Unità didattica: Grafici deducibili

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Unità didattica: Grafici deducibili"

Transcript

1 Unità didattica: Grafici dducibili Dstinatari: Allivi di una quarta lico scintifico PNI tal ud è insrita nllo studio dll funzioni rali di variabil ral. Programmi ministriali dl PNI: Dal Tma n 3 funzioni d quazioni : si dic di sapr oprar con somma, diffrnza, prodotto tc. di funzioni. Dal Tma n 7 analisi infinitsimal si dic di: abituar gli studnti all sam di grafici di smplici funzioni alla dduzion di informazioni dallo studio di un andamnto grafico. Pr quanto riguarda l UMI si affrma di abituar a studiar d intrprtar i grafici di funzioni già nl primo binnio. Com conoscnz si richidono qulla dll funzioni lmntari ch rapprsntano la proporzionalità dirtta, invrsa, quadratica l funzioni costanti. Si suggrisc lo studio dll funzioni linari quadratich tramit l ossrvazion dl cambiamnto di loro grafici pr fftto di trasformazioni gomtrich lmntari (traslazioni, simmtri, ). Si consiglia l uso di softwar adguati pr acquisir l comptnz rlativ alla formalizzazion rapprsntazion di lggi rlazioni. Prrquisiti Conoscnza dgli lmnti di bas dlla gomtria sinttica Conoscnza dgli lmnti di bas dl calcolo algbrico Conoscnza dgli lmnti fondamntali dl piano cartsiano; Conoscnza dll insim di numri rali, dll oprazioni in sso dfinit dll rlativ proprità Conctto di funzion, dominio codominio di una funzion, di grafico di una funzion di variabil dipndnt d indipndnt; Dfinizion di funzioni pari dispari rlativ simmtri; Dfinizion di funzion crscnt dcrscnt (funzioni monotòn); Funzioni polinomiali, funzioni razionali irrazionali, funzion sgno, funzion valor assoluto, funzion radic, funzioni sponnziali aritmich, funzioni trigonomtrich; Conctto di funzion invrsa di funzion composta; Conoscnza dll trasformazioni gomtrich sia da un punto di vista sinttico ch analitico: invarianti di una trasformazion; isomtri (traslazioni, rotazioni, simmtri) omotti; trasformazioni compost (isomtri con isomtri, isomtri con omotti similitudini); l coordinat di punti corrispondnti, ossia la dscrizion analitica di una trasformazion), dilatazion comprssion (affinità); Conoscnza minim dl softwar didattico Driv. METODOLOGIE DIDATTICHE:. L lzioni sono condott sgundo una mtodoia mista di tipo frontal di tipo intrattivo, cioè carattrizzata da un impostazion in chiav problmatica o in forma diaica con il gruppo class intorno a qusiti o problmi proposti dal docnt. 2. Sono prvist attività /o srcitazioni guidat sia di gruppo sia individuali nonché attività didattich in laboratorio (Driv soprattutto). Matriali strumnti: Lavagna gsso; Quadrno, matita, riga compasso; Libro di tsto; Calcolatric scintifica; Softwar didattico: Cabrì Géomètr Driv. OBIETTIVI SPECIFICI Conoscnz )Conoscr l principali proprità dll funzioni lmntari 2)Conoscr i conctti gomtrici ncssari a tracciar il grafico dll funzioni: y f ( ); y f ( ); y f ( ); y f ( ) ; y f ( ) ; y f ( c); y f ( ) c; y f ( ); y af ( ); y f ( a) 3)Conoscr com si costruisc il grafico dlla somma, dlla diffrnza, dl prodotto dl quozint di du funzioni;

2 4)Dal grafico dlla funzion f() conoscr com si costruisc il grafico di alcun dll più smplici f ( ) funzioni compost ovvro funzion radic f ( ), rciproca, sponnzial aritmo f ( ) ( f ( )). Abilità )Sapr riconoscr i grafici dll funzioni lmntari 2)Sapr ddurr dai grafici dll funzioni lmntari i grafici di somm, diffrnz, prodotti quozinti funzioni compost 3)Sapr tracciar i grafici dducibili y f ( ); y f ( ); y f ( ); y f ( ) ; y f ( ) ; y f ( c); y f ( ) c; y f ( ); y af ( ); y f ( a) da qullo dlla funzion f(). CONTENUTI Brv ripasso sul conctto di funzion ral di variabil ral, di Dominio, codominio, grafico di una funzion di dominio codominio di alcun funzioni lmntari Grafici dducibili da qullo di f. Grafico dlla somma diffrnza di du funzioni Grafico dl prodotto dl quozint Grafico dlla funzion composta:)grafico dlla radic, 2) Grafico dlla rciproca, 3)Grafico dl aritmo d sponnzial Applicazioni intrdisciplinari Tmpi dll intrvnto didattico: Pr svolgr l unità didattica si prvdono i sgunti tmpi: o Ripasso accrtamnto di prrquisiti o Sviluppo di contnuti dll unità didattica (comprnd anch srcizi) o Attività di laboratorio informatico o Vrifica sommativa o Consgna corrzioni vrifich Pr un total di 5h (tr sttiman). La prvision è da ritnrsi lastica, in quanto si dv tnr conto dll ncssità dgli studnti. Sviluppo di contnuti: Si inizirà lo sviluppo di contnuti andando a riprndr i conctti già visti ni prcdnti anni scolastici di funzion ral di variabil ral, di Dominio, condominio grafico di una funzion, di dominio codominio di alcun funzioni lmntari ch gli studnti dovrbbro già conoscr bn quali ad smpio il dominio condominio di funzioni polinomiali, funzioni razionali, funzioni irrazionali, funzioni goniomtrich (sin, cos tan), funzion sponnzial aritmica funzion sgno, funzion valor assoluto funzion part intra. Dopodiché sarà possibil introdurr lo studio di grafici dducibili a partir da alcun funzioni lmntari not. Lo scopo sarà il sgunt: dato nl piano cartsiano Oy il grafico dlla funzion y f (), rapprsntativo dlla funzion f, sia D f il suo dominio, tracciar, con smplici considrazioni gomtrich, il grafico dll sgunti funzioni lmntari (nl caso in cui la composizion è possibil): a. y f ( ), b. y f ( ), y f (), c. y f (), d. y f ( ),. y f ( ) c, f. y f ( c ), h. y f (a), i. y af (), m. y f ( ). Nl trattar qusto argomnto, si utilizzrà il softwar didattico Driv, ch ci sarà di grand aiuto. Gli alunni dopo avr tracciato il grafico dlla funzion in qustion, saranno condotti a scoprir proprità dll funzioni prs in sam, dando vita così a lzioni diaich. Ad smpio: nl caso a. si può pnsar di considrar la funzion y=f()=ln da cui f(-)=ln(-). Si possono proporr i grafici con driv far notar ch i punti dlla curva y ( ) si ottngono h 9h 2h 2h h 2

3 da qulli dlla y=ln cambiando con lasciando inaltrata y. L du curv sono prciò simmtrich risptto all ass y. Si possono proporr altri smpi ma alla fin occorr gnralizzar: data una funzion y=f(), il grafico dlla funzion g()=f(-) si ottin da qullo di f() tramit una simmtria assial risptto all ass dll ordinat. Nota: Gli studnti hanno modo di rivdr una trasformazion dl piano: la simmtria assial (con ass l ass y). Ho pnsato di proporr com smpio la funzion aritmo in quanto ssa vin trattata al quarto anno. In qusto modo gli studnti possono acquisir maggior dimstichzza con qusta funzion. Così anch pr il punto b. si può pnsar di considrar la funzion y=f()=ln considrar la funzion f( )=ln. Ricordar, dalla dfinizion di funzion valor assoluto ch ( ) R 0 R 0 da cui si ricava ch il grafico è il trzo visto sopra, ovvro è l union di grafici y=ln y=ln(-). Quindi in gnral si dv sottolinar ch il grafico di g()= f( ) si ottin da qullo di f() ossrvando ch: f ( ) s 0 g( ) f ( ) f ( ) s 0 Prciò il grafico di g() è il simmtrico di f() risptto all ass y pr <0 coincid con f() pr 0. (Si può ossrvar com caso particolar la funzion y=cos da cui f( )=cos, ssndo il cosno una funzion pari si ha ch cos(-)=cos da cui si ha ch il grafico di cos coincid con qullo di cos). Pr il caso c. si può smpr far l smpio dl aritmo ma si dv gnralizzar affrmando ch, data una funzion y=f(), il grafico dlla funzion g()=- f() si ottin da qullo di f() tramit una simmtria assial risptto all ass dll asciss. Com ultrior smpio si può proporr qullo dlla funzion sno:f()=sin g()=-f()=-sin=sin(-) prché la funzion sno è dispari. Poiché tal rlazion la si ottin dalla funzion y sn( ) cambiando in, il grafico di y=-sin=sin(-), è la curva simmtrica risptto all ass y di y sn( ) (ritornando al caso a.). Pr il caso d. si può proporr ancora una volta l utilizzo dlla funzion aritmo ma si dv Sottolinar ch, in gnral, il grafico dlla funzion g()= f() si ottin da qullo di f() tramit una simmtria assial risptto all ass dll asciss di qull parti di grafico ch stanno sotto tal ass lasciando invariat l altr. 3

4 Pr il caso. si può smpr sfruttar la dfinizion di funzion valor assoluto applicata al caso dl aritmo, sgundo l considrazioni fatt sopra. Pr il caso f. si può smpr partir dalla funzion aritmo indagar con driv com cambia il grafico dlla funzion aritmo s aggiungiamo alla funzion una costant:è chiaro ch bisognrà riprndr il conctto di traslazion. Siano f ( ) g( ) f ( ) c ( ) c ov c R. Pr disgnar tal grafico, bisogna prima considrar la sgunt traslazion X O Y y c (0, c) XOY traslato risptto al sistma Oy, la curva data ha quazion Nl sistma Y X. Dunqu il grafico di y ( ) c può ssr tracciato com il grafico di y nl nuovo sistma ausiliario XOY Allora il grafico dlla funzion g( ) ( ) c si ottin da qullo dlla f() mdiant una traslazion di ampizza c nlla dirzion dll ass dll y dl grafico dlla f(). Con Driv potrmmo far vdr com cambia il grafico dlla funzion ( ) ( ) g c facndo variar c ad smpio tra -5 5 di passo. Possiamo Utilizzar pr il nostro scopo il comando di: VECTOR( ( ) c,c,-5,5,). Prciò in dfinitiva c fa traslar vrso l alto o vrso il basso (cioè lungo l ass y) (a sconda ch c>0 o c<0) il grafico di y=f() di un ampizza pari a c. Nl punto g. invc è qust altra la traslazion ch si dv considrar (smpr rifrita alla funzion X c aritmo y=ln(-c)): O ( c,0) Y y XOY traslato risptto al sistma Oy, la curva data ha quazion Nl sistma Y X. Dunqu il grafico di y ( c) può ssr tracciato com il grafico di y nl nuovo sistma ausiliario XOY funzioni trasf gom 4

5 Allora il grafico dlla funzion g( ) ( c) si ottin da qullo dlla f() mdiant una traslazion di ampizza c nlla dirzion dll ass dll dl grafico dlla f(). (Anch in qusto caso, Driv ci può aiutar molto. in dfinitiva c fa traslar vrso dstra o vrso sinistra (a sconda ch c>0 o c<0) il grafico di y=f() di un ampizza pari a c. Pr il punto h. si può smpr proporr un attività con driv in cui si può considrar la funzion y=sin(a). Gli studnti dvono ossrvar ch s a si ha una dilatazion orizzontal, s a una contrazion orizzontal. In particolar si dv ossrvar anch ch cambia il priodo dlla funzion sno. Pr il caso i. utilizzando smpr la funzion sno considrando la funzion y=a sin si dv ossrvar ch: si ha una contrazion vrtical s a, una dilatazion vrtical s a. Infin l ultimo caso: caso m. la funzion ch ci può vnir ancora in aiuto è la funzion sno: così dobbiamo tracciar il grafico dlla funzion y= +sin(- ). A tal scopo dobbiamo considrar la X sgunt traslazion: O (, ). Y y Com applicazion si può pnsar di considrar l quazion oraria di un punto ch si muov di moto armonico ssndo ssa una funzion sinusoidal (s=a sin( t+ )). Si può passar poi a trattar l argomnto rlativo al: - grafico dlla Somma dlla diffrnza di du funzioni: (pr qusto argomnto non andrmo molto ni dttagli visto il poco tmpo a disposizion pr sam di stato) Dat du funzioni f g dfinit su uno stsso dominio D si può considrar sia la loro somma ch la loro diffrnza: somma f g : f ( ) g( ) ; diffrnza f g : f ( ) g( ) Com si ottngono i grafici dlla somma dlla diffrnza conoscndo i grafici dll funzioni f g? È ncssario disgnar l du funzioni f g in uno stsso piano cartsiano, succssivamnt si dv addizionar (o sottrarr), con riga compasso, in corrispondnza di ogni valor di, i sgmnti ch rapprsntano f() g(). - Grafico dl prodotto di du funzioni: Dat du funzioni f g dfinit su uno stsso dominio D si può considrar il loro prodotto: p f g : f ( ) g( ). Il grafico dlla funzion prodotto lo si ottin dirttamnt da qulli dlla funzion f() g() disgnandoli su uno stsso piano cartsiano costrundo in corrispondnza di ogni valor 0 D l ordinata dl prodotto f ( 0 ) g( 0). Ossrvazion didattica: Pr la costruzion dl grafico prodotto è bn sottolinar con gli studnti ch ssi tngano conto dll sgunti ossrvazioni:. S i du fattori f() g() sono concordi, il prodotto è positivo, altrimnti è ngativo; 2. S uno di du fattori è, il prodotto coincid con l altro fattor s è, il prodotto coincid con l opposto dll altro fattor; funzioni trasf gom 5

6 3. s uno di du fattori è in modulo maggior di (minor di ), il prodotto risulta una dilatazion (contrazion) dll altro fattor; 4. S uno di du fattori è 0, il prodotto è 0, qualunqu sia l altro fattor. - Grafico dl quozint: Dat du funzioni f g dfinit su uno stsso dominio D si può f f ( ) considrar il loro quozint: q :. Il grafico dlla funzion quozint lo si ottin g g( ) dirttamnt da qulli dlla funzion f() g(), disgnandoli contmporanamnt nllo stsso piano cartsiano. Ossrvazion didattica: Anch pr la costruzion dl grafico quozint è bn sottolinar con gli studnti ch ssi tngano conto dll sgunti ossrvazioni:. S i du fattori f() g() sono concordi, il quozint è positivo, altrimnti è ngativo; 2. S la funzion al dnominator è, il quozint coincid con il numrator; 3. s il dnominator è in modulo maggior di (minor di ), la funzion quozint si dilata (si contra); 4. s l du funzioni sono uguali, la funzion quozint è l unità; 5. s la funzion al numrator è 0 la funzion quozint è 0. - Grafico dlla funzion composta: Ossrvazion didattica: E bn dapprima ricordar agli studnti ch cosa si intnda pr composizion di funzioni. Conoscndo il grafico dlla funzion y= f() facciamo vdr com è possibil dtrminar il grafico di alcun dll più smplici funzioni compost (funzion radic, funzion rciproca, funzion aritmo funzion sponnzial).. GRAFICO DELLA RADICE 2. GRAFICO DELLA RECIPROCA Ossrvazion didattica: si faccia notar subito agli studnti ch ni punti in cui la funzion y=f() intrsca l ass dll asciss, la funzion rciproca non è dfinita. 3. GRAFICO DELLA ESPONENZIALE Ossrvazion didattica: si faccia notar agli studnti ch la funzion dov sist è smpr positiva ch quando la funzion 0, quando la funzion anch. Infin s f() < 0 allora 0< <; s 0 allora. 4. GRAFICO DEL LOGARITMO f ( ) VERIFICA SOMMATIVA: Pr la vrifica sommativa si possono proporr problmi: - Dopo avr indicato il dominio il codominio dlla funzion y= f() (ov f() è una opportuna funzion), disgnarn il grafico, indicando l vntuali simmtri facndo l opportun considrazioni; - Tracciar il grafico dlla funzion y=a+f(-c) - Ricordando il grafico dlla funzion f() disgnar il grafico di g()=(f()); ddurr poi da qusto il grafico di h()=a+(f()). - Ricordando i grafici dll funzioni f() g() disgnar il grafico dlla funzion h()=f()/g() indicandon anch dominio codominio. Tracciar poi il grafico dll funzioni sgunti: 2 3 f ( ) g( ) funzioni trasf gom 6

7 This documnt was cratd with Win2PDF availabl at Th unrgistrd vrsion of Win2PDF is for valuation or non-commrcial us only. This pag will not b addd aftr purchasing Win2PDF.

Ulteriori esercizi svolti

Ulteriori esercizi svolti Ultriori srcizi svolti Effttuar uno studio qualitativo dll sgunti funzioni ) 4 f ( ) ) ( + ) f ( ) + 3) f ( ) con particolar rifrimnto ai sgunti asptti: a) trova il dominio di f b) indica quali sono gli

Dettagli

PROGRAMMA DI RIPASSO ESTIVO

PROGRAMMA DI RIPASSO ESTIVO ISTITUTO TECNICO PER IL TURISMO EUROSCUOLA ISTITUTO TECNICO PER GEOMETRI BIANCHI SCUOLE PARITARIE PROGRAMMA DI RIPASSO ESTIVO CLASSI MATERIA PROF. QUARTA TURISMO Matmatica Andra Brnsco Làvor ANNO SCOLASTICO

Dettagli

Tecniche per la ricerca delle primitive delle funzioni continue

Tecniche per la ricerca delle primitive delle funzioni continue Capitolo 4 Tcnich pr la ricrca dll primitiv dll funzioni continu Nl paragrafo.7 abbiamo dato la dfinizion di primitiva di una funzion f avnt pr dominio un intrvallo I; abbiamo visto ch s F 0 è una primitiva

Dettagli

Esercizi sullo studio di funzione

Esercizi sullo studio di funzione Esrcizi sullo studio di funzion Prima part Pr potr dscrivr una curva, data la sua quazion cartsiana splicita f () occorr procdr scondo l ordin sgunt: 1) Dtrminar l insim di sistnza dlla f () ) Dtrminar

Dettagli

Studio di funzione. R.Argiolas

Studio di funzione. R.Argiolas Studio di unzion R.Argiolas Introduzion Prsntiamo lo studio dl graico di alcun unzioni svolt durant l srcitazioni dl corso di analisi matmatica I assgnat nll prov scritt. Ringrazio anticipatamnt tutti

Dettagli

ESERCIZI PARTE I SOLUZIONI

ESERCIZI PARTE I SOLUZIONI UNIVR Facoltà di Economia Corso di Matmatica finanziaria 008/09 ESERCIZI PARTE I SOLUZIONI Domini di funzioni di du variabili Esrcizio a f, = log +. L unica condizion di sistnza è data dalla disquazion

Dettagli

Teoria dell integrazione secondo Riemann per funzioni. reali di una variabile reale.

Teoria dell integrazione secondo Riemann per funzioni. reali di una variabile reale. Capitolo 2 Toria dll intgrazion scondo Rimann pr funzioni rali di una variabil ral Esistono vari tori dll intgrazion; tutt hanno com comun antnato il mtodo di saustion utilizzato dai Grci pr calcolar l

Dettagli

Test di autovalutazione

Test di autovalutazione UNITÀ FUNZINI E LR RAPPRESENTAZINE Tst di autovalutazion 0 0 0 0 0 50 60 70 80 90 00 n Il mio puntggio, in cntsimi, è n Rispondi a ogni qusito sgnando una sola dll 5 altrnativ. n Confronta l tu rispost

Dettagli

1 Derivate parziali 1. 2 Regole di derivazione 5. 3 Derivabilità e continuità 7. 4 Differenziabilità 7. 5 Derivate seconde e teorema di Schwarz 8

1 Derivate parziali 1. 2 Regole di derivazione 5. 3 Derivabilità e continuità 7. 4 Differenziabilità 7. 5 Derivate seconde e teorema di Schwarz 8 UNIVR Facoltà di Economia Sd di Vicnza Corso di Matmatica Drivat dll funzioni di più variabili Indic Drivat parziali Rgol di drivazion 5 3 Drivabilità continuità 7 4 Diffrnziabilità 7 5 Drivat scond torma

Dettagli

0 < a < 1 a > 1. In entrambi i casi la funzione y = a x si può studiare per punti e constatare che essa presenta i seguenti andamenti y.

0 < a < 1 a > 1. In entrambi i casi la funzione y = a x si può studiare per punti e constatare che essa presenta i seguenti andamenti y. INTRODUZIONE Ossrviamo, in primo luogo, ch l funzioni sponnziali sono dlla forma a con a costant positiva divrsa da (il caso a è banal pr cui non sarà oggtto dl nostro studio). Si possono allora vrificar

Dettagli

Esercizio 1. Cov(X,Y)=E(X,Y)- E(X)E(Y).

Esercizio 1. Cov(X,Y)=E(X,Y)- E(X)E(Y). Esrcizi di conomtria: sri 4 Esrcizio Siano, Z variabili casuali distribuit scondo la lgg multinomial di paramtri n, p, p, p p p.. Calcolar la Covarianza tra l variabili d. Soluzion Dat du variabili dinit

Dettagli

1 Il concetto di funzione 1. 2 Funzione composta 4. 3 Funzione inversa 6. 4 Restrizione e prolungamento di una funzione 8

1 Il concetto di funzione 1. 2 Funzione composta 4. 3 Funzione inversa 6. 4 Restrizione e prolungamento di una funzione 8 UNIVR Facoltà di Economia Sd di Vicnza Corso di Matmatica 1 Funzioni Indic 1 Il conctto di funzion 1 Funzion composta 4 3 Funzion invrsa 6 4 Rstrizion prolungamnto di una funzion 8 5 Soluzioni dgli srcizi

Dettagli

ALLEGATO N.3 STRATEGIE PER IL RECUPERO-POTENZIAMENTO E VALORIZZAZIONE ECCELLENZE

ALLEGATO N.3 STRATEGIE PER IL RECUPERO-POTENZIAMENTO E VALORIZZAZIONE ECCELLENZE ALLEGATO N.3 STRATEGIE PER IL RECUPERO-POTENZIAMENTO E VALORIZZAZIONE ECCELLENZE a. STRATEGIE PER IL RECUPERO DESTINATARI Il Rcupro sarà rivolto agli alunni ch prsntano ancora difficoltà nll adozion di

Dettagli

TEMPI SOGGETTI AZIONI Gennaio- Docenti dei due ordini di scuola e Pianificazione del progetto ponte per gli Anno

TEMPI SOGGETTI AZIONI Gennaio- Docenti dei due ordini di scuola e Pianificazione del progetto ponte per gli Anno PROGETTO PONTE TRA ORDINI DI SCUOLA Pr favorir la continuità ducativo didattica nl momnto dl passaggio da un ordin di scuola ad un altro, si labora un pont, sul modllo di qullo sottolncato. TEMPI SOGGETTI

Dettagli

DERIVATE. h Geometricamente è il coefficiente angolare della retta secante congiungente i punti della curva di ascissa x. y = in un punto x.

DERIVATE. h Geometricamente è il coefficiente angolare della retta secante congiungente i punti della curva di ascissa x. y = in un punto x. DERIVATE OBIETTIVI MINIMI: Conoscr la dinizion di drivata d il suo siniicato omtrico Sapr calcolar smplici drivat applicando la dinizion Conoscr l drivat dll unzioni lmntari Conoscr l rol di drivazion

Dettagli

PROGRAMMAZIONE IV Geometri. ORGANIZZAZIONE MODULARE (Divisa in unità didattiche) MODULO TITOLO DEL MODULO ORE PREVISTE A Richiami di algebra 15

PROGRAMMAZIONE IV Geometri. ORGANIZZAZIONE MODULARE (Divisa in unità didattiche) MODULO TITOLO DEL MODULO ORE PREVISTE A Richiami di algebra 15 PROGRAMMAZIONE IV Gomtri ORGANIZZAZIONE MODULARE (Divisa in unità didattich) MODULO TITOLO DEL MODULO ORE PREVISTE A Richiami di algbra 15 B Rcupro di trigonomtria C Funzioni rali a variabil ral 12 D Limiti

Dettagli

R k = I k +Q k. Q k = D k-1 - D k

R k = I k +Q k. Q k = D k-1 - D k 1 AMMORTAMENTO AMMORTAMENTO Dbito inizial D 0 si volv (al tasso fisso t) D k = D k-1 (1+t) R k [D k dbito (rsiduo) al tmpo k, R k pagamnto al tmpo k ] Condizioni [D n =0 : stinzion dl dbito in n priodi

Dettagli

Piano di lavoro a.s. 2013-2014 Insegnamento: Matematica Classe: 1B Docente: prof.ssa Sarah Baratta

Piano di lavoro a.s. 2013-2014 Insegnamento: Matematica Classe: 1B Docente: prof.ssa Sarah Baratta LICEO SCIENTIFICO AMALDI Piano di lavoro a.s. 2013-2014 Insgnamnto: Matmatica Class: 1B Docnt: prof.ssa Sarah Baratta Obittivi dlla disciplina Comptnz Utilizzar l tcnich procdur di calcolo studiat Formalizzar

Dettagli

COMMISSIONE DELLE COMUNITÀ EUROPEE. Progetto di RACCOMANDAZIONE DELLA COMMISSIONE. del (...)

COMMISSIONE DELLE COMUNITÀ EUROPEE. Progetto di RACCOMANDAZIONE DELLA COMMISSIONE. del (...) COMMISSIONE DELLE COMUNITÀ EUROPEE Bruxlls, xxx COM (2001) yyy final Progtto di RACCOMANDAZIONE DELLA COMMISSIONE dl (...) modificando la raccomandazion 96/280/CE rlativa alla dfinizion dll piccol mdi

Dettagli

SESSIONE ORDINARIA 2012 CORSI SPERIMENTALI

SESSIONE ORDINARIA 2012 CORSI SPERIMENTALI PROBLEMA SESSIONE ORDINARIA 0 CORSI SPERIMENTALI Sia ( x) ln ( x) ln x sia ( x) ln ( x) ln x.. Si dtrmino i domini di di.. Si disnino, nl mdsimo sistma di assi cartsiani ortoonali Oxy, i raici di di..

Dettagli

Funzioni lineari e affini. Funzioni lineari e affini /2

Funzioni lineari e affini. Funzioni lineari e affini /2 Funzioni linari aini In du variabili l unzioni linari sono dl tipo a b l unzioni aini sono dl tipo a b c Il graico di una unzion linar è un piano passant pr l origin il graico di una unzion ain è un piano.

Dettagli

Corso di Laurea in Economia Matematica per le applicazioni economiche e finanziarie. Esercizi 4

Corso di Laurea in Economia Matematica per le applicazioni economiche e finanziarie. Esercizi 4 Corso di Laura in Economia Matmatica pr l applicazioni conomich finanziari Esrcizi 4 Vrificar s l sgunti funzioni, nll intrvallo chiuso indicato, soddisfano l ipotsi dl torma di Roll, in caso affrmativo,

Dettagli

SCHEMA PER LA STESURA DEL PIANO DI MIGLIORAMENTO INTRODUZIONE. Per la predisposizione del piano, è necessario fare riferimento alle Linee Guida.

SCHEMA PER LA STESURA DEL PIANO DI MIGLIORAMENTO INTRODUZIONE. Per la predisposizione del piano, è necessario fare riferimento alle Linee Guida. INTRODUZIONE Pr la prdisposizion dl piano, è ncssario far rifrimnto all Lin Guida. Lo schma proposto di sguito è stato sviluppato nll ambito dl progtto Miglioramnto dll prformanc dll istituzioni scolastich

Dettagli

Appunti sulle disequazioni frazionarie

Appunti sulle disequazioni frazionarie ppunti sull disquazioni frazionari Sono utili l sgunti dfinizioni Una disquazion fratta o frazionaria è una disquazion nlla qual l incognita compar in qualch suo dnominator. Una disquazion razional è una

Dettagli

La Formazione in Bilancio delle Unità Previsionali di Base

La Formazione in Bilancio delle Unità Previsionali di Base La Formazion in Bilancio dll Unità Prvisionali di Bas Con la Lgg 3 april 1997, n. 94 sono stat introdott l Unità Prvisionali di Bas (di sguito anch solo UPB), ch rapprsntano un di aggrgazion di capitoli

Dettagli

Regimi di cambio. In questa lezione: Studiamo l economia aperta nel breve e nel medio periodo. Studiamo le crisi valutarie.

Regimi di cambio. In questa lezione: Studiamo l economia aperta nel breve e nel medio periodo. Studiamo le crisi valutarie. Rgimi di cambio In qusta lzion: Studiamo l conomia aprta nl brv nl mdio priodo. Studiamo l crisi valutari. Analizziamo brvmnt l Ar Valutari Ottimali. 279 Il mdio priodo Abbiamo visto ch gli fftti di politica

Dettagli

ISTITUTO ISTRUZIONE SUPERIORE STATALE G. CIGNA - G. BARUFFI - F. GARELLI

ISTITUTO ISTRUZIONE SUPERIORE STATALE G. CIGNA - G. BARUFFI - F. GARELLI ISTITUTO ISTRUZIONE SUPERIORE STATALE G. CIGNA - G. BARUFFI - F. GARELLI PROGRAMMAZIONE INDIVIDUALE PIANO DIDATTICO ANNUALE A.S. 2015/2016 Matria: Tcnologi Informatich Class (docnt) 1^ACH - Prof. Musumci

Dettagli

Opuscolo sui sistemi. Totogoal

Opuscolo sui sistemi. Totogoal Opuscolo sui sistmi Totogoal Più info Conoscnz calcistich pr vincr Jackpot alti Informazioni dttagliat costantmnt aggiornat sul Totogoal, sui programmi Toto sui risultati rpribili su Tltxt, a partir dalla

Dettagli

0.1. CIRCONFERENZA 1. La 0.1.1, espressa mediante la formula per la distanza tra due punti, diviene:

0.1. CIRCONFERENZA 1. La 0.1.1, espressa mediante la formula per la distanza tra due punti, diviene: 0.1. CIRCONFERENZA 1 0.1 Circonfrnza Considriamo una circonfrnza di cntro P 0 (x 0, y 0 ) raggio r, cioè il luogo di punti dl piano P (x, y) pr i quali si vrifica la rlazion: 0.1.1. P 0 P = r. La 0.1.1,

Dettagli

Istituti Tecnici Industriali. Le curvature dei percorsi scolastici verso. Robotica/Meccatronica avanzata

Istituti Tecnici Industriali. Le curvature dei percorsi scolastici verso. Robotica/Meccatronica avanzata Istituti Tcnici Industriali L curvatur di prcorsi scolastici vrso Robotica/Mccatronica avanzata MACRO-COMPETENZE IN USCITA VERSO LA ROBOTICA/MECCATRONICA AVANZATA Quattro Macro-Comptnz Spcialistich: 1.

Dettagli

ISTITUTO STATALE DI ISTRUZIONE SUPERIORE EDITH STEIN

ISTITUTO STATALE DI ISTRUZIONE SUPERIORE EDITH STEIN PIANO DI LAVORO DELLA DISCIPLINA: ESTIMO SPECIALE CLASSI: V, sz A CORSO: Costruzioni, Ambint, Trritorio AS 2015-2016 Moduli Libro Di Tsto Comptnz bas Abilità Conoscnz Disciplina Concorrnti Tmpi Critri,

Dettagli

PROPORZIONI. Cosa possiamo dire di esse? Che la superficie della figura A sta alla superficie della figura B come 4 sta a 6.

PROPORZIONI. Cosa possiamo dire di esse? Che la superficie della figura A sta alla superficie della figura B come 4 sta a 6. Corso di laura: BIOLOGIA Tutor: Floris Marta PRECORSI DI MATEMATICA PROPORZIONI Ossrvar l sgunti figur: Cosa possiamo dir di ss? Ch la suprfici dlla figura A sta alla suprfici dlla figura B com sta a 6.

Dettagli

Lemma 2. Se U V é un sottospazio vettoriale di V allora 0 U.

Lemma 2. Se U V é un sottospazio vettoriale di V allora 0 U. APPUNTI d ESERCIZI PER CASA di GEOMETRIA pr il Corso di Laura in Chimica, Facoltà di Scinz MM.FF.NN., UNICAL (Dott.ssa Galati C.) Rnd, 3 April 2 Sottospazi di uno spazio vttorial, sistmi di gnratori, basi

Dettagli

isrrrutc COS/JPRENSÌVG DJ SCUOLA

isrrrutc COS/JPRENSÌVG DJ SCUOLA prot2581_14.pdf http://www.istruzion.it/allgatì/2014/prot2581 M1URAOODGOS prot. 2581 Roma, 09/04/2014 isrrrutc COS/JPRENSÌVG DJ SCUOLA MATERNA ELftfctfTArtE H MEDIA «WALETTO (CTl Ai Dirttori Gnrali dgli

Dettagli

1 Scheda di Adesione scaricabile sul sito www.fondazionecariplo.it/scuola21. ione relativo a una ipotetica. consapevoli.

1 Scheda di Adesione scaricabile sul sito www.fondazionecariplo.it/scuola21. ione relativo a una ipotetica. consapevoli. VERSO LA COSTRUZIONE CONDIVISA DEL PIANO DIDATTICO DI SCUOLA 21 s. Istituto Tcnico Commrcial L'obittivo dl prsnt documnto è qullo di smplificar la compilazion dl Piano Didattico di Scuola 21 ch è riportato

Dettagli

Procedura Operativa Standard. Internal Dealing. Rev. 0 In vigore dal 28 marzo 2012 COMITATO DI CONTROLLO INTERNO. Luogo Data Per ricevuta

Procedura Operativa Standard. Internal Dealing. Rev. 0 In vigore dal 28 marzo 2012 COMITATO DI CONTROLLO INTERNO. Luogo Data Per ricevuta REDATTO: APPROVATO: APPROVATO: INTERNAL AUDITOR COMITATO DI CONTROLLO INTERNO C.D.A. Luogo Data Pr ricvuta INDICE 1.0 SCOPO E AMBITO DI APPLICAZIONE 2.0 RIFERIMENTI NORMATIVI 3.0 DEFINIZIONI 4.0 RUOLI

Dettagli

13 - LA PROGRAMMAZIONE DELL'ALLENAMENTO

13 - LA PROGRAMMAZIONE DELL'ALLENAMENTO 132 13 - LA PROGRAMMAZIONE DELL'ALLENAMENTO La prparazion complta dl calciator si ralizza sottoponndo il suo organismo, la sua prsonalità la sua potnzialità motoria, ad una gran quantità di stimoli ch

Dettagli

Circolare n. 1 Prot. n. 758 Roma 29/01/2015

Circolare n. 1 Prot. n. 758 Roma 29/01/2015 Ministro dll Istruzion, dll Univrsità dlla Ricrca Dipartimnto pr il sistma ducativo di istruzion formazion Dirzion Gnral pr gli ordinamnti scolastici la valutazion dl sistma nazional di istruzion Circolar

Dettagli

ESERCIZI SULLA DEMODULAZIONE INCOERENTE

ESERCIZI SULLA DEMODULAZIONE INCOERENTE Esrcitazioni dl corso di trasmissioni numrich - Lzion 4 6 Fbbraio 8 ESERCIZI SULLA DEMODULAZIONE INCOERENE I du sgnali passa basso di figura sono utilizzati pr la trasmission di simboli binari quiprobabili

Dettagli

IPOTESI ESEMPLIFICATIVA DI ORGANIZZAZIONE DEI CONTENUTI DELLA PROGRAMMAZIONE DI DIPARTIMENTO. PRIMO BIENNIO/SECONDO BIENNIO e ULTIMO ANNO

IPOTESI ESEMPLIFICATIVA DI ORGANIZZAZIONE DEI CONTENUTI DELLA PROGRAMMAZIONE DI DIPARTIMENTO. PRIMO BIENNIO/SECONDO BIENNIO e ULTIMO ANNO IPOTESI ESEMPLIFICATIVA DI ORGANIZZAZIONE DEI CONTENUTI DELLA PROGRAMMAZIONE DI DIPARTIMENTO PRIMO BIENNIO/SECONDO BIENNIO ULTIMO ANNO In cornza con i critri di validazion dlla programmazion di ass (o

Dettagli

ISTITUTO MAGISTRALE MARIA IMMACOLATA di San Giovanni Rotondo (FG) INDIRIZZO: PEDAGOGICO

ISTITUTO MAGISTRALE MARIA IMMACOLATA di San Giovanni Rotondo (FG) INDIRIZZO: PEDAGOGICO ISTITUTO MAGISTRALE MARIA IMMACOLATA di San Giovanni Rotondo (FG) INDIRIZZO: PEDAGOGICO ORGANIZZAZIONE MODULARE DEI CONTENUTI DI MATEMATICA DEL BIENNIO FINALITÀ Acquisir rigor spositivo prcision di linguaggio

Dettagli

SCUOLE PRIMARIE CLASSI QUINTE

SCUOLE PRIMARIE CLASSI QUINTE ISTITUTO COMPRENSIVO N 5 SANTA LUCIA UNITÀ DI APPRENDIMENTO 1 o QUADRIMESTRE SCUOLE PRIMARIE CLASSI QUINTE UNITA DI APPRENDIMENTO Dnominazion Compito-prodotto Comptnz mirat Comuni /cittadinanza LA CIVILTA

Dettagli

LE FRAZIONI LE FRAZIONI. La frazione è un operatore che opera su una qualsiasi grandezza e che da come risultato una grandezza omogenea a quella data.

LE FRAZIONI LE FRAZIONI. La frazione è un operatore che opera su una qualsiasi grandezza e che da come risultato una grandezza omogenea a quella data. LE FRAZIONI La frazion è un oprator ch opra su una qualsiasi grandzza ch da com risultato una grandzza omogna a qulla data. AB (Il sgmnto AB è stato diviso i tr parti sono stat prs du) Una frazion è scritta

Dettagli

Aspettative, produzione e politica economica

Aspettative, produzione e politica economica Lzion 18 (BAG cap. 17) Aspttativ, produzion politica conomica Corso di Macroconomia Prof. Guido Ascari, Univrsità di Pavia 2 1 L aspttativ la curva IS Dividiamo il tmpo in du priodi: 1. un priodo corrnt

Dettagli

PROPORZIONI. Cosa possiamo dire di esse? Che la superficie della figura A sta alla superficie della figura B come 4 sta a 6.

PROPORZIONI. Cosa possiamo dire di esse? Che la superficie della figura A sta alla superficie della figura B come 4 sta a 6. Corso di laura: BIOLOGIA Tutor: Floris Marta PRECORSI DI MATEMATICA PROPORZIONI Ossrvar l sgunti figur: Cosa possiamo dir di ss? Ch la suprfici dlla figura A sta alla suprfici dlla figura B com sta a 6.

Dettagli

Lezione 16 (BAG cap. 15) Corso di Macroeconomia Prof. Guido Ascari, Università di Pavia. Schema Lezione

Lezione 16 (BAG cap. 15) Corso di Macroeconomia Prof. Guido Ascari, Università di Pavia. Schema Lezione Lzion 6 (BAG cap. 5) Mrcati finanziari aspttativ Corso di Macroconomia Prof. Guido Ascari, Univrsità di Pavia Schma Lzion Ruolo dll aspttativ nl dtrminar ii przzi di azioni obbligazioni Sclta fra tanti

Dettagli

Tariffe delle prestazioni sanitarie nelle diverse regioni italiane. Laura Filippucci

Tariffe delle prestazioni sanitarie nelle diverse regioni italiane. Laura Filippucci Consumatori in cifr Tariff dll prstazioni sanitari nll divrs rgioni italian Laura Filippucci La rcnt proposta dl Govrno di aggiornar il tariffario dll prstazioni sanitari di laboratorio ha sollvato un

Dettagli

Compito di Fisica Generale I (Mod. A) Corsi di studio in Fisica ed Astronomia 4 aprile 2011

Compito di Fisica Generale I (Mod. A) Corsi di studio in Fisica ed Astronomia 4 aprile 2011 Compito di Fisica Gnral I (Mod A) Corsi di studio in Fisica d Astronomia 4 april 2011 Problma 1 Du blocchi A B di massa rispttivamnt m A d m B poggiano su un piano orizzontal scabro sono uniti da un filo

Dettagli

Problema 3: CAPACITA ELETTRICA E CONDENSATORI

Problema 3: CAPACITA ELETTRICA E CONDENSATORI Problma 3: CAPACITA ELETTRICA E CONDENSATORI Prmssa Il problma composto da qusiti di carattr torico da una succssiva part applicativa costituisc un validissimo smpio di quilibrio tra l divrs signz ch convrgono

Dettagli

Corso di Alta Formazione/Specialist. Lead Auditor Sistemi di Gestione per la Sicurezza. (ISO 19011:2012 - OHSAS 18001:2007) (40 ore) ISTUM

Corso di Alta Formazione/Specialist. Lead Auditor Sistemi di Gestione per la Sicurezza. (ISO 19011:2012 - OHSAS 18001:2007) (40 ore) ISTUM Corso di Alta Formazion/Spcialist Lad Auditor Sistmi di Gstion pr la Sicurzza (ISO 19011:2012 - ) (40 or) ISTUM ISTITUTO DI STUDI DI MANAGEMENT Corso riconosciuto 40 or Augusto di Prima Porta (particolar

Dettagli

Documento tratto da La banca dati del Commercialista

Documento tratto da La banca dati del Commercialista Documnto tratto da La banca dati dl Commrcialista Intrnational Accounting Standards Board Intrnational Accounting Standards, n. 17 SCOPO E CONTENUTO DEL DOCUMENTO Lasing Il prsnt Principio sostituisc lo

Dettagli

Prof. Fernando D Angelo. classe 5DS. a.s. 2007/2008. Nelle pagine seguenti troverete una simulazione di seconda prova su cui lavoreremo dopo le

Prof. Fernando D Angelo. classe 5DS. a.s. 2007/2008. Nelle pagine seguenti troverete una simulazione di seconda prova su cui lavoreremo dopo le Pro. Frnando D Anglo. class 5DS. a.s. 007/008. Nll pagin sgunti trovrt una simulazion di sconda prova su cui lavorrmo dopo l vacanz di Pasqua. Pr mrcoldì 6/03/08 guardat il problma 4 i qusiti 1 8 9-10.

Dettagli

Comunità Europea (CE) International Accounting Standards, n. 17

Comunità Europea (CE) International Accounting Standards, n. 17 Scopo contnuto dl documnto Comunità Europa (CE) Intrnational Accounting Standards, n. 17 Lasing Lasing Finalità SOMMARIO Paragrafi 1 Ambito di applicazion 2-3 Dfinizioni 4-6 Classificazion dll oprazioni

Dettagli

ANALISI STRUTTURALE sistema STRUTTURA STRUTTURA. I modelli meccanici possono suddividersi in: MODELLI CONTINUI. STRUTTURA = modello meccanico

ANALISI STRUTTURALE sistema STRUTTURA STRUTTURA. I modelli meccanici possono suddividersi in: MODELLI CONTINUI. STRUTTURA = modello meccanico AZIONI ANALISI STRUTTURALE sistma STRUTTURA STATO I modlli mccanici possono suddividrsi in: MODELLI CONTINUI Forz Coazioni STRUTTURA = modllo mccanico IDEALIZZAZIONE DELLA STRUTTURA Posizion Vlocità Acclrazion

Dettagli

04/11/2014. Coordinatore per la progettazione. Coordinatore per l esecuzione

04/11/2014. Coordinatore per la progettazione. Coordinatore per l esecuzione Committnt /o Rsponsabil di lavori Imprsa affidataria, Imprs scutrici Lavoratori autonomi 1 Committnt CHI E : soggtto pr conto dl qual l intra opra vin ralizzata, indipndntmnt da vntuali frazionamnti dlla

Dettagli

Prova scritta di Algebra 23 settembre 2016

Prova scritta di Algebra 23 settembre 2016 Prova scritta di Algbra 23 sttmbr 2016 1. Si considri la sgunt applicazion: { Z21 Z ϕ : 3 Z 7 [x] 21 ([2x] 3, [x] 7 ) a) Vrificar ch ϕ è bn dfinita. b) Dir s ([1] 3, [5] 7 ) Imϕ in tal caso trovarn la

Dettagli

la mente cosciente... oltre i neuroni?

la mente cosciente... oltre i neuroni? la mnt coscint... oltr i nuroni? smbra ch ci sia un problma insolubil pr la scinza! com puo il mondo fisico produrr qualcosa con l carattristich dlla mnt coscint? un problma cosi difficil ch qualcuno lo

Dettagli

IV-3 Derivate delle funzioni di più variabili

IV-3 Derivate delle funzioni di più variabili DERIVATE PARZIALI IV-3 Drivat dll funzioni di più variabili Indic Drivat parziali Rgol di drivazion 5 3 Drivabilità continuità 7 4 Diffrnziabilità 7 5 Drivat scond torma di Schwarz 8 6 Soluzioni dgli srcizi

Dettagli

Cod. 01. Laboratorio di Didattica Museale Museo Civico di Rieti a cura del Museo Civico di Rieti e dell Associazione Culturale ReArte

Cod. 01. Laboratorio di Didattica Museale Museo Civico di Rieti a cura del Museo Civico di Rieti e dell Associazione Culturale ReArte Cod. 01 Laboratorio di Didattica Musal a cura dl dll Associazion Cultural RArt La musica di Orfo ATTIVITÀ: Visita guidata laboratorio didattico. FASCIA DI ETÀ: 5/10 anni N. BAMBINI: Da dfinir in bas alla

Dettagli

ASSESSORATO DELLA PROGRAMMAZIONE, BILANCIO, CREDITO E ASSETTO DEL TERRITORIO Centro Regionale di Programmazione

ASSESSORATO DELLA PROGRAMMAZIONE, BILANCIO, CREDITO E ASSETTO DEL TERRITORIO Centro Regionale di Programmazione ASSESSORATO DELLA PROGRAMMAZIONE, BILANCIO, CREDITO E ASSETTO DEL TERRITORIO Cntro Rgional di Programmazion I n t r POR Sardgna FESR 2007/2013 - ASSE VI COMPETITIVITÀ Lina di attività 6.1.1.A Promozion

Dettagli

LA NOSTRA AVVENTURA NEL CREARE UN LIBRO

LA NOSTRA AVVENTURA NEL CREARE UN LIBRO LA NOSTRA AVVENTURA NEL CREARE UN LIBRO Abbiamo iniziato a lggr in class Nonno Tano la casa dll strgh. Lo scopo ra ascoltar comprndr. Sguir la mastra ch dava sprssività alla lttura imparar da lla a lggr.

Dettagli

1) La probabilità di ciascun evento elementare è non negativa. 2) La somma delle probabilità di tutti gli eventi elementari vale 1.

1) La probabilità di ciascun evento elementare è non negativa. 2) La somma delle probabilità di tutti gli eventi elementari vale 1. CAPITOLO SECONDO CALCOLO DELLE PROBABILITÀ Spazi di probabilità, vnti smplici d vnti composti Indichiamo con S lo spazio dgli vnti. Esso è un insim, i cui lmnti sono dtti vnti. Nl lancio di un dado, lo

Dettagli

SUL MODELLO DI BLACK-SHOLES

SUL MODELLO DI BLACK-SHOLES SUL MODELLO DI BLACK-SHOLES LUCA LUSSARDI 1. La dinamica di Black-Schols Il modllo di Black-Schols pr i mrcati finanziari assum com ipotsi fondamntal ch i przzi di bni finanziari sguano una bn dtrminata

Dettagli

MINISTERO DELL ISTRUZIONE, DELL UNIVERSITÁ E DELLA RICERCA UFFICIO SCOLASTICO PROVINCIALE DI SALERNO PIANO EDUCATIVO INDIVIDUALIZZATO

MINISTERO DELL ISTRUZIONE, DELL UNIVERSITÁ E DELLA RICERCA UFFICIO SCOLASTICO PROVINCIALE DI SALERNO PIANO EDUCATIVO INDIVIDUALIZZATO Distrtto Scolastico N 53 Nocra Infrior (SA) SCUOLA MEDIA STATALE Frsa- Pascoli Vial Europa ~ 84015 NOCERA SUPERIORE (SA) Tl. 081 933111-081 931395- fax: 081 936230 C.F.: 94041550651 Cod: Mcc.: SAMM28800N

Dettagli

Capitolo 1. L insieme dei numeri complessi Introduzione ai numeri complessi

Capitolo 1. L insieme dei numeri complessi Introduzione ai numeri complessi Capitolo 1 L insim di numri complssi 11 Introduzion ai numri complssi Dfinizion 111 Sia assgnata una coppia ordinata (a, b) di numri rali Si dfinisc numro complsso l sprssion z = a + ιb I numri a b sono

Dettagli

CURVE DI PROBABILITÀ PLUVIOMETRICA Le curve di probabilità pluviometrica esprimono la relazione fra le altezze di precipitazione h e la loro durata

CURVE DI PROBABILITÀ PLUVIOMETRICA Le curve di probabilità pluviometrica esprimono la relazione fra le altezze di precipitazione h e la loro durata CURVE DI PROBABILITÀ PLUVIOMETRICA L curv di probabilità pluviomtrica sprimono la rlazion fra l altzz di prcipitazion h la loro durata t, pr un assgnato valor dl priodo di ritorno T. Tal rlazion vin spsso

Dettagli

SIMT-POS 042 GESTIONE INDICATORI E MIGLIORAMENTO CONTINUO SIMT

SIMT-POS 042 GESTIONE INDICATORI E MIGLIORAMENTO CONTINUO SIMT 1 Prima Stsura Data: 14-08-2014 Rdattori: Gasbarri, Rizzo SIMT-POS 042 GESTIONE INDICATORI E MIGLIORAMENTO CONTINUO SIMT Indic 1 SCOPO... 2 2 CAMPO D APPLICAZIONE... 2 3 DOCUMENTI DI RIFERIMENTO... 2 4

Dettagli

Il DIPARTIMENTO DI ECONOMIA SCIENZE E DIRITTO DELL UNIVERSITA DEGLI STUDI EMANA

Il DIPARTIMENTO DI ECONOMIA SCIENZE E DIRITTO DELL UNIVERSITA DEGLI STUDI EMANA Il DIPARTIMENTO DI ECONOMIA SCIENZE E DIRITTO DELL UNIVERSITA DEGLI STUDI EMANA il sgunt bando pr la coprtura di insgnamnti dl Dipartimnto di ECONOMIA, SCIENZE E DIRITTO mdiant contratti di diritto privato

Dettagli

Fisica Generale VI Scheda n. 1 esercizi di riepilogo dei contenuti di base necessari. 1.) Dimostrare le seguenti identità vettoriali:

Fisica Generale VI Scheda n. 1 esercizi di riepilogo dei contenuti di base necessari. 1.) Dimostrare le seguenti identità vettoriali: Fisica Gnral VI Schda n. 1 srcizi di ripilogo di contnuti di bas ncssari 1.) Dimostrar l sgunti idntità vttoriali:. A (B C) = B (A C) C (A B) (A B) = ( A) B ( B) A ( A) = ( A) 2 A. suggrimnto: è important

Dettagli

DIPARTIMENTO DI MATEMATICA E FISICA PROGRAMMAZIONE EDUCATIVO DIDATTICA. DISCIPLINA: Matematica (Biennio)

DIPARTIMENTO DI MATEMATICA E FISICA PROGRAMMAZIONE EDUCATIVO DIDATTICA. DISCIPLINA: Matematica (Biennio) DIPARTIMENTO DI MATEMATICA E FISICA PROGRAMMAZIONE EDUCATIVO DIDATTICA DISCIPLINA: Matmatica (Binnio) Il coordinator dl Dipartimnto pr l anno 2013-2014 Prof. Tommaso Bologns Profilo dllo studnt in uscita

Dettagli

Grazie per aver scelto un telecomando Meliconi.

Grazie per aver scelto un telecomando Meliconi. IT I Grazi pr avr sclto un tlcomando Mliconi. Consrvar il prsnt librtto pr futur consultazioni. Il tlcomando Facil 1 è stato studiato pr comandar un tlvisor. Grazi alla sua ampia banca dati è in grado

Dettagli

Studiare la seguente funzione ( è richiesto lo studio di f ( x ) e la ricerca degli eventuali asintoti obliqui ) :

Studiare la seguente funzione ( è richiesto lo studio di f ( x ) e la ricerca degli eventuali asintoti obliqui ) : Ystudio Corsi lzioni d srcizi on lin di Matmatica, Statica Scinza dll costruzioni www.studio.it/sit. Dominio : Poichè la unzion è pari, lo studio vin itato al smipiano dll asciss positiv. Intrszion assi

Dettagli

Corso di laurea in Lingue e letterature moderne. Filologia, linguistica, traduzione

Corso di laurea in Lingue e letterature moderne. Filologia, linguistica, traduzione Corso di laura in Lingu lttratur modrn. Filologia,, traduzion Prsidnt Prof.Francsco Altimari francsco.altimari@unical.it Sgrtria dl corso di laura dott.ssa Rosalba Crnzia (Funzionario amministrativo) cubo

Dettagli

METODO DEGLI ELEMENTI FINITI

METODO DEGLI ELEMENTI FINITI Dal libro di tsto Zinkiwicz Taylor, Capitolo 14 pag. 398 Il mtodo dgli lmnti finiti fornisc una soluzion approssimata dl problma lastico; tal approssimazion driva non dall avr discrtizzato il dominio in

Dettagli

EUCENTRE. European Centre for Training and Research in Earthquake Engineering

EUCENTRE. European Centre for Training and Research in Earthquake Engineering Europan Cntr for Rsarch in Earthquak Enginring Parr sulla vntual obbligatorità di un intrvnto di adguamnto sismico nll ambito dll intrvnto di ristrutturazion, adguamnto ampliamnto dlla Casa Albrgo pr Anziani

Dettagli

Equazioni di Secondo Grado in Una Variabile, x Complete, Pure e Spurie. Tecniche per risolverle ed Esempi svolti

Equazioni di Secondo Grado in Una Variabile, x Complete, Pure e Spurie. Tecniche per risolverle ed Esempi svolti Equazioni di Scondo Grado in Una Variabil, x Complt, Pur Spuri. Tcnich pr risolvrl d Esmpi svolti Francsco Zumbo www.francscozumbo.it http://it.gocitis.com/zumbof/ Qusti appunti vogliono ssr un ultrior

Dettagli

UTILIZZO TASTI E FUNZIONI

UTILIZZO TASTI E FUNZIONI wb Grazi pr avr sclto un tlcomando Mliconi. Consrvar il prsnt librtto pr futur consultazioni. Il tlcomando Facil wb è stato studiato pr comandar un tlvisor. Grazi alla sua ampia banca dati è in grado di

Dettagli

UFFICIO EUROPEO DI SELEZIONE DEL PERSONALE (EPSO)

UFFICIO EUROPEO DI SELEZIONE DEL PERSONALE (EPSO) 10.11.2010 IT Gazztta ufficial dll'union uropa C 304 A/1 V (Avvisi) PROCEDIMENTI AMMINISTRATIVI UFFICIO EUROPEO DI SELEZIONE DEL PERSONALE (EPSO) BANDO DI CONCORSI GENERALI EPSO/AST/109-110/10 CORRETTORI

Dettagli

Lezione 5. Analisi a tempo discreto di sistemi ibridi. F. Previdi - Controlli Automatici - Lez. 5 1

Lezione 5. Analisi a tempo discreto di sistemi ibridi. F. Previdi - Controlli Automatici - Lez. 5 1 Lzion 5. nalisi a tmpo discrto di sistmi ibridi F. Prvidi - Controlli utomatici - Lz. 5 Schma dlla lzion. Introduzion 2. nalisi a tmpo discrto di sistmi ibridi 3. utovalori di un sistma a sgnali campionati

Dettagli

-LE ASPETTATIVE: NOZIONI DI - MERCATI FINANZIARI E BASE ASPETTATIVE

-LE ASPETTATIVE: NOZIONI DI - MERCATI FINANZIARI E BASE ASPETTATIVE 1 -LE ASPETTATIVE: NOZIONI DI BASE - MERCATI FINANZIARI E ASPETTATIVE DUE DEFINIZIONI PER IL TASSO DI INTERESSE Il tasso di intrss in trmini di monta è chiamato tasso di intrss nominal (i). Il tasso di

Dettagli

ISTITUTO TECNICO TECNOLOGICO Giacomo Chilesotti. Elettronica ed Elettrotecnica-Informatica e Telecomunicazioni-Trasporti e Logistica PIANO DI MATERIA

ISTITUTO TECNICO TECNOLOGICO Giacomo Chilesotti. Elettronica ed Elettrotecnica-Informatica e Telecomunicazioni-Trasporti e Logistica PIANO DI MATERIA 1. Dati gnrali ISTITUTO TECNICO TECNOLOGICO Giacomo Chsotti PIANO DI MATERIA Indirizzo lttronica Matria Rligion Cattolica o att. alt. Class quinta Anno scolastico: 2015/2016 2. : Sulla bas dll Indicazioni

Dettagli

ITALMOBILIARE SOCIETA PER AZIONI

ITALMOBILIARE SOCIETA PER AZIONI ITALMOBILIARE SOCIETA PER AZIONI COMUNICATO STAMPA Informazioni rlativ ai piani di stock option di ITALMOBILIARE S.p.A. ITALCEMENTI S.p.A. già sottoposti alla dcision di rispttivi organi comptnti antcdntmnt

Dettagli

Statistica multivariata Donata Rodi 04/11/2016

Statistica multivariata Donata Rodi 04/11/2016 Statistica multivariata Donata Rodi 4//6 La rgrssion logistica Costruzion di un modllo ch intrprti la dipndnza di una variabil catgorial dicotomica da un insim di variabili splicativ Trasformazioni da

Dettagli

COMUNE DI CASLANO MESSAGGIO MUNICIPALE N. 1116

COMUNE DI CASLANO MESSAGGIO MUNICIPALE N. 1116 CANTON z j J COMUNE DI CASLANO CONFEDERAZIONE SVIZZERA - TICINO MESSAGGIO MUNICIPALE N. 1116 Modifica parzial dii art. 56 di Rgolamnto organico i dipndnti comunali (ROD) con l insrimnto di nuov funzioni

Dettagli

CRITERI DI VALUTAZIONE

CRITERI DI VALUTAZIONE CRITERI DI VALUTAZIONE Poiché nl nostro prcorso si darà ampio spazio all mtodologi finalizzat a sviluppar l comptnz dgli allivi ( attravrso la dattica laboratorio, l sprinz in contsti applicativi, l analisi

Dettagli

dossier a cura di Alessandro Massari

dossier a cura di Alessandro Massari I REFERENDUM REGIONALI ABROGATIVI, CONSULTIVI, PROPOSITIVI dossir a cura di Alssandro Massari PREMESSA... 2 1. RIMBORSI SPESE... 2 2. REFERENDUM PREVISTI NELLE DISPOSIZIONI STATUTARIE DELLE REGIONI A STATUTO

Dettagli

PROGETTAZIONE DIDATTICA PER COMPETENZE

PROGETTAZIONE DIDATTICA PER COMPETENZE ISTITUTO TECNICO INDUSTRIALE STATALE G. M. MONTANI CONVITTO ANNESSO AZIENDA AGRARIA 63900 FERMO Via Montani n. 7 - Tl. 0734-622632 Fax 0734-622912 www.istitutomontani.it -mail aptf010002@istruzion.it Coc

Dettagli

INDICE 1. 1 Triangolazione di matrici Teorema di Cayley-Hamilton Matrici nilpotenti Forma canonica delle matrici 3 3.

INDICE 1. 1 Triangolazione di matrici Teorema di Cayley-Hamilton Matrici nilpotenti Forma canonica delle matrici 3 3. INDICE Torma di Cayly-Hamilton, forma canonica triangolazioni. Vrsion dl Maggio Argomnti sclti sulla triangolazion di matrici, il torma di Cayly-Hamilton sulla forma canonica dll matrici 3 3 pr i corsi

Dettagli

Il Mago di Oz - Laboratorio di teatro in inglese

Il Mago di Oz - Laboratorio di teatro in inglese Il Mago Oz - Laboratorio tatro in ingls Inviato da Raffal martdì 06 ottobr 2015 Ultimo aggiornamnto martdì 06 ottobr 2015 TAURIANO - Il Pas, la storia, l nws la sua gnt Con po ritardo pubblichiamo con

Dettagli

REPERTORIO DELLE QUALIFICAZIONI PROFESSIONALI DELLA REGIONE CAMPANIA

REPERTORIO DELLE QUALIFICAZIONI PROFESSIONALI DELLA REGIONE CAMPANIA REPERTORIO DELLE QUALIFICAZIONI PROFESSIONALI DELLA REGIONE CAMPANIA SETTORE ECONOMICO PROFESSIONALE 1 SETTORE EDILIZIA Procsso Costruzion di difici di opr di inggnria civil/industrial Squnza di procsso

Dettagli

INTRODUZIONE ALLO STUDIO DELLE MACCHINE ELETTRICHE ROTANTI

INTRODUZIONE ALLO STUDIO DELLE MACCHINE ELETTRICHE ROTANTI Gnralità INTRODUZIONE ALLO STUDIO DELLE MACCHINE ELETTRICHE ROTANTI Una acchina lttrica rotant è un convrtitor di nrgia ccanica in lttrica (gnrator) o, vicvrsa, di nrgia lttrica in ccanica (otor). Il fnono

Dettagli

I CAMBIAMENTI DI STATO

I CAMBIAMENTI DI STATO I CAMBIAMENTI DI STATO Il passaggio a uno stato in cui l molcol hanno maggior librtà di movimnto richid nrgia prché occorr vincr l forz attrattiv ch tngono vicin l molcol Ni passaggi ad uno stato in cui

Dettagli

I limiti della pubblicità televisiva

I limiti della pubblicità televisiva Consumatori in cifr I limiti dlla pubblicità tlvisiva Lucia Canzi Michl Cavuoti Prmssa 134 In Italia la rgolamntazion dlla pubblicità in tlvision è costituita da una sri di lggi, dcrti, rgolamnti codici

Dettagli

Il punto sulla liberalizzazione del mercato postale

Il punto sulla liberalizzazione del mercato postale Il punto sulla libralizzazion dl mrcato postal Andra Grillo Il punto di vista di Post Italian sul procsso di libralizzazion l implicazioni concorrnziali; l carattristich dl srvizio univrsal nll ambito

Dettagli

17 settembre 2008 Palazzo della Cultura e dei Congressi di Bologna Dott. Fabrizio Zecchin SCS Azioninnova S.p.A.

17 settembre 2008 Palazzo della Cultura e dei Congressi di Bologna Dott. Fabrizio Zecchin SCS Azioninnova S.p.A. I SGSL il Modllo Organizzativo L lin guida INAIL la OHSAS 18001: carattristich spcificità 17 sttmbr 2008 Palazzo dlla Cultura di Congrssi di Bologna Dott. Fabrizio Zcchin SCS Azioninnova S.p.A. OBIETTIVO

Dettagli

La popolazione in età da 0 a 2 anni residente nel comune di Bologna

La popolazione in età da 0 a 2 anni residente nel comune di Bologna Sttor Programmazion, Controlli La popolazion in tà da 0 a 2 anni rsidnt nl comun di Bologna Maggio 2007 La prsnt nota è stata ralizzata da un gruppo di dirignti funzionari dl Sttor Programmazion, Controlli

Dettagli

Calore Specifico

Calore Specifico 6.08 - Calor Spcifico 6.08.a) Lgg Fondamntal dlla Trmologia Un modo pr far aumntar la Tmpratura di un Corpo è qullo di cdr ad sso dl Calor, pr smpio mttndolo in Contatto Trmico con un Corpo a Tmpratura

Dettagli

PROTOCOLLO D INTESA. tra. Prefettura di Roma. Università di Roma La Sapienza. Università degli Studi di Roma Tor Vergata

PROTOCOLLO D INTESA. tra. Prefettura di Roma. Università di Roma La Sapienza. Università degli Studi di Roma Tor Vergata PROTOCOLLO D INTESA tra Prfttura di Roma Univrsità di Roma La Sapinza Univrsità dgli Studi di Roma Tor Vrgata Univrsità dgli Studi Roma Tr 1 PREMESSO ch con dcrto dl Prsidnt dl Consiglio di Ministri dl

Dettagli

RELAZIONE FINALE E MONITORAGGIO DEL PIANO DI MIGLIORAMENTO

RELAZIONE FINALE E MONITORAGGIO DEL PIANO DI MIGLIORAMENTO Istituto Comprnsivo Giovanni Calò Ginosa RELAZIONE FINALE E MONITORAGGIO DEL PIANO DI MIGLIORAMENTO LA COMUNICAZIONE SENZA FRONTIERE a.s. 2014-2015 A cura dlla Prof.ssa 1 Maria Rosaria Castria F.S. Coordinamnto

Dettagli

MATER NITÀ. La legge recentemente approvata non si limita ad emanare. eciale. congedi parentali. Legge sui congedi parentali. Legge 8 marzo2000 n.

MATER NITÀ. La legge recentemente approvata non si limita ad emanare. eciale. congedi parentali. Legge sui congedi parentali. Legge 8 marzo2000 n. Lcco Sp ciale congdi parntali Lgg 8 marzo2000 n. 53 Lgg sui congdi parntali La lgg rcntmnt approvata non si limita ad manar disposizioni spcifich pr il sostgno dlla matrnità dlla patrnità, pr il diritto

Dettagli