CORSO DI METODI MATEMATICI PER L INGEGNERIA MECCANICA

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "CORSO DI METODI MATEMATICI PER L INGEGNERIA MECCANICA"

Transcript

1 CORSO DI METODI MATEMATICI PER L INGEGNERIA MECCANICA. ALCUNE NOZIONI E STRUMENTI PRELIMINARI -RICHIAMI SUGLI SPAZI VETTORIALI Ricordimo che u vettore i R (o C ) e u -upl ordit di umeri reli (o complessi) che rppreseteremo itulmete i form di vettore colo o, equivletemete, come il trsposto di u vettore rig = = (,,..., ) M T Assegt sui vettori u operzioe di somm e di prodotto per sclri T T + y : = ( + y,..., + e : = (,..., ) R (o C ), y ) u sottoisieme V di vettori di R (o C ) ssume l struttur di Spzio Vettorile (o Spzio Liere) su R (o su C) se soddisf le segueti propriet per ogi,y,z di V e per ogi sclre, di R (o C).. + y V e V, cioe V e chiuso rispetto lle operzioi di somm e prodotto.. +y=y (y+z)=(+y)+z. 4. C e u uico vettore V, tle che +=. 5. Per ogi, c e u uico vettore tle che +=. 6. = ( e l elemeto uitrio di R (o C ) cioe tle che = R (o C) ). 7. ()=(). 8. (+y)=+y. 9. (+)=+.

2 I prticolre, dti d ritrio m vettori {,, m } o ulli, l isieme sp(,..., m ), d essi geerto (cioe l isieme di tutte le loro comizioi lieri, iclus turlmete, l comizioe ull) e uo spzio vettorile. I vettori {,, m } soo liermete idipedeti se essuo di essi puo essere geerto di rimeti o, equivletemete, solo l loro comizioe liere ull produce il vettore ullo. Se, l cotrrio, uo dei vettori di {,, m } puo essere rppresetto d u comizioe liere degli ltri, llor si dice che essi soo liermete dipedeti. Il mssimo umero di vettori liermete idipedeti che geero lo spzio vettorile V e detto dimesioe dello spzio, dim(v), ed ogi isieme di tli vettori e dett se dello spzio stesso. Se, per esempio, V = sp(,..., m ) e {i,, i } soo (<m) vettori liermete idipedeti estrtti dll isieme {,, m }, llor essi costituiscoo u possiile se per V ed ioltre dim(v)=. Lo spzio vettorile V e detto spzio vettorile ormto se e dotto di u orm, cioe di u ppliczioe di V i R, vlori o egtivi, che gode delle segueti proprietà., e = =.. =. 3. +y + y (propriet trigolre) L orm di u vettore ltro o e che l su lughezz. Ioltre, ttrverso l orm, si defiisce l distz tr due vettori e y dist(,y)= -y L orm piu comuemete ust i R e l orm Euclide, idict usulmete co e defiit d... + = +. Metre e le verificre le prime propriet dell orm, l propriet trigolre potr essere fcilmete verifict dopo ver itrodotto il prodotto sclre e l disugugliz di Cuchy-Schwrz che vedremo tr poco. Rispetto ll orm Euclide, si puo defiire l sfer uitri come l isieme { R } S = : = costituito dll isieme di puti di R che disto dll origie (cioe dl vettore ullo). Tle isieme h l form che el liguggio comue si idic, pputo, col termie sfer. Ogi fuzioe i vlori o egtivi defiit sui vettori di R e soddisfcete le 3 propriet sopr idicte puo essere ssut come orm. Cmido l orm, cmi

3 il vlore dell distz tr due vettori e, di coseguez, l form dell sfer defiit S R : = cor come l isieme { } i = i Tr gli ifiiti modi di defiire u orm i R, soo di prticolre iteresse, oltre ll orm Euclide, le segueti due orme: : = e : = m i i Il lettore disegi, i R, le corrispodeti sfere S e S cofrotdole tr loro e co l sfer Euclide S. Per ogi orm, si puo ovvimete defiire l sfer di cetro il puto e di rggio r, come l isieme { R : r} Si (, r) = i = I R tutte le orme soo equivleti, cioe : ssegte due orme I e II esistoo due costti m, M > tli che m I II M I per ogi R. Quest propriet e fodmetle perche cosete di vlutre l covergez di u procedimeto di pprossimzioe idipedetemete dll orm ust. Iftti se u successioe di vettori, per esempio u successioe di errori llor, evidetemete, che l successioe * II tede zero. * I, tede zero, U'ltr clsse importte di spzi vettorli e costituito dll isieme C [,] delle fuzioi defiite sull itervllo rele [,] ed vlori i R, derivili volte co derivt - esim cotiu. L itervllo [,], puo che essere illimitto e l idice di derivzioe puo essere ifiito: C [,]. I tli spzi e defiit l somm ed il prodotto estero (f+g)():=f ()+g() e (f )():=f (). Il lettore verifichi che tle isieme e uo spzio vettorile. I geerle, tli spzi o possoo essere geerti d u sottoisieme fiito di elemeti e quidi l loro dimesioe e ifiit. Ci soo pero dei sottospzi che mmettoo u isieme fiito di geertori e quidi u se fiit. Per esempio, l isieme P dei poliomi

4 lgerici di grdo, co l se coic {,,, } e u sottospzio liere proprio di C [,] vete dimesioe +. Ache gli spzi di fuzioi possoo essere dotti di orme; tr di esse soo di prticolre iteresse le 3 segueti orme (che evoco le 3 orme precedetemete viste i R ) f : = f ( ) d, f : = f ( ) d dett orm di Hilert, f = m f ( ) dett orm di Lgrge, o orm uiforme. L verific che e soddisfio le 3 propriet richieste per le orme, e reltivmete fcile, metre l propriet trigolre e piu complict d verificre per l orm Il cocetto di orm (o di lughezz) i uo spzio di fuzioi e u cocetto ppretemete piu strtto rispetto l cso di R, m poiche iduce u distz tr due fuzioi f e g dello spzio, dist(f,g)= f-g, ess ci cosete di misurre l loro differez, cioe l errore co cui l u pprossim l ltr. Le 3 ome cosiderte rppreseto, rispettivmete, il vlore medio di f moltiplicto per l lughezz dell itervllo -, l rdice qudrt del vlore qudrtico medio per -, ed ifie il vlore mssimo di f i [,]. Rispetto ll errore di pprossimzioe, le prime due foriscoo l errore medio e l errore qudrtico medio metre l ultim forisce l errore uiforme. Per esempio il poliomio p()=+ pprossim l fuzioe e ell itervllo [,] co errore medio e p( ) = ( e ) d = e.5. 7 ed errore uiforme e p ( ) = m e = e.77. Le orme e soo prticolrmete dtte misurre l distz tr fuzioi pprteeti spzi vettorili piu geerli. Per esempio cosiderimo lo spzio delle fuzioi limitte che mmettoo u umero fiito di discotiuit. Nelle segueti figure si vede che l distz tr l fuzioe g() e l fuzioe (discotiu) f() è i orm uiforme metre è molto piccol i orm e..

5 o g() f() - g()-f() g()-f() - o o Si osservi ioltre che, ell'esempio proposto, essu fuzioe cotiu può vere distz uiforme d f() miore di. I prticolre l fuzioe ull pprossim l f() co lo stesso errore uiforme dell g(), il che o è rgioevole. Ciò rede l orm uiforme ipproprit ll'esempio cosiderto, metre le ltre due orme cosetoo delle stime più seste. L propriet di equivlez delle orme o si trsferisce gli spzi di dimesioe ifiit. Come esempio si cosideri l successioe di fuzioi f () defiite i figur f () / ( f ) = 3 ( ) le cui orme soo dte d 3 f = = = f ( ) d ( )d,

6 f = f = ( ) d : 3 ( ) d = 3 f = m f ( ) =. Il lettore dimostri che le 3 orme o possoo essere equivleti. U ltro esempio importte di Spzio Vettorile e costituito dll isieme R m delle mtrici reli, di m righe ed coloe, co l usule operzioe di somm e di prodotto per sclri. E le osservre che tle isieme costituisce uo spzio vettorile. Ache i questo cso e possiile defiire delle orme sullo spzio vettorile. Alcui richimi sulle mtrici, sugli utovlori e sulle possiili orme di cui possoo essere dotte verr ftto, co u mggior grdo di pprofodimeto, i u cpitolo successivo. I molti spzi vettorili V e iteresste cosiderre u prodotto sclre, cioe u ppliczioe <,y> di V V R che god delle segueti propriet (qui ci limitimo l cso che V si uo spzio liere su R):. <,>, e <,>= =.. <,y>=<y,> 3. <,y+z>=<,y>+ <,z> Il prodotto sclre ci cosete di itrodurre il seguete cocetto di ortogolit. Due vettori si dicoo ortogoli ( y) se <,y>=. Ioltre, d ogi prodotto sclre si puo ssocire, i modo coico, l orm = <, > Si vede fcilmete che, i R, l fuzioe,y > : = y < gode delle 3 propriet richieste del prodotto sclre e ioltre l orm ssocit e proprio l orm Euclide. I modo logo, gli spzi lieri di fuzioi che imo cosiderto soo dotti del prodotto sclre

7 < f,g >= f()g()d l qule si ssoci l orm di Hilert f = < f, f > = f ( ) d I ogi spzio liere dotto di prodotto sclre vle l disugugliz di Cuchy- Schwrz: <,y > <, > < y, y > ttrverso l qule si puo or dimostrre, i modo reltivmete semplice, l propriet trigolre dell orm Euclide e dell orm di Hilert. V precisto, scso di equivoci, che o tutte le orme possoo essere dedotte d prodotti sclri. I prticolre, le ltre orme fi qui icotrte o derivo d prodotti sclri e quidi i reltivi spzi lieri ormti o dispogoo di u ozioe di ortogolit. Negli spzi lieri dotti di prodotto sclre, il prolem dell miglior pprossimzioe i sottospzi di dimesioe fiit trov u soluzioe qusi le. Vle iftti il seguete teorem. Si dto uo spzio vettorile V dotto di prodotto sclre ed u sottospzio proprio V m sp( u,...,u m ) =,di dimesioe fiit m. Per ogi elemeto di V \ V m, esiste u elemeto u* V m che miimizz l distz d ell orm dedott dl prodotto sclre, cioe tle che: u* u u V m Il puto u*, detto elemeto di miglior pprossimzioe, e dto dll proiezioe ortogole di su V m otteut impoedo le codizioi di ortogolit dell errore -u* rispetto tutti gli elemeti dell se di V m <-u*, u i >= per i=, m. (Equzioe di Grm-Schmidt). Il teorem e molto potete poiche e eucito i mier strtt, cioe sez precisre quli soo gli spzi i gioco che verro fissti di volt i volt secod del prolem che vorremo risolvere, ed ioltre forisce lo strumeto per trovre l soluzioe. Per esempio, dto u pio ed u puto estero l pio, possimo trovre, sul pio stesso, il puto di miim distz dl puto ssegto. Oppure, dt u fuzioe

8 cotiu, possimo trovre, per ogi fissto, il poliomio di miglior pprossimzioe tr tutti quelli di grdo. Esercizio. Assegto il pio P geerto di vettori (,,) e (,,), trovre il puto del pio P di miim distz euclide dl puto (,,). Esercizio. Si trovi il poliomio di grdo di miglior pprossimzioe, i orm di Hilert, per l fuzioe se() ell itervllo [,π]. L dimostrzioe del teorem ed u pprofodimeto el cso degli spzi R m e C [,] verr forit i u successivo cpitolo. -RICHIAMI DI CALCULUS Teorem di Weierstrss: Ogi fuzioe cotiu f: S R defiit sull isieme chiuso e limitto S, mmette mssimo e miimo. Teorem di coessioe: Si fœ C [,]. Per ogi c: f()<c<f() esiste u puto ξœ (,), tle che f(ξ)=c. Teorem di mootoi itegrle. Sio f e g œ C [,] co f() g() per ogi œ [,]. Allor Corollrio: f()d g( )d. f()d f ( ) d œ [,] si h Teorem fodmetle del clcolo itegrle: Se f œ C [,], llor per ogi f()=f()+ f ' (t)dt

9 Regol di itegrzioe per prti. Sio f e g œ C [,]. Allor f ( )g' ( )d = f ( )g( ) f '( )g( )d Teorem dell medi itegrle. Sio f e g œ C [,] e g(). Allor esiste u puto ξœ (,) tle che f ( ) g( ) d = f ( ξ ) g( ) d. Formul di Tylor. Si f œ C + [,] per qulche e sio c œ [,]. Allor esiste u ξ : <ξ< tle che f()=f(c)+f (c)(-c)+ f (c)(-c) + +! Si osservi che il poliomio p()=f(c)+f (c)(-c)+ f (c)(-c) + +! el puto c h le stesse derivte di f fio ll ordie. f ()(c) (-c) +! f ()(c) (-c)! f (+) (ξ) (-c) + ( + )! Formul d iterpolzioe poliomile. Si f œ C + [,] per qulche e sio (=) < < < (=), + puti distiti di [,]. Allor per ogi œ [,] esiste u ξœ (,) per cui vle l idetit: f()=f( )+f[, ](- )+f[,, ](- )(- )+ +f[,,, ](- )(- ) (- - )+ + f (+) (ξ) (- )..(- ) ( + )! dove i termii f[,,, ], detti: differeze divise di ordie, soo defiiti ricorsivmete d f[,,, ]= essedo f[ i ] = f( i ) f [,, ]- f [,,, - ] l differez di ordie. Le differeze possoo essere costruite fcilmete co lo schem

10 f( ) f( ) f[, ] f( ) f[, ] f[,, ] f( ) f[ -, ] f[,..., ]. Il poliomio di grdo p()=f( )+f[, ](- )+f[,, ](- )(- )+ +f[,,, ](- )(- ) (- - ) e detto poliomio di iterpolzioe dell fuzioe f sui odi,,,,e soddisf le codizioi di iterpolzioe: p ( i )=f ( i ) i=,,, metre il termie f (+) (ξ) (- )..(- ) ( + )! e il resto ( o errore) di iterpolzioe.

APPLICAZIONI LINEARI

APPLICAZIONI LINEARI APPLICAZIONI LINEARI 1. DEFINIZIONE DI APPLICAZIONE LINEARE. Sio V e W due spzi vettorili su u medesimo cmpo K. Si :V W u ppliczioe di V i W. Si dice che l è u ppliczioe liere di V i W se soo veriicte

Dettagli

, dove s n è la somma parziale n-esima definita da. lim s n = lim s n = + (= ). a n = a 1 + a 2 +...

, dove s n è la somma parziale n-esima definita da. lim s n = lim s n = + (= ). a n = a 1 + a 2 +... . serie umeriche Def. (serie). Dt u successioe ( ) (co R per ogi ), si chim serie di termie geerle l successioe (s ), dove s è l somm przile -esim defiit d () s = + 2 +... + = k. L serie coverge (semplicemete)

Dettagli

I. COS E UNA SUCCESSIONE

I. COS E UNA SUCCESSIONE 5 - LE SUCCESSIONI I. COS E UNA SUCCESSIONE L sequez 0 = = 0 3 = 3 = 4 =... 3 5 = +... costituisce u esempio di SUCCESSIONE. 90 Ecco u ltro esempio di successioe: 3 4 = 3 = 3 3 = 3 4 = 3... = 3... U successioe

Dettagli

L INTEGRALE DEFINITO b f (x) d x a 1

L INTEGRALE DEFINITO b f (x) d x a 1 L INTEGRALE DEFINITO ( ) d ARGOMENTI. Il Trpezoide re del Trpezoide. L itegrle deiito de. Di Riem. Proprietà dell itegrle deiito teorem dell medi. L uzioe itegrle teorem di Torricelli-Brrow e corollrio

Dettagli

Nel gergo delle disequazioni vi sono dei simboli che devono essere conosciuti leggendoli da sinistra a destra:

Nel gergo delle disequazioni vi sono dei simboli che devono essere conosciuti leggendoli da sinistra a destra: Disequzioi Mrio Sdri DISEQUAZIONI Defiizioi U disequzioe è u disegugliz tr due espressioi che cotegoo icogite. Risolvere u disequzioe sigific trovre quell'isieme di vlori che, ttriuiti lle icogite, l redoo

Dettagli

Successioni e serie. Ermanno Travaglino

Successioni e serie. Ermanno Travaglino Successioi e serie Ermo Trvglio U successioe è u sequez ordit di umeri o di ltre grdezze, e u serie è l somm dei termii di tle sequez. U successioe si rppreset co l'espressioe,,,, ell qule è u itero positivo,

Dettagli

ma non sono uguali fra loro

ma non sono uguali fra loro Defiizioe U fuzioe f defiit i D (doiio) si dice cotiu i u puto c D se esiste i tle puto (è cioè possiile clcolre f (c)); se esiste, fiito, il ite dell fuzioe per che tede c e se il vlore del ite coicide

Dettagli

3. Si determini l area del segmento parabolico di base AB e si verifichi che essa è 3

3. Si determini l area del segmento parabolico di base AB e si verifichi che essa è 3 MINIERO DELL'IRUZIONE,DELL'UNIERIÀ E DELLA RICERCA CUOLE IALIANE ALL EERO EAMI DI AO DI LICEO CIENIFICO essioe Ordiri s 00/005 ECONDA PROA CRIA em di Mtemtic Il cdidto risolv uo dei due problemi e quesiti

Dettagli

1. L'INSIEME DEI NUMERI REALI

1. L'INSIEME DEI NUMERI REALI . L'INSIEME DEI NUMERI REALI. I pricipli isiemi di umeri Ripredimo i pricipli isiemi umerici N, l'isieme dei umeri turli 0; ; ; ; ;... L'ide ituitiv di umero turle è ssocit l prolem di cotre e ordire gli

Dettagli

- 1 - 4. Per le funzioni reali di variabile reale si può dare la seguente definizione dovuta a Dirichlet:

- 1 - 4. Per le funzioni reali di variabile reale si può dare la seguente definizione dovuta a Dirichlet: - - Fuzioi Defiizioi fodmetli. Dti due isiemi o vuoti X e Y si chim ppliczioe o fuzioe d X Y u relzioe tr i due isiemi che d ogi X f corrispodere uo ed u solo y Y. Se y è l immgie di trmite f, si scrive

Dettagli

Progressioni geometriche

Progressioni geometriche Progressioi geometriche Comicimo co due esempi: Esempio Cosiderimo l successioe di umeri:, 6,, 4, 48, 96 L successioe è tle che si pss d u termie l successivo moltiplicdo il precedete per. Si dice che

Dettagli

DOTTORATO DI RICERCA IN GEOFISICA-XXIIICICLO/ EQUAZIONI ALLE DERIVATE PARZIALI (Prof. BONAFEDE)

DOTTORATO DI RICERCA IN GEOFISICA-XXIIICICLO/ EQUAZIONI ALLE DERIVATE PARZIALI (Prof. BONAFEDE) DOTTORATO DI RICERCA IN GEOFISICA-XXIIICICLO/ EQUAZIONI ALLE DERIVATE PARZIALI (Prof. BONAFEDE) Mggi C. & Bccesci P. Soluzioe problem V Puto 1: T Clcolre l soluzioe stziori dell (1) euivle d imporre l

Dettagli

2 Sistemi di equazioni lineari.

2 Sistemi di equazioni lineari. Sistemi di equzioi lieri. efiizioe. Si dice equzioe liere elle icogite equzioe dell form () + +...+ = o che (') i= i i = ove,,..., R si chimo coefficieti e R termie oto.,,..., ogi efiizioe. Si dice soluzioe

Dettagli

Misurare una grandezza fisica significa stabilire quante unità di misura sono contenute nella grandezza stessa.

Misurare una grandezza fisica significa stabilire quante unità di misura sono contenute nella grandezza stessa. L misur: Misurre u grdezz fisic sigific stilire qute uità di misur soo coteute ell grdezz stess. L misur di u grdezz si dice dirett qudo si effettu per cofroto co u grdezz d ess omogee scelt come cmpioe

Dettagli

Metodi d integrazione di Montecarlo

Metodi d integrazione di Montecarlo Metodi d itegrzioe di Motecrlo Simulzioe l termie simulzioe ell su ccezioe scietific h u sigificto diverso dll ccezioe correte. Nell uso ordirio è sioimo si fizioe; ell uso scietifico è sioimo di imitzioe,

Dettagli

PARTE QUARTA Teoria algebrica dei numeri

PARTE QUARTA Teoria algebrica dei numeri Prerequisiti: Aelli Spazi vettoriali Sia A u aello commutativo uitario PARTE QUARTA Teoria algebrica dei umeri Lezioe 7 Cei sui moduli Defiizioe 7 Si dice modulo (siistro) su A (o semplicemete, A-modulo)

Dettagli

AUTOVALORI ED AUTOVETTORI. Sia V uno spazio vettoriale di dimensione finita n.

AUTOVALORI ED AUTOVETTORI. Sia V uno spazio vettoriale di dimensione finita n. AUTOVALORI ED AUTOVETTORI Si V uno spzio vettorile di dimensione finit n. Dicesi endomorfismo di V ogni ppliczione linere f : V V dello spzio vettorile in sé. Se f è un endomorfismo di V in V, considert

Dettagli

Successioni. Grafico di una successione

Successioni. Grafico di una successione Successioi Ua successioe di umeri reali è semplicemete ua sequeza di ifiiti umeri reali:, 2, 3,...,,... dove co idichiamo il termie geerale della successioe. Ad esempio, discutedo il sigificato fiaziario

Dettagli

Successioni e Logica. Preparazione Gara di Febbraio 2009. Gino Carignani

Successioni e Logica. Preparazione Gara di Febbraio 2009. Gino Carignani Successioi e Logic Preprzioe Gr di Febbrio 009 Gio Crigi Progressioe ritmetic è u successioe di umeri tli che l differez tr ciscu termie e il suo precedete si u costte d (rgioe) d α α d α d K ( α )d 3

Dettagli

Anno 5 Successioni numeriche

Anno 5 Successioni numeriche Ao 5 Successioi umeriche Itroduzioe I questa lezioe impareremo a descrivere e calcolare il limite di ua successioe. Ma cos è ua successioe? Come si calcola il suo limite? Al termie di questa lezioe sarai

Dettagli

52. Se in una città ci fosse un medico ogni 500 abitanti, quale sarebbe la percentuale di medici? A) 5 % B) 2 % C) 0,2 % D) 0,5% E) 0,02%

52. Se in una città ci fosse un medico ogni 500 abitanti, quale sarebbe la percentuale di medici? A) 5 % B) 2 % C) 0,2 % D) 0,5% E) 0,02% RISPOSTE MOTIVATE QUIZ D AMMISSIONE 2000-2001 MATEMATICA 51. L espressioe log( 2 ) equivale a : A) 2log B) log2 C) 2log D) log E) log 2 Dati 2 umeri positivi a e b (co a 1), si defiisce logaritmo i base

Dettagli

EQUAZIONI ESPONENZIALI -- LOGARITMI

EQUAZIONI ESPONENZIALI -- LOGARITMI Equzioi espoezili e riti pg 1 Adolfo Sioe 1998 EQUAZIONI ESPONENZIALI -- LOGARITMI Fuzioe Espoezile Dto u uero rele positivo osiderio l fuzioe f : R R he d ogi eleeto R f orrispodere l'eleeto y =. Se =

Dettagli

Calcolo delle Radici Veriano Veracini Veriano.Veracini@inwind.it

Calcolo delle Radici Veriano Veracini Veriano.Veracini@inwind.it Verio Vercii Clcolo delle rdici Clcolo delle Rdici Verio Vercii Verio.Vercii@iwid.it Premess Lo scopo di queste pgie è quello di descrivere lcui metodi prtici per il clcolo delle rdici, compresi lcui metodi

Dettagli

Trasmissione del calore con applicazioni

Trasmissione del calore con applicazioni Corsi di Lure i Igegeri Meccic Trsmissioe del clore co ppliczioi umeriche: iformtic pplict.. 4/5 Teori Prte II Ig. Nicol Forgioe Diprtimeto di Igegeri Civile E-mil: icol.forgioe@ig.uipi.it; tel. 5857 Sistemi

Dettagli

Teorema 13. Se una sere converge assolutamente, allora converge:

Teorema 13. Se una sere converge assolutamente, allora converge: Apputi sul corso di Aalisi Matematica complemeti (a) - prof. B.Bacchelli Apputi 03: Riferimeti: R.Adams, Calcolo Differeziale.- Si cosiglia vivamete di fare gli esercizi del testo. Covergeza assoluta e

Dettagli

SUCCESSIONI NUMERICHE

SUCCESSIONI NUMERICHE SUCCESSIONI NUMERICHE Ua fuzioe reale di ua variabile reale f di domiio A è ua legge che ad ogi x A associa u umero reale che deotiamo co f(x). Se A = N, la f è detta successioe di umeri reali. Se co si

Dettagli

Polinomi, disuguaglianze e induzione.

Polinomi, disuguaglianze e induzione. Allemeti Disid Mtemtic Geio 03 Poliomi, disuguglize e iduzioe. Qul è l mssim re di u rettgolo vete perimetro ugule 576? [Suggerimeto: utilizzre le medie e le loro disuguglize.] Svolgimeto. Predimo i cosiderzioe

Dettagli

Calcolo combinatorio. Definizione

Calcolo combinatorio. Definizione Clcolo comitorio Lortorio di Bioiformtic Corso A 5-6 Defiizioe Il Clcolo Comitorio è l isieme delle teciche che permettoo di cotre efficietemete il umero di possiili scelte, comizioi, lliemeti etc. di

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Fcoltà di Igegeri - Lure Triele i Igegeri Meccic Corso di Clcolo Numerico Dott.ss M.C. De Bois Uiversità degli Studi dell Bsilict, Potez Fcoltà di Igegeri Corso di Lure i Igegeri Meccic Ao Accdemico 004/05

Dettagli

Foglio di esercizi N. 1 - Soluzioni

Foglio di esercizi N. 1 - Soluzioni Foglio di esercizi N. - Soluzioi. Determiare il domiio della fuzioe f) = log 3 + log 3 3)). Deve essere + log 3 3) > 0, ovvero log 3 3) >, ovvero prededo l espoeziale i base 3 di etrambi i membri) 3 >

Dettagli

SUCCESSIONI e LIMITI DI SUCCESSIONI. c Paola Gervasio - Analisi Matematica 1 - A.A. 15/16 Successioni cap3b.pdf 1

SUCCESSIONI e LIMITI DI SUCCESSIONI. c Paola Gervasio - Analisi Matematica 1 - A.A. 15/16 Successioni cap3b.pdf 1 SUCCESSIONI e LIMITI DI SUCCESSIONI c Paola Gervasio - Aalisi Matematica 1 - A.A. 15/16 Successioi cap3b.pdf 1 Successioi Def. Ua successioe è ua fuzioe reale (Y = R) a variabile aturale, ovvero X = N:

Dettagli

Esercizi riguardanti limiti di successioni

Esercizi riguardanti limiti di successioni Esercizi riguardati iti di successioi Davide Boscaii Queste soo le ote da cui ho tratto le esercitazioi del gioro 27 Ottobre 20. Come tali soo be lugi dall essere eseti da errori, ivito quidi chi e trovasse

Dettagli

5. Le serie numeriche

5. Le serie numeriche 5. Le serie umeriche Ricordiamo che ua successioe reale è ua fuzioe defiita da N, evetualmete privato di u umero fiito di elemeti, a R. Solitamete si idica ua successioe co la lista dei suoi valori: (a

Dettagli

Soluzione La media aritmetica dei due numeri positivi a e b è data da M

Soluzione La media aritmetica dei due numeri positivi a e b è data da M Matematica per la uova maturità scietifica A. Berardo M. Pedoe 6 Questioario Quesito Se a e b soo umeri positivi assegati quale è la loro media aritmetica? Quale la media geometrica? Quale delle due è

Dettagli

I appello - 29 Giugno 2007

I appello - 29 Giugno 2007 Facoltà di Igegeria - Corso di Laurea i Ig. Iformatica e delle Telecom. A.A.6/7 I appello - 9 Giugo 7 ) Studiare la covergeza putuale e uiforme della seguete successioe di fuzioi: [ ( )] f (x) = cos (

Dettagli

Successioni. Capitolo 2. 2.1 Definizione

Successioni. Capitolo 2. 2.1 Definizione Capitolo 2 Successioi 2.1 Defiizioe Ua prima descrizioe, più ituitiva che rigorosa, di quel che itediamo per successioe cosiste i: Ua successioe è ua lista ordiata di oggetti, avete u primo ma o u ultimo

Dettagli

PROGETTO SIRIO PRECORSO di MATEMATICA Teoria

PROGETTO SIRIO PRECORSO di MATEMATICA Teoria Vi Aldo Mo ro, 1097-300 15 Chioggi (VE) t el. 0414 965 81 1 - fx 0 414 96 54 3 - ww w. itisri ghi.com POTENZA i N... DIVISIBILITÀ e NUMERI PRIMI...3 MASSIMO COMUN DIVISORE e MINIMO COMUNE MULTIPLO...3

Dettagli

APPROFONDIMENTI SUI NUMERI

APPROFONDIMENTI SUI NUMERI APPROFONDIMENTI SUI NUMERI. Il sistem di umerzioe deimle Be presto, ll operzioe turle del otre, si è ggiut l esigez di «rppresetre» i umeri. I sistemi di umerzioe possiili soo molti; per or i limitimo

Dettagli

Capitolo Decimo SERIE DI FUNZIONI

Capitolo Decimo SERIE DI FUNZIONI Capitolo Decimo SERIE DI FUNZIONI SUCCESSIONI DI FUNZIONI I cocetti di successioe e di serie possoo essere estesi i modo molto aturale al caso delle fuzioi DEFINIZIONE Sia E u sottoisieme di  e, per ogi

Dettagli

Serie numeriche: esercizi svolti

Serie numeriche: esercizi svolti Serie umeriche: esercizi svolti Gli esercizi cotrassegati co il simbolo * presetao u grado di difficoltà maggiore. Esercizio. Dopo aver verificato la covergeza, calcolare la somma delle segueti serie:

Dettagli

EQUAZIONI ALLE RICORRENZE

EQUAZIONI ALLE RICORRENZE Esercizi di Fodameti di Iformatica 1 EQUAZIONI ALLE RICORRENZE 1.1. Metodo di ufoldig 1.1.1. Richiami di teoria Il metodo detto di ufoldig utilizza lo sviluppo dell equazioe alle ricorreze fio ad u certo

Dettagli

Indice. Le derivate. Successioni e serie numeriche

Indice. Le derivate. Successioni e serie numeriche Iie pitolo Suessioi e serie umerihe. Suessioi umerihe Rppresetzioe grfi, Suessioi mootòe,. Limiti elle suessioi Suessioi overgeti, Suessioi ivergeti, Suessioi ietermite, 6. Teoremi e operzioi sui limiti

Dettagli

SUCCESSIONI E SERIE NUMERICHE

SUCCESSIONI E SERIE NUMERICHE SUCCESSIONI E SERIE NUMERICHE. Successioi umeriche a. Defiizioi: successioi aritmetiche e geometriche Cosideriamo ua sequeza di umeri quale ad esempio:,5,8,,4,7,... Tale sequeza è costituita mediate ua

Dettagli

" Osservazione. 6.1 Integrale indefinito. R Definizione (Primitiva) E Esempio 6.1 CAPITOLO 6

 Osservazione. 6.1 Integrale indefinito. R Definizione (Primitiva) E Esempio 6.1 CAPITOLO 6 CAPITOLO 6 Clcolo integrle 6. Integrle indefinito L nozione fondmentle del clcolo integrle è quell di funzione primitiv di un funzione f (). Tle nozione è in qulche modo speculre ll nozione di funzione

Dettagli

P ROGRAMMA DEL CORSO DI MAT EMAT ICA Calcolo di erenziale in una variabile. Funzioni: dominio, immagine, funzioni composte ed inverse.

P ROGRAMMA DEL CORSO DI MAT EMAT ICA Calcolo di erenziale in una variabile. Funzioni: dominio, immagine, funzioni composte ed inverse. P ROGRAMMA DEL CORSO DI MAT EMAT ICA Clcolo i erezile i u vribile. Fuzioi: omiio, immgie, fuzioi composte e iverse. Esempi: Curve e super ci. Simmetrie, perioicità, gr ci. Fuzioi elemetri: Poteze, espoezile

Dettagli

Corso di laurea in Matematica Corso di Analisi Matematica 1-2 Dott.ssa Sandra Lucente 1 Funzioni potenza ed esponenziale.

Corso di laurea in Matematica Corso di Analisi Matematica 1-2 Dott.ssa Sandra Lucente 1 Funzioni potenza ed esponenziale. Corso di laurea i Matematica Corso di Aalisi Matematica -2 Dott.ssa Sadra Lucete Fuzioi poteza ed espoeziale. Teorema. Teorema di esisteza della radice -esima. Sia N. Per ogi a R + esiste uo ed u solo

Dettagli

V Tutorato 6 Novembre 2014

V Tutorato 6 Novembre 2014 1. Data la successioe V Tutorato 6 Novembre 01 determiare il lim b. Data la successioe b = a = + 1 + 1 8 6 + 1 80 + 18 se 0 se < 0 scrivere i termii a 0, a 1, a, a 0 e determiare lim a. Data la successioe

Dettagli

Campi vettoriali conservativi e solenoidali

Campi vettoriali conservativi e solenoidali Campi vettoriali coservativi e soleoidali Sia (x,y,z) u campo vettoriale defiito i ua regioe di spazio Ω, e sia u cammio, di estremi A e B, defiito i Ω. Sia r (u) ua parametrizzazioe di, fuzioe della variabile

Dettagli

SPAZI VETTORIALI. 1. Spazi e sottospazi vettoriali

SPAZI VETTORIALI. 1. Spazi e sottospazi vettoriali SPAZI VETTORIALI 1. Spzi e sottospzi vettorili Definizione: Dto un insieme V non vuoto e un corpo K di sostegno si dice che V è un K-spzio vettorile o uno spzio vettorile su K se sono definite un operzione

Dettagli

SUCCESSIONI NUMERICHE

SUCCESSIONI NUMERICHE SUCCESSIONI NUMERICHE LORENZO BRASCO. Teoremi di Cesaro Teorema di Stolz-Cesaro. Siao {a } N e {b } N due successioi umeriche, co {b } N strettamete positiva, strettamete crescete e ilitata. Se esiste

Dettagli

1 Successioni 1 1.1 Limite di una successione... 2. 2 Serie 3 2.1 La serie armonica... 6 2.2 La serie geometrica... 6

1 Successioni 1 1.1 Limite di una successione... 2. 2 Serie 3 2.1 La serie armonica... 6 2.2 La serie geometrica... 6 SUCCESSIONI Successioi e serie Idice Successioi. Limite di ua successioe........................................... Serie 3. La serie armoica................................................ 6. La serie

Dettagli

Limiti di successioni

Limiti di successioni Argometo 3s Limiti di successioi Ua successioe {a : N} è ua fuzioe defiita sull isieme N deiumeriaturaliavalori reali: essa verrà el seguito idicata più brevemeteco{a } a èdettotermie geerale della successioe

Dettagli

CONCETTI BASE DI STATISTICA

CONCETTI BASE DI STATISTICA CONCETTI BASE DI STATISTICA DEFINIZIONI Probabilità U umero reale compreso tra 0 e, associato a u eveto casuale. Esso può essere correlato co la frequeza relativa o col grado di credibilità co cui u eveto

Dettagli

LA DERIVATA DI UNA FUNZIONE

LA DERIVATA DI UNA FUNZIONE LA DERIVATA DI UNA FUNZIONE OBIETTIVO: Defiire lo strumeto matematico ce cosete di studiare la cresceza e la decresceza di ua fuzioe Si comicia col defiire cosa vuol dire ce ua fuzioe è crescete. Defiizioe:

Dettagli

CALCOLARE VELOCEMENTE I LIMITI DI SUCCESSIONI finora 51 esercizi sviluppati + molti limiti notevoli dimostrati di Leonardo Calconi

CALCOLARE VELOCEMENTE I LIMITI DI SUCCESSIONI finora 51 esercizi sviluppati + molti limiti notevoli dimostrati di Leonardo Calconi CALCOLARE VELOCEMENTE I LIMITI DI SUCCESSIONI fior 5 esercizi sviluppti + molti limiti otevoli dimostrti di Leordo Clcoi Arevizioi: N = Numertore, D = Deomitore, sg = sego di L clssificzioe che segue è

Dettagli

5 ln n + ln. 4 ln n + ln. 6 ln n + ln

5 ln n + ln. 4 ln n + ln. 6 ln n + ln DOMINIO FUNZIONE Determiare il domiio della fuzioe f = l e e + e + e Deve essere e e + e + e >, posto e = t si ha t e + t + e = per t = e e per t = / Il campo di esisteza è:, l, + Determiare il domiio

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2006

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2006 ESAME DI STAT DI LICE SCIENTIFIC CRS DI RDINAMENT 006 Il cadidato risolva uo dei due problemi e 5 dei 0 quesiti i cui si articola il questioario. PRBLEMA U filo metallico di lughezza l viee utilizzato

Dettagli

Successioni ricorsive di numeri

Successioni ricorsive di numeri Successioi ricorsive di umeri Getile Alessadro Laboratorio di matematica discreta A.A. 6/7 I queste pagie si voglioo predere i esame alcue tra le più famose successioi ricorsive, presetadoe alcue caratteristiche..

Dettagli

ESERCIZI DI ANALISI I. Prof. Nicola Fusco 1. Determinare l insieme in cui sono definite le seguenti funzioni:

ESERCIZI DI ANALISI I. Prof. Nicola Fusco 1. Determinare l insieme in cui sono definite le seguenti funzioni: N. Fusco ESERCIZI DI ANALISI I Prof. Nicola Fusco Determiare l isieme i cui soo defiite le segueti fuzioi: ) log/ arctg π ) 4 ) log π 6 arcse ) ) tg log π + ) 4) 4 se se se tg 5) se cos tg 6) [ 6 + 8 π

Dettagli

Successioni di funzioni

Successioni di funzioni Successioi di fuzioi Defiizioe. U successioe di fuzioi f : A R, N coverge putulmete d u fuzioe f : A R se f (x) = f(x) per ogi x A. L successioe coverge uiformemete d f se ccde che per ogi > 0 esiste N

Dettagli

APPUNTI DI MATEMATICA ALGEBRA \ ARITMETICA \ NUMERI NATURALI (1)

APPUNTI DI MATEMATICA ALGEBRA \ ARITMETICA \ NUMERI NATURALI (1) ALGEBRA \ ARITMETICA \ NUMERI NATURALI (1) I umeri aturali hao u ordie; ogi umero aturale ha u successivo (otteuto aggiugedo 1), e ogi umero aturale diverso da zero ha u precedete (otteuto sottraedo 1).

Dettagli

UNIVERSITA DEGLI STUDI DI FERRARA Scuola Di Specializzazione Per L insegnamento Secondario

UNIVERSITA DEGLI STUDI DI FERRARA Scuola Di Specializzazione Per L insegnamento Secondario UNIVERSITA DEGLI STUDI DI FERRARA Scuol Di Specilizzzioe Per L isegmeto Secodrio CLASSE DI SPECIALIZZAZIONE A049-A059 Tem: Progressioi Aritmetiche e Geometriche. Successioi. Limite di u Successioe. Fuzioi

Dettagli

ARGOMENTI INTRODUTTIVI AI CORSI DI MATEMATICA DELLA FACOLTA DI INGEGNERIA SEDE DI MODENA

ARGOMENTI INTRODUTTIVI AI CORSI DI MATEMATICA DELLA FACOLTA DI INGEGNERIA SEDE DI MODENA GOMENTI INTODUTTIVI I COSI DI MTEMTIC DELL FCOLT DI INGEGNEI SEDE DI MODEN Espoimo i modo molto suito le deiizioi e le proprietà he verro riteute ote e utilizzte ei Corsi di Mtemti he seguiro Per u trttzioe

Dettagli

IL CALCOLO COMBINATORIO

IL CALCOLO COMBINATORIO IL CALCOLO COMBINATORIO Calcolo combiatorio è il termie che deota tradizioalmete la braca della matematica che studia i modi per raggruppare e/o ordiare secodo date regole gli elemeti di u isieme fiito

Dettagli

Facoltà di Economia - Università di Sassari Anno Accademico 2004-2005. Dispense Corso di Econometria Docente: Luciano Gutierrez.

Facoltà di Economia - Università di Sassari Anno Accademico 2004-2005. Dispense Corso di Econometria Docente: Luciano Gutierrez. Fcoltà di Economi - Università di Sssri Anno Accdemico 2004-2005 Dispense Corso di Econometri Docente: Lucino Gutierrez Algebr Linere Progrmm: 1.1 Definizione di mtrice e vettore 1.2 Addizione e sottrzione

Dettagli

II-9 Successioni e serie

II-9 Successioni e serie SUCCESSIONI II-9 Successioi e serie Idice Successioi. Limite di ua successioe........................................... Serie 3. La serie armoica................................................ 6. La

Dettagli

ESERCIZI DI ANALISI MATEMATICA. xn lim sup. lim inf x n. lim sup x n. = L, allora esiste anche lim e vale L.

ESERCIZI DI ANALISI MATEMATICA. xn lim sup. lim inf x n. lim sup x n. = L, allora esiste anche lim e vale L. ESERCIZI DI ANALISI MATEMATICA GRAZIANO CRASTA Notzioi. N = {, 1, 2,...} = isieme dei umeri turli, N + = Z + = N\{} = isieme dei umeri turli positivi, Z = isieme degli iteri reltivi. = esercizio difficile,

Dettagli

Successioni numeriche

Successioni numeriche 08//05 uccssioi umrich uccssioi umrich Dfiizio U succssio è u fuzio ch d ogi umro turl ssoci u umro rl 0 : 0 : Es. 08//05 uccssioi umrich Dfiizio Il it dll succssio ch ch covrg d ) si idic è il umro rl

Dettagli

Terzo appello del. primo modulo. di ANALISI 18.07.2006

Terzo appello del. primo modulo. di ANALISI 18.07.2006 Terzo appello del primo modulo di ANALISI 18.7.26 1. Si voglioo ifilare su u filo delle perle distiguibili tra loro solo i base alla dimesioe: si hao a disposizioe perle gradi di diametro di 2 cetimetri

Dettagli

SERIE NUMERICHE esercizi. R. Argiolas

SERIE NUMERICHE esercizi. R. Argiolas esercizi R. Argiols L? Quest piccol rccolt di esercizi sulle serie umeriche è rivolt gli studeti del corso di lisi mtemtic I. E bee precisre fi d or che possedere e svolgere gli esercizi di quest dispes

Dettagli

Corsi di Laurea in Ingegneria Edile e Architettura Prova scritta di Analisi Matematica 1 del 6/02/2010. sin( x) log((1 + x 2 ) 1/2 ) = 1 3.

Corsi di Laurea in Ingegneria Edile e Architettura Prova scritta di Analisi Matematica 1 del 6/02/2010. sin( x) log((1 + x 2 ) 1/2 ) = 1 3. Corsi di Laurea i Igegeria Edile e Architettura Prova scritta di Aalisi Matematica del 6// ) Mostrare che + si( ) cos () si( ) log(( + ) / ) = 3. Possibile soluzioe: Cosiderado dapprima il deomiatore otiamo

Dettagli

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione. Appello del 5.02.2013 TEMA 1. f(x) = arcsin 1 2 log 2 x.

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione. Appello del 5.02.2013 TEMA 1. f(x) = arcsin 1 2 log 2 x. ANALISI MATEMATICA Area dell Igegeria dell Iformazioe Appello del 5.0.0 TEMA Esercizio Si cosideri la fuzioe f(x = arcsi log x. Determiare il domiio di f e discutere il sego. Discutere brevemete la cotiuità

Dettagli

L operazione di Convoluzione,

L operazione di Convoluzione, Revisioe mg 015 L operzioe di Covoluzioe co ppliczioi modelli itegrli di Correlzioe Cludio Mgo wwwcm-physmthet CM_Portble MATH Notebook Series L operzioe di Covoluzioe co ppliczioi modelli itegrli di Correlzioe

Dettagli

Capitolo 8 Le funzioni e le successioni

Capitolo 8 Le funzioni e le successioni Capitolo 8 Le fuzioi e le successioi Prof. A. Fasao Fuzioe, domiio e codomiio Defiizioe Si chiama fuzioe o applicazioe dall isieme A all isieme B ua relazioe che fa corrispodere ad ogi elemeto di A u solo

Dettagli

Le operazioni fondamentali in N Basic Arithmetic Operations in N

Le operazioni fondamentali in N Basic Arithmetic Operations in N Operzioi fodetli i - 1 Le operzioi fodetli i Bsic Arithetic Opertios i I geerle u operzioe è u procedieto che due o più ueri, dti i u certo ordie e detti terii dell'operzioe, e ssoci u ltro, detto risultto

Dettagli

Lezione n 19-20. Lezioni di Ricerca Operativa. Corso di Laurea in Informatica Università di Salerno. Prof. Cerulli Dott. Carrabs

Lezione n 19-20. Lezioni di Ricerca Operativa. Corso di Laurea in Informatica Università di Salerno. Prof. Cerulli Dott. Carrabs Lezioi di Riera Operativa Corso di Laurea i Iformatia Uiversità di Salero Lezioe 9- - Problema del trasporto Prof. Cerulli Dott. Carrabs Problema del Flusso a osto Miimo FORMULAZIONE mi ( i, ) A o violi

Dettagli

Una funzione è una relazione che ad ogni elemento del dominio associa uno e un solo elemento del codominio

Una funzione è una relazione che ad ogni elemento del dominio associa uno e un solo elemento del codominio Radicali Per itrodurre il cocetto di radicali che già avete icotrato alle medie quado avete imparato a calcolare la radice quadrata e cubica dei umeri iteri, abbiamo bisogo di rivedere il cocetto di uzioe

Dettagli

APPLICAZIONI LINEARI e MATRICI ASSOCIATE

APPLICAZIONI LINEARI e MATRICI ASSOCIATE APPLICAZIONI LINEARI e MATRICI ASSOCIATE Dt un ppliczione f: V W con V e W spzi vettorili si dice che f è un ppliczione linere o omomorfismo f(v + v 2 ) = f(v ) + f(v 2 ) v, v 2 V f(αv) = α f(v) v V e

Dettagli

Tutti i diritti di sfruttamento economico dell opera appartengono alla Esselibri S.p.A. (art. 64, D.Lgs. 10-2-2005, n. 30)

Tutti i diritti di sfruttamento economico dell opera appartengono alla Esselibri S.p.A. (art. 64, D.Lgs. 10-2-2005, n. 30) Copyright 2005 Esselibri S.p.A. Via F. Russo, 33/D 8023 Napoli Azieda co sistema qualità certificato ISO 400: 2003 Tutti i diritti riservati. È vietata la riproduzioe ache parziale e co qualsiasi mezzo

Dettagli

SERIE NUMERICHE Con l introduzione delle serie vogliamo estendere l operazione algebrica di somma ad un numero infinito di addendi.

SERIE NUMERICHE Con l introduzione delle serie vogliamo estendere l operazione algebrica di somma ad un numero infinito di addendi. Serie SERIE NUMERICHE Co l itroduzioe delle serie vogliamo estedere l operazioe algebrica di somma ad u umero ifiito di addedi. Def. Data la successioe {a }, defiiamo la successioe {s } poedo s = a k.

Dettagli

Probabilità e Statistica I

Probabilità e Statistica I Probabilità e Statistica I Elvira Di Nardo (Dipartimeto di Matematica) Uiversità degli Studi della Basilicata e-mail:diardo@uibas.it http://www.uibas.it/uteti/diardo/home.html Tel:097/05890 Prerequisiti:

Dettagli

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito.

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito. Integrli de niti. Il problem di clcolre l re di un regione pin delimitt d gr ci di funzioni si può risolvere usndo l integrle de nito. L integrle de nito st l problem del clcolo di ree come l equzione

Dettagli

Percorsi di matematica per il ripasso e il recupero

Percorsi di matematica per il ripasso e il recupero Giacomo Pagia Giovaa Patri Percorsi di matematica per il ripasso e il recupero 2 per la Scuola secodaria di secodo grado UNITÀ CAMPIONE Edizioi del Quadrifoglio à t i U 2 Radicali I questa Uità affrotiamo

Dettagli

ANALISI REALE E COMPLESSA a.a. 2007-2008

ANALISI REALE E COMPLESSA a.a. 2007-2008 ANALISI REALE E COMPLESSA.. 2007-2008 1 Successioni e serie di funzioni 1.1 Introduzione In questo cpitolo studimo l convergenz di successioni del tipo n f n, dove le f n sono tutte funzioni vlori reli

Dettagli

Sintassi dello studio di funzione

Sintassi dello studio di funzione Sitassi dello studio di fuzioe Lavoriamo a perfezioare quato sapete siora. D ora iazi pretederò che i risultati che otteete li SCRIVIATE i forma corretta dal puto di vista grammaticale. N( x) Data la fuzioe:

Dettagli

Analisi numerica. Richiami di teoria Zeri di una funzione, soluzione approssimata di un equazione. Teorema di esistenza degli zeri

Analisi numerica. Richiami di teoria Zeri di una funzione, soluzione approssimata di un equazione. Teorema di esistenza degli zeri 6 - Alisi umeric 6 Alisi umeric. Richimi di teori Zeri di u fuzioe, soluzioe pprossimt di u equzioe Se o è possibile determire lgebricmete gli zeri dell fuzioe f(), rdici dell equzioe f() =, si possoo

Dettagli

OPERAZIONI CON LE FRAZIONI ALGEBRICHE

OPERAZIONI CON LE FRAZIONI ALGEBRICHE OPERAZIONI CON LE FRAZIONI ALGEBRICHE A] SEMPLIFICAZIONE DI UNA FRAZIONE ALGEBRICA Sempliicre u rzioe lgeric sigiic dividere umertore e deomitore per uo stesso ttore diverso d zero. Procedur per sempliicre

Dettagli

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo:

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo: Sistemi lineri Un equzione linere nelle n incognite x 1, x 2, x,, x n è un equzione nell qule le incognite ppiono solo con esponente 1, ossi del tipo: 1 x 1 + 2 x 2 + x +!+ n x n = b con 1, 2,,, n numeri

Dettagli

SERIE NUMERICHE Esercizi risolti. 2 b) n=1. n n 2 +n

SERIE NUMERICHE Esercizi risolti. 2 b) n=1. n n 2 +n SERIE NUMERICHE Esercizi risolti. Applicado la defiizioe di covergeza di ua serie stabilire il carattere delle segueti serie, e, i caso di covergeza, trovare la somma: = + b) = + +. Verificare utilizzado

Dettagli

I numeri reali come sezione nel campo dei numeri razionali

I numeri reali come sezione nel campo dei numeri razionali I umeri reli come sezioe el cmpo dei umeri rzioli Come sppimo, el cmpo dei umeri rzioli, le quttro operzioi fodmetli soo sempre possibili, el seso che, effettudo sopr u quluque isieme fiito u sequel fiit

Dettagli

Corso di Laurea Magistrale in Ingegneria Informatica A.A. 2014/15. Complementi di Probabilità e Statistica. Prova scritta del del 23-02-15

Corso di Laurea Magistrale in Ingegneria Informatica A.A. 2014/15. Complementi di Probabilità e Statistica. Prova scritta del del 23-02-15 Corso di Laurea Magistrale i Igegeria Iformatica A.A. 014/15 Complemeti di Probabilità e Statistica Prova scritta del del 3-0-15 Puteggi: 1. 3+3+4;. +3 ; 3. 1.5 5 ; 4. 1 + 1 + 1 + 1 + 3.5. Totale = 30.

Dettagli

SUCCESSIONI DI FUNZIONI

SUCCESSIONI DI FUNZIONI SUCCESSIONI DI FUNZIONI LUCIA GASTALDI 1. Defiizioi ed esempi Sia I u itervallo coteuto i R, per ogi N si cosideri ua fuzioe f : I R. Il simbolo f } =1 idica ua successioe di fuzioi, cioè l applicazioe

Dettagli

Random walk classico. Simulazione di un random walk

Random walk classico. Simulazione di un random walk Radom walk classico Il radom walk classico) è il processo stocastico defiito da co prob. S = S0 X k, co X k = k= co prob. e le X soo tra di loro idipedeti. k Si tratta di u processo a icremeti idipedeti

Dettagli

Elementi di matematica finanziaria

Elementi di matematica finanziaria Elemeti di matematica fiaziaria 18.X.2005 La matematica fiaziaria e l estimo Nell ambito di umerosi procedimeti di stima si rede ecessario operare co valori che presetao scadeze temporali differeziate

Dettagli

3.1 Il principio di inclusione-esclusione

3.1 Il principio di inclusione-esclusione Capitolo 3 Calcolo combiatorio 3.1 Il pricipio di iclusioe-esclusioe Il calcolo combiatorio prede i cosiderazioe degli isiemi fiiti particolari e e cota il umero di elemeti. Questo può dar luogo ad iteressati

Dettagli

si definisce Funzione Integrale; si chiama funzione integrale in quanto il suo * x

si definisce Funzione Integrale; si chiama funzione integrale in quanto il suo * x Appunti elorti dll prof.ss Biondin Gldi Funzione integrle Si y = f() un funzione continu in un intervllo [; ] e si 0 [; ]; l integrle 0 f()d si definisce Funzione Integrle; si chim funzione integrle in

Dettagli

I segnali nelle telecomunicazioni

I segnali nelle telecomunicazioni I segli elle telecouiczioi Geerlità I segli ossoo essere rresetti el doiio del teo edite u grfico crtesio vete i scisse il teo e i ordite i vlori isttei dell'iezz del segle cosiderto. Tle grfico, detto

Dettagli

Corso di Laurea in Ing. Edile Politecnico di Bari A.A. 2008-2009 Prof. ssa Letizia Brunetti DISPENSE DEL CORSO DI GEOMETRIA

Corso di Laurea in Ing. Edile Politecnico di Bari A.A. 2008-2009 Prof. ssa Letizia Brunetti DISPENSE DEL CORSO DI GEOMETRIA Corso di Laurea i Ig Edile Politecico di Bari AA 2008-2009 Prof ssa Letizia Bruetti DISPENSE DEL CORSO DI GEOMETRIA 2 Idice Spazi vettoriali Cei sulle strutture algebriche 4 2 Defiizioe di spazio vettoriale

Dettagli

Dispense di Analisi Matematica II

Dispense di Analisi Matematica II Dispese di Aalisi Matematica II Domeico Cadeloro (Prima Parte) Itroduzioe Queste dispese trattao la prima parte del corso di Aalisi Matematica II. Nel primo capitolo si discutoo gli itegrali geeralizzati

Dettagli

La velocità massima espressa in metri al secondo e l accelerazione voluta sono: 1000

La velocità massima espressa in metri al secondo e l accelerazione voluta sono: 1000 Diesioeto di ssi di otore correte cotiu Si idividuio i pretri pricipli di u cchi correte cotiu eccitzioe idipedete i rdo di uovere u tr veloce ote che sio le seueti specifiche: Tesioe di lietzioe dell

Dettagli