Serie di Taylor. Hynek Kovarik. Analisi Matematica 2. Università di Brescia

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Serie di Taylor. Hynek Kovarik. Analisi Matematica 2. Università di Brescia"

Transcript

1 Serie di Taylor Hynek Kovarik Università di Brescia Analisi Matematica 2 Hynek Kovarik (Università di Brescia) Serie di Taylor Analisi Matematica 2 1 / 16

2 Serie di Taylor Il nostro obiettivo è di scrivere funzione una infinitamente derivabile come serie di potenze. Definizione Sia I R un intervallo aperto. Una funzione f : I R si dice sviluppabile in serie di potenze in I se f è di classe C (I), e se per ogni x 0 I esiste r > 0 tale che {x R : x x 0 < r} I ed esiste una successione numerica {a n } n N tale che f (x) = a n (x x 0 ) n x : x x 0 < r. (1) Ora supponiamo che valga l equazione (1). Partendo dalla funzione f vogliamo risalire ai coefficienti a n. Hynek Kovarik (Università di Brescia) Serie di Taylor Analisi Matematica 2 2 / 16

3 Per x = x 0, otteniamo f (x 0 ) = a 0. Inoltre f (x) = f (x) = f (x) = n=1 n=2 n=3 n a n (x x 0 ) n 1, f (x 0 ) = 1 a 1 n (n 1) a n (x x 0 ) n 2, f (x 0 ) = 2 1 a 2 n (n 1) (n 2) a n (x x 0 ) n 3, f (x 0 ) = a 3 In generale troviamo che f (n) (x 0 ) = n! a n, da cui segue che a n = f (n) (x 0 ). n! Hynek Kovarik (Università di Brescia) Serie di Taylor Analisi Matematica 2 3 / 16

4 La serie di potenze prende allora la forma f (n) (x 0 ) n! (x x 0 ) n. Questa serie è detta serie di Taylor di f di centro x 0. Teorema Se una funzione è sviluppabile in serie di potenze, questa serie è la sua serie di Taylor. Hynek Kovarik (Università di Brescia) Serie di Taylor Analisi Matematica 2 4 / 16

5 Le somme parziali della serie di Taylor sono i polinomi di Taylor. Infatti, dalla formula di Taylor con resto nella forma di Lagrange segue che esiste un ξ compreso strettamente tra x e x 0 tale che f (x) = f (n) (x 0 ) n! (x x 0 ) n = per ogni m N. m f (n) (x 0 ) n! (x x 0 ) n + f (m+1) (ξ) (m + 1)! (x x 0) m+1 Hynek Kovarik (Università di Brescia) Serie di Taylor Analisi Matematica 2 5 / 16

6 Osservazioni: Data una funzione f di classe C, possiamo sempre scrivere la sua serie di Taylor. Il problema: la somma della serie di Taylor non sempre coincide con f! Hynek Kovarik (Università di Brescia) Serie di Taylor Analisi Matematica 2 6 / 16

7 Esempio Consideriamo la funzione e 1/x 2 x 0, f (x) = 0 x = 0. Si ha che f C (R). Infatti, f f (x) f (0) (0) = lim = e 1/x 2 x 0 x x f f (x) f (0) (0) = lim = 2e 1/x 2 x 0 x x 4 = 0 = lim x 0 f (x), = 0 = lim x 0 f (x), e così via. Si trova che f (n) (0) = 0 per ogni n N. Quindi la sua serie di Taylor di f di centro x 0 = 0 è identicamente nulla, convergente in R, ma f (x) 0 per ogni x 0. Perciò f non è sviluppabile in serie di potenze. Hynek Kovarik (Università di Brescia) Serie di Taylor Analisi Matematica 2 7 / 16

8 In generale, una funzione f di classe C (I) è sviluppabile in serie di Taylor se il resto di Lagrange di polinomio di Taylor di f di grado n è infinitesimo per n. Cioè se f (n) (ξ n ) lim x x 0 n = 0 n n! Siccome a n lim n n! = 0 a R, abbiamo il seguente risultato: Hynek Kovarik (Università di Brescia) Serie di Taylor Analisi Matematica 2 8 / 16

9 Teorema Sia f C (I). Se esistono delle costanti C, M > 0 tali che sup f (n) (x) C M n n N, x I allora f è sviluppabile in serie di Taylor in I. Una funzione f sviluppabile in serie di Taylor in I si dice analitica in I. Nel caso della funzione e 1/x 2 x 0, f (x) = 0 x = 0. si ha sup f (n) (x) (n + 1)! n. x [ 1,1] Hynek Kovarik (Università di Brescia) Serie di Taylor Analisi Matematica 2 9 / 16

10 Alcuni esempi delle sirie di Taylor serie esponenziale: e x = x n n! x R serie geometrica: x = x n x < 1 log(1 + x) = n=1 ( 1) n+1 x n n 1 < x 1 Hynek Kovarik (Università di Brescia) Serie di Taylor Analisi Matematica 2 10 / 16

11 sin(x) = ( 1) n x 2n+1 (2n + 1)! x R cos(x) = arctan(x) = x 2n ( 1) n (2n)! ( 1) n x 2n+1 (2n + 1) x R x [ 1, 1] sinh(x) = x 2n+1 (2n + 1)! x R cosh(x) = x 2n (2n)! x R Hynek Kovarik (Università di Brescia) Serie di Taylor Analisi Matematica 2 11 / 16

12 Esercizio: Sviluppare in serie di Taylor con centro x 0 = 0 la funzione f (x) = log(2 + x 2 ) e indicare il suo insieme di convergenza. Si ha log(2 + x 2 ) = log 2 + ( 1) n=1 n+1 x 2n n 2 n, I = [ 2, 2 ] Hynek Kovarik (Università di Brescia) Serie di Taylor Analisi Matematica 2 12 / 16

13 Esercizio: Sviluppare in serie di Taylor con centro x 0 = 0 la funzione f (x) = x x 2 x 2 e indicare il suo insieme di convergenza. Si ha x x 2 x 2 = 1 3 ( ( 1) n 2 n) x n, I =] 1, 1 [ Hynek Kovarik (Università di Brescia) Serie di Taylor Analisi Matematica 2 13 / 16

14 Esercizio: Sviluppare in serie di Taylor con centro x 0 = 2 la funzione f (x) = 1 x. Si ha 1 x = n (x 2)n ( 1) 2 n+1, I =]0, 4 [ Hynek Kovarik (Università di Brescia) Serie di Taylor Analisi Matematica 2 14 / 16

15 Esercizio: Sviluppare in serie di Taylor con centro x 0 = 1 la funzione ( ) x f (x) = log. 4 x Si ha log ( ) x = log x ( ( 1) n n= n ) (x 1) n n I =]0, 2] Hynek Kovarik (Università di Brescia) Serie di Taylor Analisi Matematica 2 15 / 16

16 Esercizio: Sia Calcolare f (49) (0) e f (50) (0). f (x) = e 1 x 2, x R. Hynek Kovarik (Università di Brescia) Serie di Taylor Analisi Matematica 2 16 / 16

Polinomi di Taylor. Hynek Kovarik. Università di Brescia. Analisi Matematica 1

Polinomi di Taylor. Hynek Kovarik. Università di Brescia. Analisi Matematica 1 Polinomi di Taylor Hynek Kovarik Università di Brescia Analisi Matematica 1 Hynek Kovarik (Università di Brescia) Polinomi di Taylor Analisi Matematica 1 1 / 18 Introduzione Sia f : I R e sia x 0 I. Problemi:

Dettagli

Serie di funzioni. Hynek Kovarik. Analisi Matematica 2. Università di Brescia

Serie di funzioni. Hynek Kovarik. Analisi Matematica 2. Università di Brescia Serie di funzioni Hynek Kovarik Università di Brescia Analisi Matematica 2 Hynek Kovarik (Università di Brescia) Serie di funzioni Analisi Matematica 2 1 / 20 Serie di funzioni Sia I un intervallo di R

Dettagli

Polinomi di Taylor. Hynek Kovarik. Analisi A. Università di Brescia. Hynek Kovarik (Università di Brescia) Polinomi di Taylor Analisi A 1 / 27

Polinomi di Taylor. Hynek Kovarik. Analisi A. Università di Brescia. Hynek Kovarik (Università di Brescia) Polinomi di Taylor Analisi A 1 / 27 Polinomi di Taylor Hynek Kovarik Università di Brescia Analisi A Hynek Kovarik (Università di Brescia) Polinomi di Taylor Analisi A 1 / 27 Introduzione Sia f : I R e sia x 0 I. Problemi: come approssimare

Dettagli

tale differenza, detta resto di Lagrange è la seguente:

tale differenza, detta resto di Lagrange è la seguente: . Le serie di Taylor Il teorema detto della formula di Taylor consiste nell espressione, quasi esplicita, fornita per la differenza Rx che intercorre tra i valori fx di una funzione indefinitamente derivabile

Dettagli

Corso di Analisi Matematica. Polinomi e serie di Taylor

Corso di Analisi Matematica. Polinomi e serie di Taylor a.a. 2011/12 Laurea triennale in Informatica Corso di Analisi Matematica Polinomi e serie di Taylor Avvertenza Questi sono appunti informali delle lezioni, che vengono resi disponibili per comodità degli

Dettagli

Serie di Fourier. Hynek Kovarik. Analisi Matematica 2. Università di Brescia

Serie di Fourier. Hynek Kovarik. Analisi Matematica 2. Università di Brescia Serie di Fourier Hynek Kovarik Università di Brescia Analisi Matematica 2 Hynek Kovarik (Università di Brescia) Serie di Fourier Analisi Matematica 2 1 / 37 Polinomi trigonometrici Definizione Si dice

Dettagli

Derivate. Hynek Kovarik. Analisi A. Università di Brescia. Hynek Kovarik (Università di Brescia) Derivate Analisi A 1 / 33

Derivate. Hynek Kovarik. Analisi A. Università di Brescia. Hynek Kovarik (Università di Brescia) Derivate Analisi A 1 / 33 Derivate Hynek Kovarik Università di Brescia Analisi A Hynek Kovarik (Università di Brescia) Derivate Analisi A 1 / 33 Definizione: rapporto incrementale Sia f : domf R R. Dati x 1, x 2 domf con x 1 x

Dettagli

Analisi di Fourier e alcune equazioni della fisica matematica 1. TERZA LEZIONE Serie di funzioni Serie di potenze

Analisi di Fourier e alcune equazioni della fisica matematica 1. TERZA LEZIONE Serie di funzioni Serie di potenze Analisi di Fourier e alcune equazioni della fisica matematica 1 TERZA LEZIONE Serie di funzioni Serie di potenze 1 prof. Claudio Saccon, Dipartimento di Matematica Applicata, Via F. Buonarroti 1/C email:

Dettagli

x 3 2x 2 + 6x x 4 3x = lim x(6 2x + x 2 ) x( 3 + x 3 ) (6 2x + x 2 ) ( 3 + x 3 ) = lim = 2

x 3 2x 2 + 6x x 4 3x = lim x(6 2x + x 2 ) x( 3 + x 3 ) (6 2x + x 2 ) ( 3 + x 3 ) = lim = 2 Calcolo di forme indeterminate del tipo 0/0 Quando si deve calcolare il limite di rapporto di funzioni infintesime per x 0, si raccoglie la potenza di x al minimo esponente. Es. lim x 0 x 3 2x 2 + 6x x

Dettagli

Istituzioni di Matematiche quarta parte

Istituzioni di Matematiche quarta parte Istituzioni di Matematiche quarta parte anno acc. 2012/2013 Univ. degli Studi di Milano Cristina Turrini (Univ. degli Studi di Milano) Istituzioni di Matematiche 1 / 22 index Derivate 1 Derivate 2 Teoremi

Dettagli

La formula di Taylor con resto di Peano. OSSERVAZIONE: se f è continua nel punto a possiamo scrivere (ricordando la definizione di o piccolo ) che

La formula di Taylor con resto di Peano. OSSERVAZIONE: se f è continua nel punto a possiamo scrivere (ricordando la definizione di o piccolo ) che 109 Lezioni 9-40 La formula di Taylor con resto di Peano OSSERVAZIONE: se f è continua nel punto a possiamo scrivere (ricordando la definizione di o piccolo ) che f(x) =f(a)+o(1) per x a; se f è derivabile

Dettagli

Analisi matematica I. Sviluppi di Taylor e applicazioni. Sviluppi di Taylor. Operazioni sugli sviluppi di Taylor e applicazioni

Analisi matematica I. Sviluppi di Taylor e applicazioni. Sviluppi di Taylor. Operazioni sugli sviluppi di Taylor e applicazioni Analisi matematica I e applicazioni Operazioni sugli sviluppi di Taylor e applicazioni 2 2006 Politecnico di Torino 1 e applicazioni Formule di Taylor con resto di Peano: caso e n =0 n =1 Formule di Taylor

Dettagli

Analisi Matematica (A L) Polinomi e serie di Taylor

Analisi Matematica (A L) Polinomi e serie di Taylor a.a. 2015/2016 Laurea triennale in Informatica Analisi Matematica (A L) Polinomi e serie di Taylor Nota: questo file differisce da quello proiettato in aula per la sola impaginazione. Polinomio di Taylor

Dettagli

8.1. Esercizio. Determinare massimo e minimo delle seguenti funzioni nei corrispondenti intervalli: 2 x 4 x in [0, 1]; e x2 in [ 2, 2]

8.1. Esercizio. Determinare massimo e minimo delle seguenti funzioni nei corrispondenti intervalli: 2 x 4 x in [0, 1]; e x2 in [ 2, 2] ANALISI Soluzione esercizi 25 novembre 2011 8.1. Esercizio. Determinare massimo e minimo delle seguenti funzioni nei corrispondenti intervalli: 2 x 4 x in [0, 1]; e x2 in [ 2, 2] cos x cos x in [ 2π, 2π];

Dettagli

Analisi vettoriale - A.A. 2003/04

Analisi vettoriale - A.A. 2003/04 Soluzioni Analisi vettoriale - A.A. 2003/04 Foglio di esercizi n.7 1. Esercizio Studiare la convergenza delle seguenti serie di potenze: 2 n (n + 3)! x n 3(x 2) n, (2n)! log (n + 1). (1) 1.1. Soluzione.

Dettagli

Successioni numeriche

Successioni numeriche Successioni numeriche Hynek Kovarik Università di Brescia Analisi Matematica 1 Hynek Kovarik (Università di Brescia) Successioni Analisi Matematica 1 1 / 48 Definizione Una successione a valori reali è

Dettagli

Funzioni continue. Hynek Kovarik. Università di Brescia. Analisi Matematica 1

Funzioni continue. Hynek Kovarik. Università di Brescia. Analisi Matematica 1 Funzioni continue Hynek Kovarik Università di Brescia Analisi Matematica 1 Hynek Kovarik (Università di Brescia) Funzioni continue Analisi Matematica 1 1 / 44 Funzioni continue Definizione Siano f : A

Dettagli

Raccolta degli Scritti d Esame di ANALISI MATEMATICA U.D. 2 assegnati nei Corsi di Laurea di Fisica, Fisica Applicata, Matematica

Raccolta degli Scritti d Esame di ANALISI MATEMATICA U.D. 2 assegnati nei Corsi di Laurea di Fisica, Fisica Applicata, Matematica DIPARTIMENTO DI MATEMATICA Università degli Studi di Trento Via Sommarive - Povo (TRENTO) Raccolta degli Scritti d Esame di ANALISI MATEMATICA U.D. 2 assegnati nei Corsi di Laurea di Fisica, Fisica Applicata,

Dettagli

Calcolo differenziale II

Calcolo differenziale II Calcolo differenziale II Hynek Kovarik Università di Brescia Analisi Matematica 1 Hynek Kovarik (Università di Brescia) Derivate (II) Analisi Matematica 1 1 / 36 Massimi e minimi Definizione Sia A R, f

Dettagli

ANALISI 1 1 SEDICESIMA - DICIASETTESIMA LEZIONE Serie

ANALISI 1 1 SEDICESIMA - DICIASETTESIMA LEZIONE Serie ANALISI 1 1 SEDICESIMA - DICIASETTESIMA LEZIONE Serie 1 prof. Claudio Saccon, Dipartimento di Matematica Applicata, Via F. Buonarroti 1/C email: saccon@mail.dm.unipi.it web: http://www2.ing.unipi.it/ d6081/index.html

Dettagli

Analisi Matematica 1 Trentaquattresma lezione. Serie

Analisi Matematica 1 Trentaquattresma lezione. Serie Analisi Matematica 1 Trentaquattresma lezione Serie prof. Claudio Saccon Dipartimento di Matematica Applicata, Via F. Buonarroti 1/C email: saccon@mail.dm.unipi.it web: http://saccon.blog.dma.unipi.it

Dettagli

Analisi Matematica 1 Secondo appello

Analisi Matematica 1 Secondo appello Analisi Matematica 1 Secondo appello 11 febbraio 219 Testo A1 Consegnare solo questo foglio Prima parte: 2 punti per risposta corretta, 1 per ogni errore. Soglia minima 12/2. Seconda parte: Domande A e

Dettagli

1 + q + q = A 3. 2 ) = 5, Aq = 3 3 Dalla seconda equazione ricaviamo che A/3 = 1/q e sostituendo nella prima otteniamo. 1 q (1 + q + q2 ) = 5,

1 + q + q = A 3. 2 ) = 5, Aq = 3 3 Dalla seconda equazione ricaviamo che A/3 = 1/q e sostituendo nella prima otteniamo. 1 q (1 + q + q2 ) = 5, Ingegneria Elettronica e Informatica Analisi Matematica a (Foschi Compito del..208. Tre numeri reali positivi formano una progressione geometrica. La loro media aritmetica è 5, mentre la loro media geometrica

Dettagli

Successioni numeriche

Successioni numeriche Successioni numeriche Hynek Kovarik Università di Brescia Analisi A Hynek Kovarik (Università di Brescia) Successioni Analisi A 1 / 35 Definizione Una successione a valori reali è una funzione f : N R

Dettagli

Limiti e continuità. Hynek Kovarik. Analisi A. Università di Brescia. Hynek Kovarik (Università di Brescia) Limiti e continuità Analisi A 1 / 68

Limiti e continuità. Hynek Kovarik. Analisi A. Università di Brescia. Hynek Kovarik (Università di Brescia) Limiti e continuità Analisi A 1 / 68 Limiti e continuità Hynek Kovarik Università di Brescia Analisi A Hynek Kovarik (Università di Brescia) Limiti e continuità Analisi A 1 / 68 Cenni di topologia La nozione di intorno Sia x 0 R e r > 0.

Dettagli

1 a Prova parziale di Analisi Matematica I (A) 16/11/2007

1 a Prova parziale di Analisi Matematica I (A) 16/11/2007 Nome a Prova parziale di Analisi Matematica I (A) 6//7 ) Data la funzione ( ) = f e Calcolare il campo di esistenza e il suo comportamento agli estremi ) Definizione di derivata prima di una funzione f()

Dettagli

Politecnico di Milano Corso di Analisi e Geometria 1. Federico Lastaria Formule di Taylor Ottobre 2012

Politecnico di Milano Corso di Analisi e Geometria 1. Federico Lastaria Formule di Taylor Ottobre 2012 Politecnico di Milano Corso di Analisi e Geometria 1 Federico Lastaria federico.lastaria@polimi.it Formule di Taylor Ottobre 2012 Indice 1 Formule di Taylor 1 1.1 Il polinomio di Taylor...............................

Dettagli

Analisi Matematica. Serie numeriche, serie di potenze, serie di Taylor

Analisi Matematica. Serie numeriche, serie di potenze, serie di Taylor a.a. 2014/2015 Laurea triennale in Informatica Analisi Matematica Serie numeriche, serie di potenze, serie di Taylor Avvertenza Questi sono appunti informali delle lezioni, che vengono resi disponibili

Dettagli

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1 Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1 18 luglio 2017 Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.

Dettagli

Matematica e Statistica per Scienze Ambientali

Matematica e Statistica per Scienze Ambientali per Scienze Ambientali Derivate - Appunti 1 1 Dipartimento di Matematica Sapienza, Università di Roma Roma, Novembre 2013 Retta secante un grafico e rapporto incrementale Sia f una funzione e x 0 un punto

Dettagli

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1 Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1 30 Gennaio 2018 Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.

Dettagli

7.1. Esercizio. Assegnata l equazione differenziale lineare di primo

7.1. Esercizio. Assegnata l equazione differenziale lineare di primo ANALISI MATEMATICA I Soluzioni Foglio 7 14 maggio 2009 7.1. Esercizio. Assegnata l equazione differenziale lineare di primo ordine y + y = 1 determinarne tutte le soluzioni, determinare la soluzione y(x)

Dettagli

Corso di Analisi Matematica 1

Corso di Analisi Matematica 1 Corso di Analisi Matematica 1 in Ingegneria Biomedica Prof. A. Iannizzotto Prove d esame 2016 Versione del 21 dicembre 2016 Appello del 14 gennaio 2016 Tempo: 150 minuti Compito A 1. Enunciare e dimostrare

Dettagli

I POLINOMI DI TAYLOR. c Paola Gervasio - Analisi Matematica 1 - A.A. 17/18 Sviluppi di Taylor cap7.pdf 1

I POLINOMI DI TAYLOR. c Paola Gervasio - Analisi Matematica 1 - A.A. 17/18 Sviluppi di Taylor cap7.pdf 1 I POLINOMI DI TAYLOR c Paola Gervasio - Analisi Matematica 1 - A.A. 17/18 Sviluppi di Taylor cap7.pdf 1 Calcolo di forme indeterminate del tipo 0/0 Avevamo già visto (cap4a.pdf, pag. 1) che quando si deve

Dettagli

I POLINOMI DI TAYLOR. c Paola Gervasio - Analisi Matematica 1 - A.A. 16/17 Sviluppi di Taylor cap7.pdf 1

I POLINOMI DI TAYLOR. c Paola Gervasio - Analisi Matematica 1 - A.A. 16/17 Sviluppi di Taylor cap7.pdf 1 I POLINOMI DI TAYLOR c Paola Gervasio - Analisi Matematica 1 - A.A. 16/17 Sviluppi di Taylor cap7.pdf 1 Il simbolo o piccolo Siano f (x) e g(x) funzioni infinitesime per x x 0 e consideriamo f (x) il lim

Dettagli

41 POLINOMI DI TAYLOR

41 POLINOMI DI TAYLOR 4 POLINOMI DI TAYLOR DERIVATE DI ORDINI SUCCESSIVI Allo stesso modo della derivata seconda si definiscono per induzione le derivate di ordine k: la funzione derivata 0-ima di f si definisce ponendo f (0

Dettagli

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1 Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1 9 Gennaio 2018 Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.

Dettagli

Esercizi di Analisi Matematica I

Esercizi di Analisi Matematica I Esercizi di Analisi Matematica I (corso tenuto dal Prof Alessandro Fonda) Università di Trieste, CdL Fisica e Matematica, aa 2012/2013 1 Principio di induzione 1 Dimostrare che per ogni numero naturale

Dettagli

APPELLO B AM1C 14 LUGLIO f(x) = xe 1

APPELLO B AM1C 14 LUGLIO f(x) = xe 1 Cognome e nome APPELLO B AM1C 14 LUGLIO 2009 Esercizio 1. Sia data la funzione f(x) = xe 1 log x. (a) Determinarne: insieme di esistenza e di derivabilità, limiti ed eventuali asintoti, eventuali massimi,

Dettagli

Successioni numeriche (II)

Successioni numeriche (II) Successioni numeriche (II) Hynek Kovarik Università di Brescia Analisi A Hynek Kovarik (Università di Brescia) Successioni (II) Analisi A 1 / 52 Forme indeterminate associate a funzioni razionali fratte:

Dettagli

Proprietà commutativa e associativa per le serie

Proprietà commutativa e associativa per le serie Analisi Matematica 1 Trentaseiesima Trentasettesimalezione Proprietà commutativa e associativa per le serie Prodotto Serie di alla potenze Cauchy prof. Claudio Saccon Dipartimento di Matematica Applicata,

Dettagli

Serie numeriche. Riccarda Rossi. Analisi I. Università di Brescia

Serie numeriche. Riccarda Rossi. Analisi I. Università di Brescia Serie numeriche Riccarda Rossi Università di Brescia Analisi I Sommatoria Siano Con il simbolo I : insieme finito di indici (a i ) i I famiglia finita di numeri, al variare di i in I indichiamo la somma

Dettagli

Corso di Analisi Matematica. Calcolo differenziale

Corso di Analisi Matematica. Calcolo differenziale a.a. 2013/14 Laurea triennale in Informatica Corso di Analisi Matematica Calcolo differenziale Avvertenza Questi sono appunti informali delle lezioni, che vengono resi disponibili per comodità degli studenti.

Dettagli

Studio del grafico di una funzione

Studio del grafico di una funzione Studio del grafico di una funzione In questo foglio di esercizi è richiesto di disegnare il grafico di funzioni. Può essere utile uno schema di base da seguire : [] Trovare l insieme di definizione D della

Dettagli

1. Mercoledì 07/03/2018, ore: 2(2) Introduzione e presentazione del corso. Richiami: i numeri naturali, interi, razionali e reali.

1. Mercoledì 07/03/2018, ore: 2(2) Introduzione e presentazione del corso. Richiami: i numeri naturali, interi, razionali e reali. Registro delle lezioni di MATEMATICA 2 Corso di Laurea in Chimica 6 CFU - A.A. 2017/2018 docente: Francesco Demontis ultimo aggiornamento: 7 giugno 2018 1. Mercoledì 07/03/2018, 9 11. ore: 2(2) Introduzione

Dettagli

Prove parziali per il corso di Analisi Matematica 1+2

Prove parziali per il corso di Analisi Matematica 1+2 Prove parziali per il corso di Analisi Matematica 1+ Decinma Prova Scritta 31/05/001 Si consideri l equazione y (x) 3y (x) + y(x) = e 3x + cos(x) A Determinare tutte le soluzioni dell equazione omogenea

Dettagli

Esame di Analisi Matematica Prova scritta del 21 giugno 2011

Esame di Analisi Matematica Prova scritta del 21 giugno 2011 Prova scritta del 21 giugno 2011 A1 Sia f la funzione definita ponendo f(x) = e x2 1 x + 1. (d) Utilizzare tutte le informazioni raccolte per tracciare un grafico approssimativo (e) (Facoltativo) Determinare

Dettagli

Il numero reale x 0 è detto centro della serie di potenze suddetta. Poichè si può sempre pensare di cambiare variabile tramite traslazione:

Il numero reale x 0 è detto centro della serie di potenze suddetta. Poichè si può sempre pensare di cambiare variabile tramite traslazione: 3.3 Serie di Potenze 3.3.1 Raggio di Convergenza Definiamo serie di potenze la serie di funzioni a n (x x 0 ) n = a 0 + a 1 (x x 0 ) + a 2 (x x 0 ) 2 +..., dove: 1) {a n } n N è una successione numerica

Dettagli

Dispense del corso di Analisi II

Dispense del corso di Analisi II Dispense del corso di Analisi II versione preliminare Paolo Tilli Dipartimento di Matematica Politecnico di Torino email: paolo.tilli@polito.it 2 dicembre 2004 Capitolo 2 Serie di potenze 2. Introduzione

Dettagli

17 - Serie di funzioni

17 - Serie di funzioni Università degli Studi di Palermo Facoltà di Economia CdS Statistica per l Analisi dei Dati Appunti del corso di Matematica 7 - Serie di funzioni Anno Accademico 203/204 M. Tumminello, V. Lacagnina, A.

Dettagli

Corso di Laurea in Ingegneria Informatica Anno Accademico 2012/2013 Analisi Matematica 1

Corso di Laurea in Ingegneria Informatica Anno Accademico 2012/2013 Analisi Matematica 1 Corso di Laurea in Ingegneria Informatica Anno Accademico 2012/2013 Analisi Matematica 1 Nome... N. Matricola... Ancona, 12 gennaio 2013 1. Sono dati i numeri complessi z 1 = 1 + i; z 2 = 2 3 i; z 3 =

Dettagli

Finora abbiamo considerato una serie potenze, ne abbiamo studiato la convergenza e analizzato le proprietà della somma.

Finora abbiamo considerato una serie potenze, ne abbiamo studiato la convergenza e analizzato le proprietà della somma. SERIE DI TAYLOR E MacLAURIN Finora abbiamo considerato una serie potenze, ne abbiamo studiato la convergenza e analizzato le proprietà della somma. Adesso ci poniamo il problema inverso : data una funzione

Dettagli

b x 2 + c se x > 1 determinare a, b e c in modo che f sia continua in R, determinare a, b e c in modo che f sia anche derivabile in R

b x 2 + c se x > 1 determinare a, b e c in modo che f sia continua in R, determinare a, b e c in modo che f sia anche derivabile in R 9.. Esercizio. Data la funzione x tg( π x) se x < 4 f(x) = a se x = b x 2 + c se x > ANALISI Soluzione esercizi 9 dicembre 20 determinare a, b e c in modo che f sia continua in R, determinare a, b e c

Dettagli

Serie Borlini Alex

Serie Borlini Alex Serie numerica >> Prefazione Progressione lista ordinata e finita di elementi. Successione lista ordinata e infinita di elementi (numeri reali chiamati termini), {a n }=a 1, a 2, a 3 Successione di Fibonacci:

Dettagli

Calcolo differenziale I

Calcolo differenziale I Calcolo differenziale I Hynek Kovarik Università di Brescia Analisi Matematica 1 Hynek Kovarik (Università di Brescia) Derivate Analisi Matematica 1 1 / 25 Definizione: rapporto incrementale Sia f : A

Dettagli

Corso di Analisi Matematica 1 - professore Alberto Valli

Corso di Analisi Matematica 1 - professore Alberto Valli Università di Trento - Corso di Laurea in Ingegneria Civile e Ingegneria per l Ambiente e il Territorio - 08/9 Corso di Analisi Matematica - professore Alberto Valli 9 foglio di esercizi - novembre 08

Dettagli

Studi di funzione, invertibilità, Taylor

Studi di funzione, invertibilità, Taylor Studi di funzione, invertibilità, Taylor 1. Studiare le funzioni elencate:dominio di definizione; asintoti; crescenza e decrescenza; punti di non derivabilità, max/min locali; convessità. (a f (x x 2 ln(x

Dettagli

Analisi Matematica 1

Analisi Matematica 1 Michele Campiti Prove scritte di Analisi Matematica 1 Ingegneria Industriale a.a. 2011 2012 y f 1 g 0 x La funzione seno e la funzione esponenziale Raccolta delle tracce di Analisi Matematica 1 per Ingegneria

Dettagli

DIARIO DELLE LEZIONI DI ANALISI MATEMATICA I Corso di laurea in Ingegneria Elettrotecnica A.A: 2018/2019 Codocente: Dott. Salvatore Fragapane

DIARIO DELLE LEZIONI DI ANALISI MATEMATICA I Corso di laurea in Ingegneria Elettrotecnica A.A: 2018/2019 Codocente: Dott. Salvatore Fragapane DIARIO DELLE LEZIONI DI ANALISI MATEMATICA I Corso di laurea in Ingegneria Elettrotecnica A.A: 2018/2019 Codocente: Dott. Salvatore Fragapane Lezione 1-28/09/2018, dalle 10.00 alle 12.00 in aula 7 - Numeri

Dettagli

Richiami di topologia di R n e di calcolo differenziale in più variabili

Richiami di topologia di R n e di calcolo differenziale in più variabili Anno accademico: 2016-2017 Corso di laurea in Ingegneria Aerospaziale e Ingegneria dell Autoveicolo Programma di Analisi Matematica II (6 CFU) (codice: 22ACILZ e 22ACILN) Docente: Lancelotti Sergio Richiami

Dettagli

La derivata. variabile indipendente x. Definiamo f := f(x) f(x 0 ) l incremento (positivo o negativo) della variabile dipendente.

La derivata. variabile indipendente x. Definiamo f := f(x) f(x 0 ) l incremento (positivo o negativo) della variabile dipendente. La derivata Sia f : domf R R; sia x 0 domf, f sia definita in I r (x 0 ) e sia x I r (x 0 ). ments Definiamo x := x x 0 l incremento (positivo o negativo) della f(x 0 ) + x + x) variabile indipendente

Dettagli

Laurea in Informatica e Tecnologie per la Produzione del Software Corso di Analisi Matematica Successioni e loro limiti

Laurea in Informatica e Tecnologie per la Produzione del Software Corso di Analisi Matematica Successioni e loro limiti Laurea in Informatica e Tecnologie per la Produzione del Software Corso di Analisi Matematica Successioni e loro limiti Docente: Anna Valeria Germinario Università di Bari A.V.Germinario (Università di

Dettagli

Equazioni differenziali

Equazioni differenziali Equazioni differenziali Hynek Kovarik Università di Brescia Analisi Matematica 2 Hynek Kovarik (Università di Brescia) Equazioni differenziali Analisi Matematica 2 1 / 42 Equazioni differenziali Un equazione

Dettagli

Esercizi con soluzioni dell esercitazione del 31/10/17

Esercizi con soluzioni dell esercitazione del 31/10/17 Esercizi con soluzioni dell esercitazione del 3/0/7 Esercizi. Risolvere graficamente la disequazione 2 x 2 2 cos(πx). 2. Determinare l insieme di definizione della funzione arcsin(exp( x 2 )). 3. Trovare

Dettagli

Analisi Matematica A Soluzioni prova scritta parziale n. 2

Analisi Matematica A Soluzioni prova scritta parziale n. 2 Analisi Matematica A Soluzioni prova scritta parziale n Corso di laurea in Fisica, 018-019 4 febbraio 019 1 Dimostrare che per ogni λ R l equazione e x = 1 x x + λ ha una e una sola soluzione x = x(λ Dimostrare

Dettagli

sin(3x) 3 sinh(x) x 2 cos(3x + x 2 ) log(1 + x)

sin(3x) 3 sinh(x) x 2 cos(3x + x 2 ) log(1 + x) Analisi Matematica LA - Primo appello e prova conclusiva CdL in Ingegneria per l Ambiente e il Territorio e CdL in Ingegneria per le Telecomunicazioni A.A. 24/25 Dott. F. Ferrari Dicembre 24 Gli esercizi

Dettagli

Corsi di Laurea in Ingegneria Elettronica e Telecomunicazioni.

Corsi di Laurea in Ingegneria Elettronica e Telecomunicazioni. Corsi di Laurea in Ingegneria Elettronica e Telecomunicazioni. Università di Pisa. Prima prova scritta di Analisi Matematica I. Soluzioni. Esercizio. Si consideri la successione c n ) n N definita dalla

Dettagli

1. Mercoledì 07/03/2018, ore: 2(2) Introduzione e presentazione del corso. Richiami: i numeri naturali, interi, razionali e reali.

1. Mercoledì 07/03/2018, ore: 2(2) Introduzione e presentazione del corso. Richiami: i numeri naturali, interi, razionali e reali. Registro delle lezioni di MATEMATICA 2 Corso di Laurea in Chimica 6 CFU - A.A. 2017/2018 docente: Francesco Demontis ultimo aggiornamento: 28 maggio 2018 1. Mercoledì 07/03/2018, 9 11. ore: 2(2) Introduzione

Dettagli

Prova scritta del modulo di Analisi Matematica I (N.O.) 2 ore A 23/1/2013. Prova scritta del modulo di Analisi Matematica I (N.O.) 2 ore B 23/1/2013

Prova scritta del modulo di Analisi Matematica I (N.O.) 2 ore A 23/1/2013. Prova scritta del modulo di Analisi Matematica I (N.O.) 2 ore B 23/1/2013 Prova scritta del modulo di Analisi Matematica I (NO) ore A // ) Data la funzione f ( ) = ( + ) log( + ), b) Studiare gli eventuali punti di non derivabilità, c) Determinare i massimi e minimi assoluti

Dettagli

Appunti di ANALISI MATEMATICA II Corso di Laurea Triennale in Matematica

Appunti di ANALISI MATEMATICA II Corso di Laurea Triennale in Matematica Appunti di ANALISI MATEMATICA II Corso di Laurea Triennale in Matematica Umberto Massari Anno accademico 3-4 SUCCESSIONI E SERIE DI FUNZIONI. Successioni di funzioni: convergenza puntuale ed uniforme Sia

Dettagli

1 prof. Claudio Saccon, Dipartimento di Matematica Applicata, () December 30, / 26

1 prof. Claudio Saccon, Dipartimento di Matematica Applicata, () December 30, / 26 ANALISI 1 1 UNDICESIMA LEZIONE DODICESIMA LEZIONE TREDICESIMA LEZIONE Derivata - definizione e teoremi di calcolo delle derivate Massimi e minimi relativi e teorema di Fermat Teorema di Lagrange Monotonia

Dettagli

Equazioni differenziali

Equazioni differenziali Equazioni differenziali Hynek Kovarik Università di Brescia Analisi Matematica 1 Hynek Kovarik (Università di Brescia) Equazioni differenziali Analisi Matematica 1 1 / 30 Formulazione del problema In generale

Dettagli

Matematica A Corso di Laurea in Chimica. Prova scritta del Tema A

Matematica A Corso di Laurea in Chimica. Prova scritta del Tema A Matematica A Corso di Laurea in Chimica Prova scritta del 7..6 Tema A P) Data la funzione f(x) = ex+ x determinarne (a) campo di esistenza; (b) zeri e segno; (c) iti agli estremi del campo di esistenza

Dettagli

LA FORMULA DI TAYLOR

LA FORMULA DI TAYLOR LA FORMULA DI TAYLOR LORENZO BRASCO Indice. Definizioni e risultati. Sviluppi notevoli 3.. Esponenziale 4.. Seno 4.3. Coseno 4.4. Una funzione razionale 5.5. Logaritmo 6 3. Esercizi 6. Definizioni e risultati

Dettagli

Proprietà globali delle funzioni continue

Proprietà globali delle funzioni continue Limiti e continuità Teorema di esistenza degli zeri Teorema dei valori intermedi Teorema di Weierstrass Teoremi sulla continuità della funzione inversa 2 2006 Politecnico di Torino 1 Data una funzione

Dettagli

ARGOMENTI SETTIMANA 1.

ARGOMENTI SETTIMANA 1. Programma di Analisi Matematica 1 (Canale ICM) svolto per lezioni - A. Languasco - A. Benvegnù 1 Date d esame: 24/1/217, aule P3-Lu3-Lu4; ore 9.-12.; 24/2/217, aule P3-Lu3-Lu4; ore 9.- 12.; 28/6/217, aule

Dettagli

Nel capitolo precedente abbiamo visto che sotto opportune condizioni su una funzione f : I! R si ha lo sviluppo di Taylor

Nel capitolo precedente abbiamo visto che sotto opportune condizioni su una funzione f : I! R si ha lo sviluppo di Taylor Capitolo 6 Serie numeriche Nel capitolo precedente abbiamo visto che sotto opportune condizioni su una funzione f : I! R si ha lo sviluppo di Taylor f(x) = nx k=0 f (k) (x 0 ) (x x 0 ) k + o((x x 0 ) n

Dettagli

Insiemi. Numeri complessi

Insiemi. Numeri complessi Anno accademico: 2009-200 Corso di laurea in Ingegneria Aer, Bio, Chi, Ele, Ene, Mater, Mec. Programma di Analisi Matematica I (codice: 6ACFES, 6ACFET, 6ACFEU, 6ACFEX, 6ACFFD, 6ACFFF, 6ACFFN) IA-MZ) Docente:

Dettagli

PROGRAMMA PER LA PROVA ORALE SEMPLIFICATA

PROGRAMMA PER LA PROVA ORALE SEMPLIFICATA FACOLTÀ DI INGEGNERIA. ESAME DI ANALISI MATEMATICA II. Corsi di Laurea in Bioingegneria, Ingegneria Elettronica, Ingegneria Informatica. A.A. 2011/2012. Docente: M. Veneroni PROGRAMMA PER LA PROVA ORALE

Dettagli

Curve. Hynek Kovarik. Analisi Matematica 2. Università di Brescia. Hynek Kovarik (Università di Brescia) Curve Analisi Matematica 2 1 / 28

Curve. Hynek Kovarik. Analisi Matematica 2. Università di Brescia. Hynek Kovarik (Università di Brescia) Curve Analisi Matematica 2 1 / 28 Curve Hynek Kovarik Università di Brescia Analisi Matematica 2 Hynek Kovarik (Università di Brescia) Curve Analisi Matematica 2 1 / 28 Curve Definizione (Curva in R n ) Chiamiamo curva a valori in R n

Dettagli

Argomenti della Lezione

Argomenti della Lezione 23.. Esperimenti. ANALISI Argomenti della Lezione 23. Formula di Taylor 25 novembre 20 Il caso della funzione e x I polinomi di Taylor associati a e x e alla scelta di x 0 = 0 sono da cui T m (x) = + x

Dettagli

Facoltà di Scienze MFN, Università di Cagliari Analisi Matematica 1 (Informatica), a.a. 2007/08. Insiemi numerici: sup A, inf A

Facoltà di Scienze MFN, Università di Cagliari Analisi Matematica 1 (Informatica), a.a. 2007/08. Insiemi numerici: sup A, inf A Facoltà di Scienze MFN, Università di Cagliari Analisi Matematica 1 (Informatica, a.a. 2007/08 Esercizi: Parte 1 Insiemi numerici: sup A, inf A 1. Verificare se A, nel caso sia non vuoto, è limitato superiormente,

Dettagli

SERIE NUMERICHE FAUSTO FERRARI

SERIE NUMERICHE FAUSTO FERRARI SERIE NUMERICHE FAUSTO FERRARI Materiale propedeutico alle lezioni di Analisi Matematica per i corsi di Laurea in Ingegneria Energetica e Meccanica N-Z dell Università di Bologna. Anno Accademico 2003/2004.

Dettagli

Analisi Matematica 1. Serie numeriche. (Parte 2) Dott. Ezio Di Costanzo.

Analisi Matematica 1. Serie numeriche. (Parte 2) Dott. Ezio Di Costanzo. Facoltà di Ingegneria Civile e Industriale Analisi Matematica 1 Serie numeriche (Parte 2) Dott. Ezio Di Costanzo ezio.dicostanzo@sbai.uniroma1.it Definizione Data la serie + n=0 a n si definisce resto

Dettagli

Sviluppo di Taylor. Continuando analogamente, otteniamo

Sviluppo di Taylor. Continuando analogamente, otteniamo Sviluppo di Taylor Vogliamo determinare il polinomio che meglio approssima una funzione f(x) in un dato punto x 0 Sia f:i R con x 0 I Per determinare la miglior approssimazione lineare, vogliamo determinare

Dettagli

1. Mercoledì 07/03/2018, ore: 2(2) Introduzione e presentazione del corso. Richiami: i numeri naturali, interi, razionali e reali.

1. Mercoledì 07/03/2018, ore: 2(2) Introduzione e presentazione del corso. Richiami: i numeri naturali, interi, razionali e reali. Registro delle lezioni di MATEMATICA 2 Corso di Laurea in Chimica 6 CFU - A.A. 2017/2018 docente: Francesco Demontis ultimo aggiornamento: May 17, 2018 1. Mercoledì 07/03/2018, 9 11. ore: 2(2) Introduzione

Dettagli

Equazioni non lineari: esempi. Risoluzione f (x) = 0 con x [a,b] R, f C([a,b]).

Equazioni non lineari: esempi. Risoluzione f (x) = 0 con x [a,b] R, f C([a,b]). Equazioni non lineari: esempi. Risoluzione f (x) = 0 con x [a,b] R, f C([a,b]). Equazioni non lineari: esempi. Risoluzione f (x) = 0 con x [a,b] R, f C([a,b]). Esempio 1: equazioni polinomiali p N (x)

Dettagli

Soluzione dei problemi assegnati

Soluzione dei problemi assegnati ANALISI MATEMATICA 3 Soluzione dei problemi assegnati anno accademico 2018/19 prof. Antonio Greco http://people.unica.it/antoniogreco Dipartimento di Matematica e Informatica Università di Cagliari 23-5-2019

Dettagli

A.A. 2016/17 - Analisi Matematica 1

A.A. 2016/17 - Analisi Matematica 1 A.A. 2016/17 - Analisi Matematica 1 Argomenti svolti, libro di testo di riferimento: P. Marcellini, C. Sbordone: Elementi Calcolo. Liguori Editore. O. Bernardi: Temi d esame senza tema. Ed. Libreria Progetto.

Dettagli

Corso di Laurea in Ingegneria, Settore Informazione (gruppi 2-3), A.A. 2007/2008 Docente: Antonio Ponno

Corso di Laurea in Ingegneria, Settore Informazione (gruppi 2-3), A.A. 2007/2008 Docente: Antonio Ponno Programma del Corso di Matematica A Corso di Laurea in Ingegneria, Settore Informazione (gruppi 2-3), A.A. 2007/2008 Docente: Antonio Ponno Premessa (D) dopo un teorema o una proposizione citati sta ad

Dettagli

E, la successione di numeri {f n (x 0. n f n(x) (15.1)

E, la successione di numeri {f n (x 0. n f n(x) (15.1) Capitolo 15 15.1 Successioni e serie di funzioni Sia {f n } una successione di funzioni, tutte definite in un certo insieme E dello spazio R n ; si dice che essa è convergente nell insieme E se, comunque

Dettagli

Riproduzione vietata. Capitolo 1. Serie di funzioni. 1.1 Serie di funzioni

Riproduzione vietata. Capitolo 1. Serie di funzioni. 1.1 Serie di funzioni Capitolo 1 Serie di funzioni In questo capitolo trattiamo le serie di funzioni in generale e il primo importante esempio di tali serie: le serie di potenze. Nel capitolo precedente abbiamo visto la definizione

Dettagli

Se la serie converge in C, il limite a cui tende si chiama somma della serie.

Se la serie converge in C, il limite a cui tende si chiama somma della serie. E-school di Arrigo Amadori Analisi I Serie di potenze 01 Introduzione. Le serie di potenze sono molto importanti perché costituiscono il punto di partenza per approssimare una funzione qualunque. Sono

Dettagli

e 2x2 1 (x 2 + 2x 2) ln x

e 2x2 1 (x 2 + 2x 2) ln x Corso di laurea in Ingegneria delle Costruzioni A.A. 2016-17 Analisi Matematica - Esercitazione del 04-01-2017 Ripasso di alcuni argomenti in programma Gli esercizi sono divisi in più pagine, per separare

Dettagli

Calcolo I - Corso di Laurea in Fisica - 19 Febbraio 2019 Soluzioni Scritto. a) Calcolare il dominio, asintoti ed eventuali punti di non derivabilità;

Calcolo I - Corso di Laurea in Fisica - 19 Febbraio 2019 Soluzioni Scritto. a) Calcolare il dominio, asintoti ed eventuali punti di non derivabilità; Calcolo I - Corso di Laurea in Fisica - 9 Febbraio 209 Soluzioni Scritto ) Data la funzione fx) = arctanx + 4x 2 2 x + ) a) Calcolare il dominio, asintoti ed eventuali punti di non derivabilità; b) Calcolare,

Dettagli

Matematica II prof. C.Mascia

Matematica II prof. C.Mascia Corso di laurea in CHIMICA INDUSTRIALE Sapienza, Università di Roma Matematica II prof CMascia alcuni esercizi, parte, 7 marzo 25 Indice Testi degli esercizi 2 Svolgimento degli esercizi 4 Testi degli

Dettagli

M.Bramanti, C.D.Pagani, S.Salsa Analisi Matematica 1. Ed. Zanichelli. Bologna 2008.

M.Bramanti, C.D.Pagani, S.Salsa Analisi Matematica 1. Ed. Zanichelli. Bologna 2008. MATEMATICA 1 Programma dettagliato del modulo di ANALISI MATEMATICA 1 CORSO 3 Università degli Studi di Cagliari Anno Accademico 2008/2009 Docente: R. Argiolas Riferimenti Bibliografici: M.Bramanti, C.D.Pagani,

Dettagli

Diario del corso di Analisi Matematica 1 (a.a. 2016/17)

Diario del corso di Analisi Matematica 1 (a.a. 2016/17) Diario del corso di Analisi Matematica 1 (a.a. 2016/17) 16 settembre 2016 (2 ore) Presentazione del corso. Numeri naturali, interi, razionali, reali. 2 non è razionale. Come si risolve 2 + 1 = 0? 19 settembre

Dettagli