative ed Esercizi consigliati - a.a. 2006-07 Corso di Laurea Specialistica in Ingegneria Civile (CIS) Note integrative ed consigliati Laura Poggiolini e Gianna Stefani Indice 0 1 Convergenza uniforme 1 2 Convergenza totale 5 1 Numeri

Dettagli

razionali Figura 1. Rappresentazione degli insiemi numerici Numeri reali algebrici trascendenti frazionari decimali finiti

razionali Figura 1. Rappresentazione degli insiemi numerici Numeri reali algebrici trascendenti frazionari decimali finiti 4. Insiemi numerici 4.1 Insiemi numerici Insieme dei numeri naturali = {0,1,,3,,} Insieme dei numeri interi relativi = {..., 3,, 1,0, + 1, +, + 3, } Insieme dei numeri razionali n 1 1 1 1 = : n, m \{0}

Dettagli

UTILIZZO DEI METODI MULTICRITERI O MULTIOBIETTIVI NELL OFFERTA ECONOMICAMENTE PIÙ VANTAGGIOSA. Filippo Romano 1

UTILIZZO DEI METODI MULTICRITERI O MULTIOBIETTIVI NELL OFFERTA ECONOMICAMENTE PIÙ VANTAGGIOSA. Filippo Romano 1 UTILIZZO DEI METODI MULTICRITERI O MULTIOBIETTIVI NELL OFFERTA ECONOMICAMENTE PIÙ VANTAGGIOSA Filippo Romano 1 1. Introduzione 2. Analisi Multicriteri o Multiobiettivi 2.1 Formule per l attribuzione del

Dettagli

FUNZIONI CONVESSE. + e x 0

FUNZIONI CONVESSE. + e x 0 FUNZIONI CONVESSE Sia I un intervallo aperto di R (limitato o illimitato) e sia f(x) una funzione definita in I. Dato x 0 I, la retta r passante per il punto P 0 (x 0, f(x 0 )) di equazione y = f(x 0 )

Dettagli

FOGLIO 4 - Applicazioni lineari. { kx + y z = 2 x + y kw = k. 2 k 1

FOGLIO 4 - Applicazioni lineari. { kx + y z = 2 x + y kw = k. 2 k 1 FOGLIO 4 - Applicazioni lineari Esercizio 1. Si risolvano i seguenti sistemi lineari al variare di k R. { x y + z + 2w = k x z + w = k 2 { kx + y z = 2 x + y kw = k Esercizio 2. Al variare di k R trovare

Dettagli

Ricerca Operativa Esercizi sul metodo del simplesso. Luigi De Giovanni, Laura Brentegani

Ricerca Operativa Esercizi sul metodo del simplesso. Luigi De Giovanni, Laura Brentegani Ricerca Operativa Esercizi sul metodo del simplesso Luigi De Giovanni, Laura Brentegani 1 1) Risolvere il seguente problema di programmazione lineare. ma + + 3 s.t. 2 + + 2 + 2 + 3 5 2 + 2 + 6,, 0 Soluzione.

Dettagli

Forme bilineari e prodotti scalari. Definizione Dato lo spazio vettoriale V (K) sul campo K, una funzione. b :

Forme bilineari e prodotti scalari. Definizione Dato lo spazio vettoriale V (K) sul campo K, una funzione. b : Forme bilineari e prodotti scalari Definizione Dato lo spazio vettoriale V (K) sul campo K, una funzione b : { V V K ( v, w) b( v, w), si dice forma bilineare su V se per ogni u, v, w V e per ogni k K:

Dettagli

Autorità per la vigilanza sui contratti pubblici di lavori, servizi e forniture QUADERNO

Autorità per la vigilanza sui contratti pubblici di lavori, servizi e forniture QUADERNO Autorità per la vigilanza sui contratti pubblici di lavori, servizi e forniture QUADERNO IL CRITERIO DI AGGIUDICAZIONE DELL OFFERTA ECONOMICAMENTE PIÙ VANTAGGIOSA Dicembre 2011 IL CRITERIO DI AGGIUDICAZIONE

Dettagli

Lezione 4: Principi di Conservazione Conservazione della quantità di moto e del momento della quantità di moto

Lezione 4: Principi di Conservazione Conservazione della quantità di moto e del momento della quantità di moto Lezione 4: Principi di Conservazione Conservazione della quantità di moto e del momento della quantità di moto Claudio Tamagnini Dipartimento di Ingegneria Civile e Ambientale Università degli Studi di

Dettagli

Appunti di Algebra Lineare

Appunti di Algebra Lineare Appunti di Algebra Lineare Indice 1 I vettori geometrici. 1 1.1 Introduzione................................... 1 1. Somma e prodotto per uno scalare....................... 1 1.3 Combinazioni lineari e

Dettagli

Appunti di Logica Matematica

Appunti di Logica Matematica Appunti di Logica Matematica Francesco Bottacin 1 Logica Proposizionale Una proposizione è un affermazione che esprime un valore di verità, cioè una affermazione che è VERA oppure FALSA. Ad esempio: 5

Dettagli

MATRICI E DETERMINANTI

MATRICI E DETERMINANTI MATRICI E DETERMINANTI 1. MATRICI Si ha la seguente Definizione 1: Un insieme di numeri, reali o complessi, ordinati secondo righe e colonne è detto matrice di ordine m x n, ove m è il numero delle righe

Dettagli

TEORIA DELL UTILITÀ E DECISION PROCESS

TEORIA DELL UTILITÀ E DECISION PROCESS TEORIA DELL UTILITÀ E DECISION PROCESS 1 UTILITÀ Classicamente sinonimo di Desiderabilità Fisher (1930):... uno degli elementi che contribuiscono ad identificare la natura economica di un bene e sorge

Dettagli

Lezione XII: La differenziazione del prodotto

Lezione XII: La differenziazione del prodotto Lezione XII: La differenziazione del prodotto Ci sono mercati che per la natura del loro prodotto, la numerosità dei soggetti coinvolti su entrambi i lati del mercato (e in particolare, la bassa concentrazione

Dettagli

Parte 3. Rango e teorema di Rouché-Capelli

Parte 3. Rango e teorema di Rouché-Capelli Parte 3. Rango e teorema di Rouché-Capelli A. Savo Appunti del Corso di Geometria 203-4 Indice delle sezioni Rango di una matrice, 2 Teorema degli orlati, 3 3 Calcolo con l algoritmo di Gauss, 6 4 Matrici

Dettagli

Elementi di Statistica

Elementi di Statistica Elementi di Statistica Contenuti Contenuti di Statistica nel corso di Data Base Elementi di statistica descrittiva: media, moda, mediana, indici di dispersione Introduzione alle variabili casuali e alle

Dettagli

Funzione reale di variabile reale

Funzione reale di variabile reale Funzione reale di variabile reale Siano A e B due sottoinsiemi non vuoti di. Si chiama funzione reale di variabile reale, di A in B, una qualsiasi legge che faccia corrispondere, a ogni elemento A x A

Dettagli

Lezione del 28-11-2006. Teoria dei vettori ordinari

Lezione del 28-11-2006. Teoria dei vettori ordinari Lezione del 8--006 Teoria dei vettori ordinari. Esercizio Sia B = {i, j, k} una base ortonormale fissata. ) Determinare le coordinate dei vettori v V 3 complanari a v =,, 0) e v =, 0, ), aventi lunghezza

Dettagli

19. Inclusioni tra spazi L p.

19. Inclusioni tra spazi L p. 19. Inclusioni tra spazi L p. Nel n. 15.1 abbiamo provato (Teorema 15.1.1) che, se la misura µ è finita, allora tra i corispondenti spazi L p (µ) si hanno le seguenti inclusioni: ( ) p, r ]0, + [ : p

Dettagli

STATISTICA 1 ESERCITAZIONE 1 CLASSIFICAZIONE DELLE VARIABILI CASUALI

STATISTICA 1 ESERCITAZIONE 1 CLASSIFICAZIONE DELLE VARIABILI CASUALI STATISTICA 1 ESERCITAZIONE 1 Dott. Giuseppe Pandolfo 30 Settembre 2013 Popolazione statistica: insieme degli elementi oggetto dell indagine statistica. Unità statistica: ogni elemento della popolazione

Dettagli

Algoritmo euclideo, massimo comun divisore ed equazioni diofantee

Algoritmo euclideo, massimo comun divisore ed equazioni diofantee Algoritmo euclideo, massimo comun divisore ed equazioni diofantee Se a e b sono numeri interi, si dice che a divide b, in simboli: a b, se e solo se esiste c Z tale che b = ac. Si può subito notare che:

Dettagli

Esercizi di Algebra Lineare. Claretta Carrara

Esercizi di Algebra Lineare. Claretta Carrara Esercizi di Algebra Lineare Claretta Carrara Indice Capitolo 1. Operazioni tra matrici e n-uple 1 1. Soluzioni 3 Capitolo. Rette e piani 15 1. Suggerimenti 19. Soluzioni 1 Capitolo 3. Gruppi, spazi e

Dettagli

Il piano principale di produzione

Il piano principale di produzione Il piano principale di produzione Piano principale di produzione 1 Piano principale di produzione (Master Production Schedule) MPS pianifica le consegne di prodotto finito in termini di quantità e di data

Dettagli

I Numeri Complessi. Si verifica facilmente che, per l operazione di somma in definita dalla (1), valgono le seguenti

I Numeri Complessi. Si verifica facilmente che, per l operazione di somma in definita dalla (1), valgono le seguenti Y T T I Numeri Complessi Operazioni di somma e prodotto su Consideriamo, insieme delle coppie ordinate di numeri reali, per cui si ha!"# $&% '( e )("+* Introduciamo in tale insieme una operazione di somma,/0"#123045"#

Dettagli

Indice generale. Modulo 1 Algebra 2

Indice generale. Modulo 1 Algebra 2 Indice generale Modulo 1 Algebra 2 Capitolo 1 Scomposizione in fattori. Equazioni di grado superiore al primo 1.1 La scomposizione in fattori 2 1.2 Raccoglimento a fattor comune 3 1.3 Raccoglimenti successivi

Dettagli

Analisi Matematica I

Analisi Matematica I Analisi Matematica I Fabio Fagnani, Gabriele Grillo Dipartimento di Matematica Politecnico di Torino Queste dispense contengono il materiale delle lezioni del corso di Analisi Matematica I rivolto agli

Dettagli

3. SPAZI VETTORIALI CON PRODOTTO SCALARE

3. SPAZI VETTORIALI CON PRODOTTO SCALARE 3 SPAZI VETTORIALI CON PRODOTTO SCALARE 31 Prodotti scalari Definizione 311 Sia V SV(R) Un prodotto scalare su V è un applicazione, : V V R (v 1,v 2 ) v 1,v 2 tale che: i) v,v = v,v per ogni v,v V ; ii)

Dettagli

ED. Equazioni cardinali della dinamica

ED. Equazioni cardinali della dinamica ED. Equazioni cardinali della dinamica Dinamica dei sistemi La dinamica dei sistemi di punti materiali si può trattare, rispetto ad un osservatore inerziale, scrivendo l equazione fondamentale della dinamica

Dettagli

(V) (FX) Z 6 è un campo rispetto alle usuali operazioni di somma e prodotto.

(V) (FX) Z 6 è un campo rispetto alle usuali operazioni di somma e prodotto. 29 giugno 2009 - PROVA D ESAME - Geometria e Algebra T NOME: MATRICOLA: a=, b=, c= Sostituire ai parametri a, b, c rispettivamente la terzultima, penultima e ultima cifra del proprio numero di matricola

Dettagli

QUADERNI DI DIDATTICA

QUADERNI DI DIDATTICA Department of Applied Mathematics, University of Venice QUADERNI DI DIDATTICA Tatiana Bassetto, Marco Corazza, Riccardo Gusso, Martina Nardon Esercizi sulle funzioni di più variabili reali con applicazioni

Dettagli

DESMATRON TEORIA DEI GRAFI

DESMATRON TEORIA DEI GRAFI DESMATRON TEORIA DEI GRAFI 0 Teoria dei Grafi Author: Desmatron Release 1.0.0 Date of Release: October 28, 2004 Author website: http://desmatron.altervista.org Book website: http://desmatron.altervista.org/teoria_dei_grafi/index.php

Dettagli

IV-1 Funzioni reali di più variabili

IV-1 Funzioni reali di più variabili IV- FUNZIONI REALI DI PIÙ VARIABILI INSIEMI IN R N IV- Funzioni reali di più variabili Indice Insiemi in R n. Simmetrie degli insiemi............................................ 4 2 Funzioni da R n a R

Dettagli

Equazioni non lineari

Equazioni non lineari Dipartimento di Matematica tel. 011 0907503 stefano.berrone@polito.it http://calvino.polito.it/~sberrone Laboratorio di modellazione e progettazione materiali Trovare il valore x R tale che f (x) = 0,

Dettagli

COMUNE DI FORLI' AREA PIANIFICAZIONE E SVILUPPO DEL TERRITORIO

COMUNE DI FORLI' AREA PIANIFICAZIONE E SVILUPPO DEL TERRITORIO 6 Allegato 1 COMUNE DI FORLI' AREA PIANIFICAZIONE E SVILUPPO DEL TERRITORIO Servizio Pianificazione e Programmazione del Territorio Via delle Torri n. 13 47100 Forlì Unità Segreteria mariateresa.babacci@comune.forli.fo.it

Dettagli

Dipendenza dai dati iniziali

Dipendenza dai dati iniziali Dipendenza dai dati iniziali Dopo aver studiato il problema dell esistenza e unicità delle soluzioni dei problemi di Cauchy, il passo successivo è vedere come le traiettorie di queste ultime dipendono

Dettagli

Cristian Secchi Pag. 1

Cristian Secchi Pag. 1 CONTROLLI DIGITALI Laurea Magistrale in Ingegneria Meccatronica SISTEMI A TEMPO DISCRETO Ing. Tel. 0522 522235 e-mail: cristian.secchi@unimore.it http://www.dismi.unimo.it/members/csecchi Richiami di Controlli

Dettagli

Attività 9. La città fangosa Minimal Spanning Trees

Attività 9. La città fangosa Minimal Spanning Trees Attività 9 La città fangosa Minimal Spanning Trees Sommario la nostra società ha molti collegamenti in rete: la rete telefonica, la rete energetica, la rete stradale. Per una rete in particolare, ci sono

Dettagli