Facoltà di Ingegneria Prova scritta di Fisica I 13 Febbraio 2006 Compito A

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Facoltà di Ingegneria Prova scritta di Fisica I 13 Febbraio 2006 Compito A"

Transcript

1 Facoltà di Ingegneria Prova critta di Fiica I 13 Febbraio 6 Copito A Eercizio n.1 Un blocco, aiilabile ad un punto ateriale di aa, partendo da fero, civola da un altezza h lungo un piano inclinato cabro che fora un angolo con l orizzontale (con coefficiente di attrito dinaico µ. Percorre un tratto orizzontale privo di attrito e riale lungo una guida curvilinea priva di attrito. Calcolare la aia altezza H raggiunta dal punto ateriale ulla guida. =, =.3; = 45 o kg µ, h = 5 Valori nuerici, Ripondere quindi alle eguenti doande: 1. Durante il oto del blocco A. l energia eccanica del blocco riane cotante B. l energia eccanica del blocco auenta C. l energia eccanica del blocco diinuice h D. l energia potenziale riane cotante. Auendo coe punto di riferiento la bae della guida, l energia potenziale del blocco all altezza h vale A. 9 J B J C. 98 J D. 17 J 3. Il lavoro fatto dalle forze di attrito durante il oto lungo il piano inclinato vale A. 7 J B. 1.3 J C. 1.3 J D. 9.4 J 4. a aia altezza raggiunta dal blocco ulla guida curvilinea vale A. 3.5 B..5 C. 5 D. 6 Eercizio n. Una feretta aiilabile ad un punto ateriale di aa 1 e tenuta fora contro una olla di cotante elatica k coprea di un tratto x. aciata libera di uoveri la feretta va a urtare frontalente un altra feretta aiilabile ad un punto ateriale di aa, inizialente fera. urto non e elatico, e dopo l urto la feretta 1 riane fera. Coniderando che nell urto anelatico i conerva la quantità di oto, i calcoli l energia eccanica iniziale, la velocita della feretta 1 pria dell urto, la velocita della feretta dopo l urto, l energia diipata nell urto. Il piano u cui i uovono le due ferette e licio. 1=5 gr, =1 gr, k=5 N/, x= 5 c 1 Ripondere quindi alle eguenti doande: v r 5. energia eccanica iniziale vale a..63 J b. 1.7 J c. 3 J d..1 J 6. Il odulo della velocità con cui i uove la feretta 1 pria dell urto vale a. b. 4

2 c. d Il odulo della velocità finale della feretta vale a..5 b. 5.5 c. 7.5 d energia diipata nell urto a.. J b..31 J c. 1 J d..1 J Eercizio n. 3 Un acenore di aa 1 e collegato, traite una fune ideale e una carrucola di aa M e raggio R, ad un contrappeo di aa (vedi figura. acenore e oggetto ad una forza di attrito dinaico F eercitata dalle guide laterali. Si tudi il oto del itea e i calcoli l accelerazione dell acenore e le tenioni T 1 e T della fune. Inoltre, upponendo che l acenore parta da fero, calcolare la velocità angolare della carrucola quando l acenore i e abbaato di un tratto h. Ripondere quindi alle eguenti doande, tenendo conto dei eguenti dati nuerici ( 1 =35 kg, M=5 kg, = kg, F= 15 N, R=.5, h=1, oento di inerzia della carrucola ripetto all ae di rotazione I o =(1/M R : M 9. l equazione del oto per la carrucola, è la eguente: a. T 1 R T R = I O b. T 1 R = I O 1 R T 1 R R + 1 T1 T = I O I O c. ( T R = d. ( 1. l equazione del oto del contrappeo è la eguente: a. g = a b. T = a c. g + T = a d. g + T = a 11. l equazione del oto dell acenore 1 è la eguente: a. F = 1a b. 1 g T1 F = 1a c. 1 g + T + T1 + F = Ma d. Mg = Ma 1. l accelerazione dell acenore vale: a..38 / b. 3. / c / d..1 / 13. la tenione T 1 vale: a. T 1 = 1.5 N T T 1 1

3 + + + con b. T 1= 7 N c. T 1= 47 N d. T 1= 37 N 14. la tenione T vale: a. T = 1 N b. T = 7 N c. T = 36 N d. T = 347 N 15. la velocità angolare raggiunta dalla carrucola quando l acenore i è abbaato di h, vale: a. ω b. c. d. = 5.5 rad ω = 467 rad ω = 4.6 rad ω = 74.6 rad Eercizio n. 4 Un corpo di aa M i uove u un piano orizzontale cabro di coefficiente di attrito dinaico. Su di eo agice una forza cotante di odulo F, forante un angolo l orizzontale e diretta vero l alto. Sapendo che il corpo i uove di oto rettilineo unifore con velocità v, calcolare il odulo della forza F e la potenza diipata dalla forza di attrito. Si riponda quindi alle eguenti doande: 16. a reazione norale del piano che agice ul corpo vale a. Mg Fen b. Mg co c. Mg en d. Fco 17. a forza di attrito eercitata dal piano ul corpo vale a. Mg Fen b. Mg co c. Mg en d. Mg 18. Il odulo della forza F, tale che il corpo i uova di oto rettilineo unifore, vale a. Mg b. Mg /(co en c. Mg en d. Mg /(co en 19. a potenza diipata dalla forza di attrito vale a. v Mg b. v [Mg Fen ] c. v Mg /(co en d. v F F Eercizio n.5 Un prio etreo di un ata rigida ottile, di lunghezza e di aa M, è incernierato u di un blocco di upporto inaovibile nel punto A, coì coe otrato in figura. Un econdo etreo B dell ata è legato ad un filo, inetenibile e privo di aa, che viene, a ua volta, legato in O. a ditanza OA è proprio e l angolo che il filo fora con l orizzontale, nella configurazione tatica otrata in figura, è θ. Iprovviaente, il filo i pezza e l ata coincia ruotare enza attrito ripetto al punto A nel piano della figura. O θ B Sia M=. Kg, =., θ =π/6 rad. Si calcoli il oento prodotto dalla forza peo dell ata ripetto al punto A e la tenione T nel filo nella configurazione tatica iniziale A

4 pria che quet ultio i pezzi. Calcolare inoltre il oento d inerzia dell ata ripetto all ae ortogonale al piano della figura paante per il punto A e, applicando la conervazione dell energia eccanica, calcolare la velocità angolare e l accelerazione radiale del centro di aa dell ata, quando quet ultia è in poizione verticale, un itante pria di battere contro il blocco di upporto. Si riponda quindi alle eguenti doande:. Il oento prodotto dalla forza peo dell ata ripetto al punto A in odulo vale a. 5,6 N b. 15, N c. 9,81 N d.,1 N 1. la tenione T nel filo pria che quet ultio i pezzi vale a. 1,94 N b.,53 N c. 5, N d. 9,81 N. il oento d inerzia dell ata ripetto all ae ortogonale al piano della figura paante per il punto A vale a. 1. Kg b..5 Kg c..67 Kg d. 9.5 Kg 3. la velocità angolare dell ata, quando ea è in poizione verticale, un itante pria di battere contro il blocco di upporto, vale a..64 rad/ b. 1.1 rad/ c. 3.6 rad/ d. 5.4 rad/ 4. l accelerazione radiale a r del centro di aa dell ata, quando quet ultia è in poizione verticale, un itante pria di battere contro il blocco di upporto, vale a / b. 7.5 / c / d. 44. / Altre doande 5. Quando un adulto di 81 kg ua la cala a chiocciola per alire al econdo piano della ua caa, la ua energia potenziale auenta di J. Di quanto auenta l energia potenziale di un bibo di 18 kg quando queto ale al econdo piano della tea caa per la cala norale? a. 66 J b. J c. 44 J d..44 J 6. Un dico orizzontale gira intorno al proprio ae con velocità angolare cotante. Ad un certo itante un piccolo fraento di aa cade verticalente ul dico e i attacca alla uperficie di eo. Il odulo della velocità angolare del dico: a. raddoppia b. riane invariato c. diinuice d. auenta 7. Il centro di aa di un itea cotituito dalle ae puntifori 1 ed 1, con >> 1 pote, a ditanza d, ripettivaente nei punti P1 e P, i trova in quale punto della congiungente tra P1 e P: a. ulla congiungente 1, vicino ad b. ulla congiungente 1 a ditanza d/ da 1 c. ulla congiungente 1 a ditanza d/4 da 1 d. ulla congiungente 1, vicino ad 1 8. Nel oto parabolico di un proiettile lanciato vero l alto ad un angolo di 45, nel punto di altezza aia, la velocità ha

5 a. coponente orizzontale nulla e coponente verticale divera da zero b. coponente orizzontale divera da zero e coponente verticale nulla c. entrabe le coponenti nulle d. entrabe le coponenti divere da zero 9. Un aolino viene lanciato verticalente vero l alto. Nel punto di altezza aia, il aolino ha a. velocità ed accelerazione nulle b. velocità ed accelerazione divere da zero c. velocità nulla ed accelerazione divera da zero d. velocità divera da zero ed accelerazione nulla 3. Il teorea di Koenig dell energia cinetica dice che a. energia cinetica di un itea di particelle è epre nulla b. energia cinetica di un itea di particelle è uguale all energia cinetica del centro di aa (CM del itea c. energia cinetica di un itea di particelle è uguale all energia cinetica del CM del itea più l energia cinetica del itea ripetto al itea del centro di aa d. energia cinetica di un itea di particelle è uguale all energia cinetica del itea ripetto al itea del centro di aa 31. In un dico oogeneo, viene praticato un foro circolare, con centro ull ae x (vedi figura a lato. Il CM deldico, inizialente coincidente col centro del dico, i pota: a. lungo l ae x, nel vero delle x poitive b. lungo l ae x, nel vero delle x negative c. lungo l ae y, nel vero delle y poitive d. lungo l ae y, nel vero delle y negative 3. accelerazione del centro di aa di un itea di particelle dipende a. oltanto dalla riultante delle forze interne b. oltanto dalla riultante delle forze eterne c. oltanto dal oento riultante delle forze interne ripetto al CM d. oltanto dal oento riultante delle forze eterne ripetto al CM 33. Dato un itea di particelle, la quantità di oto totale i conerva e: a. la riultante delle forze eterne è nulla b. la riultante delle forze interne è nulla c. il oento riultante delle forze eterne ripetto al CM del itea è nullo d. tutte le forze eterne e tutte le forze interne ono conervative 34. Condizione necearia e ufficiente affinché un corpo rigido ia in equilibrio (tatico o dinaico è che: a. la riultante delle forze eterne ia nulla b. la riultante dei oenti delle forze eterne (ripetto ad un polo qualiai ia nulla c. la riultante delle forze eterne e la riultante dei oenti delle forze eterne (ripetto ad un polo qualiai iano nulle d. la riultante delle forze interne e la riultante dei oenti delle forze interne (ripetto ad un polo qualiai iano nulle

6 Soluzione Eercizio n.1 Ripetto alla bae, l energia potenziale del blocco vale E p = gh = 78.4J Il lavoro a fatto dalle forze di attrito e uguale al prodotto della forza d attrito per lo potaento lungo il piano cabro, quindi a = -F h/in( = - g h co(/in( Il lavoro a e uguale alla variazione di energia eccanica del itea, per cui a =gh-gh Da cui H= h ( 1- co(/in( Eercizio n. energia eccanica iniziale e uguale all energia potenziale della olla E= ½ k x Per la conervazione dell energia eccanica la velocità della aa 1 pria dell urto vale v 1 i = k / x Per la conervazione della quantità di oto durante l urto, eendo v i = v 1f =, i ha v f = 1/ v 1i. Eercizio n. 3 accelerazione del itea i può calcolare o applicando la econda legge di Newton alle ae 1 e e la econda equazione cardinale della dinaica rotazionale alla carrucola, oppure applicando il etodo di D Alebert al itea. Dalle leggi della cineatica (oto uniforeente accelerato i ricava la velocità dell acenore quando i e abbaato di un tratto h, carrucola. Eercizio n. 5 v = ah, quindi dividendo tale velocità per il raggio R i ottiene la velocità angolare della Il calcolo del oento, ripetto al punto A, della forza peo, applicata nel c.d.. della barra, è preliinare alla rioluzione della econda doanda. Si ha allora: M P = Mg co( θ. Eguagliando adeo queto oento a quello prodotto dalla tenione T ripetto al punto A, avreo: T inθ = Mg co( θ, coicché Mg co( θ T =. inθ Per calcolare la velocità angolare dell ata, quando ea è in poizione verticale, un itante pria di battere contro il blocco di upporto, applichiao la conervazione dell energia eccanica, crivendo: ( i ( f 1 E M = E M U ( i = U ( f + K f Mg in(θ = Mg + I Aω. Sotituendo per I e riolvendo per ω, i ha: A 3g ω = ( 1+ in( θ. accelerazione radiale del centro di aa dell ata, quando quet ultia è in poizione verticale, un itante pria di battere contro il blocco di upporto, può eere calcolata coe egue:

Il lavoro meccanico Il lavoro di una forza costante

Il lavoro meccanico Il lavoro di una forza costante Il lavoro eccanico Il lavoro di una forza cotante Per potare oggetti, produrre deforazioni, e più in generale per odificare i itei fiici occorrono le forze. Se però conideriao, per eepio, un pezzo di legno

Dettagli

UNIVERSITÀ DEGLI STUDI DI TERAMO

UNIVERSITÀ DEGLI STUDI DI TERAMO UNIVERSITÀ DEGLI STUDI DI TERAMO CORSO DI LAUREA IN TUTELA E BENESSERE ANIMALE Coro di : FISICA MEDICA A.A. 2015 /2016 Docente: Dott. Chiucchi Riccardo ail:rchiucchi@unite.it Medicina Veterinaria: CFU

Dettagli

LAVORO ED ENERGIA Corso di Fisica per Farmacia, Facoltà di Farmacia, Università G. D Annunzio, Cosimo Del Gratta 2006

LAVORO ED ENERGIA Corso di Fisica per Farmacia, Facoltà di Farmacia, Università G. D Annunzio, Cosimo Del Gratta 2006 LAVORO ED ENERGIA INTRODUZIONE L introduzione dei concetto di lavoro, energia cinetica ed energia potenziale ci perettono di affrontare i problei della dinaica in un odo nuovo In particolare enuncereo

Dettagli

D. MR (*) 2. Il modulo dell accelerazione angolare α della carrucola vale rad A s rad B s rad C s rad D. 55.

D. MR (*) 2. Il modulo dell accelerazione angolare α della carrucola vale rad A s rad B s rad C s rad D. 55. acoltà di Ingegneria a prova intracoro di iica I 30.0.0 Copito A (*) Eercizio n. Una carrucola, aiilabile ad un dico di aa 3.7 kg e raggio 70 c, è libera di ruotare intorno ad un ae orizzontale paante

Dettagli

Facoltà di Ingegneria 2 a prova intracorso di Fisica I Compito B

Facoltà di Ingegneria 2 a prova intracorso di Fisica I Compito B Facoltà di neneria a proa intracoro di Fiica 4-0-0 - Copito B Eercizio n. Un blocco di aa, partendo da fero, cade da un altezza h ul piatto di una bilancia, opea ad una olla ideale di cotante elatica.

Dettagli

Si risponda quindi alle seguenti domande: 1. Il modulo della velocità con cui il blocco colpisce il piatto della bilancia vale: A. 3.

Si risponda quindi alle seguenti domande: 1. Il modulo della velocità con cui il blocco colpisce il piatto della bilancia vale: A. 3. Facoltà di neneria a proa intracoro di Fiica 4-0-0 - Copito A Eercizio n. Un blocco di aa, partendo da fero, cade da un altezza h ul piatto di una bilancia, opea ad una olla di cotante elatica. l blocco

Dettagli

PROBLEMI RISOLTI DI DINAMICA

PROBLEMI RISOLTI DI DINAMICA PROBLEMI RISOLTI DI DINAMICA 1 Un autoobile di aa 100 Kg auenta in odo unifore la ua velocità di 30 / in 0 a) Quale forza agice durante i 0? b) Quale forza arebbe necearia per ipriere un accelerazione

Dettagli

F 2 F 1. r R F A. fig.1. fig.2

F 2 F 1. r R F A. fig.1. fig.2 N.1 Un cilindro di raggio R = 10 cm e massa M = 5 kg è posto su un piano orizzontale scabro (fig.1). In corrispondenza del centro del cilindro è scavata una sottilissima fenditura in modo tale da ridurre

Dettagli

INCOGNITA distanza OP = spostamento lungo il piano fino al punto P, dove si ferma : v(p) = 0

INCOGNITA distanza OP = spostamento lungo il piano fino al punto P, dove si ferma : v(p) = 0 FBB peo FBμB forza = vb0b = PIAOICLIATOaldi.doc PIAO ICLIATO CO ATTRITO ( Salita e Dicea ) All itante t=0 un corpo di aa =1 lanciato vero l alto luno un piano inclinato di un anolo = 0 ripetto al piano

Dettagli

Fisica Generale I (primo modulo) A.A. 2013-2014, 19 Novembre 2013

Fisica Generale I (primo modulo) A.A. 2013-2014, 19 Novembre 2013 Fisica Generale I (primo modulo) A.A. 203-204, 9 Novembre 203 Esercizio I. m m 2 α α Due corpi, di massa m = kg ed m 2 =.5 kg, sono poggiati su un cuneo di massa M m 2 e sono connessi mediante una carrucola

Dettagli

Lezione 4: la velocità. Nella scorsa lezione abbiamo considerato la grandezza velocità media. Essa, come ricordate, è definita così:

Lezione 4: la velocità. Nella scorsa lezione abbiamo considerato la grandezza velocità media. Essa, come ricordate, è definita così: Lezione 4 - pag.1 Lezione 4: la velocità 4.1. Velocità edia e grafico tepo - poizione Nella cora lezione abbiao coniderato la grandezza velocità edia. Ea, coe ricordate, è definita coì: ditanza percora

Dettagli

Esercitazione di Meccanica dei fluidi con Fondamenti di Ingegneria Chimica. Scambio di materia (II)

Esercitazione di Meccanica dei fluidi con Fondamenti di Ingegneria Chimica. Scambio di materia (II) Eercitazione di Meccanica dei fluidi con Fondaenti di Ingegneria hiica Eercitazione 5 Gennaio 3 Scabio di ateria (II) Eercizio Evaporazione di acqua da una picina Stiare la perdita giornaliera di acqua

Dettagli

Corso di Laurea in Farmacia Verifica in itinere 3 dicembre 2014 TURNO 1

Corso di Laurea in Farmacia Verifica in itinere 3 dicembre 2014 TURNO 1 Corso di Laurea in Farmacia Verifica in itinere 3 dicembre 2014 TURNO 1 COMPITO A Un blocco di massa m 1 = 1, 5 kg si muove lungo una superficie orizzontale priva di attrito alla velocità v 1 = 8,2 m/s.

Dettagli

percorso fatto sul tratto orizzontale). Determinare il lavoro (minimo) e la potenza minima del motore per percorrere un tratto.

percorso fatto sul tratto orizzontale). Determinare il lavoro (minimo) e la potenza minima del motore per percorrere un tratto. Esercizio 1 Una pietra viene lanciata con una velocità iniziale di 20.0 m/s contro una pigna all'altezza di 5.0 m rispetto al punto di lancio. Trascurando ogni resistenza, calcolare la velocità della pietra

Dettagli

Facoltà di Ingegneria

Facoltà di Ingegneria Facoltà di Ineneria Prova critta di Fiica Conoe: Noe: Data: CdL/Matricola: / Aula: Copito: Per annullare la propria preenza a queta prova crivere ITIATO al rio euente: Modalità di voliento: 1 riolvere

Dettagli

Problemi di dinamica del punto materiale (moto oscillatorio) A Sistemi di riferimento inerziali

Problemi di dinamica del punto materiale (moto oscillatorio) A Sistemi di riferimento inerziali Problemi di dinamica del punto materiale (moto oscillatorio) A Sistemi di riferimento inerziali Problema n. 1: Un corpo puntiforme di massa m = 2.5 kg pende verticalmente dal soffitto di una stanza essendo

Dettagli

Esercitazione 5 Dinamica del punto materiale

Esercitazione 5 Dinamica del punto materiale Problema 1 Un corpo puntiforme di massa m = 1.0 kg viene lanciato lungo la superficie di un cuneo avente un inclinazione θ = 40 rispetto all orizzontale e altezza h = 80 cm. Il corpo viene lanciato dal

Dettagli

Capitolo. Il comportamento dei sistemi di controllo in regime permanente. 6.1 Classificazione dei sistemi di controllo. 6.2 Errore statico: generalità

Capitolo. Il comportamento dei sistemi di controllo in regime permanente. 6.1 Classificazione dei sistemi di controllo. 6.2 Errore statico: generalità Capitolo 6 Il comportamento dei itemi di controllo in regime permanente 6. Claificazione dei itemi di controllo 6. Errore tatico: generalità 6. Calcolo dell errore a regime 6.4 Eercizi - Errori a regime

Dettagli

Seminario didattico Ingegneria Elettronica. Lezione 5: Dinamica del punto materiale Energia

Seminario didattico Ingegneria Elettronica. Lezione 5: Dinamica del punto materiale Energia Seminario didattico Ingegneria Elettronica Lezione 5: Dinamica del punto materiale Energia 1 Esercizio n 1 Un blocco di massa m = 2 kg e dimensioni trascurabili, cade da un altezza h = 0.4 m rispetto all

Dettagli

MOTI IN DUE E TRE DIMENSIONI

MOTI IN DUE E TRE DIMENSIONI MOTI IN DUE E TRE DIMENSIONI 1. Poizione e Spotaento Exercie 1. Un anguria in un capo è collocata nella poizione data dalle eguenti coordinate: x = 5.0, y = 8.0 e z = 0. Trovare il vettore poizione traite

Dettagli

Meccanica. Lavoro di una forza, energia cinetica e potenziale, conservazione dell energia, rendimento

Meccanica. Lavoro di una forza, energia cinetica e potenziale, conservazione dell energia, rendimento Meccanica Cineatica del punto ateriale Dinaica Velocità, accelerazione, oto rettilineo unifore, oto uniforeente accelerato, oto circolare unifore orza, principi della dinaica, decrizione di diveri tipi

Dettagli

Esercizi sul moto del proiettile

Esercizi sul moto del proiettile Eercizi ul moto del proiettile Riolvi li eercizi ul quaderno utilizzando la oluzione olo per controllare il tuo riultato. 1 Un fucile è puntato orizzontalmente contro un beralio alla ditanza di 30 m. Il

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2003

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2003 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 003 Il candidato riolva uno dei due problemi e 5 dei 0 queiti in cui i articola il quetionario. PROLEMA Si conideri un tetraedro regolare T di vertici

Dettagli

1^A - Esercitazione recupero n 2

1^A - Esercitazione recupero n 2 1^A - Esercitazione recupero n 2 1. Un cavo di nylon si coporta coe una olla di costante elastica 5,0 10 4 N /. Con questo cavo, trasciniao sul paviento una cassa di 280 kg a velocità costante. Il coefficiente

Dettagli

M D Ad un certo istante ( t 0 ) la corda viene tagliata, determinare: b. il momento d inerzia del sistema ;

M D Ad un certo istante ( t 0 ) la corda viene tagliata, determinare: b. il momento d inerzia del sistema ; Compito A 1. Un corpo di maa m 1 =3 kg è in moto lungo l ae x con una velocità u 1 = m/; ad un certo itante è urtato elaticamente da un altro corpo di maa m che procede ullo teo ae e nello teo vero con

Dettagli

Statica del corpo rigido: esercizi svolti dai compitini degli anni precedenti

Statica del corpo rigido: esercizi svolti dai compitini degli anni precedenti Statica de corpo riido: eercizi voti dai compitini dei anni precedenti II COMPITIO 00 003 Un ae di eno orizzontae omoenea, di maa M0 k e unhezza L m, è appoiata u due cavaetti. L ae pore di 60 cm otre

Dettagli

Ottica. LEYBOLD Schede di fisica P5.6.2.1

Ottica. LEYBOLD Schede di fisica P5.6.2.1 Ottica LEYBOLD Schede di fiica Velocità della luce Miura eeguita ediante ipuli luinoi di breve durata LEYBOLD Schede di fiica Deterinazione della velocità della luce nell aria eeguita ediante il tepo di

Dettagli

Diagramma circolare di un motore asincrono trifase

Diagramma circolare di un motore asincrono trifase Diagramma circolare di un motore aincrono trifae l diagramma circolare è un diagramma che permette di leggere tutte le grandezze del motore aincrono trifae (potenza rea, perdite nel ferro, coppia motrice,

Dettagli

Capitolo 5 Problema 37: Tensione del filo che collega oggetto ruotante e oggetto appeso

Capitolo 5 Problema 37: Tensione del filo che collega oggetto ruotante e oggetto appeso Capitolo 5 Problea 37: Tenione del filo che collea oetto ruotante e oetto appeo La forza centripeta è la tenione del filo T che fa ruotare VINCOLI : filo inetenibile, con aa tracurabile (T = T =T) tavolo

Dettagli

Liceo G.B. Vico Corsico

Liceo G.B. Vico Corsico Liceo G.B. Vico Corico Clae: 2B Materia: FISICA Inegnante: Nicola Moriello Teto utilizzato: Caforio, Ferilli Fiica! Le regole del gioco ed. Le Monnier 1) Prograa volto durante l anno colatico ARGOMENTO

Dettagli

Cinematica: soluzioni. Scheda 4. Ripetizioni Cagliari di Manuele Atzeni - 3497702002 - info@ripetizionicagliari.it

Cinematica: soluzioni. Scheda 4. Ripetizioni Cagliari di Manuele Atzeni - 3497702002 - info@ripetizionicagliari.it Cinematica: oluzioni Problema di: Cinematica - C0015ban Teto [C0015ban] Eercizi banali di Cinematica: 1. Moto rettilineo uniforme (a) Quanto pazio percorre in un tempo t = 70 un oggetto che i muove con

Dettagli

CdL in Biotecnologie Biomolecolari e Industriali

CdL in Biotecnologie Biomolecolari e Industriali CdL in Biotecnologie Biomolecolari e Industriali Corso di Matematica e Fisica recupero II prova in itinere di Fisica (9-1-2008) 1) Un sasso di 100 g viene lanciato verso l alto con una velocità iniziale

Dettagli

Aprile (recupero) tra una variazione di velocità e l intervallo di tempo in cui ha luogo.

Aprile (recupero) tra una variazione di velocità e l intervallo di tempo in cui ha luogo. Febbraio 1. Un aereo in volo orizzontale, alla velocità costante di 360 km/h, lascia cadere delle provviste per un accampamento da un altezza di 200 metri. Determina a quale distanza dall accampamento

Dettagli

Lo spazio percorso in 45 secondi da un treno in moto con velocità costante di 130 km/h è: a) 2.04 km b) 6.31 km c) 428 m d) 1.

Lo spazio percorso in 45 secondi da un treno in moto con velocità costante di 130 km/h è: a) 2.04 km b) 6.31 km c) 428 m d) 1. L accelerazione iniziale di un ascensore in salita è 5.3 m/s 2. La forza di contatto normale del pavimento su un individuo di massa 68 kg è: a) 2.11 10 4 N b) 150 N c) 1.03 10 3 N Un proiettile viene lanciato

Dettagli

Ricordiamo ora che a è legata ad x (derivata seconda) ed otteniamo

Ricordiamo ora che a è legata ad x (derivata seconda) ed otteniamo Moto armonico semplice Consideriamo il sistema presentato in figura in cui un corpo di massa m si muove lungo l asse delle x sotto l azione della molla ideale di costante elastica k ed in assenza di forze

Dettagli

2 R = mgr + 1 2 mv2 0 = E f

2 R = mgr + 1 2 mv2 0 = E f Esercizio 1 Un corpo puntiforme di massa m scivola lungo la pista liscia di raggio R partendo da fermo da un altezza h rispetto al fondo della pista come rappresentato in figura. Calcolare: a) Il valore

Dettagli

MECCANICA. 2. Un sasso cade da fermo da un grattacielo alto 100 m. Che distanza ha percorso dopo 2 secondi?

MECCANICA. 2. Un sasso cade da fermo da un grattacielo alto 100 m. Che distanza ha percorso dopo 2 secondi? MECCANICA Cinematica 1. Un oggetto che si muove di moto circolare uniforme, descrive una circonferenza di 20 cm di diametro e compie 2 giri al secondo. Qual è la sua accelerazione? 2. Un sasso cade da

Dettagli

Prova scritta di Fisica Generale I Corso di studio in Astronomia 22 giugno 2012

Prova scritta di Fisica Generale I Corso di studio in Astronomia 22 giugno 2012 Prova scritta di Fisica Generale I Corso di studio in Astronomia 22 giugno 2012 Problema 1 Due carrelli A e B, di massa m A = 104 kg e m B = 128 kg, collegati da una molla di costante elastica k = 3100

Dettagli

Corso di Laurea in Ingegneria Energetica FISICA GENERALE T-A (9 Settembre 2011) Prof. Roberto Spighi

Corso di Laurea in Ingegneria Energetica FISICA GENERALE T-A (9 Settembre 2011) Prof. Roberto Spighi Coro di Laurea in Ingegneria Energetica FIICA GENERALE -A (9 ettebre 0) Prof. Roberto pighi ) Uain Bolt, pritita ondiale, partecipa ad una gara di 00 etri. Partendo ovviaente da fero, decide di accelerare

Dettagli

Energia e Lavoro. In pratica, si determina la dipendenza dallo spazio invece che dal tempo

Energia e Lavoro. In pratica, si determina la dipendenza dallo spazio invece che dal tempo Energia e Lavoro Finora abbiamo descritto il moto dei corpi (puntiformi) usando le leggi di Newton, tramite le forze; abbiamo scritto l equazione del moto, determinato spostamento e velocità in funzione

Dettagli

Fisica Generale 1 per Ing. Gestionale e Chimica (Prof. F. Forti) A.A. 2011/12 Appello del 29/01/2013.

Fisica Generale 1 per Ing. Gestionale e Chimica (Prof. F. Forti) A.A. 2011/12 Appello del 29/01/2013. Fisica Generale per Ing. Gestionale e Chimica (Prof. F. Forti) A.A. 20/2 Appello del 29/0/203. Tempo a disposizione: 2h30. Scrivere solamente su fogli forniti Modalità di risposta: spiegare sempre il procedimento

Dettagli

Meccanica Classica: Cinematica Formule

Meccanica Classica: Cinematica Formule Tet di Fiica - Cinematica Meccanica Claica: Cinematica Formule Velocità media: m Accelerazione media: Formule da ricordare: x x x1 t t t1 1 a m t t t Motouniforme: x(t)x 0 + t oppure x t 1 Moto uniformemente

Dettagli

1. calcolare l accelerazione del sistema e stabilire se la ruota sale o scende [6 punti];

1. calcolare l accelerazione del sistema e stabilire se la ruota sale o scende [6 punti]; 1 Esercizio Una ruota di raggio R = 15 cm e di massa M = 8 Kg può rotolare senza strisciare lungo un piano inclinato di un angolo θ 2 = 30 0, ed è collegato tramite un filo inestensibile ad un blocco di

Dettagli

. Si determina quindi quale distanza viene percorsa lungo l asse y in questo intervallo di tempo: h = v 0y ( d

. Si determina quindi quale distanza viene percorsa lungo l asse y in questo intervallo di tempo: h = v 0y ( d Esercizio 1 Un automobile viaggia a velocità v 0 su una strada inclinata di un angolo θ rispetto alla superficie terrestre, e deve superare un burrone largo d (si veda la figura, in cui è indicato anche

Dettagli

Nome..Cognome.. Classe 4G 4 dicembre 2008. VERIFICA DI FISICA: lavoro ed energia

Nome..Cognome.. Classe 4G 4 dicembre 2008. VERIFICA DI FISICA: lavoro ed energia Nome..Cognome.. Classe 4G 4 dicembre 8 VERIFIC DI FISIC: lavoro ed energia Domande ) Energia cinetica: (punti:.5) a) fornisci la definizione più generale possibile di energia cinetica, specificando l equazione

Dettagli

CONSERVAZIONE DELL ENERGIA MECCANICA

CONSERVAZIONE DELL ENERGIA MECCANICA CONSERVAZIONE DELL ENERGIA MECCANICA L introduzione dell energia potenziale e dell energia cinetica ci permette di formulare un principio potente e universale applicabile alla soluzione dei problemi che

Dettagli

Capitolo IV L n-polo

Capitolo IV L n-polo Capitolo IV L n-polo Abbiamo oervato che una qualiai rete, vita da due nodi, diventa, a tutti gli effetti eterni, un bipolo unico e queto è in qualche miura ovvio e abbiamo anche motrato come cotruire

Dettagli

Esercitazione VIII - Lavoro ed energia II

Esercitazione VIII - Lavoro ed energia II Esercitazione VIII - Lavoro ed energia II Forze conservative Esercizio Una pallina di massa m = 00g viene lanciata tramite una molla di costante elastica = 0N/m come in figura. Ammesso che ogni attrito

Dettagli

Nome e Cognome. Nella copia da riconsegnare si scrivano solo il risultato numerico e la formula finale. Non riportare tutto il procedimento.

Nome e Cognome. Nella copia da riconsegnare si scrivano solo il risultato numerico e la formula finale. Non riportare tutto il procedimento. Dipartimento di Scienze Agrarie, Alimentari e Agro-Ambientali: Corso di Fisica AA 13/14 Test di ammissione all'orale di Fisica. Appello del 16 Marzo 2015 Nome e Cognome Nella copia da riconsegnare si scrivano

Dettagli

F = 150 N F 1 =? = 3,1 s. 3,2

F = 150 N F 1 =? = 3,1 s. 3,2 ESERCIZI SVOLTI : Principi di Newton Lavoro Energia Prof.. Marletta ITC Zanon - Udine ESERCIZIO (): Una caa di 30 kg viene tirata con una corda che forma un angolo di 50 col pavimento u una uperficie licia.

Dettagli

DINAMICA. 1. La macchina di Atwood è composta da due masse m

DINAMICA. 1. La macchina di Atwood è composta da due masse m DINAMICA. La macchina di Atwood è composta da due masse m e m sospese verticalmente su di una puleggia liscia e di massa trascurabile. i calcolino: a. l accelerazione del sistema; b. la tensione della

Dettagli

L equazione che descrive il moto del corpo è la seconda legge della dinamica

L equazione che descrive il moto del corpo è la seconda legge della dinamica Eercizio ul piano inclinato La forza peo è data dalla formula p mg Allora e grandezze geometriche: poono eere critte utilizzando l angolo di inclinazione del piano oppure le Angolo di inclinazione orza

Dettagli

Per ripassare gli argomenti di fisica classe 3^ ( e preparare il test d ingresso di settembre)

Per ripassare gli argomenti di fisica classe 3^ ( e preparare il test d ingresso di settembre) Per ripassare gli argomenti di fisica classe 3^ ( e preparare il test d ingresso di settembre) Un corpo viene lasciato cadere da un altezza di 30 m. dal suolo. In che posizione e che velocità possiede

Dettagli

GIRO DELLA MORTE PER UN CORPO CHE ROTOLA

GIRO DELLA MORTE PER UN CORPO CHE ROTOLA 0. IL OETO D IERZIA GIRO DELLA ORTE ER U CORO CHE ROTOLA ell approfondimento «Giro della morte per un corpo che scivola» si esamina il comportamento di un punto materiale che supera il giro della morte

Dettagli

DINAMICA DEL PUNTO MATERIALE E CONCETTO DI FORZA. Dinamica: studio delle forze che causano il moto dei corpi

DINAMICA DEL PUNTO MATERIALE E CONCETTO DI FORZA. Dinamica: studio delle forze che causano il moto dei corpi DINAMICA DEL PUNTO MATERIALE E CONCETTO DI FORZA Dinamica: studio delle forze che causano il moto dei corpi 1 Forza Si definisce forza una qualunque causa esterna che produce una variazione dello stato

Dettagli

2 PARZIALE - FISICA I per SCIENZE GEOLOGICHE A.A. 2017/2018, 4 Aprile 2018

2 PARZIALE - FISICA I per SCIENZE GEOLOGICHE A.A. 2017/2018, 4 Aprile 2018 2 PRZILE - FISIC I per SCIENZE GEOLOGICHE.. 2017/2018, 4 prile 2018 ESERCIZIO 1 CdM e URTI Un corpo puntifore di aa 500 parte da fero dalla oità di un piano inclinato licio di altezza h0.3 ed inclinato

Dettagli

CORSO DI LAUREA IN FISICA ANNO ACCADEMICO 2013-14 PROVA DI INGRESSO

CORSO DI LAUREA IN FISICA ANNO ACCADEMICO 2013-14 PROVA DI INGRESSO CORSO DI LAUREA IN FISICA ANNO ACCADEMICO 2013-14 PROVA DI INGRESSO 20 Settembre 2013 Fisica 1. La figura è una vista dall alto di quattro scatole identiche, S 1, S 2, S 3, S 4, appoggiate su un piano

Dettagli

ESEMPI DI TEST DI INGRESSO FISICA 2010 G. Selvaggi, R. Stella Dipartimento Interateneo di fisica di Fisica 3 marzo 2010

ESEMPI DI TEST DI INGRESSO FISICA 2010 G. Selvaggi, R. Stella Dipartimento Interateneo di fisica di Fisica 3 marzo 2010 ESEMPI DI TEST DI INGRESSO FISICA 2010 G. Selvaggi, R. Stella Dipartimento Interateneo di fisica di Fisica 3 marzo 2010 1 Fisica 1. Un ciclista percorre 14.4km in mezz ora. La sua velocità media è a. 3.6

Dettagli

GIROSCOPIO. Scopo dell esperienza: Teoria fisica. Verificare la relazione: ω p = bmg/iω

GIROSCOPIO. Scopo dell esperienza: Teoria fisica. Verificare la relazione: ω p = bmg/iω GIROSCOPIO Scopo dell esperienza: Verificare la relazione: ω p = bmg/iω dove ω p è la velocità angolare di precessione, ω è la velocità angolare di rotazione, I il momento principale d inerzia assiale,

Dettagli

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova scritta di FISICA 21 Giugno 2007

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova scritta di FISICA 21 Giugno 2007 CORSO DI LURE IN SCIENZE IOLOGICHE Prova critta di FISIC Giugno 7 ) Un corpo di aa kg i uove u un piano orizzontale cabro, con coefficiente di attrito dinaico µ.4, partendo con velocità v /. Dopo avere

Dettagli

bensì una tendenza a ruotare quando vengono applicate in punti diversi di un corpo

bensì una tendenza a ruotare quando vengono applicate in punti diversi di un corpo Momento di una forza Nella figura 1 è illustrato come forze uguali e contrarie possono non produrre equilibrio, bensì una tendenza a ruotare quando vengono applicate in punti diversi di un corpo esteso.

Dettagli

Le ipotesi di base che si utilizzano sono le stesse quattro già viste con riferimento al caso della flessione semplice e cioè:

Le ipotesi di base che si utilizzano sono le stesse quattro già viste con riferimento al caso della flessione semplice e cioè: LEZIONI N 44 E 45 CALCOLO A ROTTURA DELLA SEZIONE PRESSOINFLESSA PROBLEMI DI VERIFICA La procedura di verifica dei pilatri di c.a., ottopoti a forzo normale e momento flettente, è baata ulla cotruzione

Dettagli

Soluzioni Esonero di Fisica I - Meccanica Anno Accademico

Soluzioni Esonero di Fisica I - Meccanica Anno Accademico Soluzioni Esonero di Fisica I - Meccanica Anno Accadeico 2008-2009 Esercizio n.1: Un punto ateriale di assa è inizialente fero su di un piano orizzontale scabro. Siano µ s e µ d i coefficienti di attrito

Dettagli

Facoltà di Ingegneria Prova scritta di Fisica I

Facoltà di Ingegneria Prova scritta di Fisica I Facoltà di Ingegneria Prova scritta di Fisica I 6..6 CMPIT C Esercizio n. Un blocco, assiilabile ad un punto ateriale di assa = kg, partendo da fero, scivola da un altezza h = 7 lungo una guida priva di.

Dettagli

PROBLEMI RISOLTI DI CINEMATICA

PROBLEMI RISOLTI DI CINEMATICA Prof Giovanni Ianne PROBLEMI RISOLTI DI CINEMATICA Un aereo parte alle ore 4:0 e arriva a detinazione alle ore 5:5 coprendo una ditanza di 500 K Calcolare la velocità edia dell aereo in K/h e traforarla

Dettagli

Dinamica del corpo rigido: Appunti.

Dinamica del corpo rigido: Appunti. Dinamica del corpo rigido: Appunti. I corpi rigidi sono sistemi di punti materiali, discreti o continui, che hanno come proprietà peculiare quella di conservare la loro forma, oltre che il loro volume,

Dettagli

28360 - FISICA MATEMATICA 1 A.A. 2014/15 Problemi dal libro di testo: D. Giancoli, Fisica, 2a ed., CEA Capitolo 6

28360 - FISICA MATEMATICA 1 A.A. 2014/15 Problemi dal libro di testo: D. Giancoli, Fisica, 2a ed., CEA Capitolo 6 28360 - FISICA MATEMATICA 1 A.A. 2014/15 Problemi dal libro di testo: D. Giancoli, Fisica, 2a ed., CEA Capitolo 6 Lavoro, forza costante: W = F r Problema 1 Quanto lavoro viene compiuto dalla forza di

Dettagli

Forze come grandezze vettoriali

Forze come grandezze vettoriali Forze come grandezze vettoriali L. Paolucci 23 novembre 2010 Sommario Esercizi e problemi risolti. Per la classe prima. Anno Scolastico 2010/11 Parte 1 / versione 2 Si ricordi che la risultante di due

Dettagli

FAM. 1. Sistema composto da quattro PM come nella tabella seguente

FAM. 1. Sistema composto da quattro PM come nella tabella seguente Serie 11: Meccanica IV FAM C. Ferrari Esercizio 1 Centro di massa: sistemi discreti Determina il centro di massa dei seguenti sistemi discreti. 1. Sistema composto da quattro PM come nella tabella seguente

Dettagli

Unità Didattica 1. Le unità di misura

Unità Didattica 1. Le unità di misura Unità Didattica 1. Le unità di iura Pria di addentrarci nella ateria, è bene fare un rapido riaunto delle tecniche di converione e delle più iportanti unità di iura nel capo dell aeronautica, perché capiterà

Dettagli

Esempio Esame di Fisica Generale I C.d.L. ed.u. Informatica

Esempio Esame di Fisica Generale I C.d.L. ed.u. Informatica Esempio Esame di Fisica Generale I C.d.L. ed.u. Informatica Nome: N.M.: 1. 1d (giorno) contiene all incirca (a) 8640 s; (b) 9 10 4 s; (c) 86 10 2 s; (d) 1.44 10 3 s; (e) nessuno di questi valori. 2. Sono

Dettagli

Esercitazione n 8 FISICA SPERIMENTALE (C.L. Ing. Edi.) (Prof. Gabriele Fava) A.A. 2010/2011

Esercitazione n 8 FISICA SPERIMENTALE (C.L. Ing. Edi.) (Prof. Gabriele Fava) A.A. 2010/2011 Eercitazione n 8 FISICA SPERIMENALE (C.L. Ing. Edi.) (Prof. abriele Fava) A.A. 00/0 Dinamica dei itemi rigidi. Un corpo rigido omogeneo è fermo u un piano inclinato di un angolo = 0 ripetto all orizzontale.

Dettagli

Lezione 12. Regolatori PID

Lezione 12. Regolatori PID Lezione 1 Regolatori PD Legge di controllo PD Conideriamo un regolatore che eercita un azione di controllo dipendente dall errore attravero la eguente legge: t ut = K et K e d K de t P + τ τ+ D. dt La

Dettagli

Verifica sperimentale del principio di conservazione dell'energia meccanica totale

Verifica sperimentale del principio di conservazione dell'energia meccanica totale Scopo: Verifica sperimentale del principio di conservazione dell'energia meccanica totale Materiale: treppiede con morsa asta millimetrata treppiede senza morsa con due masse da 5 kg pallina carta carbone

Dettagli

F Nx. = mg cosθ. Forza Normale (3) F! È sempre perpendicolare alla superficie della terra g. F! tot

F Nx. = mg cosθ. Forza Normale (3) F! È sempre perpendicolare alla superficie della terra g. F! tot Forza Normale (3) Attenzione: la forza normale non è neceariamente Verticale F N È empre perpendicolare alla uperficie del vincolo F È empre perpendicolare alla uperficie della terra g g F N F Corpo di

Dettagli

Note a cura di M. Martellini e M. Zeni

Note a cura di M. Martellini e M. Zeni Università dell Insubria Corso di laurea Scienze Ambientali FISICA GENERALE Lezione 6 Energia e Lavoro Note a cura di M. Martellini e M. Zeni Queste note sono state in parte preparate con immagini tratte

Dettagli

Forze, leggi della dinamica, diagramma del. 28 febbraio 2009 (PIACENTINO - PREITE) Fisica per Scienze Motorie

Forze, leggi della dinamica, diagramma del. 28 febbraio 2009 (PIACENTINO - PREITE) Fisica per Scienze Motorie Forze, leggi della dinamica, diagramma del corpo libero 1 FORZE Grandezza fisica definibile come l' agente in grado di modificare lo stato di quiete o di moto di un corpo. Ci troviamo di fronte ad una

Dettagli

F S V F? Soluzione. Durante la spinta, F S =ma (I legge di Newton) con m=40 Kg.

F S V F? Soluzione. Durante la spinta, F S =ma (I legge di Newton) con m=40 Kg. Spingete per 4 secondi una slitta dove si trova seduta la vostra sorellina. Il peso di slitta+sorella è di 40 kg. La spinta che applicate F S è in modulo pari a 60 Newton. La slitta inizialmente è ferma,

Dettagli

Test di autovalutazione Corso di Laurea in Tossicologia dell ambiente e degli alimenti

Test di autovalutazione Corso di Laurea in Tossicologia dell ambiente e degli alimenti Test di autovalutazione Corso di Laurea in Tossicologia dell ambiente e degli alimenti Quesito 1 Un punto materiale di massa 5 kg si muove di moto circolare uniforme con velocità tangenziale 1 m/s. Quanto

Dettagli

Università di Catania CdL in INGEGNERIA INDUSTRIALE Compito di Fisica I del 18 novembre 2015

Università di Catania CdL in INGEGNERIA INDUSTRIALE Compito di Fisica I del 18 novembre 2015 Università di Catania CdL in INGEGNERIA INDUSTRIALE Compito di Fisica I del 18 novembre 2015 Problema 1 Dato il vettore a, di componenti cartesiane a x = -3 e a y = 5, se ne calcoli il versore. Individuare

Dettagli

Stato limite ultimo di sezioni in c.a. soggette. SLU per sezioni rettangolari in c.a. con. determinazione del campo di rottura

Stato limite ultimo di sezioni in c.a. soggette. SLU per sezioni rettangolari in c.a. con. determinazione del campo di rottura Univerità degli Studi di Roma Tre Coro di Progetto di trutture - A/A 2008-0909 Stato limite ultimo di ezioni in c.a. oggette a preoleione SLU per ezioni rettangolari in c.a. con doppia armatura determinazione

Dettagli

DINAMICA, LAVORO, ENERGIA. G. Roberti

DINAMICA, LAVORO, ENERGIA. G. Roberti DINAMICA, LAVORO, ENERGIA G. Roberti 124. Qual è il valore dell'angolo che la direzione di una forza applicata ad un corpo deve formare con lo spostamento affinché la sua azione sia frenante? A) 0 B) 90

Dettagli

*LXVWLILFDUHLOSURFHGLPHQWRVHJXLWRVRVWLWXLUHLYDORULQXPHULFLDOODILQHQRQGLPHQWLFDUHOH XQLWjGLPLVXUDVFULYHUHLQPRGRFKLDUR

*LXVWLILFDUHLOSURFHGLPHQWRVHJXLWRVRVWLWXLUHLYDORULQXPHULFLDOODILQHQRQGLPHQWLFDUHOH XQLWjGLPLVXUDVFULYHUHLQPRGRFKLDUR &56',/$85($,6&,((%,/*,&+( Pria proa in itinere di FISICA 9 aprile 3 7(67$ *LXVWLILFDUHLOSURFHGLPHQWRVHJXLWRVRVWLWXLUHLYDORULQXPHULFLDOODILQHQRQGLPHQWLFDUHOH XQLWjGLPLVXUDVFULYHUHLQPRGRFKLDUR ) Due corpi

Dettagli

Corso di Laurea in Ingegneria Meccanica Anno Accademico 2017/2018 Meccanica Razionale - Prova pratica del 21/2/2018.

Corso di Laurea in Ingegneria Meccanica Anno Accademico 2017/2018 Meccanica Razionale - Prova pratica del 21/2/2018. oro di Laurea in Ingegneria Meccanica nno ccademico 2017/2018 Meccanica Razionale - Prova pratica del 21/2/2018 Prova pratica - Nome... N. Matricola... ncona, 21 febbraio 2018 1. Un ata, di maa M e lunghezza

Dettagli

a t Esercizio (tratto dal problema 5.10 del Mazzoldi)

a t Esercizio (tratto dal problema 5.10 del Mazzoldi) 1 Esercizio (tratto dal problema 5.10 del Mazzoldi) Una guida semicircolare liscia verticale di raggio = 40 cm è vincolata ad una piattaforma orizzontale che si muove con accelerazione costante a t = 2

Dettagli

Seconda Legge DINAMICA: F = ma

Seconda Legge DINAMICA: F = ma Seconda Legge DINAMICA: F = ma (Le grandezze vettoriali sono indicate in grassetto e anche in arancione) Fisica con Elementi di Matematica 1 Unità di misura: Massa m si misura in kg, Accelerazione a si

Dettagli

Il potenziale a distanza r da una carica puntiforme è dato da V = kq/r, quindi è sufficiente calcolare V sx dovuto alla carica a sinistra:

Il potenziale a distanza r da una carica puntiforme è dato da V = kq/r, quindi è sufficiente calcolare V sx dovuto alla carica a sinistra: 1. Esercizio Calcolare il potenziale elettrico nel punto A sull asse di simmetria della distribuzione di cariche in figura. Quanto lavoro bisogna spendere per portare una carica da 2 µc dall infinito al

Dettagli

Dinamica: Forze e Moto, Leggi di Newton

Dinamica: Forze e Moto, Leggi di Newton Dinamica: Forze e Moto, Leggi di Newton La Dinamica studia il moto dei corpi in relazione il moto con le sue cause: perché e come gli oggetti si muovono. La causa del moto è individuata nella presenza

Dettagli

Esercizi sul moto rettilineo uniformemente accelerato

Esercizi sul moto rettilineo uniformemente accelerato Liceo Carducci Volterra - Classe 3 a B Scientifico - Francesco Daddi - 8 novembre 010 Esercizi sul moto rettilineo uniformemente accelerato Esercizio 1. Un corpo parte da fermo con accelerazione pari a

Dettagli

Soluzione degli esercizi sul moto rettilineo uniformemente accelerato

Soluzione degli esercizi sul moto rettilineo uniformemente accelerato Liceo Carducci Volterra - Classe 3 a B Scientifico - Francesco Daddi - 8 novembre 00 Soluzione degli esercizi sul moto rettilineo uniformemente accelerato Esercizio. Un corpo parte da fermo con accelerazione

Dettagli

Università degli studi di Salerno corso di studi in Ingegneria Informatica TUTORATO DI FISICA. Lezione 5 - Meccanica del punto materiale

Università degli studi di Salerno corso di studi in Ingegneria Informatica TUTORATO DI FISICA. Lezione 5 - Meccanica del punto materiale Università degli studi di Salerno corso di studi in Ingegneria Informatica TUTORATO DI FISICA Esercizio 1 Lezione 5 - Meccanica del punto materiale Un volano è costituito da un cilindro rigido omogeneo,

Dettagli

Esercizi di dinamica 2

Esercizi di dinamica 2 Esercizi di dinaica ) Un corpo di assa.0 kg si trova su un piano orizzontae scabro. I coefficiente di attrito statico tra corpo e piano è s 0.8. I corpo è sottoposto a azione di una forza orizzontae 7.0

Dettagli

SISTEMA DI FISSAGGIO EDILFIX

SISTEMA DI FISSAGGIO EDILFIX SISTEM I ISSGGIO EILIX Il itema i fiaggio EILIX offre una oluzione rapia e veratile a ogni problema i ancoraggio tra elementi i calcetruzzo, quali: pannelli/travi, parapetti/olette, ecc. e in carpenteria

Dettagli

Concetto di forza. 1) Principio d inerzia

Concetto di forza. 1) Principio d inerzia LA FORZA Concetto di forza Pi Principi ii dll della Dinamica: i 1) Principio d inerzia 2) F=ma 3) Principio di azione e reazione Forza gravitazionale i e forza peso Accelerazione di gravità Massa, peso,

Dettagli

Fig. 1 Sezione della colonna composta

Fig. 1 Sezione della colonna composta Eeritazione n.4 Utilizzando il Metodo Semplifiato, i trai il dominio di reitenza in preofleione (M,N) allo Stato Limite Ultimo della olonna ompota aiaio-aletruzzo la ui ezione retta è riportata in figura:

Dettagli

ESERCIZI CINEMATICA IN UNA DIMENSIONE

ESERCIZI CINEMATICA IN UNA DIMENSIONE ESERCIZI CINEMATICA IN UNA DIMENSIONE ES. 1 - Due treni partono da due stazioni distanti 20 km dirigendosi uno verso l altro rispettivamente alla velocità costante di v! = 50,00 km/h e v 2 = 100,00 km

Dettagli

Postulato delle reazioni vincolari

Postulato delle reazioni vincolari Potulato delle reazioni vincolari Ad ogni vincolo agente u un punto materiale P può eere otituita una forza, chiamata reazione vincolare, che realizza lo teo effetto dinamico del vincolo. reazione vincolare

Dettagli

Tonzig Fondamenti di Meccanica classica

Tonzig Fondamenti di Meccanica classica 224 Tonzig Fondamenti di Meccanica classica ). Quando il signor Rossi si sposta verso A, la tavola si sposta in direzione opposta in modo che il CM del sistema resti immobile (come richiesto dal fatto

Dettagli

11 L energia. meccanica. unità

11 L energia. meccanica. unità unità 11 L energia meccanica Ceare Galimberti, Olycom Il record mondiale di alto in alto è di 2,45 m. Se i faceero le Olimpiadi ulla Luna, l ata dovrebbe eere itemata molto più in alto, perché la forza

Dettagli

x 2 + y2 4 = 1 x = cos(t), y = 2 sin(t), t [0, 2π] Al crescere di t l ellisse viene percorsa in senso antiorario.

x 2 + y2 4 = 1 x = cos(t), y = 2 sin(t), t [0, 2π] Al crescere di t l ellisse viene percorsa in senso antiorario. Le soluzioni del foglio 2. Esercizio Calcolare il lavoro compiuto dal campo vettoriale F = (y + 3x, 2y x) per far compiere ad una particella un giro dell ellisse 4x 2 + y 2 = 4 in senso orario... Soluzione.

Dettagli