CC C T U Gruppo turbogas 3

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "CC C T U Gruppo turbogas 3"

Transcript

1 Corso di IMPIANI di CONVERSIONE dell ENERGIA L energia, fonti, trasformazioni i ed usi finali Impianti a vapore I generatori di vapore Impianti turbogas Cicli combinati e cogenerazione Il mercato dell energia 1

2 Corso di IMPIANI di CONVERSIONE dell ENERGIA L energia, fonti, trasformazioni i ed usi finali Impianti a vapore I generatori di vapore Impianti turbogas Cicli combinati e cogenerazione Il mercato dell energia 2

3 CC C U Gruppo turbogas 3

4 CC C U Gruppo turbogas 4

5 CC topping C U Gruppo turbogas Caldaia a recupero U bottoming Gruppo a vapore 5

6 CC Il ciclo combinato C gas - vapore rappresenta U oggi topping Caldaia a recupero indiscutibilmente la migliore tecnologia per la produzione di Gruppo energia turbogas elettrica da gas naturale, in termini di efficienza, di emissioni e di costi sia di investimento che operativi. Nell ultimo decennio è stato protagonista di una vera e propria rivoluzione nel settore dell industria U termoelettrica, spodestando le centrali a vapore dal ruolo praticamente monopolistico finora detenuto. bottoming Gruppo a vapore 6

7 Il problema da affrontare consiste in: recuperare nel modo più efficiente possibile il calore disponibile in una sorgente gassosa la cui temperatura diminuisce quando si estrae calore; cedere il calore non convertito in energia meccanica ad un pozzo di calore a temperatura costante (l ambiente) 7

8 Il problema da affrontare consiste in: recuperare nel modo più efficiente possibile il calore disponibile in una sorgente gassosa la cui temperatura diminuisce quando si estrae calore; cedere il calore non convertito in energia meccanica ad un pozzo di calore a temperatura costante (l ambiente) La forma triangolare permette : di acquisire e cedere calore sotto differenze di temperatura t nulle rasformazione di raffreddamento di sottrarre ai gas tutto il calore disponibile raffreddandoli fino a 0 Ciclo reversibile operare co compressione ed espansione reversibili emperatura ambiente ma x 0 S 8

9 Per un ciclo reversibile h ma x Con gas ideale Rendimento di un ciclo di Carnot h0 Ciclo reversibile 0 s0 s S emperatura media logaritmica tra e 0 9

10 Per un ciclo reversibile Nel caso reale si produrrà un lavoro W inferiore: Con gas ideale Rendimento di un ciclo di Carnot emperatura media logaritmica tra e 0 Fattore di recupero 10

11 Per un ciclo reale Purtroppo nella pratica non esisterà un gas che è capace di assorbire calore a temperatura costante e poi cederne una parte a temperatura costante condensando. E interessante verificare come si comporta un ciclo di Carnot: ΔS A : il fluido di lavoro si riscalda a temperatura costante ma x ΔS B : i gas non si possono raffreddare sino a 0 Il rendimento di Recupero dipenderà ovviamente da e Si può dimostrare che il massimo rendimento si ha con: ΔS A e ΔS B 0 Esempio: =500 C e 0 =15 C 0 S η = 0,3895 κ = 0,6209 η I = 0,2419 Contro η R =0,

12 Per un ciclo reale Si possono utilizzare più cicli di Carnot, partendo da due ma x e 0 S 12

13 Per un ciclo reale Si possono utilizzare più cicli di Carnot, partendo da due sino ad arrivare a più livelli Nell esempio precedente il rendimento passa a 0,3056 con due livelli 0,3349 con tre livelli di espansione. ma x e 0 S 13

14 Per un ciclo reale Si possono utilizzare più cicli di Carnot, partendo da due sino ad arrivare a più livelli Nell esempio precedente il rendimento passa a 0,3056 con due livelli 0,3349 con tre livelli di espansione. Per potersi avvicinare al ciclo reversibile si può utilizzare: un ciclo a vapore, che condensi a temperatura costante, ma con una evaporazione ad una pressione certamente ipercritica Per non ricorrere a pressioni eccessive si può utilizzare l ammoniaca che ha una temperatura critica di 132,4 C ma presenta notevoli problemi di sicurezza 14

15 Per un ciclo reale Si possono utilizzare più cicli di Carnot, partendo da due sino ad arrivare a più livelli Per potersi avvicinare al ciclo reversibile si può utilizzare: un ciclo a vapore, che condensi a temperatura costante, ma con una evaporazione ad una pressione certamente ipercritica oppure un gas che si riscalda lungo una isobara, si espande seguendo una adiabatica isoentropica e poi si segua una trasformazione di compressione paraisoterma composta da numerose compressioni ed interrefrigerazioni Nell esempio precedente il rendimento passa a 0,3056 con due livelli 0,3349 con tre livelli di espansione. Entrambe le soluzioni si presentano difficilmente praticabili 15

16 Potenzialità dei cicli combinati Se si suppone che il ciclo bottoming operi recuperando il solo calore disponibile nei gas di scarico del turbogas (UNFIRED): Rendimento del ciclo di recupero Rendimento netto della turbogas Potenza termica dispersa in fonti diverse dai gas di scarico Potenza termica disponibile nei gas di scarico Nel caso studiato di sc = 599,7 C e 0 =15 C con η G =0,3555 e ξ = 0,0144 si ha η CC = 0,6415 ipotizzando η r reversibile in pratica si vedrà tale valore scendere a 0,57 16

17 CC topping C U Gruppo turbogas U bottoming Gruppo a vapore 17

18 CC topping C U Gruppo turbogas U bottoming Gruppo a vapore 18

19 CC C U 500 Gruppo turbogas [K] 400 Raffreddamento del gas C 300 U economizzatore 200 Gruppo a vapore 100 preriscaldamento % Potenza termica scambiata 19

20 CC corpo cilindrico C U 500 Gruppo turbogas [K] 400 C Raffreddamento del gas 300 U economizzatore 200 Gruppo a vapore % Potenza termica scambiata preriscaldamento 20

21 CC corpo cilindrico C U 500 Gruppo turbogas [K] 400 C Raffreddamento del gas surriscaldatore evaporatore 300 U economizzatore surriscaldamento evaporazione Gruppo a vapore % Potenza termica scambiata preriscaldamento 21

22 Δ ap approach point chè CC il minimo valore del salto termico tra il gas entrante ed il vapore surriscaldato C U corpo cilindrico 500 Gruppo turbogas [K] 400 C Raffreddamento del gas surriscaldatore evaporatore 300 U economizzatore 200 evaporazione Gruppo a vapore 100 surriscaldamento preriscaldamento % Potenza termica scambiata 22

23 Δ ap approach point chè CC il minimo valore del salto termico tra il gas entrante ed il vapore surriscaldato C U corpo cilindrico 500 Gruppo turbogas [K] 400 C Raffreddamento del gas surriscaldatore evaporatore 300 U economizzatore 200 evaporazione Gruppo a vapore 100 surriscaldamento preriscaldamento % Potenza termica scambiata 23

24 Δ ap approach point chè CC il minimo valore del salto termico tra il gas entrante ed il vapore surriscaldato C U corpo cilindrico 500 [K] 400 C 300 Gruppo turbogas Raffreddamento surriscaldatore Δ pp pinch-point è il minimo valore del del gas evaporatore p salto tra la temperatura del gas uscente dal banco degli evaporatori e la temperatura U di economizzatore evaporazione surriscaldamento evaporazione preriscaldamento Gruppo a vapore Δ sc subcooling è il valore del salto tra la temperatura di evaporazione e quella dell acqua uscente dall economizzatore % Potenza termica scambiata 24

25 500 [K] 400 C 300 Δ ap approach point chè CC il minimo Δ ap approach-point e Δ corpo cilindrico pp pinch-point valore del salto termico tra il gas stabiliscono delle differenze di temperatura che stanno entrante ed il vapore surriscaldato alla base del progetto termico della caldaia, C U Δ sc subcooling è necessario ad evitare rischi di inizio evaporazione nei tubi dell economizzatore che Gruppo turbogas comporterebbe un blocco temporaneo della portata a causa dell aumento di volume del vapore Raffreddamento surriscaldatore Δ pp pinch-point è il minimo valore del del gas evaporatore salto tra la temperatura del gas uscente dal banco degli evaporatori e la temperatura U di economizzatore evaporazione surriscaldamento evaporazione preriscaldamento Gruppo a vapore Δ sc subcooling è il valore del salto tra la temperatura di evaporazione e quella dell acqua uscente dall economizzatore % Potenza termica scambiata 25

26 Prestazioni Caso base: Δ pp=10 C Δ ap=25 C Δ sc=10 C Δ ap approach-point corpo cilindrico e Δ pp pinch-point stabiliscono delle differenze di temperatura che stanno alla base del progetto termico della caldaia, Δ sc subcooling è necessario ad evitare rischi di inizio evaporazione nei tubi dell economizzatore che comporterebbe un blocco temporaneo della portata a causa dell aumento di volume del vapore Δ pinch-point Δ approach-point Δ subcooling 5 C 20 C 10 C 50 C 0 C 20 C P el. (MWel) 65,20 66,52 (+2%) 62,62 (4%) (-4%) 65,66 (+0,7%) 64,46 (11%) (.1,1%) 66,46 (+1,9%) 64,03 (18%) (-1,8%) Q v (kg/s) 67,19 68,49 64,58 66,32 68,70 68,44 66,00 fu ( C) 147,0 140,5 160,1 148,0 145,3 140,7 153,0 U. A (W/K) La riduzione del Δ pp incrementa la Potenza ma richiede anche un forte aumento della superficie di scambio (U. A) Ottimizzazione tecnico-economica i 26

27 ASPEI PROGEUALI Ottimizzazione i i del Δ P di il t di d li lli di i ll di pp Prendiamo il caso concreto di un gruppo a recupero a due livelli di pressione a valle di un gruppo G che scarica 300 MW a circa 473 C; in esso si ha che, al variare del Δ pp, la potenza elettrica ed il prodotto di coefficiente globale di scambio e superficie di scambio, assumono i valori: Δ PP = 5 C P el = MW U. A = 6673 kw/k Δ PP = 10 C P el = MW U. A = 5434 kw/k Δ PP = 15 C P el = MW U. A = 4684 kw/k Δ PP crescente.p el si riduce.. le dimensioni si riducono (aumenta la perdita di energia) 27

28 ASPEI PROGEUALI Ottimizzazione i i del Δ pp Prendiamo il caso concreto di un gruppo a recupero a due livelli lli di pressione a valle di un gruppo G che scarica 300 MW a circa 473 C; in esso si ha: Δ PP = 5 C P el = MW UA = 6673 kw/k Δ PP = 10 C P el = MW UA = 5434 kw/k Δ PP = 15 C P el = MW UA = 4684 kw/k Δ PP crescente.p el si riduce.. le dimensioni si riducono (aumenta la perdita di energia) Δ costo annuo k Δ PP = 5 C 7, ,

29 ASPEI PROGEUALI Ottimizzazione i i del Δ pp Prendiamo il caso concreto di un gruppo a recupero a due livelli lli di pressione a valle di un gruppo G che scarica 300 MW a circa 473 C; in esso si ha: Δ PP = 5 C P el = MW UA = 6673 kw/k Δ PP = 10 C P el = MW UA = 5434 kw/k Δ PP = 15 C P el = MW UA = 4684 kw/k Δ PP crescente.p el si riduce.. le dimensioni si riducono (aumenta la perdita di energia) Δ costo annuo k 400 Δ costo HRSG Δ PP = 5 C 7, ,

30 ASPEI PROGEUALI Ottimizzazione i i del Δ pp Prendiamo il caso concreto di un gruppo a recupero a due livelli lli di pressione a valle di un gruppo G che scarica 300 MW a circa 473 C; in esso si ha: Δ PP = 5 C P el = MW UA = 6673 kw/k Δ PP = 10 C P el = MW UA = 5434 kw/k Δ PP = 15 C P el = MW UA = 4684 kw/k Δ PP crescente.p el si riduce.. le dimensioni si riducono (aumenta la perdita di energia) Con esse si riducono anche le dimensioni di tutto l impianto Δ costo annuo k 400 Δ costo HRSG Δ costo impianto 0 Δ PP = 5 C 7, ,

31 ASPEI PROGEUALI Ottimizzazione i i del Δ pp Prendiamo il caso concreto di un gruppo a recupero a due livelli lli di pressione a valle di un gruppo G che scarica 300 MW a circa 473 C; in esso si ha: Δ PP = 5 C P el = MW UA = 6673 kw/k Δ PP = 10 C P el = MW UA = 5434 kw/k Δ PP = 15 C P el = MW UA = 4684 kw/k Δ PP crescente.p el si riduce.. le dimensioni si riducono (aumenta la perdita di energia) Con esse si riducono anche le dimensioni di tutto l impianto Δ costo annuo k Δ costo HRSG Δ costo impianto Δ costo mancata produzione el. 0 Δ PP = 5 C 7, ,

32 ASPEI PROGEUALI Ottimizzazione i i del Δ pp Prendiamo il caso concreto di un gruppo a recupero a due livelli lli di pressione a valle di un gruppo G che scarica 300 MW a circa 473 C; in esso si ha: Δ PP = 5 C P el = MW UA = 6673 kw/k Δ PP = 10 C P el = MW UA = 5434 kw/k Δ PP = 15 C P el = MW UA = 4684 kw/k Δ PP crescente.p el si riduce.. le dimensioni si riducono (aumenta la perdita di energia) Δ costo totale Con esse si riducono anche le dimensioni di tutto l impianto Δ costo annuo k ottimo Δ costo HRSG Δ costo impianto Δ costo mancata produzione el. 0 Δ PP = 5 C 7, ,5 15 Valore ottimale di Δ PP circa 8 C 32

33 ASPEI PROGEUALI Ottimizzazione i i del Δ pp Prendiamo il caso concreto di un gruppo a recupero a due livelli lli di pressione a valle di un gruppo G che scarica 300 MW a circa 473 C; in esso si ha: Δ PP = 5 C P el = MW UA = 6673 kw/k Δ PP = 10 C P el = MW UA = 5434 kw/k Δ PP = 15 C P el = MW UA = 4684 kw/k Δ PP crescente.p el si riduce.. le dimensioni si riducono (aumenta la perdita di energia) Δ costo totale Con esse si riducono anche le dimensioni di tutto l impianto Δ costo annuo ottimo Successivamente si dimensionano le sezioni trasversali di passaggio del gas di scarico k Δ costo HRSG Δ costo mancata produzione el. Il tipo di circolazione nel banco di evaporazione Δ costo impianto Il collocamento del degasatore 0 Δ PP = 5 C 7, ,5 15 Valore ottimale di Δ PP circa 8 C 33

POMPA DI CALORE CICLO FRIGORIFERO A COMPRESSIONE DI VAPORE

POMPA DI CALORE CICLO FRIGORIFERO A COMPRESSIONE DI VAPORE POMPA DI CALORE CONDENSATORE = + L T = + L C ORGANO DI ESPANSIONE LIQUIDO COMPRESSORE T COND. E D T 1 VAPORE T EVAP. A B T 2 Schema a blocchi di una macchina frigorifera EVAPORATORE Dal punto di vista

Dettagli

UNIVERSITÀ DEGLI STUDI DI PISA. 1. Complementi sui sistemi termici. Roberto Lensi

UNIVERSITÀ DEGLI STUDI DI PISA. 1. Complementi sui sistemi termici. Roberto Lensi Roberto Lensi 1. Complementi sui sistemi termici Pag. 1 UNIVERSITÀ DEGLI STUDI DI PISA FACOLTÀ DI INGEGNERIA 1. Complementi sui sistemi termici Roberto Lensi DIPARTIMENTO DI ENERGETICA Anno Accademico

Dettagli

ESERCITAZIONI FISICA TECNICA. Prof. Fabio Polonara Prof. Gianni Cesini. Corso di Ingegneria Meccanica

ESERCITAZIONI FISICA TECNICA. Prof. Fabio Polonara Prof. Gianni Cesini. Corso di Ingegneria Meccanica ESERCITAZIONI FISICA TECNICA Prof. Fabio Polonara Prof. Gianni Cesini Corso di Ingegneria Meccanica 2 TERMODINAMICA APPLICATA Termodinamica degli stati 3 ESERCIZIO TA-T8 Utilizzando il piano P-T e le tabelle

Dettagli

UNIVERSITA' DEGLI STUDI DI CASSINO E DEL LAZIO MERIDIONALE. Impianti a ciclo combinato e cogenerativo

UNIVERSITA' DEGLI STUDI DI CASSINO E DEL LAZIO MERIDIONALE. Impianti a ciclo combinato e cogenerativo UNIVERSITA' DEGLI STUDI DI CASSINO E DEL LAZIO MERIDIONALE Impianti a ciclo combinato e cogenerativo Il concetto di ciclo combinato cessione di calore a temperatura media T adduzione di calore a temperatura

Dettagli

UNIVERSITÀ DEGLI STUDI DI PISA. 4. Sistemi Termici Motori. 4.3. Sistemi Combinati. Roberto Lensi

UNIVERSITÀ DEGLI STUDI DI PISA. 4. Sistemi Termici Motori. 4.3. Sistemi Combinati. Roberto Lensi Roberto Lensi 4. Sistemi Termici Motori 4.3. Sistemi Combinati Pag. 1 di 30 UNIVERSITÀ DEGLI STUDI DI PISA FACOLTÀ DI INGEGNERIA 4. Sistemi Termici Motori 4.3. Sistemi Combinati Roberto Lensi DIPARTIMENTO

Dettagli

FACOLTÀ DI INGEGNERIA. 3. Sistemi di Conversione. Roberto Lensi

FACOLTÀ DI INGEGNERIA. 3. Sistemi di Conversione. Roberto Lensi Roberto Lensi 3. Sistemi di Conversione Pag. 1 UNIVERSITÀ DEGLI STUDI DI PISA FACOLTÀ DI INGEGNERIA 3. Sistemi di Conversione Roberto Lensi DIPARTIMENTO DI ENERGETICA Anno Accademico 2002-03 Roberto Lensi

Dettagli

CAPITOLO 8 IMPIANTI A CICLO COMBINATO

CAPITOLO 8 IMPIANTI A CICLO COMBINATO CAPITOLO 8 IMPIANTI A CICLO COMBINATO 8.1. Introduzione Nel capitolo precedente si è visto come i fumi all uscita di un impianto turboas siano caratterizzati da valori della temperatura piuttosto elevati,

Dettagli

Impianti motori termici

Impianti motori termici Impianti motori termici Classificazione: impianto motore termico con turbina a vapore il fluido evolvente nell impianto è acqua in diversi stati di aggregazione impianto motore termico con turbina a gas

Dettagli

UNIVERSITÀ DEGLI STUDI DI PISA. 3. Impianti per la cogenerazione. Roberto Lensi

UNIVERSITÀ DEGLI STUDI DI PISA. 3. Impianti per la cogenerazione. Roberto Lensi Roberto Lensi 3. Impianti per la cogenerazione Pag. 1 UNIVERSITÀ DEGLI STUDI DI PISA FACOLTÀ DI INGEGNERIA 3. Impianti per la cogenerazione Roberto Lensi DIPARTIMENTO DI ENERGETICA Anno Accademico 2003-04

Dettagli

IMPIANTI DI RISCALDAMENTO. Ing. Guglielmo Magri Dipartimento di Energetica-Ancona guglielmo.magri@alice.it

IMPIANTI DI RISCALDAMENTO. Ing. Guglielmo Magri Dipartimento di Energetica-Ancona guglielmo.magri@alice.it IMPIANTI DI RISCALDAMENTO Ing. Guglielmo Magri Dipartimento di Energetica-Ancona guglielmo.magri@alice.it SISTEMI DI GENERAZIONE Tipologie più diffuse o in sviluppo Generatori a combustione Caldaie

Dettagli

CORSO DI GESTIONE DELL ENERGIA E DEI SISTEMI ENERGETICI PROFESSORE DAVIDE ALBERTI ING. ADRIANO CARRARA

CORSO DI GESTIONE DELL ENERGIA E DEI SISTEMI ENERGETICI PROFESSORE DAVIDE ALBERTI ING. ADRIANO CARRARA CORSO DI GESTIONE DELL ENERGIA E DEI SISTEMI ENERGETICI PROFESSORE DAVIDE ALBERTI ING. ADRIANO CARRARA 1 DEF. TECNICA: COGENERARE SIGNIFICA PRODURRE CONTEMPORANEAMENTE PIÙ FORME DI ENERGIA, SOLITAMENTE

Dettagli

Tali fluidi, utilizzati in prossimità del punto di produzione, o trasportati a distanza, possono essere utilizzati per diversi impieghi:

Tali fluidi, utilizzati in prossimità del punto di produzione, o trasportati a distanza, possono essere utilizzati per diversi impieghi: LA COGENERAZIONE TERMICA ED ELETTRICA 1. Introduzione 2. Turbine a Gas 3. Turbine a vapore a ciclo combinato 4. Motori alternativi 5. Confronto tra le diverse soluzioni 6. Benefici ambientali 7. Vantaggi

Dettagli

CAPITOLO 9 COGENERAZIONE

CAPITOLO 9 COGENERAZIONE CAITOLO 9 COGENERAZIONE 9.1. Introduzione er cogenerazione si intende la produzione combinata di elettricità e di calore, entrambi intesi come effetti utili. Essa trova ampio spazio sia in ambito civile

Dettagli

Modulo 10 Impianti per la cogenerazione di energia

Modulo 10 Impianti per la cogenerazione di energia Corso di Impianti Meccanici Laurea Triennale Modulo 10 Impianti per la cogenerazione di energia Prof. Ing. Cesare Saccani Prof. Ing. Augusto Bianchini Dott. Ing. Marco Pellegrini Dott. Ing. Michele Gambuti

Dettagli

9. TRASFORMAZIONI TERMODINAMICHE E CICLI REALI

9. TRASFORMAZIONI TERMODINAMICHE E CICLI REALI 9. TRASFORMAZIONI TERMODINAMICHE E CICLI REALI 9. Introduzione I processi termodinamici che vengono realizzati nella pratica devono consentire la realizzazione di uno scambio di energia termica o di energia

Dettagli

Capitolo I. La cogenerazione. 1.1 Introduzione

Capitolo I. La cogenerazione. 1.1 Introduzione Capitolo I La cogenerazione 1.1 Introduzione L idea alla base della cogenerazione è nota: in ogni ciclo termodinamico che genera energia elettrica utilizzando come fonte energetica calore ad alta temperatura

Dettagli

WHB / GXC CALDAIE A RECUPERO TERMICO

WHB / GXC CALDAIE A RECUPERO TERMICO WHB / GXC CALDAIE A RECUPERO TERMICO ICI CALDAIE LE CALDAIE A RECUPERO TERMICO Le caldaie a recupero di calore sono macchine termiche che utilizzano il calore dei gas di scarico per la produzione di acqua

Dettagli

TECNOLOGIE PER LA PRODUZIONE DI ENERGIA TERMICA - POMPE DI CALORE. L. Murgia - Dip.to Ingegneria del Territorio - Università degli Studi di Sassari

TECNOLOGIE PER LA PRODUZIONE DI ENERGIA TERMICA - POMPE DI CALORE. L. Murgia - Dip.to Ingegneria del Territorio - Università degli Studi di Sassari TECNOLOGIE PER LA PRODUZIONE DI ENERGIA TERMICA - POMPE DI CALORE L. Murgia - Dip.to Ingegneria del Territorio - Università degli Studi di Sassari POMPA DI CALORE Macchina termica che opera un trasferimento

Dettagli

PERCHE LA POMPA DI CALORE E DA PREFERIRE RISPETTO AD UNA CALDAIA A COMBUSTIONE, OVVERO E TERMODINAMICAMENTE PIU EFFICIENTE?

PERCHE LA POMPA DI CALORE E DA PREFERIRE RISPETTO AD UNA CALDAIA A COMBUSTIONE, OVVERO E TERMODINAMICAMENTE PIU EFFICIENTE? PERCHE LA POMPA DI CALORE E DA PREFERIRE RISPETTO AD UNA CALDAIA A COMBUSTIONE, OVVERO E TERMODINAMICAMENTE PIU EFFICIENTE? La pompa di calore è costituita da un circuito chiuso, percorso da uno speciale

Dettagli

Cogenerazione: tecnologie a confronto

Cogenerazione: tecnologie a confronto CESI RICERCA Cogenerazione: tecnologie a confronto MILANO 8 ottobre 2008 Fabio Armanasco fabio.armanasco@cesiricerca.it 1. Definizione di CHP 2. Motori primi convenzionali Turbine a vapore Turbine a gas

Dettagli

CAPITOLO 3 CICLO OTTO E CICLO DIESEL MOTORI A COMBUSTIONE INTERNA

CAPITOLO 3 CICLO OTTO E CICLO DIESEL MOTORI A COMBUSTIONE INTERNA CAPITOLO 3 CICLO OTTO E CICLO DIESEL MOTORI A COMBUSTIONE INTERNA 1 CICLO OTTO E CICLO DIESEL MOTORI A COMBUSTIONE INTERNA I MOTORI A COMBUSTIONE INTERNA SONO MACCHINE MOTRICI E POSSONO ESSERE BASATI SU

Dettagli

IMPIANTI FRIGORIFERI

IMPIANTI FRIGORIFERI IMPINTI FRIORIFERI Lo scopo degli impianti frigoriferi è quello di mantenere un ambiente ad una temperatura t 2 minore di quella esterna t 1. La temperatura t 2 dipende dalla particolare applicazione,

Dettagli

COMPONENTI TERMODINAMICI APERTI

COMPONENTI TERMODINAMICI APERTI CAPITOLO NONO COMPONENTI TERMODINAMICI APERTI Esempi applicativi Vengono di seguito esaminati alcuni componenti di macchine termiche che possono essere considerati come sistemi aperti A) Macchina termica

Dettagli

CORSO DI SISTEMI ENERGETICI II - A.A. 2014-2015 Prof. Ing. Giorgio Cau

CORSO DI SISTEMI ENERGETICI II - A.A. 2014-2015 Prof. Ing. Giorgio Cau CORSO DI SISTEMI ENERGETICI II A.A. 20142015 Prof. Ing. Giorgio Cau VALUTAZIONE DELLE PRESTAZIONI DI UN IMPIANTO DI COGENERAZIONE E VERIFICA DEGLI INDICI ENERGETICI AI SENSI DELLA DELIBERA AEEG 42/02 Caratteristiche

Dettagli

3 - Cogenerazione tecnologie disponibili, aspetti ambientali e gestionali. Enrico Malusardi Professore a contratto, Politecnico di Milano

3 - Cogenerazione tecnologie disponibili, aspetti ambientali e gestionali. Enrico Malusardi Professore a contratto, Politecnico di Milano 3 - Cogenerazione tecnologie disponibili, aspetti ambientali e gestionali Enrico Malusardi Professore a contratto, Politecnico di Milano PERCHE LA COGENERAZIONE? È la produzione combinata di calore e di

Dettagli

Il Patto dei Sindaci Spunti per approfondimenti. Sistemi di riscaldamento Caldaie e Pompe di calore. Novembre 2011

Il Patto dei Sindaci Spunti per approfondimenti. Sistemi di riscaldamento Caldaie e Pompe di calore. Novembre 2011 Il Patto dei Sindaci Spunti per approfondimenti Sistemi di riscaldamento Caldaie e Pompe di calore Novembre 2011 Sistema di Riscaldamento Quando si parla di impianto di riscaldamento si comprendono sia

Dettagli

MESSA A PUNTO DI UN PROGRAMMA DI ANALISI DEI DATI STORICI DI FUNZIONAMENTO DI UNA CENTRALE TERMOELETTRICA DI COGENERAZIONE. (riassunto) Luca Bianchini

MESSA A PUNTO DI UN PROGRAMMA DI ANALISI DEI DATI STORICI DI FUNZIONAMENTO DI UNA CENTRALE TERMOELETTRICA DI COGENERAZIONE. (riassunto) Luca Bianchini MESSA A PUNTO DI UN PROGRAMMA DI ANALISI DEI DATI STORICI DI FUNZIONAMENTO DI UNA CENTRALE TERMOELETTRICA DI COGENERAZIONE (riassunto) Luca Bianchini SOMMARIO In questo lavoro di tesi presento un applicazione

Dettagli

Pompe di Calore. LIUC 7 Ottobre 2009 Paolo Torri. Castellanza 7 Ottobre 2009

Pompe di Calore. LIUC 7 Ottobre 2009 Paolo Torri. Castellanza 7 Ottobre 2009 Pompe di Calore LIUC 7 Ottobre 2009 Paolo Torri Cos è POMPA DI CALORE La pompa di calore è una macchina in grado di trasferire calore da un corpo a temperatura più bassa ad un altro a temperatura più alta.

Dettagli

Fino a qualche MW elettrico. Grande terziario e industriale piccolo-medio. 30% - 40% energia elettrica 40% - 50% calore recuperato 10% - 30% perdite

Fino a qualche MW elettrico. Grande terziario e industriale piccolo-medio. 30% - 40% energia elettrica 40% - 50% calore recuperato 10% - 30% perdite ,PSLDQWLGLPLFURFRJHQHUD]LRQH 'HVFUL]LRQHGHOODWHFQRORJLD Si tratta di impianti che utilizzano un combustibile per la produzione combinata di elettricità e calore (detta cogenerazione), di piccola taglia

Dettagli

POMPE DI CALORE. Introduzione

POMPE DI CALORE. Introduzione POMPE DI CALORE Introduzione In impianto tradizionale di riscaldamento si utilizza il potere calorifico di un combustibile (gasolio, metano, legno, carbone, ecc.) per riscaldare a bassa temperatura dei

Dettagli

Seconda legge della termodinamica

Seconda legge della termodinamica Seconda legge della termodinamica In natura tutti i processi devono soddisfare il principio di conservazione dell energia (e quindi anche la a legge della termodinamica) ma non tutti i processi che conservano

Dettagli

CORSO di. MACCHINE e SISTEMI ENERGETICI. per allievi meccanici (2 anno) Prof: Dossena, Osnaghi, Ferrari P. RACCOLTA DI ESERCIZI.

CORSO di. MACCHINE e SISTEMI ENERGETICI. per allievi meccanici (2 anno) Prof: Dossena, Osnaghi, Ferrari P. RACCOLTA DI ESERCIZI. CORSO di MACCHINE e SISTEMI ENERGETICI per allievi meccanici (2 anno) Prof: Dossena, Osnaghi, Ferrari P. RACCOLTA DI ESERCIZI con soluzione 5 Aprile 2004 AA: 2003-2004 DOMANDE TEORICHE 1. Descrivere molto

Dettagli

Procedure di base finalizzate all efficienza energetica

Procedure di base finalizzate all efficienza energetica Energia del futuro: l efficienza nei sistemi energetici del territorio 17-18 maggio 2014 Hotel Splendid Baveno, via Sempione 12 Procedure di base finalizzate all efficienza energetica prof. Marco Carlo

Dettagli

P O MP A D I C A LO R E

P O MP A D I C A LO R E POMPE DI CALORE P O MP A D I C A LO R E M A C C H IN A C H E U T IL IZ Z A U N C IC L O F R IG O R IF E R O P E R S O T T R A R R E C A L O R E D A U N A S O R G E N T E A B A S S A T E M P E R A T U R

Dettagli

Come funziona una centrale a ciclo combinato? Aggiungere l immagine sotto e fare un mix dei due testi di spiegazione del funzionamento

Come funziona una centrale a ciclo combinato? Aggiungere l immagine sotto e fare un mix dei due testi di spiegazione del funzionamento LA TECNOLOGIA DEL CICLO COMBINATO A GAS NATURALE La maggiore quantità di energia elettrica generata da Edison è prodotta da 28 centrali termoelettriche. Edison sviluppa, progetta e costruisce interamente,

Dettagli

Definizione di sorgente di calore e di macchina termica

Definizione di sorgente di calore e di macchina termica 34 Unità Didattica N 19C I principi della ermodinamica Definizione di sorgente di calore e di macchina termica Sorgente di calore è un corpo ( o un sistema di corpi ) a temperatura costante che ha la proprietà

Dettagli

CENTRALI TERMOELETTRICHE

CENTRALI TERMOELETTRICHE CENTRALI TERMOELETTRICHE Introduzione I procedimenti tradizionali di conversione dell energia, messi a punto dall uomo per rendere disponibili, a partire da fonti di energia naturali, energia in forma

Dettagli

Pompe di calore Polar

Pompe di calore Polar Pompe di calore Polar Sistemi di riscaldamento a pompe di calore aria-acqua Pompe di calore ad alta efficienza per il risparmio energetico Templari energie rinnovabili Nel 2006 i fratelli Gianluca e Massimo

Dettagli

Bruno Jannamorelli, traduzione ed edizione critica La potenza motrice del fuoco di Sadi Carnot, Cuen 1996, pp. 19 e 20. 2

Bruno Jannamorelli, traduzione ed edizione critica La potenza motrice del fuoco di Sadi Carnot, Cuen 1996, pp. 19 e 20. 2 LA LEZIONE Lo studio di una macchina termica ideale [ ] Si può paragonare molto bene la potenza motrice del calore a quella di una cascata d acqua: entrambe hanno un massimo che non si può superare, qualunque

Dettagli

GAS NATURALE O METANO

GAS NATURALE O METANO Composto prevalentemente da un idrocarburo: metano da da cui prende il nome. GAS NATURALE O METANO Alto potere calorifico. Mancanza di tossicità e impurità. È un'ottima risorsa energetica. È l'energia

Dettagli

COSA E COSA E UNA POMP UNA

COSA E COSA E UNA POMP UNA COSA E UNA POMPA DI CALORE Una pompa di calore è un dispositivo che sposta calore da un luogo in bassa temperatura (chiamato sorgente) ad uno in alta temperatura (chiamato utenza), utilizzando dell energia.

Dettagli

Esercizi non risolti

Esercizi non risolti Esercizi non risolti 69 Turbina idraulica (Pelton) Effettuare il dimensionamento di massima di una turbina idraulica con caduta netta di 764 m, portata di 2.9 m 3 /s e frequenza di rete 60 Hz. Turbina

Dettagli

PROGRAMMAZIONE DISCIPLINARE ( modulo redatto da prof. A. Rossi)

PROGRAMMAZIONE DISCIPLINARE ( modulo redatto da prof. A. Rossi) DISCIPLINA: IMPIANTI TERMOTECNICI A.S. 2012-2013 di dipartimento individuale del/i docente/i...... per la/e classe/i 5^ TSE 1) PREREQUISITI Avere acquisito gli obiettivi dichiarati per il corso della stessa

Dettagli

LA GENERAZIONE COMBINATA DI ENERGIA ELETTRICA E CALORE

LA GENERAZIONE COMBINATA DI ENERGIA ELETTRICA E CALORE LA GENERAZIONE COMBINATA DI ENERGIA ELETTRICA E CALORE Per soddisfare i fabbisogni di energia elettrica e termica si può pensare ad una fornitura che prevede il ricorso a due servizi distinti oppure attraverso

Dettagli

Le Macchine Frigorifere. Termodinamica dell Ingegneria Chimica

Le Macchine Frigorifere. Termodinamica dell Ingegneria Chimica Le Macchine Frigorifere Termodinamica dell Ingegneria Chimica 1 Le macchine frigorifere Le macchine refrigeranti realizzano il trasporto di calore da un ambiente freddo ad un ambiente utilizzando lavoro

Dettagli

LEZIONE 2. a cura di Simone Laprovitera e-mail: slaprovitera@trevispa.com tel.: 340.46.87.850

LEZIONE 2. a cura di Simone Laprovitera e-mail: slaprovitera@trevispa.com tel.: 340.46.87.850 LEZIONE 2 Aspetti impiantistici di un sistema geotermico integrato a pompa di calore. Principio di funzionamento delle pompe di calore geotermiche. Esempi di schemi funzionali di centrale. a cura di Simone

Dettagli

Sistemi ad adsorbimento

Sistemi ad adsorbimento Sistemi ad adsorbimento Il ciclo in oggetto impiega un solido capace di adsorbire su uno strato superficiale il fluido frigorigeno. Sostanze che presentano tali caratteristiche sono ad esempio zeolite

Dettagli

X Figura 1. Ciclo termodinamico. >0 il calore assorbito e con Q 1 (3)

X Figura 1. Ciclo termodinamico. >0 il calore assorbito e con Q 1 (3) CICLI TERMODINAMICI Un ciclo termodinamico è un insieme di trasformazioni tali che lo stato iniziale del sistema coincide con lo stato finale. Un ciclo termodinamico è indivaduato nel diagramma XY generico

Dettagli

3 Dimensionamento dell essiccatore

3 Dimensionamento dell essiccatore 3 Dimensionamento dell essiccatore Il progetto termodinamico dell essiccatore porta oltre che alla definizione dei parametri termodinamici di esercizio, anche alla parallela definizione delle dimensioni

Dettagli

Prefazione...III. 2.2.6 Impianto idrico con o senza serbatoio di compenso...18 2.2.7 Macchine e attrezzature produttive di riserva...

Prefazione...III. 2.2.6 Impianto idrico con o senza serbatoio di compenso...18 2.2.7 Macchine e attrezzature produttive di riserva... Indice Prefazione...III CAPITOLO 1 GENERALITÀ SUGLI IMPIANTI MECCANICI DI SERVIZIO PER L INDUSTRIA 1.1 Contenuti e finalità...2 1.2 Definizione e classificazione degli impianti industriali...2 1.3 Definizione

Dettagli

C V. gas monoatomici 3 R/2 5 R/2 gas biatomici 5 R/2 7 R/2 gas pluriatomici 6 R/2 8 R/2

C V. gas monoatomici 3 R/2 5 R/2 gas biatomici 5 R/2 7 R/2 gas pluriatomici 6 R/2 8 R/2 46 Tonzig La fisica del calore o 6 R/2 rispettivamente per i gas a molecola monoatomica, biatomica e pluriatomica. Per un gas perfetto, il calore molare a pressione costante si ottiene dal precedente aggiungendo

Dettagli

PINCH TECHNOLOGY. Il target può essere: minima area degli scambiatori minimo consumo di energia minimo costo annuo totale

PINCH TECHNOLOGY. Il target può essere: minima area degli scambiatori minimo consumo di energia minimo costo annuo totale PINCH TECHNOLOGY Obiettivo => ottimizzare i flussi energetici nel sistema i.e. trovare la migliore disposizione degli scambiatori di calore (energia) necessari per ottenere le temperature finali richieste.

Dettagli

I QUADERNI DEL FREDDO Materiale Didattico per il Conseguimento del Patentino per il Trattamento dei Gas Effetto Serra

I QUADERNI DEL FREDDO Materiale Didattico per il Conseguimento del Patentino per il Trattamento dei Gas Effetto Serra Materiale Didattico per il Conseguimento del Patentino per il Trattamento dei Gas Effetto Serra Parte 1 I Processi di Refrigerazione Chiariamo i concetti di base La refrigerazione è un aspetto particolare

Dettagli

LA CENTRALE TORINO NORD

LA CENTRALE TORINO NORD LA CENTRALE Iren Energia è la società del ruppo Iren che opera nei settori della produzione e distribuzione di energia elettrica, nella produzione e distribuzione di energia termica per teleriscaldamento

Dettagli

Energia e Fonti Rinnovabili. Un esempio di risparmio energetico: la produzione distribuita di energia elettrica

Energia e Fonti Rinnovabili. Un esempio di risparmio energetico: la produzione distribuita di energia elettrica Energia e Fonti Rinnovabili Almo Collegio Borromeo, Pavia, a.a. 2009-2010 corso riconosciuto dall Università degli Studi di Pavia Un esempio di risparmio energetico: la produzione distribuita di energia

Dettagli

GRUPPI FRIGORIFERI AD ASSORBIMENTO SHUANGLIANG

GRUPPI FRIGORIFERI AD ASSORBIMENTO SHUANGLIANG GRUPPI FRIGORIFERI AD ASSORBIMENTO SHUANGLIANG Il ciclo frigorifero Esempio di ciclo frigorifero ad assorbimento con generatore a fiamma diretta Il principio di funzionamento /informazioni utili La termodinamica

Dettagli

BILANCI DI ENERGIA. Capitolo 2 pag 70

BILANCI DI ENERGIA. Capitolo 2 pag 70 BILANCI DI ENERGIA Capitolo 2 pag 70 BILANCI DI ENERGIA Le energie in gioco sono di vario tipo: energia associata ai flussi entranti e uscenti (potenziale, cinetica, interna), Calore scambiato con l ambiente,

Dettagli

352&(662',&20%867,21(

352&(662',&20%867,21( 352&(662',&20%867,21( Il calore utilizzato come fonte energetica convertibile in lavoro nella maggior parte dei casi, è prodotto dalla combustione di sostanze (es. carbone, metano, gasolio) chiamate combustibili.

Dettagli

v. il dimensionamento d impianto vi. l integrazione con la realtà produttiva 3. Le opportunità ambientale ed economica

v. il dimensionamento d impianto vi. l integrazione con la realtà produttiva 3. Le opportunità ambientale ed economica Workshop Rafforzare la competitività delle PMI: opportunità in Europa Investire nello sviluppo sostenibile: la cogenerazione ing. Giuseppe Starace Università del Salento LECCE (I) Dipartimento di Ingegneria

Dettagli

Temi per la prova orale di Fisica Tecnica 2014-2015

Temi per la prova orale di Fisica Tecnica 2014-2015 I temi elencati nel seguito vogliono essere una guida alla preparazione della prova orale dell esame di Fisica Tecnica cosicché gli allievi possano raggiungere una preparazione completa sugli argomenti

Dettagli

Cogenerazione. UNIVERSITA DI FIRENZE Facoltà di Ingegneria. Dipartimento di Energetica S.Stecco Sezione di Macchine

Cogenerazione. UNIVERSITA DI FIRENZE Facoltà di Ingegneria. Dipartimento di Energetica S.Stecco Sezione di Macchine Cogenerazione La cogenerazione di energia elettrica e calore è considerata come una delle forme più efficaci di risparmio energetico Gran parte dell'energia termica viene utilizzata a temperature relativamente

Dettagli

AE BIO SOLAR AE BIO SOLAR IMPIANTO IBRIDO SOLARE/BIOMASSA ADESSO ENERGIA SRL IMPIANTO IBRIDO SOLARE/BIOMASSA L INIZIO DI UNA NUOVA ENERGIA

AE BIO SOLAR AE BIO SOLAR IMPIANTO IBRIDO SOLARE/BIOMASSA ADESSO ENERGIA SRL IMPIANTO IBRIDO SOLARE/BIOMASSA L INIZIO DI UNA NUOVA ENERGIA ADESSO ENERGIA SRL AE BIO SOLAR L INIZIO DI UNA NUOVA ENERGIA Via Notarbartolo n 49 14.05.2014-90141 Palermo Pagina 1 INTRODUZIONE Il Sistema ibrido ingegnerizzato da Adesso Energia srl, denominato AE

Dettagli

Relazione specialistica

Relazione specialistica Relazione specialistica Dipl.-Ing. Matthias Raisch, Bosch Industriekessel GmbH Sfruttamento della condensazione Sfruttando la sperimentata tecnologia della condensazione, i gestori di caldaie a vapore

Dettagli

GREEN DESIGN GREEN DESIGN

GREEN DESIGN GREEN DESIGN I TEMI DI OGGI 2 Qualità ambientale indoor e outdoor Efficienza energetica Efficienza e certificazione energetica degli edifici Impianti termici negli edifici Produzione e distribuzione dell'energia termica

Dettagli

)LJ±&RQIURQWRWUDLIOXVVLHQHUJHWLFLFDUDWWHULVWLFLGHOOHFDOGDLHWUDGL]LRQDOL

)LJ±&RQIURQWRWUDLIOXVVLHQHUJHWLFLFDUDWWHULVWLFLGHOOHFDOGDLHWUDGL]LRQDOL &DOGDLHDFRQGHQVD]LRQH 'HVFUL]LRQHGHOODWHFQRORJLD Le caldaie sono il cuore degli impianti di riscaldamento dato che realizzano il processo di combustione da cui si ricava l energia termica necessaria per

Dettagli

RISCALDAMENTO E CLIMATIZZAZIONE

RISCALDAMENTO E CLIMATIZZAZIONE RISCALDAMENTO E CLIMATIZZAZIONE Gli oneri economici relativi al riscaldamento invernale e alla climatizzazione estiva di un edificio residenziale sono da considerarsi tra le componenti di spesa principali

Dettagli

Attualità dei sistemi ibridi a pompa di calore

Attualità dei sistemi ibridi a pompa di calore TECNOLOGIA Attualità dei sistemi ibridi a pompa di calore Integrare pompa di calore ad aria e caldaia in un unico sistema di riscaldamento può portare a drastiche riduzioni dei consumi di energia primaria.

Dettagli

Macchine frigorifero

Macchine frigorifero Corso di IMPIANTI TECNICI per l EDILIZIAl Macchine frigorifero Prof. Paolo ZAZZINI Dipartimento INGEO Università G. D Annunzio Pescara www.lft.unich.it 1 LA PRODUZIONE DEL FREDDO Per refrigerazione si

Dettagli

Il ruolo delle pompe di calore nel futuro contesto energetico. Ennio Macchi Dipartimento di Energetica - Politecnico di Milano

Il ruolo delle pompe di calore nel futuro contesto energetico. Ennio Macchi Dipartimento di Energetica - Politecnico di Milano Il ruolo delle pompe di calore nel futuro contesto energetico Dipartimento di Energetica - Politecnico di Milano Il quesito cui cercherò di rispondere 2 La pompa di calore utilizza energia elettrica per

Dettagli

IMPIANTI DI CONDIZIONAMENTO

IMPIANTI DI CONDIZIONAMENTO IMPIANTI DI CONDIZIONAMENTO Trasferimento di calore dall ambiente interno a quello esterno L aria del locale da raffrescare cede calore all unità interna del climatizzatore ed in tal modo si raffredda

Dettagli

COGENERAZIONE. Tipologie di impianti di cogenerazione

COGENERAZIONE. Tipologie di impianti di cogenerazione COGENERAZIONE La cogenerazione, o produzione combinata di energia elettrica e calore, consente di ottenere da una singola unità produttiva energia elettrica e termica, o in alcuni casi, lavoro ed energia

Dettagli

TECNOLOGIE PER LA CONVERSIONE DELLA BIOMASSA LEGNOSA

TECNOLOGIE PER LA CONVERSIONE DELLA BIOMASSA LEGNOSA ENERGIA, ACQUA, LEGNO: TECNOLOGIE E TUTELA AMBIENTALE NELL'AMBITO DEL PROGETTO STRATEGICO RENERFOR TECNOLOGIE PER LA CONVERSIONE DELLA BIOMASSA LEGNOSA Ing. Roberta ROBERTO UTTS ENEA C.R. Saluggia roberta.roberto@enea.it

Dettagli

Il Secondo Principio della Termodinamica di Antonio Covello

Il Secondo Principio della Termodinamica di Antonio Covello Il Secondo Principio della Termodinamica di Antonio Covello La termodinamica è il primo esempio di scienza fisica che si differenzia dalla meccanica newtoniana La sua nascita è legata allo sviluppo delle

Dettagli

1. Trasformazione dell energia

1. Trasformazione dell energia LEZIONE V 19/03/2014 Ora 9.30-12.30 Trasformazioni dell energia, Anergia e Exergia, Teorema di Carnot, Macchine termiche Studenti: Alberti Laura (232107), Lorenzani Giulia (231851) 1. Trasformazione dell

Dettagli

Gruppo. Distributor GE Energy. Combi Cycle Systems. Sistemi di generazione a Ciclo Combinato Vapore + ORC di piccola taglia ad alta efficienza

Gruppo. Distributor GE Energy. Combi Cycle Systems. Sistemi di generazione a Ciclo Combinato Vapore + ORC di piccola taglia ad alta efficienza Gruppo Distributor Combi Cycle Systems Sistemi di generazione a Ciclo Combinato Vapore + ORC di piccola taglia ad alta efficienza Distributor Gruppo Progeco PROGECO e la sua consociata INGECO sono a Silea

Dettagli

COMBI CYCLE 300 PLUS CHP

COMBI CYCLE 300 PLUS CHP Gruppo Progeco PROGECO e la sua consociata INGECO sono a Silea (Treviso) con stabilimento di produzione di 2.200 mq PROGECO e per l Italia di GENERAL ELECTRIC - Heat Recovery Solutions PROGECO Progetta

Dettagli

Termologia. Introduzione Scale Termometriche Espansione termica Capacità termica e calori specifici Cambiamenti di fase e calori latenti

Termologia. Introduzione Scale Termometriche Espansione termica Capacità termica e calori specifici Cambiamenti di fase e calori latenti Termologia Introduzione Scale Termometriche Espansione termica Capacità termica e calori specifici Cambiamenti di fase e calori latenti Trasmissione del calore Legge di Wien Legge di Stefan-Boltzmann Gas

Dettagli

l energia meccanica si trasforma, integralmente e spontaneamente, in energia termica.

l energia meccanica si trasforma, integralmente e spontaneamente, in energia termica. Lezione 26 - pag.1 Lezione 26: Le macchine termiche 26.1. La conversione di energia meccanica in energia termica Sappiamo che quando un corpo cade, nel corso della caduta la sua energia meccanica, se gli

Dettagli

PROBLEMA 1. Soluzione. Indicare quattro requisiti fondamentali che un fluido frigorigeno deve possedere: 1) 2) 3) 4)

PROBLEMA 1. Soluzione. Indicare quattro requisiti fondamentali che un fluido frigorigeno deve possedere: 1) 2) 3) 4) PROBLEMA 1 Indicare quattro requisiti fondamentali che un fluido frigorigeno deve possedere: 1) 2) 3) 4) Deve possedere un elevato calore latente, cioè, deve evaporare asportando molto calore dall ambiente

Dettagli

CORSO DI LAUREA IN DISEGNO INDUSTRIALE A.A.

CORSO DI LAUREA IN DISEGNO INDUSTRIALE A.A. ORSO DI LAUREA IN DISEGNO INDUSTRIALE A.A. 2006/07 FISIA TENIA Esercizi Prof. Ing. Marco Beccali Ing. Fulvio Ardente Si ringrazia il Prof. Giuliano Dall O Esercizi di Fisica Tecnica pag. 1 Simbologia Simbolo

Dettagli

Vitomax - Tecnologia moderna per la generazione di calore nei grandi impianti

Vitomax - Tecnologia moderna per la generazione di calore nei grandi impianti TopTechnology Vitomax - Tecnologia moderna per la generazione di calore nei grandi impianti Top Technology Vitomax 100, 200, 300: produzione di acqua calda fino a 20 MW La produzione di calore a basso

Dettagli

UNIVERSITÀ DEGLI STUDI DI MESSINA FACOLTÀ DI SCIENZE MM.FF.NN. CORSO DI LAUREA TRIENNALE IN SCIENZE BIOLOGICHE

UNIVERSITÀ DEGLI STUDI DI MESSINA FACOLTÀ DI SCIENZE MM.FF.NN. CORSO DI LAUREA TRIENNALE IN SCIENZE BIOLOGICHE UNIVERSITÀ DEGLI STUDI DI MESSINA FACOLTÀ DI SCIENZE MM.FF.NN. CORSO DI LAUREA TRIENNALE IN SCIENZE BIOLOGICHE Esercitazioni di fisica a cura di Valeria Conti Nibali A.A. 2008/09 Esercizio 1 Si consideri

Dettagli

Percorso didattico del Tecnico Superiore per la gestione e la verifica di impianti energetici. secondo l European Qualification Framework - EQF

Percorso didattico del Tecnico Superiore per la gestione e la verifica di impianti energetici. secondo l European Qualification Framework - EQF Percorso didattico del Tecnico Superiore per la gestione e la verifica di impianti energetici secondo l European Qualification Framework - EQF matrice EQF del Percorso in Sistemi Energetici Questa parte

Dettagli

NORME ORDINATE PER ARGOMENTO

NORME ORDINATE PER ARGOMENTO UNI EN 230:1997 31/10/1997 Bruciatori monoblocco di olio combustibile a polverizzazione. Dispositivi di sicurezza, di comando e di regolazione. Tempi di sicurezza. UNI EN 247:2001 31/05/2001 Scambiatori

Dettagli

Dalla terra l energia ecologica per il comfort ambientale

Dalla terra l energia ecologica per il comfort ambientale Dalla terra l energia ecologica per il comfort ambientale EDILCUSIO s.r.l. da sempre in prima linea nelle soluzioni innovative costruisce ed edifica nel pieno rispetto dell ambiente Gli appartamenti sono

Dettagli

POMPE DI CALORE. Riscaldamento, produzione ACS istantanea e Raffrescamento con pompe di calore abbinate a un impianto fotovoltaico

POMPE DI CALORE. Riscaldamento, produzione ACS istantanea e Raffrescamento con pompe di calore abbinate a un impianto fotovoltaico POMPE DI CALORE La pompa di calore è una macchina in grado di trasferire energia termica da una sorgente a temperatura più bassa ad una sorgente a temperatura più alta o viceversa. Questi dispositivi permettono

Dettagli

Il soddisfacimento dei fabbisogni energetici con la cogenerazione

Il soddisfacimento dei fabbisogni energetici con la cogenerazione COGENERAZIONE & TRIGENERAZIONE RISPARMIO ENERGETICO = RISPARMIO ECONOMICO Il soddisfacimento dei fabbisogni energetici con la cogenerazione Domenico Laforgia Magnifico Rettore Professore ordinario di Sistemi

Dettagli

Soluzioni progettuali e costruttive per il miglioramento dell efficienza energetica degli impianti. Massimiliano Vigolo

Soluzioni progettuali e costruttive per il miglioramento dell efficienza energetica degli impianti. Massimiliano Vigolo Soluzioni progettuali e costruttive per il miglioramento dell efficienza energetica degli impianti 2 Ambiti di intervento per il miglioramento dell efficienza Dispersioni dell involucro (coibentazione)

Dettagli

Impianti a biocombustibili solidi per la produzione di energia elettrica

Impianti a biocombustibili solidi per la produzione di energia elettrica Impianti a biocombustibili solidi per la produzione di energia elettrica TIPOLOGIA DI IMPIANTO Un impianto di produzione di energia elettrica da biocombustibili solidi si compone dei due seguenti principali

Dettagli

menoenergia PROPOSTA ENERGETICA SETTORE LATTIERO - CASEARIO Ing. M. Alberti ( Amministratore MenoEnergia S.r.l.)

menoenergia PROPOSTA ENERGETICA SETTORE LATTIERO - CASEARIO Ing. M. Alberti ( Amministratore MenoEnergia S.r.l.) PROPOSTA ENERGETICA SETTORE LATTIERO - CASEARIO Ing. M. Alberti ( Amministratore MenoEnergia S.r.l.) 2 LA MISSION DI MENOENERGIA ORIGINE DI MENOENERGIA Menoenergia è una società controllata dal Gruppo

Dettagli

AMBIENTE E RISPARMIO ENERGETICO AMBIENTE E RISPARMIO ENERGETICO. Guida alla micro-cogenerazione:

AMBIENTE E RISPARMIO ENERGETICO AMBIENTE E RISPARMIO ENERGETICO. Guida alla micro-cogenerazione: Questa guida è stata realizzata in collaborazione con AIMB - Associazione Industriali Monza e Brianza ed Energy-Lab Srl Monza (MI). Suggerimenti per migliorare l utilità di queste guide e per indicare

Dettagli

MODALITA DI PRODUZIONE DELL ENERGIA ELETTRICA

MODALITA DI PRODUZIONE DELL ENERGIA ELETTRICA ALLEGATO 3.A MODALITA DI PRODUZIONE DELL ENERGIA ELETTRICA Autorizzazione Integrata Ambientale Impianto IPPC SEDAMYL S.p.A. (AIA n.1018 del 12/10/2007) Comune SALUZZO INDICE 1 di 17 PREMESSA... 3 CARATTERISTICHE

Dettagli

GLI IMPIANTI DI COGENERAZIONE E IL TELERISCALDAMENTO A TORINO

GLI IMPIANTI DI COGENERAZIONE E IL TELERISCALDAMENTO A TORINO GLI IMPIANTI DI COGENERAZIONE E IL TELERISCALDAMENTO A TORINO Iren Energia è la società del Gruppo Iren che opera nei settori della produzione e distribuzione di energia elettrica, nella produzione e distribuzione

Dettagli

Produzione del Freddo I CHILLERS. Climatizzazione (2) Climatizzazione (1) Climatizzazione (3) Climatizzazione (4) Antonio Cammi

Produzione del Freddo I CHILLERS. Climatizzazione (2) Climatizzazione (1) Climatizzazione (3) Climatizzazione (4) Antonio Cammi Produzione del Freddo I CHILLERS Per la produzione del freddo, necessario agli impianti di climatizzazione si deve ricorrere a particolari macchine chiamate macchine frigorifere. Le macchine frigorifere

Dettagli

Capitolo 1 La cogenerazione

Capitolo 1 La cogenerazione Capitolo 1 1.1 Aspetti generali e indici di valutazione Gran parte dell energia elettrica generata in Italia e nel mondo proviene da impianti motori termici, nei quali calore ad alta temperatura viene

Dettagli

GLI EFFETTI DELLE GARE D AMBITO SULLA DISTRIBUZIONE DEL GAS IN ITALIA

GLI EFFETTI DELLE GARE D AMBITO SULLA DISTRIBUZIONE DEL GAS IN ITALIA GLI EFFETTI DELLE GARE D AMBITO SULLA DISTRIBUZIONE DEL GAS IN ITALIA Inserimento nelle cabine di riduzione di turboespansore e centrale di cogenerazione Ing. Raffaella Mandarano Proxima S.r.l. AccaDueO

Dettagli

Una soluzione è un sistema omogeneo (cioè costituito da una sola fase, che può essere liquida, solida o gassosa) a due o più componenti.

Una soluzione è un sistema omogeneo (cioè costituito da una sola fase, che può essere liquida, solida o gassosa) a due o più componenti. Una soluzione è un sistema omogeneo (cioè costituito da una sola fase, che può essere liquida, solida o gassosa) a due o più componenti. Solvente (componente presente in maggior quantità) SOLUZIONE Soluti

Dettagli

IL CICLO FRIGORIFERO. Ing. Giancarlo Sormani

IL CICLO FRIGORIFERO. Ing. Giancarlo Sormani C A P I T O L O 9 IL CICLO FRIGORIFERO Ing. Giancarlo Sormani CAPITOLO 9 Introduzione: Per alcuni processi tipici del condizionamento dell aria (raffreddamento e deumidificazione), nonchè per applicazioni

Dettagli

STIRLING. Laboratorio 2 (meccanica e termodinamica) F.Balestra 1. Vista complessiva del motore ad aria calda

STIRLING. Laboratorio 2 (meccanica e termodinamica) F.Balestra 1. Vista complessiva del motore ad aria calda SPERIMENTAZIONI CON STIRLING IL MOTORE AD ARIA CALDA DI Vista complessiva del motore ad aria calda Il motore ad aria calda (inventato da R. Stirling, 1816), assieme al motore a vapore, e la macchina termica

Dettagli

Le pompe di calore 1

Le pompe di calore 1 Le pompe di calore 1 Le macchine termiche Una macchina termica utilizza un fluido in un circuito chiuso per scambiare energia meccanica e termica con l ambiente esterno Il secondo principio della termodinamica

Dettagli