Finanza matematica - Lezione 01

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Finanza matematica - Lezione 01"

Transcript

1 Finanza matematica - Lezione 01 Contratto d opzione Un opzione è un contratto finanziario stipulato al tempo, che permette di eseguire una certa transazione, d acquisto call o di vendita put, ad un tempo ad un prezzo prefissato. Il prezzo di un opzione call al tempo con scadenza in al prezzo di esercizio è indicato come,. Indicando in genere matematicamente: max,0 max,0 avremo:, Dunque al tempo si eserciterà l opzione solo se è positiva, ovvero se. Problema dell investitore Si consideri una seguente linea temporale, riferita ad un soggetto che dispone di una ricchezza che dipende solo dal ricavo in attività finanziarie, e che questo può investire in ogni periodo in consumo e risparmio: 1 1 Il portafoglio,,, detenuto al tempo può essere venduto ed i proventi ripartiti in consumo e risparmio dove il risparmio è di fatto l investimento in un portafoglio di attività finanziarie: Dove abbiamo posto Si consideri ora un generico tempo, in cui si è detto che si consuma e si risparmia. Si consideri che il prezzo corrente dell attività -esima sia dato. In quel periodo, la ricchezza che viene generata e che quindi può essere investita dipende da uno dei possibili scenari futuri, numero di scenari possibili che supponiamo essere in numero finito. Di fatto dunque il soggetto dovrà massimizzare la sua utilità: max,, max,,,,, Tramite le condizioni del prim ordine otteniamo: CPO / )

2 0 CPO / ) CPO / ) da cui si ottiene: dove: Da questa si può ottenere: 0 0 con 1 dove si può indicare la risk neutral probability come: Ne consegue che la precedente può essere riscritta come: dunque l esistenza di un massimo per l individuo ci porta ad individuare una probabilità che ci permette di esprimere i prezzi normalizzati come valore atteso. Avendo assunto che fosse fissato, abbiamo che la precedente può essere riscritta come: In genere vale la seguente relazione: 1,, È noto in statistica che il valore atteso condizionato è la migliore previsione che può essere fatta di avendo il valore di. Ne consegue che il valore della previsione dipenderà dal valore di e cambierà in base a questo. Si supponga dunque di avere un certo numero di eventi,,, disgiunti e tali che. Se capitasse dunque l evento allora avremo che la previsione è. Dato che la previsione dipende da, di fatto il valore atteso condizionato in generale potrà essere espresso come:,,

3 il che mostra come verrà previsto in base al valore osservato corrente. In questo senso ne consegue che il valore atteso condizionato sia una variabile aleatoria, e non un numero come invece era nel caso in cui si avesse un fissato. Se il valore atteso condizionato fosse esattamente uguale al valore osservato presente, allora avremmo un processo di martingala. Abbiamo supposto all inizio che l insieme dei possibili scenari fosse finito. Tale assunzione di fatto è forte e non è confermata dall evidenza empirica. Equazioni differenziali stocastiche SI consideri un equazione differenziale del tipo: Dividendo da entrambe le parti per : integrando: e dunque: ln L equazione trovata di fatto rappresenta il tasso di capitalizzazione composta:, con, Alla precedente equazione differenziale è possibile aggiungere una componente erratica detta white noise: "noise" In questo modo si ottiene una equazione differenziale stocastica. Valore atteso condizionato Sia dato uno spazio di probabilità,,, dove è uno spazio, è una -algenra, ovvero misura di probabilità, ovvero. Il valore atteso può essere scritto come:, e una Perché questo valore atteso possa essere calcolabile occorre innanzitutto che la funzione sia -misurabile, ovvero: : Proprietà del valore atteso sono: - linearità: da cui consegue che se: allora: ovvero teorema di convergenza monotona: vale che, data una famiglia di funzioni,, misurabili, con q.o., allora esiste un limite:

4 lim Il teorema di Levy permette di affermare che: lim lim - teorema della convergenza dominata: vale che, data una famiglia di funzioni,, misurabili, con lim 1, la famiglia è dominata se con: Il teorema di Lebesgue permette di affermare che: lim lim - lemma di Fatou: si definisca il liminf come: lim inf sup inf vale che, data una famiglia di funzioni,, misurabili, con liminf esistente, allora vale che: I precedenti tre teoremi sono equivalenti. lim inf lim inf Una funzione si dice integrabile ovvero appartenente alla classe,, se vale che: Vale in particolare che: con le seguenti proprietà della norma: - allora - disuguaglianza di Minkowski: - 0 se e solo se 01 - completezza: siano due successioni, tale per cui vale il criterio di Cauchy: limsup, 0 ovvero che hanno che la distanza tra due termini della successione all aumentare di tende a 0, allora esiste: 0 dunque esiste un limite, ovvero ogni successione di Cauchy converge. Ciò che a noi interessa è il caso di, che ci permette di caratterizzare la varianza. se, allora avendo,, allora avremo che vale la disuguaglianza di Cauchy-Shwarz:

5 Indichiamo con:, Vale che: Infine vale che: se, 0,

Indice. Notazioni generali

Indice. Notazioni generali Indice Notazioni generali XIII 1 Derivati e arbitraggi 1 1.1 Opzioni 1 1.1.1 Finalità 3 1.1.2 Problemi 4 1.1.3 Leggi di capitalizzazione 4 1.1.4 Arbitraggi e formula di Put-Call Parity 5 1.2 Prezzo neutrale

Dettagli

La scelta di portafoglio

La scelta di portafoglio La scelta di portafoglio 1 La scelta di portafoglio La scelta di portafoglio: il modo in cui un individuo decide di allocare la propria ricchezza tra più titoli Il mercato dei titoli è un istituzione che

Dettagli

16. Vari modi di convergenza delle successioni di funzioni reali misurabili.

16. Vari modi di convergenza delle successioni di funzioni reali misurabili. 16. Vari modi di convergenza delle successioni di funzioni reali misurabili. L argomento centrale di questa ultima parte del corso è lo studio in generale della convergenza delle successioni negli spazi

Dettagli

OPZIONI, DURATION E INTEREST RATE SWAP (IRS)

OPZIONI, DURATION E INTEREST RATE SWAP (IRS) ESERCITAZIONE MATEMATICA FINANZIARIA 1 OPZIONI, DURATION E INTEREST RATE SWAP (IRS) Valutazione delle opzioni Esercizio 1 2 ESERCIZIO 1 Il portafoglio di un investitore è composto di 520 azioni della società

Dettagli

Indice. 1 Introduzione alle Equazioni Differenziali 1 1.1 Esempio introduttivo... 1 1.2 Nomenclatura e Teoremi di Esistenza ed Unicità...

Indice. 1 Introduzione alle Equazioni Differenziali 1 1.1 Esempio introduttivo... 1 1.2 Nomenclatura e Teoremi di Esistenza ed Unicità... Indice 1 Introduzione alle Equazioni Differenziali 1 1.1 Esempio introduttivo............................. 1 1.2 Nomenclatura e Teoremi di Esistenza ed Unicità.............. 5 i Capitolo 1 Introduzione

Dettagli

Valore equo di un derivato. Contingent claim

Valore equo di un derivato. Contingent claim Contingent claim Ci occuperemo ora di determinare il prezzo equo di un prodotto derivato, come le opzioni, e di come coprire il rischio associato a questi contratti. Assumeremo come dinamica dei prezzi

Dettagli

Alessandro Ramponi Lezioni di Finanza Matematica

Alessandro Ramponi Lezioni di Finanza Matematica A01 185 Alessandro Ramponi Lezioni di Finanza Matematica Copyright MMXII ARACNE editrice S.r.l. www.aracneeditrice.it info@aracneeditrice.it via Raffaele Garofalo, 133/A B 00173 Roma (06) 93781065 ISBN

Dettagli

Opzioni americane. Capitolo 5. 5.1 Il modello

Opzioni americane. Capitolo 5. 5.1 Il modello Capitolo 5 Opzioni americane 5. Il modello Consideriamo un modello di mercato finanziario così come descritto nel Paragrafo 4.2. Il mercato è quindi formato da d+ titoli di prezzi S 0 n, S n,..., S d n,

Dettagli

COGNOME e NOME: FIRMA: MATRICOLA:

COGNOME e NOME: FIRMA: MATRICOLA: Anno Accademico 203/ 204 Corsi di Analisi Matematica I (Proff A Villani e F Faraci) Prova d Esame del giorno 6 febbraio 204 Prima prova scritta (compito A) Non sono consentiti formulari, appunti, libri

Dettagli

3.1 Successioni. R Definizione (Successione numerica) E Esempio 3.1 CAPITOLO 3

3.1 Successioni. R Definizione (Successione numerica) E Esempio 3.1 CAPITOLO 3 CAPITOLO 3 Successioni e serie 3. Successioni Un caso particolare di applicazione da un insieme numerico ad un altro insieme numerico è quello delle successioni, che risultano essere definite nell insieme

Dettagli

Matematica generale CTF

Matematica generale CTF Successioni numeriche 19 agosto 2015 Definizione di successione Monotonìa e limitatezza Forme indeterminate Successioni infinitesime Comportamento asintotico Criterio del rapporto per le successioni Definizione

Dettagli

Limiti e continuità di funzioni reali di una variabile

Limiti e continuità di funzioni reali di una variabile di funzioni reali di una variabile Corso di Analisi Matematica - capitolo VI Facoltà di Economia, UER Maria Caterina Bramati Université Libre de Bruxelles ECARES 22 Novembre 2006 Intuizione di ite di funzione

Dettagli

Equazioni differenziali ordinarie

Equazioni differenziali ordinarie Equazioni differenziali ordinarie Denis Nardin January 2, 2010 1 Equazioni differenziali In questa sezione considereremo le proprietà delle soluzioni del problema di Cauchy. Da adesso in poi (PC) indicherà

Dettagli

10. Insiemi non misurabili secondo Lebesgue.

10. Insiemi non misurabili secondo Lebesgue. 10. Insiemi non misurabili secondo Lebesgue. Lo scopo principale di questo capitolo è quello di far vedere che esistono sottoinsiemi di R h che non sono misurabili secondo Lebesgue. La costruzione di insiemi

Dettagli

A i è un aperto in E. i=1

A i è un aperto in E. i=1 Proposizione 1. A è aperto se e solo se A c è chiuso. Dimostrazione. = : se x o A c, allora x o A = A o e quindi esiste r > 0 tale che B(x o, r) A; allora x o non può essere di accumulazione per A c. Dunque

Dettagli

Il modello binomiale ad un periodo

Il modello binomiale ad un periodo Opzioni Un opzione dà al suo possessore il diritto (ma non l obbligo) di fare qualcosa. Un opzione call (put) europea su un azione che non paga dividendi dà al possessore il diritto di comprare (vendere)

Dettagli

Modelli finanziari per i tassi di interesse

Modelli finanziari per i tassi di interesse MEBS Lecture 3 Modelli finanziari per i tassi di interesse MEBS, lezioni Roberto Renò Università di Siena 3.1 Modelli per la struttura La ricerca di un modello finanziario che descriva l evoluzione della

Dettagli

Decisioni in condizioni di rischio. Roberto Cordone

Decisioni in condizioni di rischio. Roberto Cordone Decisioni in condizioni di rischio Roberto Cordone Decisioni in condizioni di rischio Rispetto ai problemi in condizioni di ignoranza, oltre all insieme Ω dei possibili scenari, è nota una funzione di

Dettagli

TEMPUS PECUNIA EST COLLANA DI MATEMATICA PER LE SCIENZE ECONOMICHE FINANZIARIE E AZIENDALI

TEMPUS PECUNIA EST COLLANA DI MATEMATICA PER LE SCIENZE ECONOMICHE FINANZIARIE E AZIENDALI TEMPUS PECUNIA EST COLLANA DI MATEMATICA PER LE SCIENZE ECONOMICHE FINANZIARIE E AZIENDALI 7 Direttore Beatrice VENTURI Università degli Studi di Cagliari Comitato scientifico Umberto NERI University of

Dettagli

Politecnico di Milano. Facoltà di Ingegneria Industriale. Corso di Analisi e Geometria 2. Sezione D-G. (Docente: Federico Lastaria).

Politecnico di Milano. Facoltà di Ingegneria Industriale. Corso di Analisi e Geometria 2. Sezione D-G. (Docente: Federico Lastaria). Politecnico di Milano. Facoltà di Ingegneria Industriale. Corso di Analisi e Geometria 2. Sezione D-G. (Docente: Federico Lastaria). Aprile 20 Indice Serie numeriche. Serie convergenti, divergenti, indeterminate.....................

Dettagli

Note sulle Opzioni Americane

Note sulle Opzioni Americane Note sulle Opzioni Americane Wolfgang J. Runggaldier Universitá di Padova June 16, 2007 Si fornisce qui una traccia sull argomento delle opzioni americane a tempo discreto (dette anche Bermudean options)

Dettagli

MODELLI DISCRETI PER OPZIONI AMERICANE

MODELLI DISCRETI PER OPZIONI AMERICANE Alma Mater Studiorum Università di Bologna FACOLTÀ DI SCIENZE MATEMATICHE, FISICHE E NATURALI Corso di Laurea Triennale in Matematica MODELLI DISCRETI PER OPZIONI AMERICANE Tesi di Laurea in Matematica

Dettagli

SIMULAZIONE TEST ESAME - 1

SIMULAZIONE TEST ESAME - 1 SIMULAZIONE TEST ESAME - 1 1. Il dominio della funzione f(x) = log (x2 + 1)(4 x 2 ) (x 2 2x + 1) è: (a) ( 2, 2) (b) ( 2, 1) (1, 2) (c) (, 2) (2, + ) (d) [ 2, 1) (1, 2] (e) R \{1} 2. La funzione f : R R

Dettagli

Esame di Analisi Matematica prova scritta del 23 settembre 2013

Esame di Analisi Matematica prova scritta del 23 settembre 2013 Esame di Analisi Matematica prova scritta del 23 settembre 2013 1. Determinare dominio, limiti significativi, intervalli di monotonia della funzione f (x) = (2x + 3) 2 e x/2 e tracciarne il grafico. In

Dettagli

'DOODPDWHPDWLFDILQDQ]LDULD DOODILQDQ]DPDWHPDWLFD

'DOODPDWHPDWLFDILQDQ]LDULD DOODILQDQ]DPDWHPDWLFD 'DOODPDWHPDWLFDILQDQ]LDULD DOODILQDQ]DPDWHPDWLFD Piera Mazzoleni Istituto di Econometria e Matematica per le Applicazioni economiche, finanziarie, attuariali Università Cattolica in Milano Largo Gemelli,

Dettagli

19. Inclusioni tra spazi L p.

19. Inclusioni tra spazi L p. 19. Inclusioni tra spazi L p. Nel n. 15.1 abbiamo provato (Teorema 15.1.1) che, se la misura µ è finita, allora tra i corispondenti spazi L p (µ) si hanno le seguenti inclusioni: ( ) p, r ]0, + [ : p

Dettagli

Università degli Studi di Catania A.A. 2012-2013. Corso di laurea in Ingegneria Industriale

Università degli Studi di Catania A.A. 2012-2013. Corso di laurea in Ingegneria Industriale Università degli Studi di Catania A.A. 2012-2013 Corso di laurea in Ingegneria Industriale Corso di Analisi Matematica I (A-E) (Prof. A.Villani) Elenco delle dimostrazioni che possono essere richieste

Dettagli

Stima per intervalli Nei metodi di stima puntuale è sempre presente un ^ errore θ θ dovuto al fatto che la stima di θ in genere non coincide con il parametro θ. Sorge quindi l esigenza di determinare una

Dettagli

Sulle funzioni di W 1,p (Ω) a traccia nulla

Sulle funzioni di W 1,p (Ω) a traccia nulla Sulle funzioni di W 1,p () a traccia nulla Sia u W 1,p (R n ) e supponiamo che il supp u, essendo un aperto di R n. Possiamo approssimare u con una successione di funzioni C il cui supporto è contenuto

Dettagli

8. Serie numeriche Assegnata la successione di numeri complessi {a 1, a 2, a 3,...} si considera con il nome di serie numerica.

8. Serie numeriche Assegnata la successione di numeri complessi {a 1, a 2, a 3,...} si considera con il nome di serie numerica. 8. Serie numeriche Assegnata la successione di numeri complessi {a 1, a 2, a 3,...} si considera con il nome di serie numerica la nuova successione {s n } definita come s 1 = a 1, s 2 = a 1 + a 2, s 3

Dettagli

23 Giugno 2003 Teoria Matematica del Portafoglio Finanziario e Modelli Matematici per i Mercati Finanziari ESERCIZIO 1

23 Giugno 2003 Teoria Matematica del Portafoglio Finanziario e Modelli Matematici per i Mercati Finanziari ESERCIZIO 1 23 Giugno 2003 Teoria Matematica del Portafoglio Finanziario e Modelli Matematici per i Mercati Finanziari In uno schema uniperiodale e in un contesto di analisi media-varianza, si consideri un mercato

Dettagli

1 Serie di Taylor di una funzione

1 Serie di Taylor di una funzione Analisi Matematica 2 CORSO DI STUDI IN SMID CORSO DI ANALISI MATEMATICA 2 CAPITOLO 7 SERIE E POLINOMI DI TAYLOR Serie di Taylor di una funzione. Definizione di serie di Taylor Sia f(x) una funzione definita

Dettagli

Una ricetta per il calcolo dell asintoto obliquo. Se f(x) è asintotica a mx+q allora abbiamo f(x) mx q = o(1), da cui (dividendo per x) + o(1), m =

Una ricetta per il calcolo dell asintoto obliquo. Se f(x) è asintotica a mx+q allora abbiamo f(x) mx q = o(1), da cui (dividendo per x) + o(1), m = Una ricetta per il calcolo dell asintoto obliquo Se f() è asintotica a m+q allora abbiamo f() m q = o(1), da cui (dividendo per ) m = f() q + 1 f() o(1) = + o(1), mentre q = f() m = o(1). Dunque si ha

Dettagli

Il mercato finanziario in tempo discreto

Il mercato finanziario in tempo discreto Capitolo 2 Il mercato finanziario in tempo discreto 2. Un modello di mercato finanziario Prima di dedicarci agli arbitraggi sui mercati finanziari, osserviamo come rappresentare un mercato quando il tempo

Dettagli

4 Quarta lezione: Spazi di Banach e funzionali lineari. Spazio duale

4 Quarta lezione: Spazi di Banach e funzionali lineari. Spazio duale 4 Quarta lezione: Spazi di Banach e funzionali lineari. Spazio duale Spazi Metrici Ricordiamo che uno spazio metrico è una coppia (X, d) dove X è un insieme e d : X X [0, + [ è una funzione, detta metrica,

Dettagli

3 GRAFICI DI FUNZIONI

3 GRAFICI DI FUNZIONI 3 GRAFICI DI FUNZIONI Particolari sottoinsiemi di R che noi studieremo sono i grafici di funzioni. Il grafico di una funzione f (se non è specificato il dominio di definizione) è dato da {(x, y) : x dom

Dettagli

Successioni di funzioni reali

Successioni di funzioni reali E-school di Arrigo Amadori Analisi I Successioni di funzioni reali 01 Introduzione. In questo capitolo applicheremo i concetti di successione e di serie alle funzioni numeriche reali. Una successione di

Dettagli

Per lo svolgimento del corso risulta particolarmente utile considerare l insieme

Per lo svolgimento del corso risulta particolarmente utile considerare l insieme 1. L insieme R. Per lo svolgimento del corso risulta particolarmente utile considerare l insieme R = R {, + }, detto anche retta reale estesa, che si ottiene aggiungendo all insieme dei numeri reali R

Dettagli

Esistenza di funzioni continue non differenziabili in alcun punto

Esistenza di funzioni continue non differenziabili in alcun punto UNIVERSITÀ DEGLI STUDI DI CAGLIARI FACOLTÀ DI SCIENZE MATEMATICHE, FISICHE E NATURALI CORSO DI LAUREA IN MATEMATICA Esistenza di funzioni continue non differenziabili in alcun punto Relatore Prof. Andrea

Dettagli

Corso di Analisi Matematica. Successioni e serie numeriche

Corso di Analisi Matematica. Successioni e serie numeriche a.a. 2011/12 Laurea triennale in Informatica Corso di Analisi Matematica Successioni e serie numeriche Avvertenza Questi sono appunti informali delle lezioni, che vengono resi disponibili per comodità

Dettagli

Modelli matematici per la valutazione dei derivati: dalla formula CRR alla formula di Black-Scholes

Modelli matematici per la valutazione dei derivati: dalla formula CRR alla formula di Black-Scholes Capitolo 4 Modelli matematici per la valutazione dei derivati: dalla formula CRR alla formula di Black-Scholes Quanto è ragionevole pagare per entrare in un contratto d opzione? Per affrontare questo problema

Dettagli

CAPITOLO 16 SUCCESSIONI E SERIE DI FUNZIONI

CAPITOLO 16 SUCCESSIONI E SERIE DI FUNZIONI CAPITOLO 16 SUCCESSIONI E SERIE DI FUNZIONI Abbiamo studiato successioni e serie numeriche, ora vogliamo studiare successioni e serie di funzioni. Dato un insieme A R, chiamiamo successione di funzioni

Dettagli

Scelte in condizioni di rischio e incertezza

Scelte in condizioni di rischio e incertezza CAPITOLO 5 Scelte in condizioni di rischio e incertezza Esercizio 5.1. Tizio ha risparmiato nel corso dell anno 500 euro; può investirli in obbligazioni che rendono, in modo certo, il 10% oppure in azioni

Dettagli

studi e analisi finanziarie LA PUT-CALL PARITY

studi e analisi finanziarie LA PUT-CALL PARITY LA PUT-CALL PARITY Questa relazione chiarisce se sia possibile effettuare degli arbitraggi e, quindi, guadagnare senza rischi. La put call parity è una relazione che lega tra loro: il prezzo del call,

Dettagli

Serie numeriche. 1 Definizioni e proprietà elementari

Serie numeriche. 1 Definizioni e proprietà elementari Serie numeriche Definizioni e proprietà elementari Sia { } una successione, definita per ogni numero naturale n n. Per ogni n n, consideriamo la somma s n degli elementi della successione di posto d s

Dettagli

21. Studio del grafico di una funzione: esercizi

21. Studio del grafico di una funzione: esercizi 1. Studio del grafico di una funzione: esercizi Esercizio 1.6. Studiare ciascuna delle seguenti funzioni in base allo schema di pagina 194, eseguendo anche il computo della derivata seconda e lo studio

Dettagli

SERIE NUMERICHE. prof. Antonio Greco 6-11-2013

SERIE NUMERICHE. prof. Antonio Greco 6-11-2013 SERIE NUMERICHE prof. Antonio Greco 6--203 Indice Motivazioni........... 3 Definizione........... 3 Errore tipico........... 3 Un osservazione utile...... 3 Condizione necessaria...... 4 Serie armonica.........

Dettagli

Quesiti di Analisi Matematica A

Quesiti di Analisi Matematica A Quesiti di Analisi Matematica A Presentiamo una raccolta di quesiti per la preparazione alla prova orale del modulo di Analisi Matematica A. Per una buona preparazione é consigliabile rispondere ad alta

Dettagli

Modelli probabilistici per la finanza

Modelli probabilistici per la finanza Capitolo 5 Modelli probabilistici per la finanza 51 Introduzione In questo capitolo introdurremo un modello probabilistico utile per lo studio di alcuni problemi di finanza matematica, a cui abbiamo già

Dettagli

MARTINGALE A TEMPO DISCRETO ED ALCUNE APPLICAZIONI

MARTINGALE A TEMPO DISCRETO ED ALCUNE APPLICAZIONI Alma Mater Studiorum Università di Bologna FACOLTÀ DI SCIENZE MATEMATICHE, FISICHE E NATURALI Corso di Laurea in Matematica MARTINGALE A TEMPO DISCRETO ED ALCUNE APPLICAZIONI Tesi di Laurea in probabilitàestatistica

Dettagli

C. Borelli - C. Invernizzi

C. Borelli - C. Invernizzi Rend. Sem. Mat. Univ. Pol. Torino Vol. 57, 3 (999) C. Borelli - C. Invernizzi SULLA STABILITÀ DELL EQUAZIONE FUNZIONALE DEI POLINOMI Sommario. In this paper we obtain some stability results generalizing

Dettagli

2. Ci sono due soggetti, 1 e 2. Ciascun soggetto i (i = 1; 2) ha la funzione

2. Ci sono due soggetti, 1 e 2. Ciascun soggetto i (i = 1; 2) ha la funzione CONDIVISIONE DEI RISCHI 1. Ci sono due soggetti, 1 e 2. Ciascun soggetto i (i = 1; 2) ha la funzione di utilità Von Neumann-Morgenstern (VNM) 500Wi 5W U(W i ) = i 2 per W i 50 12500 per W i 50 : (1) La

Dettagli

1. Intorni di un punto. Punti di accumulazione.

1. Intorni di un punto. Punti di accumulazione. 1. Intorni di un punto. Punti di accumulazione. 1.1. Intorni circolari. Assumiamo come distanza di due numeri reali x e y il numero non negativo x y (che, come sappiamo, esprime la distanza tra i punti

Dettagli

CAPITOLO 3 FONDAMENTI DI ANALISI DELLA STABILITA' DI SISTEMI NON LINEARI

CAPITOLO 3 FONDAMENTI DI ANALISI DELLA STABILITA' DI SISTEMI NON LINEARI 31 CAPITOLO 3 FONDAMENTI DI ANALISI DELLA STABILITA' DI SISTEMI NON LINEARI INTRODUZIONE L'obbiettivo di questo capitolo è quello di presentare in modo sintetico ma completo, la teoria della stabilità

Dettagli

Massimo A. De Francesco Dipartimento di Economia politica e statistica, Università di 1 Siena Introduzione

Massimo A. De Francesco Dipartimento di Economia politica e statistica, Università di 1 Siena Introduzione Valore dell impresa e decisioni di investimento. Irrilevanza della struttura patrimoniale in condizioni di certezza (prima versione, aprile 2013; versione aggiornata, aprile 2014) Massimo A. De Francesco

Dettagli

LE REGOLE GENERALI DI CALCOLO DELLE PROBABILITA : COME SI DIMOSTRANO CON I TRE ASSIOMI DELLA PROBABILITA?

LE REGOLE GENERALI DI CALCOLO DELLE PROBABILITA : COME SI DIMOSTRANO CON I TRE ASSIOMI DELLA PROBABILITA? INDICE (lezione17.04.07 LE REGOLE GENERALI DI CALCOLO DELLE PROBABILIA : COME SI DIMOSRANO CON I RE ASSIOMI DELLA PROBABILIA?.1 Raccordo con le regole di calcolo delle probabilità già viste nelle lezioni

Dettagli

Esperienza MBG Il moto browniano geometrico. Proprietà teoriche e simulazione Monte Carlo

Esperienza MBG Il moto browniano geometrico. Proprietà teoriche e simulazione Monte Carlo Università degli Studi di Perugia Laurea specialistica in Finanza a.a. 2009-10 Corso di Laboratorio di calcolo finanziario prof. Franco Moriconi Esperienza MBG Il moto browniano geometrico. Proprietà teoriche

Dettagli

5. La teoria astratta della misura.

5. La teoria astratta della misura. 5. La teoria astratta della misura. 5.1. σ-algebre. 5.1.1. σ-algebre e loro proprietà. Sia Ω un insieme non vuoto. Indichiamo con P(Ω la famiglia di tutti i sottoinsiemi di Ω. Inoltre, per ogni insieme

Dettagli

Convessità e derivabilità

Convessità e derivabilità Convessità e derivabilità Definizione 1 (convessità per funzioni derivabili) Sia f : (a, b) R derivabile su (a, b). Diremo che f è convessa o concava su (a, b) se per ogni 0 (a,b) il grafico di f sta tutto

Dettagli

1.1. Spazi metrici completi

1.1. Spazi metrici completi SPAZI METRICI: COMPLETEZZA E COMPATTEZZA Note informali dalle lezioni 1.1. Spazi metrici completi La nozione di convergenza di successioni è centrale nello studio degli spazi metrici. In particolare è

Dettagli

ESERCITAZIONI DI ANALISI 1 FOGLIO 1 FOGLIO 2 FOGLIO 3 FOGLIO 4 FOGLIO 5 FOGLIO 6 FOGLIO 7 SVOLTI. Marco Pezzulla

ESERCITAZIONI DI ANALISI 1 FOGLIO 1 FOGLIO 2 FOGLIO 3 FOGLIO 4 FOGLIO 5 FOGLIO 6 FOGLIO 7 SVOLTI. Marco Pezzulla ESERCITAZIONI DI ANALISI FOGLIO FOGLIO FOGLIO 3 FOGLIO 4 FOGLIO 5 FOGLIO 6 FOGLIO 7 SVOLTI Marco Pezzulla gennaio 05 FOGLIO. Determinare il dominio e il segno della funzione ( ) f(x) arccos x x + π/3.

Dettagli

1. Distribuzioni campionarie

1. Distribuzioni campionarie Università degli Studi di Basilicata Facoltà di Economia Corso di Laurea in Economia Aziendale - a.a. 2012/2013 lezioni di statistica del 3 e 6 giugno 2013 - di Massimo Cristallo - 1. Distribuzioni campionarie

Dettagli

Elementi Finiti: stime d errore e adattività della griglia

Elementi Finiti: stime d errore e adattività della griglia Elementi Finiti: stime d errore e adattività della griglia Elena Gaburro Università degli studi di Verona Master s Degree in Mathematics and Applications 05 giugno 2013 Elena Gaburro (Università di Verona)

Dettagli

Il Processo Stocastico Martingala e sue Applicazioni in Finanza

Il Processo Stocastico Martingala e sue Applicazioni in Finanza Il Processo Stocastico Martingala e sue Applicazioni in Finanza Rosa Maria Mininni a.a. 2014-2015 1 Introduzione Scopo principale della presente dispensa é quello di illustrare i concetti matematici fondamentali

Dettagli

SISTEMI LINEARI QUADRATI: METODI ITERATIVI

SISTEMI LINEARI QUADRATI: METODI ITERATIVI SISTEMI LINEARI QUADRATI: METODI ITERATIVI CALCOLO NUMERICO e PROGRAMMAZIONE SISTEMI LINEARI QUADRATI:METODI ITERATIVI p./54 RICHIAMI di ALGEBRA LINEARE DEFINIZIONI A R n n simmetrica se A = A T ; A C

Dettagli

Mattia Zanella mattia.zanella@unife.it www.mattiazanella.eu

Mattia Zanella mattia.zanella@unife.it www.mattiazanella.eu mattia.zanella@unife.it www.mattiazanella.eu Department of Mathematics and Computer Science, University of Ferrara, Italy Ferrara, 1 Maggio 216 Programma della lezione Seminario II Equazioni differenziali

Dettagli

INTEGRALI DEFINITI. Tale superficie viene detta trapezoide e la misura della sua area si ottiene utilizzando il calcolo di un integrale definito.

INTEGRALI DEFINITI. Tale superficie viene detta trapezoide e la misura della sua area si ottiene utilizzando il calcolo di un integrale definito. INTEGRALI DEFINITI Sia nel campo scientifico che in quello tecnico si presentano spesso situazioni per affrontare le quali è necessario ricorrere al calcolo dell integrale definito. Vi sono infatti svariati

Dettagli

EQUAZIONI non LINEARI

EQUAZIONI non LINEARI EQUAZIONI non LINEARI Francesca Pelosi Dipartimento di Matematica, Università di Roma Tor Vergata CALCOLO NUMERICO e PROGRAMMAZIONE http://www.mat.uniroma2.it/ pelosi/ EQUAZIONI non LINEARI p.1/44 EQUAZIONI

Dettagli

Introduzione alle variabili aleatorie discrete e continue notevoli Lezione 22.01.09 (ore 11.00-13.00, 14.00-16.00)

Introduzione alle variabili aleatorie discrete e continue notevoli Lezione 22.01.09 (ore 11.00-13.00, 14.00-16.00) Introduzione alle variabili aleatorie discrete e continue notevoli Lezione 22.01.09 (ore 11.00-13.00, 14.00-16.00) Richiami di matematica pag. 2 Definizione (moderatamente) formale di variabile aleatoria

Dettagli

Facoltà di Dipartimento di Ingegneria Elettrica e dell'informazione anno accademico 2014/15 Registro lezioni del docente SPORTELLI LUIGI

Facoltà di Dipartimento di Ingegneria Elettrica e dell'informazione anno accademico 2014/15 Registro lezioni del docente SPORTELLI LUIGI Facoltà di Dipartimento di Ingegneria Elettrica e dell'informazione anno accademico 2014/15 Registro lezioni del docente SPORTELLI LUIGI Attività didattica ANALISI MATEMATICA [2000] Periodo di svolgimento:

Dettagli

SUCCESSIONI E SERIE NUMERICHE

SUCCESSIONI E SERIE NUMERICHE Prof Lonzi Marco Dispense per il Corso di ANALISI MATEMATICA SUCCESSIONI E SERIE NUMERICHE AA 2015/16 1 SUCCESSIONI Dicesi Successione a valori reali ogni funzione 0À Ä, avente cioè per dominio l'insieme

Dettagli

SUCCESSIONI NUMERICHE

SUCCESSIONI NUMERICHE SUCCESSIONI NUMERICHE Definizione: Si chiama successione numerica una funzione definita su IN a valori in IR, cioè una legge che associa ad ogni intero n un numero reale a n. Per abuso di linguaggio, si

Dettagli

MODALITA E DATE DEGLI ESAMI

MODALITA E DATE DEGLI ESAMI A.A. 2015/16 CORSO DI ANALISI MATEMATICA 1 PER I CORSI DI LAUREA IN MATEMATICA E FISICA I semestre, 12 crediti Teoria: 9 crediti, tenuti da me Esercitazioni: 3 crediti, tenuti dal Dott. Bruno Scardamaglia

Dettagli

La teoria dell utilità attesa

La teoria dell utilità attesa La teoria dell utilità attesa 1 La teoria dell utilità attesa In un contesto di certezza esiste un legame biunivoco tra azioni e conseguenze: ad ogni azione corrisponde una e una sola conseguenza, e viceversa.

Dettagli

Possiamo calcolare facilmente il valore attuale del bond A e del bond B come segue: VA A = 925.93 = 1000/1.08 VA B = 826.45 = 1000/(1.

Possiamo calcolare facilmente il valore attuale del bond A e del bond B come segue: VA A = 925.93 = 1000/1.08 VA B = 826.45 = 1000/(1. Appendice 5A La struttura temporale dei tassi di interesse, dei tassi spot e del rendimento alla scadenza Nel capitolo 5 abbiamo ipotizzato che il tasso di interesse rimanga costante per tutti i periodi

Dettagli

Appunti di Analisi convessa. Paolo Acquistapace

Appunti di Analisi convessa. Paolo Acquistapace Appunti di Analisi convessa Paolo Acquistapace 6 dicembre 2012 Indice 1 Spazi vettoriali topologici 4 1.1 Insiemi convessi.......................... 4 1.2 Funzionale di Minkowski..................... 6

Dettagli

L avversione al rischio e l utilità attesa

L avversione al rischio e l utilità attesa L avversione al rischio e l utilità attesa Kreps: "Microeconomia per manager" 1 ARGOMENTI DI QUESTA LEZIONE In questa lezione introdurremo il modello dell utilità attesa, che descrive le scelte individuali

Dettagli

Il calore nella Finanza

Il calore nella Finanza Il calore nella Finanza Franco Moriconi Università di Perugia Facoltà di Economia Perugia, 12 Novembre 2008 Quotazioni FIAT Serie giornaliera dal 6/11/2007 al 6/11/2008 F. Moriconi, Il calore nella Finanza

Dettagli

Analisi discriminante

Analisi discriminante Capitolo 6 Analisi discriminante L analisi statistica multivariata comprende un corpo di metodologie statistiche che permettono di analizzare simultaneamente misurazioni riguardanti diverse caratteristiche

Dettagli

1 Alcuni criteri di convergenza per serie a termini non negativi

1 Alcuni criteri di convergenza per serie a termini non negativi Alcuni criteri di convergenza per serie a termini non negativi (Criterio del rapporto.) Consideriamo la serie a (.) a termini positivi (ossia a > 0, =, 2,...). Supponiamo che esista il seguente ite a +

Dettagli

Metodi Stocastici per la Finanza

Metodi Stocastici per la Finanza Metodi Stocastici per la Finanza Tiziano Vargiolu vargiolu@math.unipd.it 1 1 Università degli Studi di Padova Anno Accademico 2012-2013 Indice 1 Mercati finanziari 2 Arbitraggio 3 Conseguenze del non-arbitraggio

Dettagli

FINANZA AZIENDALE Corso di Laurea Specialistica in Ingegneria Gestionale

FINANZA AZIENDALE Corso di Laurea Specialistica in Ingegneria Gestionale FINANZA AZIENDALE Corso di Laurea Specialistica in Ingegneria Gestionale 6 parte Prof. Giovanna Lo Nigro # 1 I titoli derivati # 2 Copyright 2003 - The McGraw-Hill Companies, srl Argomenti trattati Tipologie

Dettagli

Analisi Matematica I Palagachev

Analisi Matematica I Palagachev Analisi Matematica I Palagachev Numeri complessi Risolvere nel campo complesso C la seguente equazione: ) 3 z i = i z + 2 Risolvere nel campo complesso C la seguente equazione: z 2 + 2iz = 2 3 Risolvere

Dettagli

Prova di autovalutazione Prof. Roberta Siciliano

Prova di autovalutazione Prof. Roberta Siciliano Prova di autovalutazione Prof. Roberta Siciliano Esercizio 1 Nella seguente tabella è riportata la distribuzione di frequenza dei prezzi per camera di alcuni agriturismi, situati nella regione Basilicata.

Dettagli

2 Formulazione dello shortest path come problema di flusso

2 Formulazione dello shortest path come problema di flusso Strumenti della Teoria dei Giochi per l Informatica A.A. 2009/10 Lecture 20: 28 Maggio 2010 Cycle Monotonicity Docente: Vincenzo Auletta Note redatte da: Annibale Panichella Abstract In questa lezione

Dettagli

2.4.1 Generazione di numeri pseudocasuali con distribuzione uniforme

2.4.1 Generazione di numeri pseudocasuali con distribuzione uniforme GENERAZIONE DI OSSERVAZIONI CASUALI 157 2.4 GENERAZIONE DI OSSERVAZIONI CASUALI Una volta determinate le distribuzioni di input, la simulazione dovrà generare durante ogni esecuzione osservazioni casuali

Dettagli

Trasformate di Laplace

Trasformate di Laplace TdL 1 TdL 2 Trasformate di Laplace La trasformata di Laplace e un OPERATORE funzionale Importanza dei modelli dinamici Risolvere equazioni differenziali (lineari a coefficienti costanti) Tempo t Dominio

Dettagli

Università di Milano Bicocca Esercitazione 7 di Matematica per la Finanza 12 Marzo 2015

Università di Milano Bicocca Esercitazione 7 di Matematica per la Finanza 12 Marzo 2015 Università di Milano Bicocca Esercitazione 7 di Matematica per la Finanza 12 Marzo 2015 Esercizio 1 Si consideri la funzione f(t) := 2t/10 1 + 0, 04t, t 0. 1. Verificare che essa rappresenta il fattore

Dettagli

Il Capital asset pricing model è un modello di equilibrio dei mercati, individua una relazione tra rischio e rendimento, si fonda sulle seguenti

Il Capital asset pricing model è un modello di equilibrio dei mercati, individua una relazione tra rischio e rendimento, si fonda sulle seguenti Il Capital asset pricing model è un modello di equilibrio dei mercati, individua una relazione tra rischio e rendimento, si fonda sulle seguenti ipotesi: Gli investitori sono avversi al rischio; Gli investitori

Dettagli

Strumenti derivati. Strumenti finanziari il cui valore dipende dall andamento del prezzo di un attività sottostante Attività sottostanti:

Strumenti derivati. Strumenti finanziari il cui valore dipende dall andamento del prezzo di un attività sottostante Attività sottostanti: Strumenti derivati Strumenti finanziari il cui valore dipende dall andamento del prezzo di un attività sottostante Attività sottostanti: attività finanziarie (tassi d interesse, indici azionari, valute,

Dettagli

Università di Pisa - Corso di Laurea in Matematica Corso di Analisi Matematica 1 Informazioni

Università di Pisa - Corso di Laurea in Matematica Corso di Analisi Matematica 1 Informazioni Università di Pisa - Corso di Laurea in Matematica Corso di Analisi Matematica 1 Informazioni Supporto alla didattica Il corso avrà il supporto di un giovane collaboratore (raggiungibile sul web alla pagina

Dettagli

Equazioni non lineari

Equazioni non lineari Dipartimento di Matematica tel. 011 0907503 stefano.berrone@polito.it http://calvino.polito.it/~sberrone Laboratorio di modellazione e progettazione materiali Trovare il valore x R tale che f (x) = 0,

Dettagli

Corso di Laurea in Ingegneria Edile Anno Accademico 2013/2014 Analisi Matematica

Corso di Laurea in Ingegneria Edile Anno Accademico 2013/2014 Analisi Matematica Corso di Laurea in Ingegneria Edile Anno Accademico 2013/2014 Analisi Matematica Nome... N. Matricola... Ancona, 29 marzo 2014 1. (7 punti) Studiare la funzione determinandone: f(x) = e x x il dominio;

Dettagli

1.2 Funzioni, dominio, codominio, invertibilità elementare, alcune identità trigonometriche

1.2 Funzioni, dominio, codominio, invertibilità elementare, alcune identità trigonometriche . Funzioni, dominio, codominio, invertibilità elementare, alcune identità trigonometriche Per le definizioni e teoremi si fa riferimento ad uno qualsiasi dei libri M.Bertsch - R.Dal Passo Lezioni di Analisi

Dettagli

= E(X t+k X t+k t ) 2 + 2E [( X t+k X t+k t + E

= E(X t+k X t+k t ) 2 + 2E [( X t+k X t+k t + E 1. Previsione per modelli ARM A Questo capitolo è dedicato alla teoria della previsione lineare per processi stocastici puramente non deterministici, cioè per processi che ammettono una rappresentazione

Dettagli

ScienzaOrienta NUMERI E DOLLARI: PROBABILITÀ E FINANZA

ScienzaOrienta NUMERI E DOLLARI: PROBABILITÀ E FINANZA ScienzaOrienta 13 Febbraio 2014 Università Tor Vergata-Roma NUMERI E DOLLARI: PROBABILITÀ E FINANZA Lucia Caramellino Dipartimento di Matematica Università di Roma - Tor Vergata caramell@mat.uniroma2.it

Dettagli

Probabilità reali e probabilità neutrali al rischio nella stima del valore futuro degli strumenti derivati

Probabilità reali e probabilità neutrali al rischio nella stima del valore futuro degli strumenti derivati Probabilità reali e probabilità neutrali al rischio nella stima del valore futuro degli strumenti derivati L. Giordano, G. Siciliano 74 agosto 2013 Probabilità reali e probabilità neutrali al rischio

Dettagli

Operazioni finanziarie. Asset allocation: come ottimizzare un portafoglio di attività finanziarie. di Amedeo De Luca (*)

Operazioni finanziarie. Asset allocation: come ottimizzare un portafoglio di attività finanziarie. di Amedeo De Luca (*) Operazioni Tecniche Asset allocation: come ottimizzare un portafoglio di attività di Amedeo De Luca (*) Attraverso una composizione del portafoglio di attività strategica e ben condotta i gestori finanziari

Dettagli

+ P a n n=1 + X. a n = a m 3. n=1. m=4. Per poter dare un significato alla somma (formale) di infiniti termini, ricorriamo al seguente procedimento:

+ P a n n=1 + X. a n = a m 3. n=1. m=4. Per poter dare un significato alla somma (formale) di infiniti termini, ricorriamo al seguente procedimento: Capitolo 3 Serie 3. Definizione Sia { } una successione di numeri reali. Ci proponiamo di dare significato, quando possibile, alla somma a + a 2 +... + +... di tutti i termini della successione. Questa

Dettagli