ITIS FERMO CORNI Fibre ottiche

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "ITIS FERMO CORNI Fibre ottiche"

Transcript

1 ITIS FERMO CORNI Fibre ottiche ANNO SCOLASTICO

2 Il fenomeno luminoso Particelle: fotoni Onde Raggi Banda di conduzione Bandgap n 0 n 1 Banda di valenza n 0 Assorbimento Emissione Interferenza Rifrazione Riflessione

3 Lunghezza d onda è la distanza percorsa dal segnale in un periodo: di sotto la fotografia nel caso di segnale sinusoidale che si propaga lungo x Intensità del campo λ λ= vxt x (distanza) f ( t, x) = Asen( ωt βx) 1000 pm (picometro) = 1 nm (nanometro) 1000 µm = 1 mm (millimetro) 1000 nm (nanometro) = 1 µm (micrometro) 1000 mm = 1 m (metro)

4 Spettro elettromagnetico X-Rays Ultraviolet FM Radio/TV Shortwave Radio AM Broadcast Ultrasonic Sonic Visible Light Infrared Light Radar Frequenza 1 khz 1 MHz 1 GHz 1 THz 1 YHz 1 ZHz Lunghezza d onda (in aria) 1 Mm 1 km 1 m 1 mm 1 nm 1 pm v = c / n c/n T= λ v = f λ m / n c: velocità della luce ( 299,79 m/µs) nel vuoto v: velocità della luce nel mezzo f: frequenza λ: lunghezza d onda in aria (λ m : lunghezza d onda nel mezzo) n: indice di rifrazione (vuoto: 1,0000; aria standard: 1,0003; vetro: da 1,44 a 1,48)

5 Attenuazione nelle fibre ottiche finestre ottiche Attenuazione (db/km) OH assorbimento Lunghezza d onda (nm)

6 Frequenza Lunghezza d onda (vuoto) Bande di trasmissione Telecom. lunga distanza Telecom. media distanza Local Area Networks (finestre ottiche) Near Infrared 1550 nm nm UV THz µm 850 nm

7 Cavi ottici e dispositivi di interfaccia Le fibre ottiche sono inserite in una struttura denominata cavo ottico in grado di resistere alle sollecitazioni esterne di trazione e torsione. Ogni fibra, oltre al rivestimento primario, presenta un rivestimento secondario, spesso di tipo a doppio strato, di materiale plastico. Il cavo ottico presenta delle caratteristiche che dipendono dal numero di fibre nel cavo (da quattro ad alcune centinaia), dal tipo di posa (aerea, sotterranea, sottomarina), ecc. In un cavo ottico possono prendere posto numerose fibre disposte in particolari configurazioni in funzione dell'uso che se ne fa. All'interno del cavo ottico è inserito un cavo di tiraggio utilizzato, durante la posa in opera, per limitare l'allungamento e la torsione che possono provocare la rottura della fibra. Il cavo è rivestito da una guaina di PVC o polietilene.

8 Optical fibers a) a strati concentrici; b) a solchi; ; c) a nastro; d) a gruppo. Tube Strain relief (e.g., Kevlar) Inner jacket Sheath Outer jacket

9 La fibra ottica è costituita da un sottile filo di vetro a base di silice con un nucleo interno denominato core con diametro che va da 6 ad alcune decine di micron, ricoperto da un rivestimento concentrico anch'esso di vetro trasparente alla luce e alla radiazione infrarossa, denominato mantello (cladding) di diametro 125 micron. Il cladding ha indice di rifrazione n 2 di poco inferiore a quello del core n 1 (dal 2 al 9 per mille in meno). Il core e il cladding, a loro volta, sono ricoperti da un rivestimento primario di materiale plastico per la protezione della fibra dalle abrasioni meccaniche; il suo diametro è di 250 µm.

10 La velocità della luce varia sensibilmente a seconda del mezzo attraversato. Nel vuoto tale velocità si indica con c e vale: c = m/s Nei materiali a maggior densità, la velocità della luce, indicata con v, è inferiore. Si definisce indice di rifrazione il rapporto tra la velocità della luce nel vuoto c rispetto a quella nel mezzo v e si indica con: Nella seguente tabella si riporta l'indice di rifrazione di alcune sostanze: materiale aria ghiaccio acqua alcool vetro sale n=c/v

11 Un raggio di luce che viaggia in un mezzo 1 con indice di rifrazione n 1 e che entra in un mezzo 2 con indice di rifrazione n 2 diverso da n 1, si divide in un raggio riflesso nel mezzo 1 e in un raggio rifratto che si propaga nel mezzo 2 Con α si è indicato l'angolo di incidenza, con δ l'angolo di riflessione e con β l'angolo di rifrazione rispetto alla retta normale alla superficie di separazione dei due mezzi. Dalle leggi dell'ottica geometrica è noto che l'angolo di riflessione è uguale a quello di incidenza: δ = α

12 L'angolo di rifrazione dipende da quello di incidenza e dagli indici di rifrazione dei due mezzi secondo una formula nota come legge di Snell: n 1 sen α = n 2 sen β

13 Se n 1 > n 2 si ha: β>α. In questo caso all'aumentare dell'angolo di incidenza, l'angolo di rifrazione aumenta. Si definisce angolo limite α L l'angolo di incidenza che rende β = 90. Se l'angolo di incidenza è maggiore di α L, scompare il fenomeno della rifrazione e si ha la riflessione totale. L'angolo limite α L si ricava dalla legge di Snell ponendo sen(β) =1:

14

15 La propagazione della luce nella fibra ottica avviene nel core. Poiché l'indice di rifrazione n 1 del core è maggiore di quello del cladding n 2, è possibile imporre che l'angolo di incidenza a alla superficie di separazione tra core e cladding sia maggiore dell'angolo limite α L. In questo modo il raggio subisce una riflessione totale e si propaga nel core per riflessioni multiple. Se si trascurano le perdite nel core non vi è dispersione di energia radiante verso l'esterno poiché si lavora in assenza di rifrazione. Se l'angolo di incidenza fosse inferiore a quello limite si avrebbe rifrazione nel cladding; una parte del fascio luminoso si disperderebbe verso l'esterno e solo la parte rimanente si propagherebbe nel core per riflessione. Quest'ultima parte, poi, subirebbe un'ulteriore riflessione e rifrazione e così via: in pratica dopo un breve percorso il fascio di luce si esaurirebbe completamente.

16 L'immissione della luce nella fibra ottica avviene da un mezzo avente indice di rifrazione n 0, al core ad indice di rifrazione n1. Indicando con f l'angolo di incidenza tra il raggio di luce nel mezzo con n = n 0 (di solito l'aria) e l'asse del core, vale la legge di Snell della rifrazione tra l'aria e il core n 0 sen(φ) = n 1 sen(φ) 1 Dalla figura si nota che l'angolo di rifrazione Φ 1 tra aria e core e quello di incidenza a tra core e cladding sono complementari per cui: La legge precedente diviene: Φ 1 = 90 - α n 1 sen(φ 1 ) = n 1 cos(α)

17 Si definisce angolo di accettazione della fibra Φ M il massimo valore di Φ che consente la riflessione totale all'interno della fibra Quando c è riflessione totale all interno della fibra si ha che: sen(α L ) = n 2 / n 1 Per Φ = Φ M la legge di Snell della rifrazione tra l'aria diviene n o sen (Φ M )= n 1 sen (Φ 1 ) Si definisce apertura numerica NA la quantità: NA = n o sen(φ M )

18 NA = no sen(φ M ) = n n2 se si rende n 1 abbastanza diverso da n 2 si ottiene una elevata apertura numerica, elevato angolo di accettazione Φ M (condizione vantaggiosa) e piccolo angolo limite α L ma ci sono raggi che procedono fortemente a zig-zag all'interno della fibra

19 Nel caso in cui l'impulso di luce di breve durata è costituito da raggi luminosi paralleli all'asse della fibra e da raggi con angolo di entrata di vario valore fino all'angolo di accettazione (fibra multimodale) la propagazione dei raggi lungo la fibra si completa in tempi differenti: i raggi paralleli all'asse, compiendo un percorso più breve, impiegano un tempo inferiore ai raggi con angolo di entrata nella fibra maggiore di zero. Indicando con L la lunghezza della fibra, si ha: Questo fenomeno, noto come dispersione modale, degrada la forma dell'impulso inviato poiché lo allarga nel tempo. L'allargamento temporale dell'impulso di luce per dispersione modale vale, per fibre multimodali con indice a gradino e su una distanza di 1Km, esprimendo L in Km e C in Km/nsec: Δt mo = 3,33*10 3 n 1 /n 2 (n 1 -n 2 ) [nsec/km]

20 Tipi di fibre ottiche Vi sono vari tipi di fibre ottiche ma la tendenza è quella di minimizzare il numero allo scopo di facilitare l'installazione e la manutenzione e di ridurre i costi di produzione. Esse si possono classificare in fibre ottiche: a) monomodali b) multimodali. Le prime presentano un profilo di indice di rifrazione a gradino; Il core presenta un diametro molto piccolo di circa 6-10 micron e il cladding un diametro di 125 micron. Sono ampiamente utilizzate nelle telecomunicazioni per l'elevato tempo di vita (20 anni), minima perdita di potenza ottica, assenza di dispersione modale poiché la trasmissione è monomodale. L ottica quantistica dimostra che i modi, cioè i percorsi possibili in una fibra, non sono infiniti. Il numero di modi possibili M per una radiazione di lunghezza d'onda λ che attraversa una fibra di diametro d con apertura numerica NA vale: M 0.41 (π d NA/λ) 2 Al calare del diametro al di sotto dei 10 micron è possibile un solo modo: quello rettilineo.

21 Le fibre multimodali non trovano grande applicazione in Telecomunicazioni (mentre sono utilizzate nelle reti dati locali) a causa delle alte perdite di potenza e della dispersione modale. Il diametro del core è di 50-62,5 micron e quello del cladding è di 125 micron. Il profilo dell'indice di rifrazione può essere: 1) a gradino (step index) Nelle fibre a gradino l'indice di rifrazione è costante in tutto il core e decresce bruscamente nel cladding. In esse si manifesta notevolmente la dispersione modale. Infatti, anche i raggi luminosi con la stessa lunghezza d'onda immessi nella fibra con diverso angolo d'incidenza Φ, inferiore all'angolo di accettazione Φ M, si propagano con stessa velocità all'interno della fibra con percorsi a zig-zag di diversa lunghezza. Essi giungono a destinazione in tempi diversi producendo un allargamento temporale dell'impulso luminoso trasmesso. 2) graduale (graded index). Nelle fibre con profilo graduale l'indice di rifrazione decresce gradualmente dal centro del core fino alla regione di separazione tra core e cladding. In queste fibre i raggi non orizzontali che si spostano dal centro del core verso la sua periferia incontrano zone ad indice di rifrazione leggermente inferiori e subiscono successive variazioni della direzione tendenti a parallelizzare i raggi. Questi, giunti in prossimità del cladding, vengono riflessi dando luogo, complessivamente, a percorsi elicoidali.

22 Il vantaggio delle fibre ad indice graduale è dovuto al fatto che i raggi che si avvicinano al cladding, attraversano un mezzo che presenta un indice di rifrazione via via decrescente e posseggono una velocità più alta rispetto ai raggi che compiono un percorso più breve come, ad esempio, quelli orizzontali all'asse della fibra. In questo modo tutti i raggi dell'impulso di luce giungono quasi contemporaneamente limitando, così, la dispersione modale.

23 Perdite nelle fibre ottiche Le perdite causate dalle fibre ottiche si possono classificare in quelle che deformano il segnale di ingresso (dispersione) e in quelle che ne determinano l'attenuazione. Lo studio delle caratteristiche delle fibre ottiche è molto importante perché determina la capacità del canale trasmissivo e la massima distanza tra trasmettitore e ricevitore senza la necessità di ripetitori intermedi. I principali fenomeni che determinano le dispersioni delle fibre ottiche sono: a) dispersione modale; b) dispersione del materiale; Dispersione modale Delle cause che provocano la dispersione modale si è già parlato e si è dedotto che la fibra monomodale riduce tale dispersione. Altre cause che determinano la dispersione modale sono la superficie irregolare del cladding che provoca riflessioni anomale, la conicità del core che determina variazione della direzione del raggio riflesso e la superficie di giunzione tra due fibre che modifica la direzione del raggio.

24 Dispersione del materiale La dispersione del materiale consiste nella dipendenza della velocità di un raggio di lunghezza d'onda l dalla composizione della fibra. Se si immette nella fibra un impulso di luce bianca, le componenti cromatiche costituenti, percorrendo la fibra con velocità differenti, arrivano al ricevitore in tempi differenti generando, così, un impulso di uscita allargato e più "basso" rispetto a quello di entrata. Nella seguente tabella si mostra il valore dell'indice di rifrazione del vetro in funzione dei diversi colori. colore n Si osserva che il raggio rosso, avendo più basso indice di rifrazione, è quello che possiede maggior velocità e pertanto giunge prima al ricevitore. Per limitare la dispersione del materiale si cerca di usare luce monocromatica utilizzando diodi LASER. violetto azzurro Verde Giallo arancio Rosso

25 Dispersione: arcobaleno

26 La dispersione cromatica produce un allargamento temporale dell'impulso di luce trasmesso determinato dalla seguente relazione: t co = µ λ [psec/km] λ rappresenta la larghezza spettrale della radiazione luminosa. Valori tipici sono: 2 nm. per il LASER e 40 nm. per il LED. Il coefficiente di dispersione cromatica dipende dalla natura della fibra e dalla lunghezza d'onda l della radiazione. Valori tipici sono: µ = 80 per λ = 850 nm. µ = 4 6 per λ = 1300 nm. µ = 6-10 per λ = 1550 nm. N.B. spesso invece che µ si usa il simbolo Dc (dispersione cromatica) Conclusione: anche nelle F.O. monomodo si verifica un allargamento dell impulso, per quanto molto inferiore rispetto alle multimodo

27 Caratteristiche dei trasmettitori e ricevitori optoelettronici per fibre ottiche Le sorgenti ottiche sono giunzioni PN realizzate con arseniuro di gallio (GaAs). Esse si dividono in LED (Light Emitted Diode) e LASER (Light Amplification by Stimulated Emission of Radiation). Il principio di funzionamento del LASER è sostanzialmente identico a quello del LED con la differenza che nel LASER i fotoni generati per emissione stimolata hanno (quasi) la stessa lunghezza d'onda e vengono emessi entro un angolo solido estremamente ridotto.

28 Nella seguente tabella si riportano i principali dati caratteristici dei LED e LASER impiegati nella trasmissione con fibre ottiche. Sorgenti optoelettroniche Costo Parametro Potenza luminosa immessa in fibra Larghezza spettrale Frequenza max di lavoro Tempo di salita degli impulsi Tasso di guasto Vita media (ore di lavoro): MTBF Utilizzo tipico LED µ W λ = 30 nm per λ 0 = 0.8 µ m λ = 100 nm per λ 0 = 1.3 µ m 100 MHz (200 Mbit/sec) Ordine dei nsec 1/ multimodo basso LASER 5 50 mw λ = 2 nm per λ 0 = 0.8 µ m λ = 10 nm per λ 0 = 1.3 µ m 5 GHz (10 Gbit/sec) Ordine dei psec 1/ monomodo alto

29 Caratteristiche dei trasmettitori e ricevitori optoelettronici per fibre ottiche I rivelatori ottici sono realizzati con giunzioni PIN (Positive Intrinsic Negative) ottenute lasciando uno strato di semiconduttore non drogato (intriseco) al centro di una barretta alle cui estremità si è praticato il drogaggio P e N. Il diodo viene polarizzato inversamente e la luce colpisce lo strato intrinseco. La luce incidente libera coppie elettrone-lacuna, generando una fotocorrente proporzionale all'energia luminosa. Oltre ai rivelatori PIN sono utilizzati diodi APD (Avalanche Photo Diode). Essi hanno la medesima struttura tecnologica dei PIN ma la fotocorrente è generata per effetto valanga innescato dalla luce incidente sullo strato intrinseco. La tensione di polarizzazione degli APD è maggiore di quella dei PIN e la fotocorrente prodotta, a parità di corrente luminosa incidente, è sensibilmente maggiore.

30 Rivelatori optoelettronici Parametro Responsività (rapporto tra la corrente generata e l unità di potenza incidente) Tempo di salita degli impulsi di corrente Frequenza massima di lavoro Sensibilità (minima potenza ottica rivelabile) Tensione di alimentazione Diodo PIN 0.6 µ A/µ W < 0,1 nsec 10 GHz 0.1 µ W V Diodo APD 100 µ A/µ W < 0,2 nsec 5 GHz 0.01 µ W V

31 Effetti della fibra sugli impulsi luminosi Nel caso di trasmissioni numeriche l'allargamento degli impulsi luminosi che transitano lungo la fibra limita la frequenza massima di lavoro. Infatti ciascun impulso di entrata subisce attenuazione, ritardo e allargamento. In particolare, nel caso di impulsi temporalmente vicini si può avere la parziale sovrapposizione dei segnali uscita, fenomeno noto come interferenza intersimbolica, che compromette la corretta rivelazione dei dati. Per ridurre la dispersione modale occorre rendere gli indici di rifrazione n1 e n2 molto vicini tra loro. Se n1 è diverso da n2 esistono più modi di propagazione e quest'ultima si dice multimodale. La propagazione monomodale si può ottenere rendendo il diametro del core molto piccolo e paragonabile alla lunghezza d'onda della radiazione usata. Nella propagazione monomodale, però, si penalizza l'apertura numerica.

32 Banda passante della fibra ottica La banda passante del segnale trasmesso nella fibra ottica dipende dagli allargamenti temporali D t c e D t m prodotti per dispersione cromatica e modale. [Hz] [Hz] [Hz] B m : è la larghezza di banda per dispersione modale di una fibra lunga L (Km) e γ è il fattore di concatenamento dei modi di valore tipico γ = 0.8. Tale fattore tiene conto delle imperfezioni della fibra ottica e della presenza dei giunti, che causano un mescolamento dei modi, rendendo i percorsi più corti e i più lunghi altamente improbabili, e migliorando la situazione rispetto alla teoria. B c : è la larghezza di banda per dispersione cromatica.

33 Significato della larghezza di banda della fibra ottica Quando si dice che un collegamento ha una banda, ad esempio, di 1 MHz, si intende affermare che non può essere superata la velocità di trasmissione di 1 MBit/sec, cioè che il tempo di bit minimo è Tbit = 1 µsec (vedi pag 92 del testo, approfondimento in V) Se si riduce ancora c è il pericolo concreto dell errore di lettura per interferenza intersimbolo. La banda totale B t si ottiene da quella modale e da quella cromatica secondo la formula sopra riportata ed è più piccola della più piccola delle due. La formula utilizzata è la stessa dei filtri passa-basso di elettronica messi in cascata e si segue il percorso (ragionamento) riportato di seguito.

34 Significato della larghezza di banda della fibra ottica la dispersione modale (cromatica) allarga l impulso è come se la f.o. fosse un filtro passa basso ma in un filtro passa basso esiste una relazione tra il tempo di salita Tr e la frequenza di taglio, cioè Bw: Bw= 0,44/ Tr ma il tempo di salita è esattamente l allargamento dell impulso, cioè tm = tmo * L γ ( tc = tco*l ) quando agiscono entrambi i problemi ( sia modale che cromatico) è come se la f.o. fosse costituita da due filtri in cascata

35 Significato della larghezza di banda della fibra ottica Per la Bt si applica la formula dei filtri passa-basso in cascata, cioè: Una ulteriore modifica tecnica alle formule si ha perché è comodo inserire tm = tmo * L γ in nsec, quindi Bm verrebbe in GHz: per averlo, come serve in MHz bisogna moltiplicare per 1000, cioè: x10 3 [MHz] allo stesso modo fa comodo inserire tc = tco*l in psec, quindi per avere anche Bc in MHz bisogna moltiplicare per 10 6 x10 6 [MHz]

36 Perdite nelle connessioni fra fibre Derivano dal disallineamento fra le fibre accoppiate e possono essere dovute allo spostamento laterale degli assi delle fibre. Anche la differenza di indice di rifrazione del materiale del core e del materiale che separa le estremità delle due fibre accoppiate, di solito aria, è una sorgente di perdite. La connessione tra fibre è un operazione molto complessa poiché richiede estrema precisione. Mancato allineamento alla giunzione

37 Perdite di accoppiamento tra sorgente e fibra Non tutta la potenza generata dalla sorgente può essere trasferita nella fibra. Le relative perdite sono abbastanza elevate perché la luce emessa non è contenuta tutta nel cono di accettazione della fibra. I migliori accoppiamenti, ovviamente, si hanno tra sorgenti di piccola area e fibre con core di grande diametro. Non è possibile, però, soddisfare simultaneamente queste esigenze senza peggiorare qualche altra caratteristica. I problemi di accoppiamento sorgente-fibra sono più limitati se si utilizza un diodo LASER anziché un diodo LED. Perdite di accoppiamento tra fibra e fotorivelatore Sono meno rilevanti delle precedenti poiché il fotorivelatore ha un'area sensibile alla radiazione maggiore di quella del core della fibra. Si usano fotodiodi PIN e APD (a valanga).

38 Modo di esprimere le perdite e/o le attenuazioni Le perdite, come d altra parte i guadagni, si possono esprimere in modo lineare o in modo logaritmico, in quest ultimo caso l espressione più usata è quella in decibel. Si ricorda che una attenuazione in db è data da: A (db) = 10 log (Pi/ Pu) ove con Pu si indica la potenza in uscita e con Pi la potenza in ingresso. Ad esempio se all uscita di un dispositivo Pu = 10 mw ed in ingresso c è la potenza di Pi =100 mw l attenuazione in db risulta essere di: A (db) = 10 log ( / ) = 10

39 Riassunto possibili caratteristiche e scelte per un collegamento Fibre in matasse da 1 Km. λ [nm] α [db/km] λ [nm] LED LASER Dc MULTIMODO MONOMODO I FIN Fibra step-index: II FIN n 1 =1.498 III FIN n 2 =1.497 Potenza ottica in fibra: -5 dbm +10dBm γ = 0.85 Rivelatore : PIN APD Fibra graded-index: Attenuazione connettore α= 1.2 db sensibilita` -40dBm -45dBm t mo = 0,20 ns/km Attenuazione giunto α= 0.1 db perdite -15dB -11dB Minore Criteri di costo Maggiore STEP-INDEX GRADED-INDEX MONOMODO I FIN II FIN III FIN LED LASER PIN APD

FIBRE OTTICHE ULTRA VIOLETTO VISIBILE. 10 nm 390 nm 770 nm 10 6 nm

FIBRE OTTICHE ULTRA VIOLETTO VISIBILE. 10 nm 390 nm 770 nm 10 6 nm Fibre ottiche FIBRE OTTICHE Le fibre ottiche operano nelle bande infrarosso, visibile e ultravioletto. La lunghezza d onda di tali bande è: (1 nm = 10-9 m) ULTRA VIOLETTO VISIBILE INFRAROSSO 10 nm 390

Dettagli

in lavorazione. Fibre Ottiche 1

in lavorazione. Fibre Ottiche 1 Fibre Ottiche 1 in lavorazione. Caratteristiche generali Sono sottilissimi fili di materiale vetroso (silice) o di nylon, dal diametro di alcuni micron, che trasmettono segnali luminosi su lunghe distanze.

Dettagli

LE FIBRE OTTICHE. Indice generale

LE FIBRE OTTICHE. Indice generale Indice generale LE FIBRE OTTICHE... Sistema di trasmissione con fibre ottiche... Apparato Trasmissivo... Apparato Ricevitore... Trasduttori Ottici in Trasmissione (LED o LD)... Trasduttori Ottici in Ricezione

Dettagli

FIBRE OTTICHE 1 2 3 4 5 6 7 Le fibre ottiche monomodali sono caratterizzate da un diametro Dcr del core (nucleo) compreso tra 4 e 10 μm (micrometri o micron) e da un diametro Dcl del cladding (mantello)

Dettagli

T13 FIBRE OTTICHE. T13.1 Elencare i principali vantaggi delle fibre ottiche come mezzo trasmissivo, in confronto con le linee di trasmissione in rame.

T13 FIBRE OTTICHE. T13.1 Elencare i principali vantaggi delle fibre ottiche come mezzo trasmissivo, in confronto con le linee di trasmissione in rame. T13 FIBRE OTTICHE T13.1 Elencare i principali vantaggi delle fibre ottiche come mezzo trasmissivo, in confronto con le linee di trasmissione in rame. T13. Perché le fibre ottiche possono essere considerate

Dettagli

FIBRA OTTICA. A cura di Alessandro Leonardi Dipartimento di Ingegneria Informatica e delle Telecomunicazioni Università degli studi di Catania

FIBRA OTTICA. A cura di Alessandro Leonardi Dipartimento di Ingegneria Informatica e delle Telecomunicazioni Università degli studi di Catania FIBRA OTTICA A cura di Alessandro Leonardi Dipartimento di Ingegneria Informatica e delle Telecomunicazioni Università degli studi di Catania Fibra ottica Minuscolo e flessibile filo di vetro costituito

Dettagli

Dispositivi optoelettronici (1)

Dispositivi optoelettronici (1) Dispositivi optoelettronici (1) Sono dispositivi dove giocano un ruolo fondamentale sia le correnti elettriche che i fotoni, le particelle base della radiazione elettromagnetica. Le onde elettromagnetiche

Dettagli

INTRODUZIONE: PERDITE IN FIBRA OTTICA

INTRODUZIONE: PERDITE IN FIBRA OTTICA INTRODUZIONE: PERDITE IN FIBRA OTTICA Il nucleo (o core ) di una fibra ottica è costituito da vetro ad elevatissima purezza, dal momento che la luce deve attraversare migliaia di metri di vetro del nucleo.

Dettagli

TRASMISSIONE IN FIBRA OTTICA

TRASMISSIONE IN FIBRA OTTICA TRASMISSIONE IN FIBRA OTTICA Storia delle comunicazioni ottiche 84 a.c.: caduta di Troia comunicata a Micene (550km di distanza) attraverso una serie di fuochi allineati 794 d.c.: rete di Chappe collega

Dettagli

Le fibre ottiche Trasmettitori e rivelatori ottici

Le fibre ottiche Trasmettitori e rivelatori ottici Reti di Telecomunicazioni R. Bolla, L. Caviglione, F. Davoli La propagazione e la legge di Snell Le fibre ottiche Trasmettitori e rivelatori ottici Link budget I cavi 11.2 Ci sono due ragioni importanti

Dettagli

Sorgenti e ricevitori. Impiego delle fibre ottiche in telefonia

Sorgenti e ricevitori. Impiego delle fibre ottiche in telefonia Argomenti relativi alle fibre ottiche. Fibre ottiche: Costituzione delle fibre Propagazione di energia ottica Sorgenti e ricevitori Impiego delle fibre ottiche in telefonia Frequenza normalizata Apertura

Dettagli

Le Fibre ottiche e le loro origini

Le Fibre ottiche e le loro origini Le Fibre ottiche e le loro origini Le fibre ottiche si basano sul principio della riflessione totale interna. Tale principio venne osservato dallo scienziato svizzero, Daniel Colladon, all inizio dell

Dettagli

TRASMETTITORI E RICEVITORI

TRASMETTITORI E RICEVITORI Esempio: Un ricevitore ha un resistore di polarizzazione del valore di 10 kω e una capacità di giunzione del fotodiodo del valore di 4 pf. Il fotodiodo è accoppiato in continua con un amplificatore ad

Dettagli

Introduzione alle fibre ottiche

Introduzione alle fibre ottiche Introduzione alle fibre ottiche Struttura delle fibre ottiche Una fibra ottica è sostanzialmente un cilindro (solitamente in vetro) con una parte centrale, detta core, con un indice di rifrazione superiore

Dettagli

MEZZI TRASMISSIVI FIBRE OTTICHE

MEZZI TRASMISSIVI FIBRE OTTICHE MEZZI TRASMISSIVI La scelta dell'insieme dei cavi adatti per le reti fonia/dati è diventato uno dei più importanti argomenti dal punto di vista economico delle imprese moderne. I costi iniziali devono

Dettagli

FIBRE OTTICHE. Ricerca ed organizzazione appunti: Prof. ing. Angelo Bisceglia

FIBRE OTTICHE. Ricerca ed organizzazione appunti: Prof. ing. Angelo Bisceglia FIBRE OTTICHE Ricerca ed organizzazione appunti: Prof. ing. Angelo Bisceglia ver. 2.211 1 Generalità Natura fisica della fibra Il segnale luminoso Trasmissione ottica Propagazione luminosa e indice di

Dettagli

LE FIBRE OTTICHE. Pietro Nicoletti. Silvano Gai. Pietro.Nicoletti@torino.alpcom.it. Silvano.Gai@polito.it http://www.polito.it/~silvano.

LE FIBRE OTTICHE. Pietro Nicoletti. Silvano Gai. Pietro.Nicoletti@torino.alpcom.it. Silvano.Gai@polito.it http://www.polito.it/~silvano. LE FIBRE OTTICHE Pietro Nicoletti Pietro.Nicoletti@torino.alpcom.it Silvano Gai Silvano.Gai@polito.it http://www.polito.it/~silvano Fibre- 1 Copyright: si veda nota a pag. 2 Nota di Copyright Questo insieme

Dettagli

Sistemi e Tecnologie della Comunicazione

Sistemi e Tecnologie della Comunicazione Sistemi e Tecnologie della Comunicazione Lezione 9: strato fisico: mezzi trasmissivi 1 Mezzi trasmissivi Vedremo una panoramica sui diversi mezzi trasmissivi utilizzati tipicamente nelle reti di computer,

Dettagli

MEZZI TRASMISSIVI 1. Il doppino 2. Il cavo coassiale 3. La fibra ottica 5. Wireless LAN 7

MEZZI TRASMISSIVI 1. Il doppino 2. Il cavo coassiale 3. La fibra ottica 5. Wireless LAN 7 MEZZI TRASMISSIVI 1 Il doppino 2 Il cavo coassiale 3 La fibra ottica 5 Wireless LAN 7 Mezzi trasmissivi La scelta del mezzo trasmissivo dipende dalle prestazioni che si vogliono ottenere, da poche centinaia

Dettagli

I.P.S.I.A. Di BOCCHIGLIERO. ---- Fotoemettitori e Fotorivelatori ---- Materia: Telecomunicazioni. prof. Ing. Zumpano Luigi. Filippelli Maria Fortunata

I.P.S.I.A. Di BOCCHIGLIERO. ---- Fotoemettitori e Fotorivelatori ---- Materia: Telecomunicazioni. prof. Ing. Zumpano Luigi. Filippelli Maria Fortunata I..S.I.A. Di BOCCHIGLIERO a.s. 2010/2011 -classe III- Materia: Telecomunicazioni ---- Fotoemettitori e Fotorivelatori ---- alunna Filippelli Maria Fortunata prof. Ing. Zumpano Luigi Fotoemettitori e fotorivelatori

Dettagli

Settembre 2003 LE FIBRE OTTICHE. Pietro Nicoletti. Silvano Gai. Fibre- 1 Copyright: si veda nota a pag. 2

Settembre 2003 LE FIBRE OTTICHE. Pietro Nicoletti. Silvano Gai. Fibre- 1 Copyright: si veda nota a pag. 2 LE FIBRE OTTICHE Pietro Nicoletti Silvano Gai Fibre- 1 Copyright: si veda nota a pag. 2 Nota di Copyright Questo insieme di trasparenze (detto nel seguito slides) è protetto dalle leggi sul copyright e

Dettagli

Le tre leggi del Networking

Le tre leggi del Networking Le tre leggi del Networking #1 - Le reti andranno sempre più veloci Progetti per alta velocità, incremento del flusso di dati, riduzione dei tempi di risposta. #2 - Le reti saranno sempre più vaste Progetti

Dettagli

SISTEMI DI ILLUMINAZIONE A FIBRE OTTICHE

SISTEMI DI ILLUMINAZIONE A FIBRE OTTICHE SISTEMI DI ILLUMINAZIONE A FIBRE OTTICHE 1 Illuminatore L illuminatore provvede a generare la luce e inviarla, minimizzando ogni dispersione con un sistema ottico opportuno, nel bundle cioè nel collettore

Dettagli

Fibre ottiche. Fiisiica delllle ffiibre ottiiche

Fibre ottiche. Fiisiica delllle ffiibre ottiiche Il livello fisico Parte IV Fibre ottiche... 1 Fisica delle fibre ottiche... 1 Riflessione totale dell energia nel core... 3 Fibre multimodali e problema della dispersione modale... 5 Fibre monomodali...

Dettagli

Sistemi di Telecomunicazione

Sistemi di Telecomunicazione Sistemi di Telecomunicazione Parte 6: Sistemi Ottici Parte 6.1: Propagazione in Fibra Ottica Universita Politecnica delle Marche A.A. 2013-2014 A.A. 2013-2014 Sistemi di Telecomunicazione 1/42 Trasmissione

Dettagli

Trasmissione dell informazione attraverso una fibra ottica

Trasmissione dell informazione attraverso una fibra ottica Trasmissione dell informazione attraverso una fibra ottica Porzione dello spettro elettromagnetico di interesse nelle comunicazioni ottiche Pag.1 Principio di propagazione in fibra ottica: legge di Snell

Dettagli

MEZZI DI RTASMISSIONE 1 DOPPINO TELEFONICO 2 CAVO COASSIALE 1 MULTI 2 MONO 1 ONDE RADIO 2 MICROONDE 3 INFRAROSSI 4 LASER

MEZZI DI RTASMISSIONE 1 DOPPINO TELEFONICO 2 CAVO COASSIALE 1 MULTI 2 MONO 1 ONDE RADIO 2 MICROONDE 3 INFRAROSSI 4 LASER 1 ELETTRICI 2 OTTICI 3 WIRELESS MEZZI DI RTASMISSIONE 1 DOPPINO TELEFONICO 2 CAVO COASSIALE 1 MULTI 2 MONO 1 ONDE RADIO 2 MICROONDE 3 INFRAROSSI 4 LASER MODALI ELETTRICI PARAMETRI 1 IMPEDENZA 2 VELOCITA'

Dettagli

Propagazione in fibra ottica

Propagazione in fibra ottica Propagazione in fibra ottica Struttura delle fibre ottiche In questa sezione si affronteranno: Modi in fibra ottica Dispersione multimodale Confronto multimodo-singolo modo. I modi in fibra ottica Il campo

Dettagli

www.alegem.weebly.com LE FIBRE OTTICHE

www.alegem.weebly.com LE FIBRE OTTICHE LE FIBRE OTTICHE Le fibre ottiche inventate nel 1966 da Kao e Hockham rappresentano il mezzo trasmissivo migliore per le telecomunicazioni: oggi si stanno installando anche nelle reti di accesso oltre

Dettagli

La propagazione delle onde luminose può essere studiata per mezzo delle equazioni di Maxwell. Tuttavia, nella maggior parte dei casi è possibile

La propagazione delle onde luminose può essere studiata per mezzo delle equazioni di Maxwell. Tuttavia, nella maggior parte dei casi è possibile Elementi di ottica L ottica si occupa dello studio dei percorsi dei raggi luminosi e dei fenomeni legati alla propagazione della luce in generale. Lo studio dell ottica nella fisica moderna si basa sul

Dettagli

LE FIBRE OTTICHE NELLE TELECOMUNICAZIONI

LE FIBRE OTTICHE NELLE TELECOMUNICAZIONI PARMA 03/O6/2005 Appunti da I4CQO LE FIBRE OTTICHE NELLE TELECOMUNICAZIONI LUCE: la luce è energia. Il nostro occhio è atto a ricevere luce e alla quale deve essere attributo il carattere di energia. Un

Dettagli

Principi di funzionamento delle fibre ottiche. Filippo Pigozzo Corso di Lasers e fibre ottiche 2008

Principi di funzionamento delle fibre ottiche. Filippo Pigozzo Corso di Lasers e fibre ottiche 2008 Principi di funzionamento delle fibre ottiche Filippo Pigozzo Corso di Lasers e fibre ottiche 2008 La fibra ottica (1/11) 2 Una fibra ottica è una guida d onda cilindrica fatta di materiale dielettrico

Dettagli

CAVI IN FIBRA OTTICA. Fibra ottica tipo LOOSE Fibra ottica tipo LOOSE ARMATA Fibra ottica tipo TIGHT

CAVI IN FIBRA OTTICA. Fibra ottica tipo LOOSE Fibra ottica tipo LOOSE ARMATA Fibra ottica tipo TIGHT CAVI IN FIBRA OTTICA Fibra ottica tipo LOOSE Fibra ottica tipo LOOSE ARMATA Fibra ottica tipo TIGHT Fibra OTTICA tipo LOOSE Per posa esterna/interna Cavi per trasmissione dati in fibra ottica OM1 OM2 OM3

Dettagli

CONOSCERE LA LUCE. Propagazione nello spazio di un onda elettromagnetica.

CONOSCERE LA LUCE. Propagazione nello spazio di un onda elettromagnetica. FOTODIDATTICA CONOSCERE LA LUCE Le caratteristiche fisiche, l analisi dei fenomeni luminosi, la temperatura di colore. Iniziamo in questo fascicolo una nuova serie di articoli che riteniamo possano essere

Dettagli

La propagazione della luce in una fibra ottica

La propagazione della luce in una fibra ottica La propagazione della luce in una fibra ottica La rifrazione della luce Consideriamo due mezzi trasparenti alla luce, separati da una superficie piana. Il primo mezzo ha indice di rifrazione n, il secondo

Dettagli

Università degli studi di Messina facoltà di Scienze mm ff nn. Progetto Lauree Scientifiche (FISICA) Prisma ottico

Università degli studi di Messina facoltà di Scienze mm ff nn. Progetto Lauree Scientifiche (FISICA) Prisma ottico Università degli studi di Messina facoltà di Scienze mm ff nn Progetto Lauree Scientifiche (FISICA) Prisma ottico Parte teorica Fenomenologia di base La luce che attraversa una finestra, un foro, una fenditura,

Dettagli

Fibre Ottiche. Svantaggi: conversione del segnale da elettrico a ottico e viceversa precauzioni di installazione strumentazione di test sofisticata

Fibre Ottiche. Svantaggi: conversione del segnale da elettrico a ottico e viceversa precauzioni di installazione strumentazione di test sofisticata Fibre Ottiche Lo sviluppo delle fibre ottiche è stato spinto dalle telecomunicazioni che, inzialmente, ne hanno apprezzato le possibilità di trasmettere a grandi distanza con pochi amplificatori intermedi.

Dettagli

Ottica fisiologica (2): sistemi ottici

Ottica fisiologica (2): sistemi ottici Ottica fisiologica (2): sistemi ottici Corso di Principi e Modelli della Percezione Prof. Giuseppe Boccignone Dipartimento di Informatica Università di Milano boccignone@di.unimi.it http://boccignone.di.unimi.it/pmp_2014.html

Dettagli

Livello fisico. Mezzi di Trasmissione. Fattori di Progetto. Mezzi trasmissivi. Prof. Vincenzo Auletta

Livello fisico. Mezzi di Trasmissione. Fattori di Progetto. Mezzi trasmissivi. Prof. Vincenzo Auletta I semestre 03/04 Livello fisico Mezzi di Trasmissione Prof. Vincenzo Auletta auletta@dia.unisa.it http://www.dia.unisa.it/professori/auletta/ Il livello fisico deve garantire il trasferimento di un flusso

Dettagli

Polarizzazione, dispersione dei modi di polarizzazione e sua compensazione

Polarizzazione, dispersione dei modi di polarizzazione e sua compensazione UNIVERSITA DEGLI STUDI DI TRIESTE Corso di Laurea Triennale in Ingegneria Elettronica Polarizzazione, dispersione dei modi di polarizzazione e sua compensazione Laureando: Danijel Miletic 28/11/2008 1

Dettagli

Mezzi trasmissivi. Vittorio Maniezzo Università di Bologna. Funzionamento di base

Mezzi trasmissivi. Vittorio Maniezzo Università di Bologna. Funzionamento di base Mezzi trasmissivi Vittorio Maniezzo Università di Bologna Funzionamento di base Si codificano i dati come energia e si trasmette l'energia Si decodifica l'energia alla destinazione e si ricostruiscono

Dettagli

[ dbm] = 0 dbm " 0,2 #100 db = " 20 dbm

[ dbm] = 0 dbm  0,2 #100 db =  20 dbm Esercizi di comunicazioni ottiche (SNR, Q, BER) Consideriamo il caso di una linea in fibra ottica lunga 00 km con attenuazione di 0, db/km e dispersione cromatica compensata. Supponiamo poi di avere una

Dettagli

CENNI DI OPTOELETTRONICA

CENNI DI OPTOELETTRONICA A cura dell alunno Nicola Braile della classe IV sez. A Indirizzo Informatica Sperimentazione ABACUS Dell Istituto Tecnico Industriale Statele A. Monaco di Cosenza Supervisore Prof. Giancarlo Fionda Insegnante

Dettagli

I Diodi. www.papete.altervista.org http://elettronica-audio.net76.net

I Diodi. www.papete.altervista.org http://elettronica-audio.net76.net I Diodi Questi componenti sono provvisti di due terminali: il catodo e l'anodo. Il catodo si riconosce perchè sul corpo è stampata una fascia in corrispondenza di tale piedino. Ad esempio, i diodi nella

Dettagli

Luce laser, fibre ottiche e telecomunicazioni

Luce laser, fibre ottiche e telecomunicazioni Luce laser, fibre ottiche e telecomunicazioni Guido Giuliani - Architettura Università di Pavia guido.giuliani@unipv.it Fotonica - Cos è? Scienza che utilizza radiazione elettromagnetica a frequenze ottiche

Dettagli

Radiazione elettromagnetica

Radiazione elettromagnetica Radiazione elettromagnetica Un onda e.m. e un onda trasversa cioe si propaga in direzione ortogonale alle perturbazioni ( campo elettrico e magnetico) che l hanno generata. Nel vuoto la velocita di propagazione

Dettagli

Laser Fabry-Perot Distributed Feedback Laser. Sorgenti ottiche. F. Poli. 22 aprile 2008. F. Poli Sorgenti ottiche

Laser Fabry-Perot Distributed Feedback Laser. Sorgenti ottiche. F. Poli. 22 aprile 2008. F. Poli Sorgenti ottiche Sorgenti ottiche F. Poli 22 aprile 2008 Outline Laser Fabry-Perot 1 Laser Fabry-Perot 2 Laser Fabry-Perot Proprietà: sorgente maggiormente utilizzata per i sistemi di telecomunicazione in fibra ottica:

Dettagli

LE FIBRE OTTICHE NELLE TELECOMUNICAZIONI. Presentato da: FAR ITALY S.r.l

LE FIBRE OTTICHE NELLE TELECOMUNICAZIONI. Presentato da: FAR ITALY S.r.l CENNI STORICI 1 LE FIBRE OTTICHE NELLE TELECOMUNICAZIONI Presentato da: Nicola Ferrari FAR ITALY S.r.l 2 CENNI STORICI Jean - Daniel Colladon 1802-1893 fisico svizzero John Tyndall 1820-1893 Fisico inglese

Dettagli

28/05/2009. La luce e le sue illusioni ottiche

28/05/2009. La luce e le sue illusioni ottiche La luce e le sue illusioni ottiche Cosa si intende per raggio luminoso? Immagina di osservare ad una distanza abbastanza elevata una sorgente di luce... il fronte d onda potrà esser approssimato ad un

Dettagli

02/10/2015. Cavi a Fibre Ottiche. Light and Progress run together. Le fibre Ottiche offrono benefici unici.

02/10/2015. Cavi a Fibre Ottiche. Light and Progress run together. Le fibre Ottiche offrono benefici unici. Cavi a Fibre Ottiche Ampia gamma di costruzioni, materiali e armature Conformità alle norme internazionali Approvazioni DNV/ABS/Warrington Costruzioni personalizzate Possono essere usati con conduttori

Dettagli

LASER è l acronimo di

LASER è l acronimo di LASER è l acronimo di ovvero: amplificazione luminosa per mezzo di emissione stimolata di radiazioni. LASER Il fenomeno fisico sul quale si base il suo funzionamento è quello dell'emissione stimolata,

Dettagli

Lo schema a blocchi di uno spettrofotometro

Lo schema a blocchi di uno spettrofotometro Prof.ssa Grazia Maria La Torre è il seguente: Lo schema a blocchi di uno spettrofotometro SORGENTE SISTEMA DISPERSIVO CELLA PORTACAMPIONI RIVELATORE REGISTRATORE LA SORGENTE delle radiazioni elettromagnetiche

Dettagli

Modulazioni. Vittorio Maniezzo Università di Bologna. Comunicazione a lunga distanza

Modulazioni. Vittorio Maniezzo Università di Bologna. Comunicazione a lunga distanza Modulazioni Vittorio Maniezzo Università di Bologna Vittorio Maniezzo Università di Bologna 06 Modulazioni 1/29 Comunicazione a lunga distanza I segnali elettrici si indeboliscono quando viaggiano su un

Dettagli

FRANCESCO MARINO - TELECOMUNICAZIONI

FRANCESCO MARINO - TELECOMUNICAZIONI ESAME DI SAO DI ISIUO POFESSIONALE A.S. 2000/2001 Indirizzo: ECNICO DELLE INDUSIE ELEONICHE ema di: ELEONICA, ELECOMUNICAZIONI E APPLICAZIONI Il candidato, formulando di volta in volta tutte le ipotesi

Dettagli

Corso di DISPOSITIVI E SISTEMI PER LE COMUNICAZIONI IN FIBRA OTTICA

Corso di DISPOSITIVI E SISTEMI PER LE COMUNICAZIONI IN FIBRA OTTICA Università Mediterranea di Reggio Calabria - Facoltà di Ingegneria Corso di DISPOSITIVI E SISTEMI PER LE COMUNICAZIONI IN FIBRA OTTICA Prof. Ing. Riccardo Carotenuto Anno Accademico 2007/2008-1- SOMMARIO

Dettagli

Ottica fisica e ottica ondulatoria Lezione 12

Ottica fisica e ottica ondulatoria Lezione 12 Ottica fisica e ottica ondulatoria Lezione La luce è un onda elettromagnetica; ne studiamo le proprietà principali, tra cui quelle non dipendenti direttamente dalla natura ondulatoria (ottica geometrica

Dettagli

Scienze integrate (Biologia con elem.di biologia marina) Prof.ssa Rosa Domestico Lavoro degli alunni della classe IIG a.s.

Scienze integrate (Biologia con elem.di biologia marina) Prof.ssa Rosa Domestico Lavoro degli alunni della classe IIG a.s. LA LUCE Scienze integrate (Biologia con elem.di biologia marina) Prof.ssa Rosa Domestico Lavoro degli alunni della classe IIG a.s. 2012_2013 La luce è una forma di energia che ci fa vedere le forme, i

Dettagli

LA GIUNZIONE PN. Sulla base delle proprietà elettriche i materiali si classificano in: conduttori semiconduttori isolanti

LA GIUNZIONE PN. Sulla base delle proprietà elettriche i materiali si classificano in: conduttori semiconduttori isolanti LA GIUNZIONE PN Sulla base delle proprietà chimiche e della teoria di Bohr sulla struttura dell atomo (nucleo costituito da protoni e orbitali via via più esterni in cui si distribuiscono gli elettroni),

Dettagli

Che cos è la barriera luminosa?

Che cos è la barriera luminosa? BARRIERA LUMINOSA Che cos è la barriera luminosa? Pezzi da contare Diodo IR o Laser (emittente) Pezzi contati Direzione del nastro trasportatore FOTODIODO (ricevitore) Direzione del nastro trasportatore

Dettagli

PROSPETTIVE FUTURE DELL INTEGRAZIONE OPTOELETTRONICA

PROSPETTIVE FUTURE DELL INTEGRAZIONE OPTOELETTRONICA CAPITOLO III PROSPETTIVE FUTURE DELL INTEGRAZIONE OPTOELETTRONICA III.1 Introduzione L attività scientifica sugli OEIC è iniziata nel 1979 con un grande progetto negli USA, per la realizzazione di circuiti

Dettagli

3.8 Le fibre ottiche. 3.8.1 Fisica delle fibre ottiche

3.8 Le fibre ottiche. 3.8.1 Fisica delle fibre ottiche 34 3.8 Le fibre ottiche L'idea di utilizzare la luce come mezzo di comunicazione risale a circa 200 anni fa. Nel 1790 Claude Chappe costruì un telegrafo ottico composto da torri equipaggiate con braccia

Dettagli

1.2 - Mezzi Trasmissivi

1.2 - Mezzi Trasmissivi 1. Fondamenti sulle reti di telecomunicazioni 1.2 - Mezzi Trasmissivi Giacomo Morabito Dipartimento di Ingegneria Informatica e delle Telecomunicazioni Università di Catania http://www.diit.unict.it/users/gmorabi

Dettagli

R. Cusani, F. Cuomo: Telecomunicazioni Strato Fisico: Mezzi Trasmissivi, Marzo 2010

R. Cusani, F. Cuomo: Telecomunicazioni Strato Fisico: Mezzi Trasmissivi, Marzo 2010 1 9: Strato fisico: mezzi trasmissivi Mezzi trasmissivi 2 mezzi trasmissivi guidati: doppino e sue varianti cavo coassiale fibra ottica mezzi trasmissivi non guidati: ponti radio trasmissioni satellitari

Dettagli

TRASMETTITORI E RICEVITORI

TRASMETTITORI E RICEVITORI Date le specifiche, soprattutto dimensioni e velocità di modulazione, il diodo a emissione di luce (LED o LD) risulta il dispositivo adatto. I processi di integrazione consentono di produrre migliaia di

Dettagli

Modulo DISPOSITIVI DI SICUREZZA E RIVELAZIONE

Modulo DISPOSITIVI DI SICUREZZA E RIVELAZIONE Facoltà di Ingegneria Master in Sicurezza e Protezione Modulo DISPOSITIVI DI SICUREZZA E RIVELAZIONE IMPIANTI DI VIDEOSORVEGLIANZA TVCC Docente Fabio Garzia Ingegneria della Sicurezza w3.uniroma1.it/sicurezza

Dettagli

Sistemi di Telecomunicazione

Sistemi di Telecomunicazione Sistemi di Telecomunicazione Parte 6: Sistemi Ottici Parte 6.3: Componenti e sistemi ottici Universita Politecnica delle Marche A.A. 2013-2014 A.A. 2013-2014 Sistemi di Telecomunicazione 1/25 Sistema di

Dettagli

I Fotodiodi. Rizzo Salvatore Sebastiano V B Elettronica e Telecomunicazioni

I Fotodiodi. Rizzo Salvatore Sebastiano V B Elettronica e Telecomunicazioni I Fotodiodi Il Fotodiodo Il fotodiodo è un particolare diodo che funziona come sensore ottico. Rizzo Salvatore Sebastiano V B Struttura del fotodiodo Un fotodiodo fondamentalmente è simile ad un diodo

Dettagli

Fisica II - CdL Chimica. La natura della luce Ottica geometrica Velocità della luce Dispersione Fibre ottiche

Fisica II - CdL Chimica. La natura della luce Ottica geometrica Velocità della luce Dispersione Fibre ottiche La natura della luce Ottica geometrica Velocità della luce Dispersione Fibre ottiche La natura della luce Teoria corpuscolare (Newton) Teoria ondulatoria: proposta già al tempo di Newton, ma scartata perchè

Dettagli

I mezzi trasmissivi Per formare una rete

I mezzi trasmissivi Per formare una rete I mezzi trasmissivi Per formare una rete di comunicazione possono essere usati diversi mezzi trasmissivi (o media). La loro classificazione può essere fatta in base alle loro caratteristiche fisiche e

Dettagli

DIFFRAZIONE, INTERFERENZA E POLARIZZAZIONE DELLA LUCE

DIFFRAZIONE, INTERFERENZA E POLARIZZAZIONE DELLA LUCE DIFFRAZIONE, INTERFERENZA E POLARIZZAZIONE DELLA LUCE Introduzione Il modello geometrico della luce, vale a dire il modello di raggio che si propaga in linea retta, permette di descrivere un ampia gamma

Dettagli

TELECOMUNICAZIONI I: I MEZZI DI COMUNICAZIONE. INTRODUZIONE... pag.2

TELECOMUNICAZIONI I: I MEZZI DI COMUNICAZIONE. INTRODUZIONE... pag.2 1 INDICE TELECOMUNICAZIONI I: I MEZZI DI COMUNICAZIONE INTRODUZIONE..... pag.2 IL SEGNALE.. pag.2 Il segnale sonoro. pag.2 Il segnale immagine... pag.3 Il segnale dato. pag.3 IL CANALE DI COMUNICAZIONE....

Dettagli

Panoramica. Codifica NRZ(Non-Zero-Return)

Panoramica. Codifica NRZ(Non-Zero-Return) Panoramica Ethernet si è evoluta dall originale tecnologia basata sul rame a 10Mps, passando da 100Mbps a 1000Mbps fino all attuale Ethernet 10Gbps basata sulla fibra ottica. Qualunque sia la tecnologia

Dettagli

Capitolo 8 - Trasmissione su fibre ottiche

Capitolo 8 - Trasmissione su fibre ottiche Appunti di Comunicazioni elettriche Capitolo 8 - Trasmissione su fibre ottiche Introduzione... 1 Dispersione modale: fibre multimodali e monomodali... 4 Dispersione cromatica... 6 Dispersione spaziale...

Dettagli

Cavi chainflex. Cavi in fibra ottica* Informazioni cavi in fibra ottica 156 CFLK** PUR 12,5-20/ +70 10 5 20 158 CFLG.2H

Cavi chainflex. Cavi in fibra ottica* Informazioni cavi in fibra ottica 156 CFLK** PUR 12,5-20/ +70 10 5 20 158 CFLG.2H Cavi chainflex avi in fibra ottica Cavi chainflex Informazioni cavi in fibra ottica 156 CFLK** PUR 12,5-20/ +70 10 5 20 158 CFLG.2H Rivestimento esterno Cavi in fibra ottica* Schermatura Raggi di curvatura

Dettagli

1 Caratteristiche dei materiali utilizzati in ottica oftalmica di Alessandro Farini 1.1 Caratteristiche ottiche dei materiali oftalmici

1 Caratteristiche dei materiali utilizzati in ottica oftalmica di Alessandro Farini 1.1 Caratteristiche ottiche dei materiali oftalmici 1 Caratteristiche dei materiali utilizzati in ottica oftalmica di Alessandro Farini Esaminiamo in questo capitolo le principali caratteristiche dei vari materiali utilizzati nel campo dell'ottica oftalmica,

Dettagli

ISTITUTO TECNICO INDUSTRIALE STATALE "G. MARCONI" Via Milano n. 51-56025 PONTEDERA (PI)

ISTITUTO TECNICO INDUSTRIALE STATALE G. MARCONI Via Milano n. 51-56025 PONTEDERA (PI) ANNO SCOLASTICO 2014/2015 PROGRAMMAZIONE COORDINATA TEMPORALMENTE CLASSE: DISCIPLINA: Telecomunicazioni- pag. 1 PROGRAMMAZIONE COORDINATA TEMPORALMENTE A.S. 2014/2015 - CLASSE: DISCIPLINA: Monte ore annuo

Dettagli

Sistema theremino Theremino Spectrometer Tecnologia

Sistema theremino Theremino Spectrometer Tecnologia Sistema theremino Theremino Spectrometer Tecnologia Sistema theremino - Theremino Spectrometer Technology - 15 agosto 2014 - Pagina 1 Principio di funzionamento Ponendo una telecamera digitale con un reticolo

Dettagli

APPUNTI DI OPTOELETTRONICA FOTORIVELATORI

APPUNTI DI OPTOELETTRONICA FOTORIVELATORI APPUNTI DI OPTOELETTRONICA (ad uso libero ed esclusivo degli studenti) FOTORIVELATORI Autore: Massimo Brenci IROE-CNR Firenze Termopile Sfruttano il principio della termocoppia, nella quale il riscaldamento

Dettagli

VDA BROADBUSINESS ULTERIORI LOTTI FUNZIONALI ALLEGATO T2 - SPECIFICHE TECNICHE FIBRA OTTICA POR/FESR 2007/2013 ASSE: AZIONE: ATTIVITÀ:

VDA BROADBUSINESS ULTERIORI LOTTI FUNZIONALI ALLEGATO T2 - SPECIFICHE TECNICHE FIBRA OTTICA POR/FESR 2007/2013 ASSE: AZIONE: ATTIVITÀ: ALLEGATO T2 - SPECIFICHE TECNICHE FIBRA OTTICA POR/FESR 2007/2013 ASSE: AZIONE: ATTIVITÀ: III - PROMOZIONE DELLE ICT POTENZIAMENTO, RAZIONALIZZAZIONE E SVILUPPO DELL'INFRASTRUTTURAZIONE DI TELECOMUNICAZIONE

Dettagli

Modulo DISPOSITIVI DI SICUREZZA E RIVELAZIONE

Modulo DISPOSITIVI DI SICUREZZA E RIVELAZIONE Facoltà di Ingegneria Master in Sicurezza e Protezione Modulo DISPOSITIVI DI SICUREZZA E RIVELAZIONE IMPIANTI DI RIVELAZIONE INCENDI Docente Fabio Garzia Ingegneria della Sicurezza w3.uniroma1.it/sicurezza

Dettagli

IL TEST DEGLI IMPIANTI IN FIBRA OTTICA OLTS e OTDR. FTTx / PON. Nicola Ferrari

IL TEST DEGLI IMPIANTI IN FIBRA OTTICA OLTS e OTDR. FTTx / PON. Nicola Ferrari IL TEST DEGLI IMPIANTI IN FIBRA OTTICA OLTS e OTDR FTTx / PON Nicola Ferrari LA CARATTERIZZAZIONE DELLA FIBRA Caratterizzare la fibra Punto A Punto B Caratterizzare la fibra significa eseguire una estesa

Dettagli

RETI DI CALCOLATORI E APPLICAZIONI TELEMATICHE

RETI DI CALCOLATORI E APPLICAZIONI TELEMATICHE RETI DI CALCOLATORI E APPLICAZIONI TELEMATICHE Prof. PIER LUCA MONTESSORO Facoltà di Ingegneria Università degli Studi di Udine 1999 Pier Luca Montessoro (si veda la nota a pagina 2) 1 Nota di Copyright

Dettagli

Modulo 4 Test dei cavi

Modulo 4 Test dei cavi Modulo 4 Test dei cavi 4.1 Conoscenze di base per fare il test sui cavi 4.1.1 Onde (waves) I parametri di un onda sono: ampiezza, frequenza, periodo. 4.1.2 Onde sinusoidali e quadre Esempio di onde sinusoidali:

Dettagli

Ottica geometrica. L ottica geometrica tratta i. propagazione in linea retta e dei. rifrazione della luce.

Ottica geometrica. L ottica geometrica tratta i. propagazione in linea retta e dei. rifrazione della luce. Ottica geometrica L ottica geometrica tratta i fenomeni che si possono descrivere per mezzo della propagazione in linea retta e dei fenomeni di riflessione e la rifrazione della luce. L ottica geometrica

Dettagli

Queste note non vogliono essere esaustive, ma solo servire come linee guida per le lezioni

Queste note non vogliono essere esaustive, ma solo servire come linee guida per le lezioni Alessandro Farini: note per le lezioni di ottica del sistema visivo Queste note non vogliono essere esaustive, ma solo servire come linee guida per le lezioni 1 Lo spettro elettromagnetico La radiazione

Dettagli

Basilio Catania - Luigi Sacchi. CSELT - Centro Studi e Laboratori Telecomunicazioni Via Reiss Romoli, 274-10148 TORINO. Abstract

Basilio Catania - Luigi Sacchi. CSELT - Centro Studi e Laboratori Telecomunicazioni Via Reiss Romoli, 274-10148 TORINO. Abstract Basilio Catania - Luigi Sacchi CSELT - Centro Studi e Laboratori Telecomunicazioni Via Reiss Romoli, 274-10148 TORINO PROGETTO DI COLLEGAMENTI NUMERICI IN FIBRA OTTICA [Atti del XXIII Convegno Internazionale

Dettagli

Misureremo e analizzeremo la distribuzione di intensità luminosa di diverse figure di diffrazione in funzione della posizione acquisite on- line.

Misureremo e analizzeremo la distribuzione di intensità luminosa di diverse figure di diffrazione in funzione della posizione acquisite on- line. 4 IV Giornata Oggi termineremo questo percorso sulla luce misurando l intensità luminosa della distribuzione di massimi e minimi delle figure di diffrazione e di interferenza. In particolare confronteremo

Dettagli

PROGRAMMA OPERATIVO NAZIONALE

PROGRAMMA OPERATIVO NAZIONALE PROGRAMMA OPERATIVO NAZIONALE Fondo Sociale Europeo "Competenze per lo Sviluppo" Obiettivo C-Azione C1: Dall esperienza alla legge: la Fisica in Laboratorio Ottica geometrica Sommario 1) Cos è la luce

Dettagli

APPUNTI DI ELETTROMAGNETISMO E RADIOTECNICA. Coordinatore del Progetto prof. Vito Potente Stesura a cura del docente ing.

APPUNTI DI ELETTROMAGNETISMO E RADIOTECNICA. Coordinatore del Progetto prof. Vito Potente Stesura a cura del docente ing. APPUNTI DI ELETTROMAGNETISMO E RADIOTECNICA Coordinatore del Progetto prof. Vito Potente Stesura a cura del docente ing. Marcello Surace 1 Si richiamano le definizioni delle leggi fondamentali, invitando

Dettagli

Corso di Laboratorio di Fisica prof. Mauro Casalboni dott. Giovanni Casini

Corso di Laboratorio di Fisica prof. Mauro Casalboni dott. Giovanni Casini SSIS indirizzo Fisico - Informatico - Matematico 2 anno - a.a.. 2006/2007 Corso di Laboratorio di Fisica prof. Mauro Casalboni dott. Giovanni Casini LA LUCE La luce è un onda elettromagnetica Il principio

Dettagli

2.1 CAPITOLO 2 I RAGGI E LE LORO PROPRIETÀ

2.1 CAPITOLO 2 I RAGGI E LE LORO PROPRIETÀ 2.1 CAPITOLO 2 I RAGGI E LE LORO PROPRIETÀ 2.2 Riflettendo sulla sensazione di calore che proviamo quando siamo esposti ad un intensa sorgente luminosa, ad esempio il Sole, è naturale pensare alla luce

Dettagli

4 La Polarizzazione della Luce

4 La Polarizzazione della Luce 4 La Polarizzazione della Luce Per comprendere il fenomeno della polarizzazione è necessario tenere conto del fatto che il campo elettromagnetico, la cui variazione nel tempo e nello spazio provoca le

Dettagli

DISPOSITIVI PER VHF e SUPERIORI

DISPOSITIVI PER VHF e SUPERIORI ARI Sezione di Parma Conversazioni del 1 Venerdì del Mese DISPOSITIVI PER VHF e SUPERIORI Venerdì, 1 marzo 2013, ore 21:15 Carlo, I4VIL FILTRO low pass per uso a 144 MHz Risposta del filtro (in rosso).

Dettagli

Alessandro Farini: Dispense di Illuminotecnica per le scienze della visione

Alessandro Farini: Dispense di Illuminotecnica per le scienze della visione Capitolo 1 Radiazione elettromagnetica e occhio In questo capitolo prendiamo in considerazione alcune grandezze fondamentali riguardanti l illuminazione e alcuni concetti legati alla visione umana che

Dettagli

Luce e colore A cura di Ornella Pantano e Enrica Giordano

Luce e colore A cura di Ornella Pantano e Enrica Giordano Cosa serve per vedere Didattica della Fisica A.A. 2009/10 Luce e colore A cura di Ornella Pantano e Enrica Giordano Per poter vedere un oggetto è necessario che un fascio di luce emesso da una sorgente

Dettagli

CdL Professioni Sanitarie A.A. 2012/2013. Unità 6: Onde e Radiazione Elettromagnetica

CdL Professioni Sanitarie A.A. 2012/2013. Unità 6: Onde e Radiazione Elettromagnetica L. Zampieri Fisica per CdL Professioni Sanitarie A.A. 12/13 CdL Professioni Sanitarie A.A. 2012/2013 Unità 6: Onde e Radiazione Elettromagnetica Onde e radiazione elettromagnetica Natura delle onde Ampiezza,

Dettagli

LA MATERIA MATERIA. COMPOSIZIONE (struttura) Atomi che la compongono

LA MATERIA MATERIA. COMPOSIZIONE (struttura) Atomi che la compongono LA MATERIA 1 MATERIA PROPRIETÀ (caratteristiche) COMPOSIZIONE (struttura) FENOMENI (trasformazioni) Stati di aggregazione Solido Liquido Aeriforme Atomi che la compongono CHIMICI Dopo la trasformazione

Dettagli

IL MODELLO ATOMICO DI BOHR

IL MODELLO ATOMICO DI BOHR IL MODELLO ATOMICO DI BOHR LA LUCE Un valido contributo alla comprensione della struttura dell atomo venne dato dallo studio delle radiazioni luminose emesse dagli atomi opportunamente sollecitati. Lo

Dettagli

Didattica delle Telecomunicazioni: i Mezzi Trasmissivi ESERCIZI DI VERIFICA

Didattica delle Telecomunicazioni: i Mezzi Trasmissivi ESERCIZI DI VERIFICA Didattica delle Telecomunicazioni: i Mezzi Trasmissivi ESERCIZI DI VERIFICA 1. Materiali dielettrici e conduttori 1.1. Sulla base del diverso comportamento rispetto ai fenomeni elettrici, i corpi vengono

Dettagli

Einstein ci dice che la luce è costituita da unità elementari chiamate fotoni. Cosa sono questi fotoni?

Einstein ci dice che la luce è costituita da unità elementari chiamate fotoni. Cosa sono questi fotoni? La natura della luce Einstein ci dice che la luce è costituita da unità elementari chiamate fotoni. Cosa sono questi fotoni? Se si potesse fotografare un fotone in un certo istante vedremmo una deformazione

Dettagli