Esercitazioni del corso di Statistica Proff. Mortera/Vicard a.a. 2011/2012

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Esercitazioni del corso di Statistica Proff. Mortera/Vicard a.a. 2011/2012"

Transcript

1 Esercitazioni del corso di Statistica Proff. Mortera/Vicard a.a. 2011/2012 Esercizi di calcolo delle probabilità 1. Nel 1980 la popolazione USA era così composta: 10% della California, 6% di origine ispanica, 2% californiani di origine ispanica. Se fosse estratto a caso un americano, con quale probabilità è: (a) della California o di origine ispanica (0,14) (b) né della California né di origine ispanica (0,86) (c) di origine ispanica ma non della California (0,04) 2. Si supponga che in una classe di 100 studenti ci sono 4 gruppi nelle seguenti proporzioni: Corso di Laurea Sesso M F Economia 17% 38% altro 23% 22% Se il rappresentante della classe viene estratto a caso, con quale probabilità: (a) è un ragazzo (0,40) (b) è di economia (0,55) (c) è o un ragazzo o di economia (0,78) (d) se il presidente è un ragazzo, con quale probabilità è di economia? (0,425) 3. La tavola seguente mostra 115,5 milioni di unità della forza di lavoro degli Stati Uniti per età e condizione professionale Condizione Classi di età Professionale giovane (< 25) adulto ( 25) totale occupato 20,4 86,8 107,2 disoccupato 3,2 5,1 8,3 totale 23,6 91,9 115,5 Se viene estratto un individuo a caso, (a) trovare la probabilità che sia occupato (0,93) (b) restringendo l estrazione alla popolazione dei giovani, trovare la probabilità che sia occupato (0,86) 1

2 (c) l evento disoccupato è indipendente dall evento giovane? 4. Si supponga che A e B siano eventi indipendenti, con P (A) = 0, 6 e P (B) = 0, 2. Calcolare: (a) P (A B) (b) P (A B) (c) P (A B). Svolgere gli stessi punti nel caso in cui A e B sono invece incompatibili. 5. Per ridurre i furti all interno di un azienda, i dipendenti vengono sottoposti a una macchina della verità, che rivela correttamente il comportamento dei dipendenti nel 90% dei casi (sia per i dipendenti colpevoli che per quelli innocenti). I dipendenti che la macchina dichiara colpevoli vengono licenziati. Si supponga che il 5% dei dipendenti abbia commesso almeno un furto. (a) Quale frazione dei dipendenti licenziati è effettivamente innocente? (0,68) (b) Fra i dipendenti non licenziati, quale frazione ha commesso dei furti? (0,006) 6. Un indagine nazionale ha mostrato che il 30% delle mogli in una coppia guarda un certo tipo di programma TV. Lo stesso programma è visto dal 50% dei mariti. Infine, se una moglie guarda il programma, la probabilità che il programma sia visto anche dal marito cresce al 60%. Se viene estratta una coppia a caso, qual è la probabilità che: (a) la coppia guardi il programma (0,18) (b) almeno uno della coppia guardi il programma (0,62) (c) nessuno dei due guarda il programma (0,38) (d) se il marito guarda il programma, anche la moglie lo guarda (0,36) 7. Un rivenditore di videocassette ha il magazzino così composto: il 20% delle cassette proviene da un negozio all ingrosso fallito in cui il 15% delle videocassette è difettoso; le restanti cassette provengono da un negozio all ingrosso in cui solo l 1% delle cassette è difettoso. (a) Qual è la probabilità che la cassetta di acquisto sia difettosa? (b) Se la cassetta è difettosa, con quale probabilità proviene dal rivenditore fallito? 8. 4 lampadine difettose sono state mischiate con 6 lampadine buone. (a) Se 2 lampadine sono scelte a caso, con quale probabilità sono ambedue buone? 2

3 (b) Se le prime 2 sono buone, con quale probabilità le 3 successive sono buone? (c) Se iniziamo da capo l estrazione e scegliamo 5 lampadine, con quale probabilità sono tutte buone? 9. In una famiglia di 5 bambini (assumendo che bambini e bambine nascano con uguale probabilità), con quale probabilità: (a) c è almeno un bambino? (b) c è almeno un bambino e una bambina? 10. Gli studenti di una università praticano sport nelle seguenti proporzioni: solo calcio, 30% solo basket, 20% solo tennis, 20% solo calcio e basket, 5% solo calcio e tennis, 10% solo basket e tennis, 5% i 3 sport, 2% Si estrae il nominativo di uno studente a caso. Si calcoli: (a) la probabilità che sia un atleta (pratichi almeno uno sport) (b) giochi a calcio o a tennis Se il nominativo estratto è quello di un atleta, con quale probabilità (a) gioca solo a calcio (b) gioca a calcio o a tennis 11. Al fine di arrivare a una cena tra amici, Tizio e Caio scelgono, con uguale probabilità, fra i seguenti mezzi di trasporto: bus, auto e bicicletta. A seconda della scelta, la probabilità che ciascuno dei due giunga in ritardo è pari a 0,5, 0,3 e 0,7 rispettivamente. (a) Determinare la probabilità che Tizio giunga in ritardo (b) Se Tizio e Caio viaggiano indipendentemente, qual è la probabilità che almeno uno giunga in ritardo? (c) Come cambierebbe tale probabilità se i due amici viaggiassero con lo stesso mezzo? 12. Vero o falso? Dati due eventi A e B si ha: (a) P (A B) = P (A) P (B A)P (A) (b) se A B, 1 P (A) = P (A B) 3

4 (c) P (A B) + P (A B) P (A) (d) P (A B) + P (A B) = 1 P (A) (e) P (A B) = P (A) se A e B sono indipendenti 13. Un indagine nazionale ha mostrato che il 20% delle mogli in una coppia possiede la carta di credito. Inoltre la carta di credito è posseduta anche dal 60% dei mariti. Infine, se una moglie possiede la carta di credito, la probabilità che la possieda il marito diminuisce al 20%. Se viene estratta una coppia (marito e moglie) a caso, qual è la probabilità che (a) sia il marito che la moglie possiedano la carta di credito (b) almeno uno della coppia possieda la carta di credito (c) nessuno dei due possiede la carta di credito (d) se il marito possiede la carta di credito, anche la moglie la possiede 14. In una indagine di mercato si è visto che il 15% dei consumatori acquista il prodotto A, mentre il prodotto B viene acquistato dal 30% dei consumatori. Se il prodotto A è acquistato, il prodotto B viene acquistato dal 50% dei consumatori. Se viene estratto un consumatore a caso (a) qual è la probabilità che vengano acquistati ambedue i prodotti? (b) qual è la probabilità che venga acquistato almeno un prodotto? (c) qual è la probabilità che non venga acquistato nessun prodotto? (d) se B viene acquistato, qual è la probabilità che anche A venga acquistato? 15. L azienda A produce televisori che sono difettosi in 2 casi su 10. Il grossista G esamina due televisori prodotti da A prima di decidere se acquistarne una partita intera. G decide di acquistare se entrambi i televisori funzionano. Decide di non acquistare se entrambi sono difettosi ed esamina un altro televisore se solo uno dei due televisori è difettoso. G non acquista se anche il terzo televisore è difettoso e acquista in caso contrario. (a) qual è la probabilità che G acquisti una partita di televisori da A? (b) Se G acquista la partita, qual è la probabilità che sia stato necessario esaminare tre televisori prima di giungere a questa decisione? (c) la decisione di acquistare è indipendente dal numero di televisori esaminati? 16. Un esperto finanziario ritiene che, entro il mese, il tasso ufficiale di sconto può restare invariato (probabilità 0,2) o diminuire di mezzo punto (probabilità 0,7) o anche diminuire di un punto o più (probabilità 0,1). Nei primi due casi l indice di borsa diminuirebbe di oltre due punti con probabilità rispettivamente 0,8 e 0,3. Nel terzo caso, l indice di borsa aumenterebbe o diminuirebbe di meno di due punti (probabilità 1). Qual è la probabilità complessiva che l indice di borsa diminuisca di oltre due punti? 4

5 17. In un urna ci sono 30 palline bianche, 8 rosse e 16 nere. Qual è la probabilità che estraendo 3 palline (a) siano tutte nere? (b) siano due rosse e una nera? 18. Si considerino 2 urne composte da 6 palline. Nella prima urna si hanno 5 palline rosse e una nera, nella seconda si hanno 3 palline rosse e 3 nere. Si sceglie a casa un urna e da questa una pallina. Qual è la probabilità che la pallina estratta sia rossa? 19. Siano A e B due aziende produttrici di frigoriferi che detengono rispettivamente le seguenti quote di mercato 75% e 25%. I frigoriferi della ditta A sono difettosi con probabilità 0.08 mentre quelli delle ditta B sono difettosi con probabilità Qual è la probabilità di acquistare un frigorifero difettoso? 20. Dati due eventi A e B supponiamo che P (A) = P (A B) = 1/4 e P (A B) = 5/16, calcolare la P (B). 21. Consideriamo due monete e supponiamo che nella prima moneta P (croce) = P (testa) = 0.5 mentre nella seconda P (croce) = 0.8 e P (testa) = 0.2. Si sceglie a caso una moneta (a) qual è la probabilità che esca testa? (b) supponiamo che sia uscita testa qual è la probabilità che sia stata lanciata la moneta truccata? 22. In una ditta il 5% degli uomini e il 2% delle donne sono sposati. Inoltre il 40% dei dipendenti sono donne. Supponiamo di scegliere a caso un dipendente che risulta sposato, qual è la probabilità che il dipendente sia una donna? 5

Università degli Studi di Cassino, Anno accademico 2004-2005 Corso di Statistica 2, Prof. M. Furno

Università degli Studi di Cassino, Anno accademico 2004-2005 Corso di Statistica 2, Prof. M. Furno Università degli Studi di Cassino, Anno accademico 2004-2005 Corso di Statistica 2, Prof. M. Furno Esercitazione del 18/1/2005 Dott. Claudio Conversano Esercizio 1 (non svolto in aula) Vengono lanciati

Dettagli

Probabilità e Statistica Esercitazioni. a.a. 2006/2007

Probabilità e Statistica Esercitazioni. a.a. 2006/2007 Probabilità e Statistica Esercitazioni a.a. 2006/2007 C.d.L.: Ingegneria per l Ambiente ed il Territorio, Ingegneria Civile, Ingegneria Gestionale, Ingegneria dell Informazione C.d.L.S.: Ingegneria Civile

Dettagli

Probabilità e Statistica Esercitazioni. a.a. 2009/2010. C.d.L.S.: Ingegneria Civile-Architettonico, Ingegneria Civile-Strutturistico.

Probabilità e Statistica Esercitazioni. a.a. 2009/2010. C.d.L.S.: Ingegneria Civile-Architettonico, Ingegneria Civile-Strutturistico. Probabilità e Statistica Esercitazioni a.a. 2009/2010 C.d.L.S.: Ingegneria Civile-Architettonico, Ingegneria Civile-Strutturistico Probabilità Ines Campa e Marco Longhi Probabilità e Statistica - Esercitazioni

Dettagli

Primi esercizi per gli studenti del corso di Statistica ed Elementi di Probabilita

Primi esercizi per gli studenti del corso di Statistica ed Elementi di Probabilita Primi esercizi per gli studenti del corso di Statistica ed Elementi di Probabilita NOTA 1 Gli esercizi sono presi da compiti degli scorsi appelli, oppure da testi o dispense di colleghi. A questi ultimi

Dettagli

Test sul calcolo della probabilità

Test sul calcolo della probabilità Test sul calcolo della probabilità 2 Test sul calcolo della probabilità Test sul calcolo della probabilità. La probabilità p di un evento E, quando si indica con E il suo complementare, è : a) 0 se E è

Dettagli

Esercizi. Rappresentando le estrazioni con un grafo ad albero, calcolare la probabilità che:

Esercizi. Rappresentando le estrazioni con un grafo ad albero, calcolare la probabilità che: Esercizi Esercizio 4. Un urna contiene inizialmente 2 palline bianche e 4 palline rosse. Si effettuano due estrazioni con la seguente modalità: se alla prima estrazione esce una pallina bianca, la si rimette

Dettagli

Esercizi di Calcolo delle Probabilità (calcolo combinatorio)

Esercizi di Calcolo delle Probabilità (calcolo combinatorio) Esercizi di Calcolo delle Probabilità (calcolo combinatorio 1. Lanciamo due dadi regolari. Qual è la probabilità che la somma delle facce rivolte verso l alto sia pari a 7? 1/6 2. Due palline vengono estratte

Dettagli

Somma logica di eventi

Somma logica di eventi Somma logica di eventi Da un urna contenente 24 palline numerate si estrae una pallina. Calcolare la probabilità dei seguenti eventi: a) esce un numero divisibile per 5 o superiore a 20, b) esce un numero

Dettagli

A = { escono 2 teste e due croci (indipendentemente dall ordine) } B = { al primo tiro esce testa }.

A = { escono 2 teste e due croci (indipendentemente dall ordine) } B = { al primo tiro esce testa }. ESERCIZI ELEMENTARI DI CALCOLO DELLE PROBABILITÀ Teorema della somma 1) Giocando alla roulette, calcolare la probabilità che su una estrazione esca: a) Un numero compreso tra 6 e 12 (compresi) oppure maggiore

Dettagli

CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 7

CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 7 CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 7 Dott.ssa Antonella Costanzo a.costanzo@unicas.it Incompatibilità ed indipendenza stocastica. Probabilità condizionate, legge della probabilità totale, Teorema

Dettagli

Si considerino gli eventi A = nessuno studente ha superato l esame e B = nessuno studente maschio ha superato l esame. Allora A c B è uguale a:

Si considerino gli eventi A = nessuno studente ha superato l esame e B = nessuno studente maschio ha superato l esame. Allora A c B è uguale a: TEST DI AUTOVALUTAZIONE - SETTIMANA 2 I diritti d autore sono riservati. Ogni sfruttamento commerciale non autorizzato sarà perseguito. Metodi statistici per la biologia 1 Parte A 1.1 Si considerino gli

Dettagli

Esercizi di Calcolo delle Probabilita (I)

Esercizi di Calcolo delle Probabilita (I) Esercizi di Calcolo delle Probabilita (I) 1. Si supponga di avere un urna con 15 palline di cui 5 rosse, 8 bianche e 2 nere. Immaginando di estrarre due palline con reimmissione, si dica con quale probabilità:

Dettagli

Esercizi di Probabilità e Statistica

Esercizi di Probabilità e Statistica Esercizi di Probabilità e Statistica Samuel Rota Bulò 9 giugno 006 Spazi di probabilità finiti e uniformi Esercizio Un urna contiene 6 palline rosse, 4 nere, 8 bianche. Si estrae una pallina; calcolare

Dettagli

ESERCIZI EVENTI E VARIABILI ALEATORIE

ESERCIZI EVENTI E VARIABILI ALEATORIE ESERCIZI EVENTI E VARIABILI ALEATORIE 1) Considera la tabella seguente, che descrive la situazione occupazionale di 63 persone in relazione al titolo di studio. Occupazione SI NO Titolo Licenza media 5%

Dettagli

Corso di ELEMENTI DI STATISTICA Alcuni problemi di probabilità, con soluzioni

Corso di ELEMENTI DI STATISTICA Alcuni problemi di probabilità, con soluzioni Corso di ELEMENTI DI STATISTICA Alcuni problemi di probabilità, con soluzioni Si tratta di problemi elementari, formulati nel linguaggio ordinario Quindi, per ogni problema la suluzione proposta è sempre

Dettagli

Esercizi di Probabilità e Statistica

Esercizi di Probabilità e Statistica Esercizi di Probabilità e Statistica Samuel Rota Bulò 19 marzo 2007 Spazi di probabilità finiti e uniformi Esercizio 1 Un urna contiene due palle nere e una rossa. Una seconda urna ne contiene una bianca

Dettagli

CORSO DI CALCOLO DELLE PROBABILITÀ E STATISTICA. Esercizi su eventi, previsioni e probabilità condizionate

CORSO DI CALCOLO DELLE PROBABILITÀ E STATISTICA. Esercizi su eventi, previsioni e probabilità condizionate CORSO DI CALCOLO DELLE PROBABILITÀ E STATISTICA Esercizi su eventi, previsioni e probabilità condizionate Nota: Alcuni esercizi sono tradotti, più o meno fedelmente, dal libro A first course in probability

Dettagli

Esercizi sul calcolo delle probabilità

Esercizi sul calcolo delle probabilità Esercizi sul calcolo delle probabilità Svolti e da svolgere (per MAR 13 marzo) Dati due eventi A e B dello spazio campionario Ω. Si sappia che P(A c )=0,3 P(B)=0,4 e P(A B c )=0,5 si determinino le probabilità

Dettagli

Per il suo compleanno, il goloso Re di un lontano regno riceve in regalo da un altro sovrano un grande canestro contenente 4367 caramelle di tanti

Per il suo compleanno, il goloso Re di un lontano regno riceve in regalo da un altro sovrano un grande canestro contenente 4367 caramelle di tanti Per il suo compleanno, il goloso Re di un lontano regno riceve in regalo da un altro sovrano un grande canestro contenente 4367 caramelle di tanti colori, tra cui 382 rosse. Qualche tempo dopo il donatore

Dettagli

Per poter affrontare il problema abbiamo bisogno di parlare di probabilità (almeno in maniera intuitiva). Analizziamo alcune situazioni concrete.

Per poter affrontare il problema abbiamo bisogno di parlare di probabilità (almeno in maniera intuitiva). Analizziamo alcune situazioni concrete. Parliamo di probabilità. Supponiamo di avere un sacchetto con dentro una pallina rossa; posso aggiungere tante palline bianche quante voglio, per ogni pallina bianca che aggiungo devo pagare però un prezzo

Dettagli

Istituzioni di Statistica e Statistica Economica

Istituzioni di Statistica e Statistica Economica Istituzioni di Statistica e Statistica Economica Università degli Studi di Perugia Facoltà di Economia, Assisi, a.a. 2013/14 Esercitazione n. 4 A. Si supponga che la durata in giorni delle lampadine prodotte

Dettagli

Capitolo 4 Probabilità

Capitolo 4 Probabilità Levine, Krehbiel, Berenson Statistica II ed. 2006 Apogeo Capitolo 4 Probabilità Insegnamento: Statistica Corso di Laurea Triennale in Economia Facoltà di Economia, Università di Ferrara Docenti: Dott.

Dettagli

Calcolo delle probabilitá: esercizi svolti fino all 8 febbraio

Calcolo delle probabilitá: esercizi svolti fino all 8 febbraio Calcolo delle probabilitá: esercizi svolti fino all 8 febbraio Alessandro Sicco sicco@dm.unito.it Lezione 1. Calcolo combinatorio, formula delle probabilitá totali, formula di Bayes Esercizio 1.1. 7 bambini

Dettagli

Esercizi di calcolo combinatorio

Esercizi di calcolo combinatorio CORSO DI CALCOLO DELLE PROBABILITÀ E STATISTICA Esercizi di calcolo combinatorio Nota: Alcuni esercizi sono tradotti, più o meno fedelmente, dal libro A first course in probability di Sheldon Ross, quinta

Dettagli

Probabilità e statistica

Probabilità e statistica Indice generale.probabilità ed eventi aleatori....come si può definire una probabilità....eventi equiprobabili....eventi indipendenti, eventi dipendenti....eventi incompatibili....eventi compatibili....probabilità

Dettagli

Calcolo combinatorio

Calcolo combinatorio Probabilità e Statistica Esercitazioni a.a. 2009/2010 C.d.L.S.: Ingegneria Civile-Architettonico, Ingegneria Civile-Strutturistico Calcolo combinatorio Ines Campa e Marco Longhi Probabilità e Statistica

Dettagli

Esercizi di calcolo combinatorio e probabilità Svolgimento a cura di Mattia Puddu

Esercizi di calcolo combinatorio e probabilità Svolgimento a cura di Mattia Puddu Esercizi di calcolo combinatorio e probabilità Svolgimento a cura di Mattia Puddu 1. Gli interi da 1 a 9 sono scritti nelle 9 caselle di una scacchiera 3x3, ogni intero in ogni casella diversa, in modo

Dettagli

Esercitazioni del corso di Statistica Prof. Mortera a.a. 2010/2011. Esercizi di stima puntuale, intervalli di confidenza e test T 2 = 1 2 X

Esercitazioni del corso di Statistica Prof. Mortera a.a. 2010/2011. Esercizi di stima puntuale, intervalli di confidenza e test T 2 = 1 2 X Esercitazioni del corso di Statistica Prof. Mortera a.a. 2010/2011 Esercizi di stima puntuale, intervalli di confidenza e test 1. Si consideri il campione (X 1, X 2, X 3, X 4 ) composto da variabili i.i.d.

Dettagli

Statistica 1. Esercitazioni. Dott. Luigi Augugliaro 1. Università di Palermo

Statistica 1. Esercitazioni. Dott. Luigi Augugliaro 1. Università di Palermo Statistica 1 Esercitazioni Dott. 1 1 Dipartimento di Scienze Statistiche e Matematiche S. Vianelli, Università di Palermo ricevimento: lunedì ore 15-17 mercoledì ore 15-17 e-mail: luigi.augugliaro@unipa.it

Dettagli

Statistica 1. Esercitazioni. Dott. Luigi Augugliaro 1. Università di Palermo

Statistica 1. Esercitazioni. Dott. Luigi Augugliaro 1. Università di Palermo Statistica 1 Esercitazioni Dott. 1 1 Dipartimento di Scienze Statistiche e Matematiche S. Vianelli, Università di Palermo ricevimento: lunedì ore 15-17 mercoledì ore 15-17 e-mail: luigi.augugliaro@unipa.it

Dettagli

Esercitazioni di Statistica

Esercitazioni di Statistica Esercitazioni di Statistica Calcolo delle probabilità Prof. Livia De Giovanni statistica@dis.uniroma1.it Esercizio 1 Si vuole studiare la distribuzione del sesso dei figli nelle famiglie aventi due figli

Dettagli

SIMULAZIONE TEST INVALSI

SIMULAZIONE TEST INVALSI SIMULAZIONE TEST INVALSI STATISTICA E PROBABILITA Nel sacchetto A ci sono 4 palline rosse e 8 nere mentre nel sacchetto B ci sono 4 palline rosse e 6 nere. a. Completa correttamente la seguente frase inserendo

Dettagli

Esercizi di Probabilità e statistica. Francesco Caravenna Paolo Dai Pra

Esercizi di Probabilità e statistica. Francesco Caravenna Paolo Dai Pra Esercizi di Probabilità e statistica Francesco Caravenna Paolo Dai Pra Capitolo 1 Spazi di probabilità discreti 1.1 Proprietà fondamentali Esercizio 1 Esprimere ciascuno dei seguenti eventi in termini

Dettagli

Esercitazione del 14/02/2012 Istituzioni di Calcolo delle Probabilità

Esercitazione del 14/02/2012 Istituzioni di Calcolo delle Probabilità Esercitazione del 14/02/2012 Istituzioni di Calcolo delle Probabilità David Barbato Questa raccolta comprende sia gli esercizi dell esercitazione del 14 febbraio sia gli esercizi di ricapitolazione sulle

Dettagli

Calcolo delle Probabilità

Calcolo delle Probabilità Calcolo delle Probabilità Il calcolo delle probabilità studia i modelli matematici delle cosidette situazioni di incertezza. Molte situazioni concrete sono caratterizzate a priori da incertezza su quello

Dettagli

STATISTICA E PROBABILITá

STATISTICA E PROBABILITá STATISTICA E PROBABILITá Statistica La statistica è una branca della matematica, che descrive un qualsiasi fenomeno basandosi sulla raccolta di informazioni, sottoforma di dati. Questi ultimi risultano

Dettagli

1 Probabilità. 1.1 Primi esercizi di probabilità con l uso del calcolo combinatorio

1 Probabilità. 1.1 Primi esercizi di probabilità con l uso del calcolo combinatorio Indice 1 Probabilità 1 1.1 Primi esercizi di probabilità con l uso del calcolo combinatorio.. 1 1.2 Probabilità condizionata, indipendenza e teorema di Bayes.... 2 1 Probabilità 1.1 Primi esercizi di probabilità

Dettagli

6 (bac 2005, matematica 3 periodi) * 7. (bac 2000, matematica 5 periodi problema obbligatorio 4)

6 (bac 2005, matematica 3 periodi) * 7. (bac 2000, matematica 5 periodi problema obbligatorio 4) Esercizi tratti dai problemi del Bac delle scuole europee (ordinati per difficoltà: dai più semplici, senza asterisco, a quelli di media difficoltà, con 1 asterisco, a quelli difficili, con due asterischi)

Dettagli

ESERCIZI DI CALCOLO COMBINATORIO

ESERCIZI DI CALCOLO COMBINATORIO ESERCIZI DI CALCOLO COMBINATORIO 1. Calcolare il numero degli anagrammi che possono essere formati con le lettere della parola Amore. [120] 2. Quante partite di poker diverse possono essere giocate da

Dettagli

ESERCITAZIONE DI PROBABILITÀ 1

ESERCITAZIONE DI PROBABILITÀ 1 ESERCITAZIONE DI PROBABILITÀ 2/03/205 Primo foglio di esercizi Esercizio 0.. Una classe di studenti è costituita da 6 ragazzi e 4 ragazze. I risultati dell esame vengono esposti in una graduatoria in ordine

Dettagli

Esercitazione #5 di Statistica. Test ed Intervalli di Confidenza (per una popolazione)

Esercitazione #5 di Statistica. Test ed Intervalli di Confidenza (per una popolazione) Esercitazione #5 di Statistica Test ed Intervalli di Confidenza (per una popolazione) Dicembre 00 1 Esercizi 1.1 Test su media (con varianza nota) Esercizio n. 1 Il calore (in calorie per grammo) emesso

Dettagli

Modello probabilistico di un esperimento aleatorio. Psicometria 1 - Lezione 6 Lucidi presentati a lezione AA 2000/2001 dott.

Modello probabilistico di un esperimento aleatorio. Psicometria 1 - Lezione 6 Lucidi presentati a lezione AA 2000/2001 dott. Modello probabilistico di un esperimento aleatorio Psicometria 1 - Lezione 6 Lucidi presentati a lezione AA 2000/2001 dott. Corrado Caudek 1 Un esperimento è il processo attraverso il quale un osservazione

Dettagli

PROBABILITA' E VARIABILI CASUALI

PROBABILITA' E VARIABILI CASUALI PROBABILITA' E VARIABILI CASUALI ESERCIZIO 1 Due giocatori estraggono due carte a caso da un mazzo di carte napoletane. Calcolare: 1) la probabilità che la prima carta sia una figura oppure una carta di

Dettagli

Indirizzo Fisico Informatico Matematico matematica per le classi 47A, 48A, 49A

Indirizzo Fisico Informatico Matematico matematica per le classi 47A, 48A, 49A Indirizzo Fisico Informatico Matematico matematica per le classi 47A, 48A, 49A 1. L'intersezione di tre insiemi contiene 1 solo elemento (cioè esiste un unico elemento comune a tutti e tre gli insiemi).

Dettagli

Il sistema monetario

Il sistema monetario Il sistema monetario Premessa: in un sistema economico senza moneta il commercio richiede la doppia coincidenza dei desideri. L esistenza del denaro rende più facili gli scambi. Moneta: insieme di tutti

Dettagli

Calcolo delle probabilità

Calcolo delle probabilità Calcolo delle probabilità Laboratorio di Bioinformatica Corso A aa 2005-2006 Statistica Dai risultati di un esperimento si determinano alcune caratteristiche della popolazione Calcolo delle probabilità

Dettagli

Esercizi sulle variabili aleatorie Corso di Probabilità e Inferenza Statistica, anno 2007-2008, Prof. Mortera

Esercizi sulle variabili aleatorie Corso di Probabilità e Inferenza Statistica, anno 2007-2008, Prof. Mortera Esercizi sulle variabili aleatorie Corso di Probabilità e Inferenza Statistica, anno 2007-2008, Prof. Mortera 1. Avete risparmiato 10 dollari che volete investire per un anno in azioni e/o buoni del tesoro

Dettagli

Lezione 3 - Probabilità totale, Bayes -Alberi PROBABILITÀ TOTALE TEOREMA DI BAYES ALBERI E GRAFI

Lezione 3 - Probabilità totale, Bayes -Alberi PROBABILITÀ TOTALE TEOREMA DI BAYES ALBERI E GRAFI Lezione 3 - robabilità totale, ayes -lberi ROILITÀ TOTLE TEOREM DI YES LERI E GRFI GRUO MT06 Dip. Matematica, Università di Milano - robabilità e Statistica per le Scuole Medie -SILSIS - 2007 Lezione 3

Dettagli

k n Calcolo delle probabilità e calcolo combinatorio (di Paolo Urbani maggio 2011)

k n Calcolo delle probabilità e calcolo combinatorio (di Paolo Urbani maggio 2011) b) (vedi grafo di lato) 7 0 9 0 0 0 ( E ) + + 0, ) Calcolare, riguardo al gioco del totocalcio, la probabilità dei seguenti eventi utilizzando il calcolo combinatorio a) E : fare b) E : fare 0 c) E : fare

Dettagli

Tabella 7. Dado truccato

Tabella 7. Dado truccato 0 ALBERTO SARACCO 4. Compiti a casa 7novembre 200 4.. Ordini di grandezza e calcolo approssimato. Esercizio 4.. Una valigia misura 5cm di larghezza, 70cm di lunghezza e 45cm di altezza. Quante palline

Dettagli

Analisi dei Dati 12/13 Esercizi proposti 3 soluzioni

Analisi dei Dati 12/13 Esercizi proposti 3 soluzioni Analisi dei Dati 1/13 Esercizi proposti 3 soluzioni 0.1 Un urna contiene 6 palline rosse e 8 palline nere. Si estraggono simultaneamente due palline. Qual è la probabilità di estrarle entrambe rosse? (6

Dettagli

ESERCIZIO 1 ESERCIZIO 2

ESERCIZIO 1 ESERCIZIO 2 ESERCIZIO 1 Si consideri l'esperimento consistente nel lancio simultaneo di due monete. Calcolare la probabilità dei seguenti eventi: nessuna croce nessuna testa 1 testa almeno 1 testa non più di 1 testa

Dettagli

Focus I giovani e il mercato del lavoro

Focus I giovani e il mercato del lavoro Focus I giovani e il mercato del lavoro Per trovare lavoro conviene proseguire gli studi dopo il diploma Nel 2008 77 giovani (25-34 anni) su 100 lavorano o cercano un lavoro (tasso di attività); al sono

Dettagli

Tutoraggio di Calcolo delle Probabilità, 2-3 Marzo 2010

Tutoraggio di Calcolo delle Probabilità, 2-3 Marzo 2010 Tutoraggio di Calcolo delle Probabilità, 2-3 Marzo 200 Esercizio. Dati due eventi A e B, scrivete, in termini di operazioni booleane, l espressione dell evento: {si verifica esattamente un solo evento

Dettagli

Lezione 10. La Statistica Inferenziale

Lezione 10. La Statistica Inferenziale Lezione 10 La Statistica Inferenziale Filosofia della scienza Secondo Aristotele, vi sono due vie attraverso le quali riusciamo a formare le nostre conoscenze: (1) la deduzione (2) l induzione. Lezione

Dettagli

Una sperimentazione. Probabilità. Una previsione. Calcolo delle probabilità. Nonostante ciò, è possibile dire qualcosa.

Una sperimentazione. Probabilità. Una previsione. Calcolo delle probabilità. Nonostante ciò, è possibile dire qualcosa. Una sperimentazione Probabilità Si sta sperimentando l efficacia di un nuovo farmaco per il morbo di Parkinson. Duemila pazienti partecipano alla sperimentazione: metà di essi vengono trattati con il nuovo

Dettagli

ESAME DI STATISTICA Nome: Cognome: Matricola:

ESAME DI STATISTICA Nome: Cognome: Matricola: ESAME DI STATISTICA Nome: Cognome: Matricola: ISTRUZIONI: Per la prova è consentito esclusivamente l uso di una calcolatrice tascabile, delle tavole della normale e della t di Student. I risultati degli

Dettagli

Corso di Laurea in Scienze e Tecnologie Biomolecolari. NOME COGNOME N. Matr.

Corso di Laurea in Scienze e Tecnologie Biomolecolari. NOME COGNOME N. Matr. Corso di Laurea in Scienze e Tecnologie Biomolecolari Matematica e Statistica II Prova di esame del 18/7/2013 NOME COGNOME N. Matr. Rispondere ai punti degli esercizi nel modo più completo possibile, cercando

Dettagli

Probabilità e Statistica Esercitazioni. a.a. 2006/2007

Probabilità e Statistica Esercitazioni. a.a. 2006/2007 Probabilità e Statistica Esercitazioni a.a. 2006/2007 C.d.L.: Ingegneria per l Ambiente ed il Territorio, Ingegneria Civile, Ingegneria Gestionale, Ingegneria dell Informazione C.d.L.S.: Ingegneria Civile

Dettagli

Probabilità. Esperimento, risultati e spazio campionario

Probabilità. Esperimento, risultati e spazio campionario Probabilità La probabilità è usata nel linguaggio comune per dare indicazioni quantitative sul verificarsi di certi eventi: i) probabilità di incorre in un data patologia causa l abuso di alcol, fumo,

Dettagli

Calcolo delle P robabilitá. Esercizi svolti e quesiti per il CdS in Economia e Finanza

Calcolo delle P robabilitá. Esercizi svolti e quesiti per il CdS in Economia e Finanza Calcolo delle P robabilitá Esercizi svolti e quesiti per il CdS in Economia e Finanza Giuseppe Sanfilippo Dipartimento di Scienze Statistiche e Matematiche S. Vianelli Università degli Studi di Palermo

Dettagli

Ancora sull indipendenza. Se A e B sono indipendenti allora lo sono anche

Ancora sull indipendenza. Se A e B sono indipendenti allora lo sono anche Ancora sull indipendenza Se A e B sono indipendenti allora lo sono anche A e B Ā e B Ā e B Sfruttiamo le leggi di De Morgan Leggi di De Morgan A B = Ā B A B = Ā B P (Ā B) = P (A B) = 1 P (A B) = 1 (P (A)

Dettagli

Statistica inferenziale, Varese, 18 novembre 2009 Prima parte - Modalità C

Statistica inferenziale, Varese, 18 novembre 2009 Prima parte - Modalità C Statistica inferenziale, Varese, 18 novembre 2009 Prima parte - Modalità C Cognome Nome: Part time: Numero di matricola: Diurno: ISTRUZIONI: Il punteggio relativo alla prima parte dell esame viene calcolato

Dettagli

Esericizi di calcolo combinatorio

Esericizi di calcolo combinatorio Esericizi di calcolo combinatorio Alessandro De Gregorio Sapienza Università di Roma alessandrodegregorio@uniroma1it Problema (riepilogativo) La segretaria di un ufficio deve depositare 3 lettere in 5

Dettagli

matematica probabilmente

matematica probabilmente IS science centre immaginario scientifico Laboratorio dell'immaginario Scientifico - Trieste tel. 040224424 - fax 040224439 - e-mail: lis@lis.trieste.it - www.immaginarioscientifico.it indice Altezze e

Dettagli

Il sistema monetario

Il sistema monetario Il sistema monetario Premessa: in un sistema economico senza moneta il commercio richiede la doppia coincidenza dei desideri. L esistenza del denaro rende più facili gli scambi. Moneta: insieme di tutti

Dettagli

ELEMENTI DI CALCOLO DELLE PROBABILITA

ELEMENTI DI CALCOLO DELLE PROBABILITA Statistica, CLEA p. 1/55 ELEMENTI DI CALCOLO DELLE PROBABILITA Premessa importante: il comportamento della popolazione rispetto una variabile casuale X viene descritto attraverso una funzione parametrica

Dettagli

Teoria della probabilità Assiomi e teoremi

Teoria della probabilità Assiomi e teoremi Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Teoria della probabilità Assiomi e teoremi A.A. 2008-09 Alberto Perotti DELEN-DAUIN Esperimento casuale Esperimento

Dettagli

5DOPO IL DIPLOMA DALLA SCUOLA ALL UNIVERSITÀ I DIPLOMATI E IL LAVORO LA FAMIGLIA DI ORIGINE

5DOPO IL DIPLOMA DALLA SCUOLA ALL UNIVERSITÀ I DIPLOMATI E IL LAVORO LA FAMIGLIA DI ORIGINE 5DOPO IL DIPLOMA DALLA SCUOLA ALL UNIVERSITÀ I DIPLOMATI E IL LAVORO LA FAMIGLIA DI ORIGINE 5.1 DALLA SCUOLA ALL UNIVERSITÀ 82 Sono più spesso le donne ad intraprendere gli studi universitari A partire

Dettagli

COMPITO n. 1. 3. Siano X, Y due variabili aleatorie tali che il vettore (X, Y ) sia distribuito uniformemente

COMPITO n. 1. 3. Siano X, Y due variabili aleatorie tali che il vettore (X, Y ) sia distribuito uniformemente COMPITO n. 1 a) Nel gioco del poker ad ogni giocatore vengono distribuite cinque carte da un normale mazzo di 52. Quant è la probabilità che un giocatore riceva una scala di re (ovvero 9, 10, J, Q, K anche

Dettagli

21.05.08 Prima prova parziale di Calcolo delle probabilità I C.L. in Matematica

21.05.08 Prima prova parziale di Calcolo delle probabilità I C.L. in Matematica 21.05.08 Prima prova parziale di Calcolo delle probabilità I Ogni esercizio vale 5 punti. 1. Si gioca a nascondino in una casa di quattro stanze: cucina, salotto, bagno e camera da letto. Otto bambini

Dettagli

Esercizi di calcolo delle probabilità e statistica Complemento alla guida per insegnanti

Esercizi di calcolo delle probabilità e statistica Complemento alla guida per insegnanti Esercizi di calcolo delle probabilità e statistica Complemento alla guida per insegnanti Ottobre 2009 Prof. Alberto Gandolfi Dipartimento di Matematica U. Dini Università di Firenze gandolfi@math.unifi.it

Dettagli

1 Probabilità condizionata

1 Probabilità condizionata 1 Probabilità condizionata Accade spesso di voler calcolare delle probabilità quando si è in possesso di informazioni parziali sull esito di un esperimento, o di voler calcolare la probabilità di un evento

Dettagli

2 CERTAMEN NAZIONALE DI PROBABILITA E STATISTICA FELICE FUSATO Fase di Istituto 15 febbraio 2011

2 CERTAMEN NAZIONALE DI PROBABILITA E STATISTICA FELICE FUSATO Fase di Istituto 15 febbraio 2011 2 CERTAMEN NAZIONALE DI PROBABILITA E STATISTICA FELICE FUSATO Fase di Istituto 15 febbraio 2011 1) Non sfogliare questo fascicolo finché l insegnante non ti dice di farlo. 2) E ammesso l utilizzo di calcolatrici

Dettagli

Elementi di calcolo delle probabilità

Elementi di calcolo delle probabilità Elementi di calcolo delle probabilità Definizione di probabilità A) Qui davanti a me ho un urna contenente 2 palline bianche e 998 nere. Mi metto una benda sugli occhi, scuoto ripetutamente l urna ed estraggo

Dettagli

LA STATISTICA E IL CALCOLO DELLE PROBABILITÀ

LA STATISTICA E IL CALCOLO DELLE PROBABILITÀ LA STATISTICA E IL CALCOLO DELLE PROBABILITÀ Prof. Francesco Tottoli Versione 3 del 20 febbraio 2012 DEFINIZIONE È una scienza giovane e rappresenta uno strumento essenziale per la scoperta di leggi e

Dettagli

Prova di ammissione alla Scuola di Specializzazione per l Insegnamento Secondario. Fisico Informatico Matematico. Indirizzo. Mat C. Modulo.

Prova di ammissione alla Scuola di Specializzazione per l Insegnamento Secondario. Fisico Informatico Matematico. Indirizzo. Mat C. Modulo. Prova di ammissione alla Scuola di Specializzazione per l Insegnamento Secondario Indirizzo Fisico Informatico Matematico Modulo Mat C 15 domande giovedì 15 Settembre 005 1. Sia D l'insieme rappresentato

Dettagli

INDAGINE ALMALAUREA 2015 SUI DOTTORI DI RICERCA Tra perfomance di studio e mercato del lavoro

INDAGINE ALMALAUREA 2015 SUI DOTTORI DI RICERCA Tra perfomance di studio e mercato del lavoro INDAGINE ALMALAUREA 2015 SUI DOTTORI DI RICERCA Tra perfomance di studio e mercato del lavoro Pochi, molto qualificati e con performance occupazionali brillanti: l Indagine AlmaLaurea del 2015 fotografa

Dettagli

PROVE D'ESAME DI CPS A.A. 2009/2010. 0 altrimenti.

PROVE D'ESAME DI CPS A.A. 2009/2010. 0 altrimenti. PROVE D'ESAME DI CPS A.A. 009/00 0/06/00 () (4pt) Olimpiadi, nale dei 00m maschili, 8 nalisti. Si sa che i 4 atleti nelle corsie centrali hanno probabilità di correre in meno di 0 secondi. I 4 atleti delle

Dettagli

ESERCIZI. x + 3 x 2 1. a) y = 4x2 + 3x 2x + 2 ; b) y = 6x2 x 1. (x + 2) 2 c) y =

ESERCIZI. x + 3 x 2 1. a) y = 4x2 + 3x 2x + 2 ; b) y = 6x2 x 1. (x + 2) 2 c) y = ESERCIZI Testi (1) Un urna contiene 20 palline di cui 8 rosse 3 bianche e 9 nere; calcolare la probabilità che: (a) tutte e tre siano rosse; (b) tutte e tre bianche; (c) 2 rosse e una nera; (d) almeno

Dettagli

Statistiche campionarie

Statistiche campionarie Statistiche campionarie Sul campione si possono calcolare le statistiche campionarie (come media campionaria, mediana campionaria, varianza campionaria,.) Le statistiche campionarie sono stimatori delle

Dettagli

Pillole di Probabilitá

Pillole di Probabilitá Pillole di Probabilitá Roberto Paoletti Supponiamo di dover fare una previsione su un esito che puó avvenire all interno di un certo insieme di eventi. Ad esempio, viene lanciato un dado e si vuole fare

Dettagli

Titolo Relazione finale. Donna e ruolo dirigenziale nell Azienda Ospedaliera Universitaria Careggi

Titolo Relazione finale. Donna e ruolo dirigenziale nell Azienda Ospedaliera Universitaria Careggi Università degli Studi di Firenze Corso DONNE, POLITICA E ISTITUZIONI. PERCORSI FORMATIVI PER LA PROMOZIONE DELLA CULTURA DI GENERE E DELLE PARI OPPORTUNITA' Edizione 2009 Titolo Relazione finale Donna

Dettagli

STATISTICA (I MODULO INFERENZA STATISTICA) Esercitazione I 27/4/2007

STATISTICA (I MODULO INFERENZA STATISTICA) Esercitazione I 27/4/2007 Esercitazione I 7/4/007 In una scatola contenente 0 pezzi di un articolo elettronico risultano essere difettosi. Si estraggono a caso due pezzi, uno alla volta senza reimmissione. Quale è la probabilità

Dettagli

4 I LAUREATI E IL LAVORO

4 I LAUREATI E IL LAVORO 4I LAUREATI E IL LAVORO 4 I LAUREATI E IL LAVORO La laurea riduce la probabilità di rimanere disoccupati dopo i 30 anni L istruzione si rivela sempre un buon investimento a tutela della disoccupazione.

Dettagli

Logica deduttiva, applicazioni avanzate

Logica deduttiva, applicazioni avanzate Logica deduttiva, applicazioni avanzate 1. Se si assume la verità delle proposizioni se l ornitorinco fa le uova, allora non è un mammifero e l ornitorinco è un mammifero deve di conseguenza essere vera

Dettagli

Test statistici di verifica di ipotesi

Test statistici di verifica di ipotesi Test e verifica di ipotesi Test e verifica di ipotesi Il test delle ipotesi consente di verificare se, e quanto, una determinata ipotesi (di carattere biologico, medico, economico,...) è supportata dall

Dettagli

Questionario per casa 6 Febbraio 2012

Questionario per casa 6 Febbraio 2012 1 Il numero 4 2004 + 2 4008 è uguale a a) 4 4012 b) 4 4008 c) 4 2004 d) 2 4009 e) 2 2012 Questionario per casa 6 Febbraio 2012 2 La statura media dei 20 studenti di una certa classe è 163,5 cm. Se ciascuno

Dettagli

Temi di Esame a.a. 2012-2013. Statistica - CLEF

Temi di Esame a.a. 2012-2013. Statistica - CLEF Temi di Esame a.a. 2012-2013 Statistica - CLEF I Prova Parziale di Statistica (CLEF) 11 aprile 2013 Esercizio 1 Un computer è collegato a due stampanti, A e B. La stampante A è difettosa ed il 25% dei

Dettagli

Le variabili casuali. Variabile statistica e variabile casuale. Distribuzione di probabilità della v.c X: X P(X) 0 ⅛ 1 ⅜ 3 ⅛

Le variabili casuali. Variabile statistica e variabile casuale. Distribuzione di probabilità della v.c X: X P(X) 0 ⅛ 1 ⅜ 3 ⅛ Università di Macerata Facoltà di Scienze Politiche - Anno accademico 009- Una variabile casuale è una variabile che assume determinati valori con determinate probabilità; Ad una variabile casuale è associata

Dettagli

Matematica Applicata. Probabilità e statistica

Matematica Applicata. Probabilità e statistica Matematica Applicata Probabilità e statistica Fenomeni casuali Fenomeni che si verificano in modi non prevedibili a priori 1. Lancio di una moneta: non sono in grado di prevedere con certezza se il risultato

Dettagli

6.1 L occupazione femminile

6.1 L occupazione femminile 6.1 L occupazione femminile E oramai noto come la presenza femminile sul mercato del lavoro sia notevolmente cresciuta nell ultimo decennio. La società in trasformazione ha registrato così un importante

Dettagli

a) 1670 b) 2285 c) 4520 d) 1300 b a) 865000 b) 640000 c) 725000 d) 645000 d a) 1 b) 2 c) 3 d) Non è possibile calcolarlo

a) 1670 b) 2285 c) 4520 d) 1300 b a) 865000 b) 640000 c) 725000 d) 645000 d a) 1 b) 2 c) 3 d) Non è possibile calcolarlo RB00001 Una banca offre un interesse sui suoi conti correnti a) 1.5 euro b) 3 euro c) 150 euro d) 300 euro b dello 0.05% annuo in capitalizzazione semplice. Quanto si ottiene di interessi investendo per

Dettagli

STATISTICA MEDICA Prof. Tarcisio Niglio http://www.tarcisio.net tarcisio@mclink.it oppure su Facebook Anno Accademico 2011-2012

STATISTICA MEDICA Prof. Tarcisio Niglio http://www.tarcisio.net tarcisio@mclink.it oppure su Facebook Anno Accademico 2011-2012 STATISTICA MEDICA Prof. Tarcisio Niglio http://www.tarcisio.net tarcisio@mclink.it oppure su Facebook Anno Accademico 2011-2012 Calcolo delle Probabilità Teoria & Pratica La probabilità di un evento è

Dettagli

COMPITO n. 1. a) Determinare la distribuzione del numero X di palline nere presenti nell urna.

COMPITO n. 1. a) Determinare la distribuzione del numero X di palline nere presenti nell urna. Università di Siena a.a. 28/9 Docente D. Papini COMPITO n. 1 a) Un dado non truccato viene lanciato due volte. Quant è la probabilità dell evento: al primo lancio esce un numero minore o uguale a 2 ed

Dettagli

Figli e denaro: verso il futuro

Figli e denaro: verso il futuro Educare al futuro: il ruolo dell educazione finanziaria Francesco Saita CAREFIN, Università Bocconi Figli e denaro: verso il futuro FAES PattiChiari, Milano, 12 ottobre 2013 1 Introduzione Parlare di educazione

Dettagli

8. Qual è la probabilità di estrarre da un mazzo di 40 carte napoletane una figura?

8. Qual è la probabilità di estrarre da un mazzo di 40 carte napoletane una figura? www.matematicamente.it Probabilità 1 Calcolo delle probabilità Cognome e nome: Classe Data 1. Quali affermazioni sono vere? A. Un evento impossibile ha probabilità 1 B. Un vento certo ha probabilità 0

Dettagli

ESERCIZI DI RIEPILOGO 2. 7 jj(addi

ESERCIZI DI RIEPILOGO 2. 7 jj(addi ESERCIZI DI RIEPILOGO 2 ESERCIZIO 1 Da un comune mazzo di 52 carte francesi (13 carte per ognuno dei quattro semi: picche, cuori, fiori e quadri) viene estratta casualmente una carta. Definiti gli eventi:

Dettagli

Anteprima Finale Categoria Corsi di Statistica

Anteprima Finale Categoria Corsi di Statistica 1 di 8 08/04/2011 9.01 SiS-Scuola-28-SEZIONE STATISTICA fad TC128STAT Quiz Finale Categoria Corsi di Statistica Tentativo 1 Sei collegato come piero zulli. (Esci) Info Risultati Anteprima Modifica Anteprima

Dettagli

Corso di Analisi Statistica per le Imprese (9 CFU) Prof. L. Neri a.a. 2011-2012

Corso di Analisi Statistica per le Imprese (9 CFU) Prof. L. Neri a.a. 2011-2012 Corso di Analisi Statistica per le Imprese (9 CFU) Prof. L. Neri a.a. 2011-2012 1 Riepilogo di alcuni concetti base Concetti di base: unità e collettivo statistico; popolazione e campione; caratteri e

Dettagli