Incertezza, assicurazioni, deterrenza

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Incertezza, assicurazioni, deterrenza"

Transcript

1 Incertezza, assicurazioni, deterrenza (anche questo è adattato da altri pezzi per mancanza di tempo) Scelta sotto incertezza come scelta tra lotterie L esperienza ci insegna che in generale le conseguenze delle nostre scelte non ci sono perfettamente note nel momento della decisione: qualche malattia potrebbe impedirmi di lavorare tanto quanto avevo programmato; qualche evento esterno, per esempio climatico o tecnologico, potrebbe alterare il profitto che posso ottenere dalla mia attività; in futuro i prezzi dei beni, e quindi le mie possibilità di consumo, potrebbero rivelarsi diversi da quelli che avevo previsto. Come si vede, l incertezza relativa alla scelta può dipendere da varie circostanze. Tuttavia, il problema può essere impostato in modo semplificato. Anzitutto le varie fonti di incertezza possono essere ricondotte all unico caso generale in cui incerte sono le conseguenze delle scelte. Inoltre, le diverse forme di incertezza analizzate sopra possono essere rappresentate in termini di incertezza sulla somma monetaria di cui posso venire in possesso dopo aver rinunciato a qualcosa il cui valore monetario è invece certo. Ciò significa che possiamo pensare alla scelta sotto incertezza come scelta fra diverse lotterie. Se si accetta la semplificazione proposta sopra, il comportamento di scelta di fronte ad un mondo incerto consiste sostanzialmente nello scegliere tra diverse lotterie alternative, ciascuna delle quali ha caratteristiche diverse, cioè prezzi di partecipazione e premi potenziali diversi. L insieme di scelta di chi prende una decisione, dunque, è costituito dalle lotterie disponibili, il vincolo alla scelta potrebbe essere pensato come l ammontare di risorse che si possono impegnare nella partecipazione alle diverse lotterie e l informazione consiste nella conoscenza delle caratteristiche delle lotterie disponibili. La descrizione delle conseguenze delle lotterie e il loro ordinamento saranno gli aspetti nuovi che ci impegneranno in questo capitolo. Definiti questi aspetti, la scelta consisterà nel selezionare la lotteria preferita fra quelle disponibili. Per semplificare ulteriormente le cose, supporremo che le lotterie disponibili siano solo due. Gli esiti di una lotteria possono essere rappresentati per mezzo di variabili casuali. Consideriamo, per esempio, le conseguenze di una puntata di x euro su un singolo numero alla roulette: se esce quel numero si vince 36 volte la posta, altrimenti non si vince nulla. Tale conseguenza può essere descritta tramite una variabile casuale che assume valore zero con probabilità 36/37, e valore 36x con probabilità 1/37 (si rammenti che può uscire anche il numero zero). Un altro esempio è la scommessa di x euro sul fatto che esca croce nel lancio di una moneta: se esce croce si vince il doppio della puntata, altrimenti si perde tutto. Se la moneta non è truccata, la conseguenza è una variabile casuale che vale 2x con probabilità ½ e zero con probabilità ½. Più in generale, una lotteria è caratterizzata da un costo di partecipazione x e da esiti che prendono la forma di diverse somme monetarie alternative, ciascuna con una sua probabilità. Esempi di lotterie importanti in economia possono essere i seguenti. Un progetto di investimento è caratterizzato da un costo iniziale, usualmente noto con certezza, e da possibili rendimenti futuri alternativi, alti o bassi, che potranno dipendere da varie circostanze non ancora note. La semina di un cereale ha le stesse caratteristiche, poiché il profitto che se ne potrà ottenere dipenderà dal clima durante l anno. Anche il profitto ottenibile da un attività industriale è soggetto a incertezza, per esempio a causa di possibili problemi di produzione. La guida di un autoveicolo potrà causare danni più o meno gravi a sé o ad altri, solitamente quantificati in termini monetari. L acquisto di un titolo in borsa ha le medesime caratteristiche, perché se ne conosce il prezzo di acquisto odierno, ma il prezzo futuro di realizzo è incerto. Interessante potrà essere più avanti anche il seguente esempio. Supponiamo che la qualità di un bene che vorrei comprare non mi sia nota, perché non tutti gli esemplari esistenti di quel bene, pur somigliandosi esteriormente, sono tra loro uguali. Supponiamo inoltre che io riesca ad attribuire valori monetari diversi alle diverse qualità, cioè supponiamo che io sia disposto a pagare prezzi diversi per i diversi benefici che le varie qualità mi arrecano. Anche l acquisto di un bene di qualità incerta, dunque, può essere rappresentato come una lotteria. Una prima caratteristica sintetica di una variabile casuale è il suo valore atteso, che si calcola moltiplicando ciascuno dei possibili esiti per la sua probabilità, e poi sommando tutti questi prodotti. Il valore atteso di una variabile casuale è una stima sintetica dell esito che ci si aspetta di poter osservare. Nel caso di una lotteria, gli esiti sono somme monetarie, per cui parleremo di valore monetario atteso o vincita monetaria attesa della lotteria. Se la lotteria è quella descritta nel precedente esempio della roulette, il valore monetario atteso è 0 (36/37) + 36x (1/37) = (36/37) x. Nel caso della moneta non truccata il valore monetario atteso della

2 lotteria è pari a 0 (1/2) + 2x (1/2) = x. Una lotteria si dice equa se il suo valore monetario atteso è pari al costo di partecipazione. La puntata alla roulette, per esempio, non è una lotteria equa, mentre lo è la scommessa sulla moneta non truccata. La maggior parte delle lotterie effettivamente esistenti non è equa, perché altrimenti i suoi organizzatori non ne ricaverebbero alcun beneficio. Una seconda caratteristica molto importante di una variabile casuale è la variabilità dei suoi possibili valori rispetto al valore atteso. Tale caratteristica è misurabile tramite la varianza della variabile casuale, definita come media degli scostamenti dei diversi possibili esiti dal valore atteso, elevati al quadrato. La varianza misura in qualche modo il rischio connesso con la variabile casuale. Se quest ultima può assumere solo valori molto vicini tra loro, la media sarà essa stessa vicina a quei valori e gli scostamenti dalla media saranno piccoli. Se la variabile casuale, quindi, descrive gli esiti di una lotteria, quando la varianza è piccola la lotteria presenta un rischio basso: posso vincere somme tutte molto vicine al valore monetario atteso. Il contrario accade per una variabile che può assumere valori tra loro molto diversi, cosicché la varianza è grande. In questo caso la variabile casuale rappresenta gli esiti di una lotteria caratterizzata da un rischio elevato: posso vincere somme molto più alte, ma anche molto più basse, del valore monetario atteso. Siccome poi partecipare alla lotteria ha un prezzo, quando la lotteria ha varianza elevata posso sì guadagnare molto ma posso anche perdere molto. Lotterie caratterizzate da gradi diversi di rischiosità, cioè da varianza diversa, per alcuni soggetti possono non essere tra loro equivalenti pur avendo il medesimo valore monetario atteso. Si noti che possiamo avere, come caso particolare, variabili casuali che in realtà coincidono con eventi certi. In questo caso uno degli esiti, quello certo, ha probabilità pari ad uno, mentre tutti gli altri hanno probabilità pari a zero. Si tratta ovviamente di un artificio, ma l artificio è utile perché mostra che un evento certo può essere rappresentato come un caso particolare di variabile casuale. È facile calcolare che una variabile certa ha valore atteso pari al suo unico esito possibile, e ha varianza pari a zero, cioè comporta un rischio nullo, coerentemente con la nostra interpretazione della varianza. Ciò posto, la scelta sotto incertezza diventa una scelta tra lotterie alternative, ciascuna caratterizzata da un valore atteso ed una varianza. Nell insieme di scelta appariranno anche lotterie degenerate, cioè somme monetarie certe, e ciò potrà essere molto utile per comprendere meglio il processo di scelta. Per esempio, la scelta se partecipare o meno alla scommessa sul lancio di una moneta non truccata, con costo x e premio 2x, può essere reinterpretata come scelta fra due lotterie: quella appena descritta, nel caso in cui si scommetta effettivamente, e quella coincidente con l avere x euro in tasca con certezza nel caso in cui non si scommetta. A questo punto occorre rivolgere l attenzione all ordinamento di preferenza fra le diverse lotterie. Atteggiamenti nei confronti del rischio, utilità, utilità attesa A prima vista potrebbe apparire che il confronto fra lotterie possa avvenire sulla base dei soli valori monetari attesi: un valore monetario atteso, cioè un aspettativa di vincita, maggiore dovrebbe essere preferibile ad uno minore. Abbiamo già osservato, però, che anche il rischio costituisce un importante elemento di valutazione. Alcune persone, infatti, potrebbero essere molto caute e preferire un valore monetario atteso più basso, purché il rischio sia limitato, mentre altre persone potrebbe amare l azzardo. Di fronte a prospettive incerte alcuni soggetti si sentono timorosi, mentre altri, amanti dell azzardo, potrebbero invece entusiasmarsi: soggetti diversi hanno attitudini diverse nei confronti del rischio, manifestando una maggiore o minore propensione nei suoi confronti. La definizione di avversione al rischio che adottiamo è piuttosto intuitiva: un individuo è avverso al rischio se, di fronte a due lotterie che hanno uguale valore monetario atteso, sceglie sempre quella caratterizzata da minore rischio, ovvero minore varianza. In caso contrario diremo che quell individuo è propenso al rischio. Infine, è neutrale nei confronti del rischio chi è indifferente fra lotterie con uguale valore atteso monetario, anche se hanno varianza diversa. Cerchiamo ora di ottenere qualcosa di meno intuitivo. Quando si parla p. es. della scelta del consumatore, si dice che ciò che conta non è ciò di cui un individuo dispone, beni o danaro, ma il benessere o soddisfazione che egli ottiene da ciò di cui dispone. Nel caso di lotterie con vincite monetarie, non è la vincita in sé che rileva, ma la soddisfazione che un individuo ottiene da quella vincita. Qui utilizzeremo esplicitamente il concetto di funzione di utilità. Si tratta di una funzione che assegna indicatori numerici di soddisfazione alle diverse possibili conseguenze delle scelte. Poiché nel caso di scelta tra lotterie le conseguenze sono somme monetarie, ipotizzeremo l esistenza di una funzione di utilità la cui variabile indipendente sono le diverse somme monetarie potenzialmente disponibili: ad ogni somma

3 monetaria corrisponde un ammontare di soddisfazione, misurato da questa funzione. Ovviamente la relazione deve essere crescente, cioè al crescere della somma monetaria l utilità aumenta. L ipotesi di utilità crescente è illustrata nelle Fig. 1a e 1b. In entrambi i casi l utilità aumenta al crescere delle somme monetarie, tuttavia nel primo caso la relazione è concava, mentre nel secondo caso la relazione è convessa. Il significato economico della concavità, per esempio, è che quanto più grande è la somma che il signor Rossi già possiede, tanto più piccola è l utilità addizionale che egli ottiene da un euro addizionale. Ciò ricorda l ipotesi che abbiamo adottato nel capitolo precedente, e che allora giustificava la forma convessa delle curve di indifferenza: il possedere quantità maggiori di un certo bene rende le unità aggiuntive meno appetibili. Ma un soggetto potrebbe anche avere preferenze diverse da queste, come per esempio il signor Neri della Fig. 1b, la cui funzione di utilità è convessa. Non si può neppure escludere, infine, che un soggetto abbia una funzione di utilità lineare, cioè rappresentata da una retta. Figura 1 Due tipi di utilità delle somme monetarie di Rossi (a) di Neri (b) 0 Somma 0 Somma monetaria monetaria Data questa descrizione del benessere ottenibile da somme monetarie alternative, possiamo ora affrontare il problema dell ordinamento delle lotterie. Ogni lotteria dà luogo ad una variabile casuale che consiste in varie somme monetarie alternative, ciascuna ottenibile con una certa probabilità. Da ciò consegue che chi partecipa alla lotteria può ottenere diversi livelli di utilità, ciascuno con una certa probabilità. Il suggerimento offerto dagli studiosi della scelta sotto incertezza è allora il seguente. Si consideri una lotteria e si valuti, tramite la funzione di utilità del consumatore, l utilità che egli otterrebbe in corrispondenza di ogni possibile esito della lotteria. Si calcoli poi il valore atteso, cioè la media, di queste utilità, usando come pesi proprio le probabilità dei diversi esiti. Il risultato di questa operazione è chiamato utilità attesa della lotteria, vale a dire è il valore atteso delle diverse possibili utilità. Si osservi quindi che l utilità attesa della lotteria si calcola come media di valori della grandezza rappresentata sull asse verticale del grafico, l utilità, e si dovrà rappresentarla sul medesimo asse. Il valore monetario atteso, invece, si calcola come media delle somme monetarie, rappresentate sull asse orizzontale del grafico. L utilità attesa, dunque, è un indicatore numerico del benessere fornito dalla lotteria in questione. Poiché ordinare i numeri è facile, chi deve prendere una decisione può scegliere, fra diverse lotterie alternative, quella caratterizzata dall utilità attesa più alta. Se si prende una decisione in questo modo, si dice che ci si comporta secondo il principio dell utilità attesa, e noi assumeremo che ci si comporti proprio in questo modo. La Fig. 2 illustra alcuni esempi di calcolo dell utilità attesa. Supponiamo di avere tre diverse lotterie, caratterizzate dalle stesse possibili vincite monetarie, una bassa e una alta. Di conseguenza, le due utilità che un dato soggetto può ottenere nei due diversi esiti di ogni lotteria sono le medesime: l utilità B, se la vincita monetaria è quella bassa, e l utilità A, se la vincita monetaria è quella alta. Ovviamente A è maggiore di B, come rappresentato nella Fig. 2. La differenza tra le tre lotterie consiste nelle probabilità dei loro possibili esiti: nella prima lotteria la probabilità che si verifichi la vincita monetaria alta, e che quindi l utilità ottenuta sia A, è ¼ (dunque la probabilità di ottenere l utilità B è ¾); nella seconda lotteria la probabilità dell esito migliore è ½; nella terza lotteria infine tale probabilità è ¾. Di conseguenza, l utilità attesa, cioè la media delle possibili utilità, è diversa nei tre casi. Nella prima lotteria, dove la probabilità dell esito peggiore è più grande, l utilità attesa UA 1 si situa più vicino a B (per la precisione a un quarto di strada fra B e A); nella

4 seconda lotteria l utilità attesa UA 2 è proprio a metà strada fra A e B; nella terza lotteria l utilità attesa UA 3 è più vicina ad A (a tre quarti di strada fra B e A). Figura 2 Se cambiano le probabilità cambia l utilità attesa O B O UA 1 UA 2 UA 3 A Naturalmente un soggetto che si comporta secondo il principio dell utilità attesa sceglie la terza lotteria, che ha utilità attesa più alta. Ma questa semplice osservazione non esaurisce ciò che abbiamo da dire sulla scelta sotto incertezza. Per collegare in modo semplice le definizioni di avversione e propensione al rischio con il principio dell utilità attesa conviene considerare inizialmente la scelta fra coppie di lotterie di uguale valore monetario atteso quando una delle due lotterie sia in realtà un evento certo. Il caso più semplice è la scelta se partecipare o meno ad una lotteria equa. In questo caso la scelta di non partecipare implica che alla fine avremo in tasca per certo il costo di partecipazione x: se non partecipiamo alla scommessa possiamo godere sicuramente della somma x che abbiamo risparmiato. Possiamo anche dire che la scelta di non partecipare ci promette un valore monetario atteso pari a x, in quanto si tratta del valore atteso di una variabile in realtà certa il cui valore è x. La partecipazione, invece, implica esiti incerti, ma con un valore monetario atteso esattamente pari al costo di partecipazione, essendo la lotteria equa. I valori monetari attesi delle due scelte sono dunque uguali, ma la varianza è diversa: non partecipare implica una varianza nulla, mentre partecipare implica una varianza positiva. Studiamo il problema secondo il principio dell utilità attesa. Figura 3 Avversione al rischio U(OA) U(OX) UA = ½U(OA) + ½U(OB) U(OB) 0 B X A Somme monetarie Consideriamo un soggetto che abbia una funzione di utilità concava. Supponiamo che costui possa scegliere se partecipare ad una lotteria equa i cui due esiti monetari, alto e basso, sono indicati come al solito come OA e OB. Il valore monetario atteso, OX, si situa a metà strada fra OB e OA poiché ipotizziamo che le probabilità dei due esiti siano ½; e OX è anche il costo di partecipazione alla lotteria. Questa situazione è illustrata nella Fig. 3. Se il nostro soggetto decide di non partecipare, risparmia OX euro, che si ritrova in tasca per certo e che gli garantiscono un utilità pari a U(OX), come vediamo dalla figura. Se invece decide di partecipare, il nostro decisore potrà ottenere due diversi livelli di utilità, ciascuno con probabilità ½, a seconda dell esito monetario. Se la vincita monetaria è quella più alta, l utilità ottenuta sarà U(OA), altrimenti sarà U(OB). Questi due livelli di utilità sono indicati in ordinata nella Fig. 3. Ciò che conta ai fini della decisione, tuttavia, è l utilità attesa UA, cioè la media fra U(OA) e U(OB): siccome le probabilità di ottenere questi due livelli di utilità sono pari a ½, l utilità attesa si trova a metà strada fra i due (in verticale!), e corrisponde all altezza della linea continua riportata in figura. Siccome l utilità attesa di partecipare alla lotteria, UA, è chiaramente inferiore all utilità di non partecipare, U(OX), questo soggetto decide di non partecipare. Ne segue che un soggetto la cui funzione di utilità è concava è avverso al rischio, perché fra le due alternative di uguale valore monetario atteso preferisce quella di minor varianza. La scelta di non partecipare, infatti, dà luogo ad un esito certo, la cui varianza è zero, mentre la lotteria ha varianza positiva in quanto i due possibili esiti sono discostati dal valore monetario atteso.

5 Consideriamo invece ora il caso di un individuo che abbia una funzione di utilità convessa. Gli altri dati del problema sono gli stessi di prima. La Fig. 4 illustra questa situazione, e se ne può agevolmente ricavare che in questo caso U(OX) è inferiore a UA. Il nostro individuo, dunque, sceglie di partecipare alla lotteria, perché ciò gli fornisce un utilità attesa maggiore. Questo è il caso di propensione al rischio: il soggetto preferisce la prospettiva con maggiore varianza. Una situazione esattamente intermedia fra le due precedenti sarà caratterizzata da una funzione di utilità né concava né convessa. Il grafico di questa funzione di utilità sarà una linea retta, e in tal caso chi deve decidere sarà indifferente fra le due alternative in esame. Costui è neutrale nei confronti del rischio, cioè guarda solo al valore monetario atteso delle due lotterie senza preoccuparsi della maggiore o minore varianza. U(OA) Figura 4 Propensione al rischio U(OX) U(OB) 0 B X A UA= ½U(OA) + ½U(OB) Somme monetarie Un modo alternativo per rappresentare il fatto che un soggetto è avverso o propenso al rischio è valutare quanto sarebbe disposto a pagare (se avverso), prenderebbe di incassare (se propenso) per privarsi del rischio: pagare e incassare sono da intendersi in termini di valore monetario atteso. Consideriamo nuovamente la situazione di un avverso al rischio. U(OA) Figura 3bis Avversione al, e premio per il, rischio UA = ½U(OA) + ½U(OB) U(OB) Premio per il rischio 0 B EC X A Somme monetarie Di fronte alla solita lotteria con esiti possibili B e A, ciascuno di probabilità ½ sempre per semplicità (e dunque il valore monetario atteso è X), l utilità attesa è UA. Ci chiediamo ora qual è il valore monetario certo che darebbe a questo soggetto la medesima utilità (attesa) della lotteria: si tratta ovviamente del valore EC, che è detto equivalente certo della lotteria in questione. Se questo soggetto potesse disporre di quel valore starebbe altrettanto bene di quanto sta disponendo della lotteria; in altri termini, sarebbe disposto a rinunciare ad un ammontare di valore atteso monetario pari a (X EC), a patto che EC sia certo (una prospettiva il cui valore atteso è EC stesso). La differenza (X EC) si chiama premio per il rischio: è, appunto, una misura di quanto quel soggetto è disposto a pagare per essere privato dell incertezza. Si lascia a voi di verificare che per un propenso al rischio di fronte alla medesima lotteria il valore EC sarebbe a

6 destra di X, e dunque la differenza (X EC) avrebbe il segno opposto: costui pretenderebbe di incassare questa differenza per doversi privare del rischio. Si potrebbe sospettare che i risultati ottenuti sopra siano validi solo perché l alternativa alla prospettiva incerta è un evento certo. Da ciò potremmo dedurre, per esempio, che un soggetto avverso al rischio è semplicemente uno che preferisce solo le prospettive certe, ma in realtà le definizioni che abbiamo dato all inizio di questo paragrafo, che vi preghiamo di andare a rileggere, sono valide in generale. Per capire questo punto ci limitiamo al caso dell avversione al rischio, e ricorriamo alla Fig. 5. Qui un soggetto caratterizzato da una funzione di utilità concava si trova di fronte a due diverse lotterie con uguale vincita monetaria attesa: la prima ha come esiti possibili OA 1 e OB 1, la seconda ha esiti OA 2 e OB 2 ed in entrambe le lotterie le probabilità degli esiti sono pari a ½. Evidentemente la prima lotteria ha varianza maggiore della seconda, perché i suoi esiti sono più lontani, rispetto alla seconda, dal valore atteso. Figura 5 Due lotterie diverse U(OA 1 ) U(OA 2 ) U(OB 2 ) L 2 L 1 U(OB 1 ) O B 1 B 2 A 2 A 1 Somme monetarie Ciò che conta per chi deve decidere è l utilità attesa. Siccome la probabilità degli esiti in entrambe le lotterie è pari a ½, l utilità attesa di ciascuna di esse si situa esattamente a metà strada fra le utilità dei due diversi esiti a cui esse possono condurre. Dunque l utilità attesa della prima lotteria è L 1, media fra U(OA 1 ) e U(OB 1 ), mentre l utilità attesa della seconda lotteria è L 2, media fra U(OA 2 ) e U(OB 2 ). La prima lotteria implica per il decisore un utilità attesa inferiore rispetto alla seconda: quest ultima, che ha varianza più bassa, sarà dunque preferita alla prima, e ciò significa avversione al rischio. Resta dunque confermato che un soggetto la cui funzione di utilità è concava è anche avverso al rischio. Poiché un soggetto avverso al rischio ha una funzione di utilità concava, potremmo pensare che una funzione di utilità più concava, cioè caratterizzata da una curvatura più pronunciata, implichi una maggiore avversione al rischio. Questa ipotesi è in un certo senso corretta, ma non la approfondiamo in questa sede. Possiamo solo affermare che la curvatura della funzione di utilità è un indicatore dell attitudine al rischio. Più la curva è concava, più il soggetto è avverso al rischio; se la curva è meno concava, lineare, o addirittura convessa, il soggetto è meno avverso, neutrale, o addirittura propenso nei confronti del rischio. Per concludere, accettando il principio dell utilità attesa abbiamo potuto giustificare rigorosamente un ipotesi abbastanza ragionevole: un individuo avverso al rischio sceglierà, fra diverse lotterie di uguale valore monetario atteso, quella caratterizzata da minor incertezza, cioè da minore varianza. Dunque, il fatto che oggi esista una gran quantità di persone che si dedicano a fare scommesse e a comprare biglietti di lotterie (e sappiamo che non si tratta di lotterie eque) può, al punto attuale della nostra analisi, essere interpretato in un solo modo: se sono persone che agiscono secondo il principio dell utilità attesa e sanno valutare correttamente le opzioni a loro disposizione, si tratta di persone amanti del rischio. Assicurarsi o correre il rischio? Il signor Rossi possiede un appezzamento di terreno e sa che mettendolo a coltura potrebbe ottenere un certo profitto, che è dato dalla differenza tra ricavi e costi. Il profitto sarà alto se il clima sarà favorevole, e basso nel caso contrario. Supponiamo che la probabilità di un clima favorevole sia ½. Rossi, dunque, è incerto sul risultato finale della sua attività, ma d altra parte questo è l unico modo per ottenere un reddito. Rossi,

7 quindi, non potrà astenersi dal coltivare il suo appezzamento. Un giorno arriva il signor Verdi, che è un assicuratore, il quale propone a Rossi questo contratto: Rossi pagherà a Verdi ogni anno una somma, che si chiama premio assicurativo, pari alla metà della differenza fra il profitto alto e il profitto basso. Nel caso di un annata sfavorevole per il raccolto, Verdi pagherà a Rossi come risarcimento tutta la differenza fra profitto alto e profitto basso. Rossi deciderà di assicurarsi? Se A è il profitto alto e B il profitto basso, quando Rossi non si assicura può aspettarsi di avere in media ogni anno una somma pari a ½ A + ½ B = ½ (A + B). Cosa accade se Rossi si assicura? Se le cose vanno male, egli ottiene il profitto basso, riceve il risarcimento e paga il premio, cioè ottiene il reddito B + (A B) ½ (A B) = ½ (A + B). Se le cose vanno bene, invece, Rossi riceve il profitto alto e paga il premio, cioè ottiene il reddito A ½ (A B) = ½ (A + B). Allora, poiché in entrambi i casi Rossi riceve ½ (A + B), se si assicura egli può contare ogni anno su un reddito certo pari a tale valore. Rossi quindi si trova a scegliere tra due lotterie con lo stesso valore monetario atteso ma con una diversa varianza, perché l esito di una delle due lotterie, quella che consiste nell accettare l assicurazione, è certo. Dunque, se Rossi è avverso al rischio preferisce assicurarsi, e rinuncia ad assicurarsi se è propenso al rischio. Come già sappiamo, se Rossi è avverso al rischio accetterà di assicurarsi non solo quando gli si promette un reddito costante, ma anche quando gli si propone un qualsiasi contratto caratterizzato da un premio x e da un risarcimento 2 x, il cui effetto è una riduzione del rischio per Rossi. Si consideri infatti quanto segue. Se non si assicura Rossi può continuare ad avere in media un reddito pari a ½ (A + B). Se Rossi si assicura, quando le cose vanno bene ottiene il profitto alto e paga il premio, cioè ha un reddito pari a A x, e quando le cose vanno male ottiene il profitto basso, riceve il risarcimento e paga il premio, cioè ha un reddito pari a B + 2 x x = B + x. Il valore monetario atteso di questa lotteria, quindi, è ½ (A x) + ½ (B + x) = ½ (A + B). Rossi, dunque, deve scegliere tra due lotterie che hanno lo stesso valore monetario: ma la seconda ha varianza più bassa della prima, visto che i suoi esiti sono più vicino al valore monetario atteso. Se Rossi è avverso al rischio, dunque, deciderà di assicurarsi. Sinora abbiamo appreso che un soggetto avverso al rischio preferisce, se ne ha l opportunità, assicurarsi ed affrontare così una nuova situazione caratterizzata, a parità di valore monetario atteso, da una rischiosità inferiore. Non è detto, però, che tutte le assicurazioni siano eque, cioè non è detto che esse promettano all assicurato lo stesso reddito monetario atteso che egli avrebbe se non si assicurasse. Anzi, usualmente accade che il valore monetario atteso garantito da un assicurazione sia inferiore al valore monetario atteso che si avrebbe se non ci si assicurasse. L assicurazione, infatti, deve pagare i suoi dipendenti e tutti gli altri costi di gestione. Ciò significa che un soggetto avverso al rischio non trova più conveniente assicurarsi? Per studiare questo problema consideriamo la Fig. 6. Il profitto di Rossi è OB se il raccolto è cattivo, il profitto OA se il raccolto è buono e la probabilità che il raccolto sia cattivo è sempre ½. Ora Verdi, l assicuratore, gli propone il seguente contratto: Rossi pagherà a Verdi un premio all inizio dell anno. Se le cose vanno bene la storia finisce qui; se invece il raccolto sarà cattivo Verdi pagherà a Rossi un risarcimento tale che il reddito di Rossi sarà comunque OR, maggiore di OB. In altri termini, Verdi propone a Rossi un risarcimento netto, cioè al netto del premio, pari a BR = OR OB. La domanda che ci poniamo è: qual è il premio massimo che Rossi è disposto a pagare a Verdi? Figura 6 Il massimo premio assicurativo che Rossi è disposto a pagare H S M N L Premio massimo attesa senza assicurazione 0 B R E A Reddito di Rossi

8 Poiché il reddito che Rossi ottiene senza assicurarsi può essere OB oppure OA, l utilità che Rossi ottiene senza assicurarsi è misurata da OL in caso sfavorevole e da OH in caso favorevole, e l utilità attesa in assenza di assicurazione (cioè la media fra queste due utilità) è OM, il segmento di lunghezza media fra OL e OH. Lo schema assicurativo proposto da Verdi implica che in caso sfavorevole Rossi ottenga un reddito, inclusivo del risarcimento netto, pari a OR, a cui corrisponde un utilità pari a ON. Poiché in caso favorevole Rossi deve comunque pagare il premio, egli si troverà in tal caso con un reddito inferiore a OA, e dunque con un utilità inferiore a OH. L utilità attesa in caso di accettazione dell assicurazione è la media fra ON e l utilità alternativa, che dipende dal premio da pagarsi. Rossi accetterà di assicurarsi solo se questa seconda utilità attesa sarà almeno pari a quella ottenibile senza assicurazione, OM. Ciò accade solo se l utilità del caso favorevole (tenendo conto del pagamento del premio) è almeno pari a OS. In questo caso la lunghezza del segmento MS è la stessa del segmento NM, e la media tra ON e OS è proprio OM, uguale l utilità attesa in assenza di assicurazione. Dunque OM è sia la media fra OL e OH, sia quella fra ON e OS. Affinché l utilità del caso favorevole sia almeno pari a OS, il reddito al netto del premio ottenibile da Rossi in quel caso deve essere almeno OE. Dunque, poiché il reddito netto è pari alla differenza fra il profitto alto e il premio assicurativo, il premio massimo che Rossi è disposto a pagare a Verdi per accettare l assicurazione proposta è dato dal segmento EA. Naturalmente Rossi sarebbe ben contento di pagare un premio inferiore a EA, ma non sarebbe comunque disposto a pagarne un premio maggiore. La cosa importante da osservare è che, pagando il premio EA in caso favorevole e incassando il risarcimento netto BR in caso sfavorevole, Rossi si trova in una situazione incerta il cui valore monetario atteso è inferiore a quello che avrebbe senza assicurarsi. Ciò emerge dalla Fig. 6, dove potete chiaramente vedere che il punto medio del segmento BA, cioè il valore monetario atteso in assenza di assicurazione, sta a destra del punto medio del segmento RE, il valore monetario atteso in presenza di assicurazione. Quanto appena dedotto è ovviamente connesso con quanto si diceva prima a proposito del premio per il rischio. Possiamo concludere, dunque, che un soggetto avverso al rischio può preferire assicurarsi anche se il premio che deve pagare è superiore al risarcimento che gli è garantito in caso di sinistro moltiplicato per la probabilità del sinistro (detto premio equo ). Per costui, infatti, non è importante il valore monetario atteso dell assicurazione, ma la sua utilità attesa, e quest ultima può essere maggiore di quella che si avrebbe senza assicurazione anche se il valore monetario atteso è inferiore. D altra parte un soggetto che, valutando le sue prospettive secondo il principio dell utilità attesa, preferisce non assicurarsi è un soggetto amante del rischio.

Incertezza, assicurazioni, deterrenza

Incertezza, assicurazioni, deterrenza Incertezza, assicurazioni, deterrenza (anche questo è adattato da altri pezzi per mancanza di tempo) Scelta sotto incertezza come scelta tra lotterie L esperienza ci insegna che in generale le conseguenze

Dettagli

3 Scegliere quando il mondo è incerto

3 Scegliere quando il mondo è incerto 3 Scegliere quando il mondo è incerto (Parte del cap. 3 di I. Lavanda e G. Rampa, Microeconomia. Scelte individuali e benessere sociale, Roma, Carocci, 2004) 1. Introduzione Nel capitolo precedente abbiamo

Dettagli

Scelta sotto incertezza

Scelta sotto incertezza Scelta sotto incertezza 1. Introduzione Nei capitoli 1 e 2 della microeconomia standard si studia la scelta dei consumatori e dei produttori, che hanno un informazione perfetta sulle circostanze che caratterizzano

Dettagli

Scegliere quando il mondo è incerto

Scegliere quando il mondo è incerto Scegliere quando il mondo è incerto (Tratto da I. Lavanda e G. Rampa, Microeconomia. Scelte individuali e benessere sociale, Roma, Carocci, 2004) 1. Introduzione Nei capitoli precedenti abbiamo studiato

Dettagli

Scelte in condizione di incertezza

Scelte in condizione di incertezza Scelte in condizione di incertezza Tutti i problemi di decisione che abbiamo considerato finora erano caratterizzati dal fatto che ogni possibile scelta dei decisori portava a un esito certo. In questo

Dettagli

Utilità scontata (US) attiene alla scelta/allocazione tra oggi e domani (i.e. risparmio ottimo). Elemento psicologico: propensione alla parsimonia.

Utilità scontata (US) attiene alla scelta/allocazione tra oggi e domani (i.e. risparmio ottimo). Elemento psicologico: propensione alla parsimonia. Richiami essenziali: Utilità scontata (US) attiene alla scelta/allocazione tra oggi e domani (i.e. risparmio ottimo). Elemento psicologico: propensione alla parsimonia. Tasso di sconto intertemporale soggettivo

Dettagli

Le scelte del consumatore in condizione di incertezza (cap.5)

Le scelte del consumatore in condizione di incertezza (cap.5) Le scelte del consumatore in condizione di incertezza (cap.5) Che cos è il rischio? Come possiamo indicare le preferenze del consumatore riguardo al rischio? C è chi acquista assicurazione (non ama il

Dettagli

Scelte in condizioni di rischio e incertezza

Scelte in condizioni di rischio e incertezza CAPITOLO 5 Scelte in condizioni di rischio e incertezza Esercizio 5.1. Tizio ha risparmiato nel corso dell anno 500 euro; può investirli in obbligazioni che rendono, in modo certo, il 10% oppure in azioni

Dettagli

Capitolo 23: Scelta in condizioni di incertezza

Capitolo 23: Scelta in condizioni di incertezza Capitolo 23: Scelta in condizioni di incertezza 23.1: Introduzione In questo capitolo studiamo la scelta ottima del consumatore in condizioni di incertezza, vale a dire in situazioni tali che il consumatore

Dettagli

Capitolo 25: Lo scambio nel mercato delle assicurazioni

Capitolo 25: Lo scambio nel mercato delle assicurazioni Capitolo 25: Lo scambio nel mercato delle assicurazioni 25.1: Introduzione In questo capitolo la teoria economica discussa nei capitoli 23 e 24 viene applicata all analisi dello scambio del rischio nel

Dettagli

Capitolo 20: Scelta Intertemporale

Capitolo 20: Scelta Intertemporale Capitolo 20: Scelta Intertemporale 20.1: Introduzione Gli elementi di teoria economica trattati finora possono essere applicati a vari contesti. Tra questi, due rivestono particolare importanza: la scelta

Dettagli

Esercizi di Ricerca Operativa II

Esercizi di Ricerca Operativa II Esercizi di Ricerca Operativa II Raffaele Pesenti January 12, 06 Domande su utilità 1. Determinare quale è l utilità che un giocatore di roulette assegna a 100,00 Euro, nel momento che gioca tale cifra

Dettagli

Tasso di interesse e capitalizzazione

Tasso di interesse e capitalizzazione Tasso di interesse e capitalizzazione Tasso di interesse = i = somma che devo restituire dopo un anno per aver preso a prestito un euro, in aggiunta alla restituzione dell euro iniziale Quindi: prendo

Dettagli

Capitolo 25: Lo scambio nel mercato delle assicurazioni

Capitolo 25: Lo scambio nel mercato delle assicurazioni Capitolo 25: Lo scambio nel mercato delle assicurazioni 25.1: Introduzione In questo capitolo la teoria economica discussa nei capitoli 23 e 24 viene applicata all analisi dello scambio del rischio nel

Dettagli

Decisioni in condizioni di rischio. Roberto Cordone

Decisioni in condizioni di rischio. Roberto Cordone Decisioni in condizioni di rischio Roberto Cordone Decisioni in condizioni di rischio Rispetto ai problemi in condizioni di ignoranza, oltre all insieme Ω dei possibili scenari, è nota una funzione di

Dettagli

Microeconomia A-K, Prof Giorgio Rampa a.a. 2011-2012. Svolgimento della prova scritta di Microeconomia AK del 19 settembre 2012

Microeconomia A-K, Prof Giorgio Rampa a.a. 2011-2012. Svolgimento della prova scritta di Microeconomia AK del 19 settembre 2012 Svolgimento della prova scritta di Microeconomia AK del 19 settembre 2012 A DEFINIZIONI - Si definiscano sinteticamente i termini anche con l ausilio, qualora necessario, di formule e grafici. 1. Beni

Dettagli

REGOLAZIONE (E TASSAZIONE OTTIMALE) DI UN MONOPOLIO CON PIÙ LINEE DI PRODUZIONE

REGOLAZIONE (E TASSAZIONE OTTIMALE) DI UN MONOPOLIO CON PIÙ LINEE DI PRODUZIONE REGOLAZIONE (E TASSAZIONE OTTIMALE) DI UN MONOPOLIO CON PIÙ LINEE DI PRODUZIONE Nella Sezione 16.5 abbiamo visto come un regolatore che voglia fissare il prezzo del monopolista in modo da minimizzare la

Dettagli

Capitolo 13: L offerta dell impresa e il surplus del produttore

Capitolo 13: L offerta dell impresa e il surplus del produttore Capitolo 13: L offerta dell impresa e il surplus del produttore 13.1: Introduzione L analisi dei due capitoli precedenti ha fornito tutti i concetti necessari per affrontare l argomento di questo capitolo:

Dettagli

Domanda e offerta di lavoro

Domanda e offerta di lavoro Domanda e offerta di lavoro 1. Assumere (e licenziare) lavoratori Anche la decisione di assumere o licenziare lavoratori dipende dai costi che si devono sostenere e dai ricavi che si possono ottenere.

Dettagli

= variazione diviso valore iniziale, il tutto moltiplicato per 100. \ Esempio: PIL del 2000 = 500; PIL del 2001 = 520:

= variazione diviso valore iniziale, il tutto moltiplicato per 100. \ Esempio: PIL del 2000 = 500; PIL del 2001 = 520: Fig. 10.bis.1 Variazioni percentuali Variazione percentuale di x dalla data zero alla data uno: x1 x 0 %x = 100% x 0 = variazione diviso valore iniziale, il tutto moltiplicato per 100. \ Esempio: PIL del

Dettagli

Domanda, offerta, beneficio marginale, costo marginale e surplus

Domanda, offerta, beneficio marginale, costo marginale e surplus omanda, offerta, beneficio marginale, costo marginale e surplus Il comportamento dei consumatori relativamente ad un certo bene viene, come noto, descritto di solito tramite una curva di domanda: una curva

Dettagli

Capitolo 22: Lo scambio nel mercato dei capitali

Capitolo 22: Lo scambio nel mercato dei capitali Capitolo 22: Lo scambio nel mercato dei capitali 22.1: Introduzione In questo capitolo analizziamo lo scambio nel mercato dei capitali, dove si incontrano la domanda di prestito e l offerta di credito.

Dettagli

L avversione al rischio e l utilità attesa

L avversione al rischio e l utilità attesa L avversione al rischio e l utilità attesa Kreps: "Microeconomia per manager" 1 ARGOMENTI DI QUESTA LEZIONE In questa lezione introdurremo il modello dell utilità attesa, che descrive le scelte individuali

Dettagli

La scelta in condizioni di incertezza

La scelta in condizioni di incertezza La scelta in condizioni di incertezza 1 Stati di natura e utilità attesa. L approccio delle preferenza per gli stati Il problema posto dall incertezza riformulato (state-preference approach). L individuo

Dettagli

La teoria dell utilità attesa

La teoria dell utilità attesa La teoria dell utilità attesa 1 La teoria dell utilità attesa In un contesto di certezza esiste un legame biunivoco tra azioni e conseguenze: ad ogni azione corrisponde una e una sola conseguenza, e viceversa.

Dettagli

Codici Numerici. Modifica dell'informazione. Rappresentazione dei numeri.

Codici Numerici. Modifica dell'informazione. Rappresentazione dei numeri. Codici Numerici. Modifica dell'informazione. Rappresentazione dei numeri. A partire da questa lezione, ci occuperemo di come si riescono a codificare con sequenze binarie, quindi con sequenze di 0 e 1,

Dettagli

No (questo accadrebbe, all incirca, se l elasticità fosse pari a -2) 1.5.3. FALSO. Un aumento del prezzo dell 1%

No (questo accadrebbe, all incirca, se l elasticità fosse pari a -2) 1.5.3. FALSO. Un aumento del prezzo dell 1% Facoltà di Economia Test intermedio di Microeconomia A-K del 7/04/011 Turno A-C SOLUZIONI 1. Attenzione: in questo prototipo l ordine delle domande è diverso da quello di ciascuno dei vostri compiti; inoltre,

Dettagli

Università di Milano Bicocca. Esercitazione 6 di Matematica per la Finanza. 14 Maggio 2015

Università di Milano Bicocca. Esercitazione 6 di Matematica per la Finanza. 14 Maggio 2015 Università di Milano Bicocca Esercitazione 6 di Matematica per la Finanza 14 Maggio 2015 Esercizio 1 Un agente presenta una funzione di utilitá u(x) = ln(1 + 6x). Egli dispone di un progetto incerto che

Dettagli

Lezione 5. Argomenti. Premessa Vincolo di bilancio La scelta ottima del consumatore

Lezione 5. Argomenti. Premessa Vincolo di bilancio La scelta ottima del consumatore Lezione 5 Argomenti Premessa Vincolo di bilancio La scelta ottima del consumatore 5.1 PREESSA Nonostante le preferenze portino a desiderare quantità crescenti di beni, nella realtà gli individui non sono

Dettagli

di informazione asimmetrica:

di informazione asimmetrica: Informazione asimmetrica In tutti i modelli che abbiamo considerato finora abbiamo assunto (implicitamente) che tutti gli agenti condividessero la stessa informazione (completa o incompleta) a proposito

Dettagli

Master della filiera cereagricola. Impresa e mercati. Facoltà di Agraria Università di Teramo. Giovanni Di Bartolomeo Stefano Papa

Master della filiera cereagricola. Impresa e mercati. Facoltà di Agraria Università di Teramo. Giovanni Di Bartolomeo Stefano Papa Master della filiera cereagricola Giovanni Di Bartolomeo Stefano Papa Facoltà di Agraria Università di Teramo Impresa e mercati Parte prima L impresa L impresa e il suo problema economico L economia studia

Dettagli

La condivisione del rischio e la sua ripartizione su ampia scala

La condivisione del rischio e la sua ripartizione su ampia scala La condivisione del rischio e la sua ripartizione su ampia scala 1 ARGOMENTI DI QUESTA LEZIONE Questa lezione propone esplora due problemi fondamentali: Se esiste un rischio in una transazione chi lo deve

Dettagli

Esercitazione 23 maggio 2016

Esercitazione 23 maggio 2016 Esercitazione 5 maggio 016 Esercitazione 3 maggio 016 In questa esercitazione, nei primi tre esercizi, analizzeremo il problema del moral hazard nel mercato. In questo caso prenderemo in considerazione

Dettagli

Economia Pubblica Rischio e Incertezza

Economia Pubblica Rischio e Incertezza Economia Pubblica Rischio e Incertezza Giuseppe De Feo Università degli Studi di Pavia email: giuseppe.defeo@unipv.it Secondo Semestre 2011-12 Seconda parte del corso di Economia Pubblica I problemi dell

Dettagli

ESERCITAZIONE 1. 15 novembre 2012

ESERCITAZIONE 1. 15 novembre 2012 ESERCITAZIONE 1 Economia dell Informazione e dei Mercati Finanziari C.d.L. in Economia degli Intermediari e dei Mercati Finanziari (8 C.F.U.) C.d.L. in Statistica per le decisioni finanziarie ed attuariali

Dettagli

Scelta intertemporale: Consumo vs. risparmio

Scelta intertemporale: Consumo vs. risparmio Scelta intertemporale: Consumo vs. risparmio Fino a questo punto abbiamo considerato solo modelli statici, cioè modelli che non hanno una dimensione temporale. In realtà i consumatori devono scegliere

Dettagli

Capitolo 6 Economia dell informazione e scelta in condizioni di incertezza

Capitolo 6 Economia dell informazione e scelta in condizioni di incertezza Capitolo 6 Economia dell informazione e scelta in condizioni di incertezza ECONOMIA DELL INFORMAZIONE L informazione è un fattore importante nel processo decisionale di consumatori e imprese Nella realtà,

Dettagli

Per poter affrontare il problema abbiamo bisogno di parlare di probabilità (almeno in maniera intuitiva). Analizziamo alcune situazioni concrete.

Per poter affrontare il problema abbiamo bisogno di parlare di probabilità (almeno in maniera intuitiva). Analizziamo alcune situazioni concrete. Parliamo di probabilità. Supponiamo di avere un sacchetto con dentro una pallina rossa; posso aggiungere tante palline bianche quante voglio, per ogni pallina bianca che aggiungo devo pagare però un prezzo

Dettagli

Un modello matematico di investimento ottimale

Un modello matematico di investimento ottimale Un modello matematico di investimento ottimale Tiziano Vargiolu 1 1 Università degli Studi di Padova Liceo Scientifico Benedetti Venezia, giovedì 30 marzo 2011 Outline 1 Preliminari di calcolo delle probabilità

Dettagli

ANALISI COSTI-BENEFICI

ANALISI COSTI-BENEFICI ANALISI COSTI-BENEFICI Valutazione di progetti pubblici Le politiche pubbliche correnti consistono nel realizzare progetti pubblici: il policy maker deve decidere quale progetto è da preferire tra le varie

Dettagli

Corso di Macroeconomia. Il modello IS-LM. Appunti

Corso di Macroeconomia. Il modello IS-LM. Appunti Corso di Macroeconomia Il modello IS-LM Appunti 1 Le ipotesi 1. Il livello dei prezzi è fisso. 2. L analisi è limitata al breve periodo. La funzione degli investimenti A differenza del modello reddito-spesa,

Dettagli

Le Scelte scelte in in condizioni di d incertezza

Le Scelte scelte in in condizioni di d incertezza 6 Le Scelte scelte in in condizioni di d incertezza 6.1 a. Ibenicontingentisonoilconsumo se esce uno eilconsumo se esce due, tre, quattro, cinque o sei. Consumo se non esce uno 240 Vincolo di bilancio

Dettagli

Applicazioni del calcolo differenziale allo studio delle funzioni

Applicazioni del calcolo differenziale allo studio delle funzioni Capitolo 9 9.1 Crescenza e decrescenza in piccolo; massimi e minimi relativi Sia y = f(x) una funzione definita nell intervallo A; su di essa non facciamo, per ora, alcuna particolare ipotesi (né di continuità,

Dettagli

Capitolo 26: Il mercato del lavoro

Capitolo 26: Il mercato del lavoro Capitolo 26: Il mercato del lavoro 26.1: Introduzione In questo capitolo applichiamo l analisi della domanda e dell offerta ad un mercato che riveste particolare importanza: il mercato del lavoro. Utilizziamo

Dettagli

Capitolo 5: Preferenze

Capitolo 5: Preferenze Capitolo 5: Preferenze 5.1: Introduzione Le preferenze individuali alla base dell analisi dei capitoli 3 e 4 vengono rappresentate graficamente da curve di indifferenza parallele in direzione verticale

Dettagli

Capitolo 6 Economia dell informazione e scelta in condizioni di incertezza

Capitolo 6 Economia dell informazione e scelta in condizioni di incertezza Capitolo 6 Economia dell informazione e scelta in condizioni di incertezza ECONOMIA DELL INFORMAZIONE L informazione è un fattore importante nel processo decisionale di consumatori e imprese Nella realtà,

Dettagli

LA MASSIMIZZAZIONE DEL PROFITTO ATTRAVERSO LA FISSAZIONE DEL PREZZO IN FUNZIONE DELLE QUANTITÀ

LA MASSIMIZZAZIONE DEL PROFITTO ATTRAVERSO LA FISSAZIONE DEL PREZZO IN FUNZIONE DELLE QUANTITÀ LA MASSIMIZZAZIONE DEL PROFITTO ATTRAVERSO LA FISSAZIONE DEL PREZZO IN FUNZIONE DELLE QUANTITÀ In questa Appendice mostreremo come trovare la tariffa in due parti che massimizza i profitti di Clearvoice,

Dettagli

MICROECONOMIA La teoria del consumo: Alcuni Arricchimenti. Enrico Saltari Università di Roma La Sapienza

MICROECONOMIA La teoria del consumo: Alcuni Arricchimenti. Enrico Saltari Università di Roma La Sapienza MICROECONOMIA La teoria del consumo: Alcuni Arricchimenti Enrico Saltari Università di Roma La Sapienza 1 Dotazioni iniziali Il consumatore dispone ora non di un dato reddito monetario ma di un ammontare

Dettagli

Il concetto di elasticità della domanda rispetto al prezzo è di importanza cruciale per anticipare l esito di variazioni di prezzo (legate ad esempio

Il concetto di elasticità della domanda rispetto al prezzo è di importanza cruciale per anticipare l esito di variazioni di prezzo (legate ad esempio L elasticità Cap.4 L elasticità Fin ora abbiamo visto come domanda e offerta di un bene reagiscano a variazioni del prezzo del bene Sono state tutte considerazioni qualitative (direzione del cambiamento)

Dettagli

Limitazioni cognitive e comportamento del consumatore (Frank, Capitolo 8)

Limitazioni cognitive e comportamento del consumatore (Frank, Capitolo 8) Limitazioni cognitive e comportamento del consumatore (Frank, Capitolo 8) RAZIONALITÀ LIMITATA Secondo Herbert Simon, gli individui non sono in grado di comportarsi come i soggetti perfettamente razionali

Dettagli

6.4 Risposte alle domande di ripasso

6.4 Risposte alle domande di ripasso Economia dell informazione e scelta in condizioni di incertezza 45 6.4 Risposte alle domande di ripasso 1. Se si potesse falsificare il segnale, questo cesserebbe di essere un segnale perché diventerebbe

Dettagli

Ai fini economici i costi di un impresa sono distinti principalmente in due gruppi: costi fissi e costi variabili. Vale ovviamente la relazione:

Ai fini economici i costi di un impresa sono distinti principalmente in due gruppi: costi fissi e costi variabili. Vale ovviamente la relazione: 1 Lastoriadiun impresa Il Signor Isacco, che ormai conosciamo per il suo consumo di caviale, decide di intraprendere l attività di produttore di caviale! (Vuole essere sicuro della qualità del caviale

Dettagli

Esercizi di Macroeconomia per il corso di Economia Politica

Esercizi di Macroeconomia per il corso di Economia Politica Esercizi di Macroeconomia per il corso di Economia Politica (Gli esercizi sono suddivisi in base ai capitoli del testo di De Vincenti) CAPITOLO 3. IL MERCATO DEI BENI NEL MODELLO REDDITO-SPESA Esercizio.

Dettagli

Capitolo 3. Il comportamento del consumatore. Temi da discutere. Il comportamento del consumatore. Il comportamento del consumatore

Capitolo 3. Il comportamento del consumatore. Temi da discutere. Il comportamento del consumatore. Il comportamento del consumatore Temi da discutere Capitolo 3 Il comportamento del consumatore L utilità marginale Il comportamento del consumatore Due applicazioni che illustrano l importanza della teoria economica del consumatore sono:

Dettagli

Capitolo 5. La teoria della domanda. Soluzioni delle Domande di ripasso

Capitolo 5. La teoria della domanda. Soluzioni delle Domande di ripasso Capitolo 5 La teoria della domanda Soluzioni delle Domande di ripasso 1. La curva prezzo-consumo mostra l insieme dei panieri ottimi di due beni, diciamo X e Y, corrispondenti a diversi livelli del prezzo

Dettagli

Teoria dei Giochi non Cooperativi

Teoria dei Giochi non Cooperativi Politecnico di Milano Descrizione del gioco Egoismo Razionalità 1 L insieme dei giocatori 2 La situazione iniziale 3 Le sue possibili evoluzioni 4 I suoi esiti finali I Giochi della teoria Perché studiare

Dettagli

Scelte Rischiose (cap. 23 Hey)

Scelte Rischiose (cap. 23 Hey) Scelte Rischiose (cap. 23 Hey) Solito preambolo: In Economia le scelte/decisioni vengono distinte in: 1. decisioni in situazioni di certezza 2. decisioni in situazioni di rischio 3. decisioni in situazioni

Dettagli

EQUILIBRIO ECONOMICO GENERALE PROF. MATTIA LETTIERI

EQUILIBRIO ECONOMICO GENERALE PROF. MATTIA LETTIERI EQUILIBRIO ECONOMICO GENERALE PROF. MATTIA LETTIERI Indice 1 EQUILIBRIO ECONOMICO GENERALE ------------------------------------------------------------------------------ 3 2 L EQUILIBRIO ECONOMICO GENERALE

Dettagli

Discuteremo di. Domanda individuale e domanda di mercato. Scelta razionale

Discuteremo di. Domanda individuale e domanda di mercato. Scelta razionale Discuteremo di. La determinazione dell insieme delle alternative all interno del quale sceglie il consumatore La descrizione e la rappresentazione delle sue preferenze Come si determina la scelta ottima

Dettagli

I COSTI PROF. MATTIA LETTIERI

I COSTI PROF. MATTIA LETTIERI I COSTI ROF. MATTIA LETTIERI Indice 1. LE FUNZIONI DI COSTO --------------------------------------------------------------------------------------------------- 3 2. I COSTI DELL IMRESA NEL BREVE ERIODO

Dettagli

PROBABILITA. Sono esempi di fenomeni la cui realizzazione non è certa a priori e vengono per questo detti eventi aleatori (dal latino alea, dado)

PROBABILITA. Sono esempi di fenomeni la cui realizzazione non è certa a priori e vengono per questo detti eventi aleatori (dal latino alea, dado) L esito della prossima estrazione del lotto L esito del lancio di una moneta o di un dado Il sesso di un nascituro, così come il suo peso alla nascita o la sua altezza.. Il tempo di attesa ad uno sportello

Dettagli

5.7. Assicurazione e equilibri di separazione.

5.7. Assicurazione e equilibri di separazione. ELORTO DL PR ON LINE DI ECONOMI DEI CONTRTTI 5.7. ssicurazione e equilibri di separazione. In questo paragrafo esaminiamo l attività di screening di una compagnia assicurativa (per definizione neutrale

Dettagli

8. ESTERNALITÀ, BENI PUBBLICI, ASIMMETRIA INFORMATIVA

8. ESTERNALITÀ, BENI PUBBLICI, ASIMMETRIA INFORMATIVA 8. ESTERNALITÀ, BENI UBBLICI, ASIMMETRIA INFORMATIVA 8.1. Un fenomeno di esternalità positiva può essere segnalato, in equilibrio di concorrenza perfetta, dal fatto che 1) Il beneficio marginale sociale

Dettagli

LA STATISTICA E IL CALCOLO DELLE PROBABILITÀ

LA STATISTICA E IL CALCOLO DELLE PROBABILITÀ LA STATISTICA E IL CALCOLO DELLE PROBABILITÀ Prof. Francesco Tottoli Versione 3 del 20 febbraio 2012 DEFINIZIONE È una scienza giovane e rappresenta uno strumento essenziale per la scoperta di leggi e

Dettagli

I mercati assicurativi

I mercati assicurativi I mercati NB: Questi lucidi presentano solo parzialmente gli argomenti trattati ttati in classe. In particolare non contengono i modelli economici per i quali si rinvia direttamente al libro di testo e

Dettagli

Utilità Attesa. Solito preambolo e qualche richiamo alle scelte rischiose:

Utilità Attesa. Solito preambolo e qualche richiamo alle scelte rischiose: Utilità Attesa Solito preambolo e qualche richiamo alle scelte rischiose: In Economia le scelte/decisioni vengono distinte in: 1. decisioni in situazioni di certezza 2. decisioni in situazioni di rischio

Dettagli

Le preferenze e la scelta

Le preferenze e la scelta Capitolo 3: Teoria del consumo Le preferenze e la scelta 1 Argomenti trattati in questo capitolo Usiamo le preferenze dei consumatori per costruire la funzione di domanda individuale e di mercato Studiamo

Dettagli

Dipartimento di Economia Aziendale e Studi Giusprivatistici. Università degli Studi di Bari Aldo Moro. Corso di Macroeconomia 2014

Dipartimento di Economia Aziendale e Studi Giusprivatistici. Università degli Studi di Bari Aldo Moro. Corso di Macroeconomia 2014 Dipartimento di Economia Aziendale e Studi Giusprivatistici Università degli Studi di Bari Aldo Moro Corso di Macroeconomia 2014 1. Assumete che = 10% e = 1. Usando la definizione di inflazione attesa

Dettagli

Teoria del Prospetto: avversione alle perdita, framing e status quo

Teoria del Prospetto: avversione alle perdita, framing e status quo - DPSS - Università degli Studi di Padova http://decision.psy.unipd.it/ Teoria del Prospetto: avversione alle perdita, framing e status quo Corso di Psicologia del Rischio e della Decisione Facoltà di

Dettagli

Corso di Economia Applicata

Corso di Economia Applicata Corso di Economia Applicata a.a. 2007-08 II modulo 12 Lezione Asimmetrie informative e Adverse Selection Soluzioni per l Adverse Selection? selezione (screening ) segnalazione razionamento le soluzioni

Dettagli

8 Elementi di Statistica

8 Elementi di Statistica 8 Elementi di Statistica La conoscenza di alcuni elementi di statistica e di analisi degli errori è importante quando si vogliano realizzare delle osservazioni sperimentali significative, ed anche per

Dettagli

Edited by Foxit PDF Editor Copyright (c) by Foxit Software Company, 2004 For Evaluation Only.

Edited by Foxit PDF Editor Copyright (c) by Foxit Software Company, 2004 For Evaluation Only. In un mercato del lavoro competitivo esistono due tipi di lavoratori, quelli con alta produttività L A, che producono per 30 $ l'ora, e quelli con bassa produttività, L B, che producono per 5 $ l'ora.

Dettagli

CAPITOLO SECONDO RICHIAMI DI MICROECONOMIA

CAPITOLO SECONDO RICHIAMI DI MICROECONOMIA CAPITOLO SECONDO RICHIAMI DI MICROECONOMIA SOMMARIO: 2.1 La domanda. - 2.2 Costi, economie di scala ed economie di varietà. - 2.2.1 I costi. - 2.2.2 Le economie di scala. - 2.2.3 Le economie di varietà.

Dettagli

DUE PROPOSTE ANALISI MATEMATICA. Lorenzo Orio

DUE PROPOSTE ANALISI MATEMATICA. Lorenzo Orio DUE PROPOSTE DI ANALISI MATEMATICA Lorenzo Orio Introduzione Il lavoro propone argomenti di analisi matematica trattati in maniera tale da privilegiare l intuizione e con accorgimenti nuovi. Il tratta

Dettagli

ESERCITAZIONI per il corso di ECONOMIA DELL ARTE E DELLA CULTURA 1 1 MODULO (prof. Bianchi) a.a. 2007-2008

ESERCITAZIONI per il corso di ECONOMIA DELL ARTE E DELLA CULTURA 1 1 MODULO (prof. Bianchi) a.a. 2007-2008 ESERCITAZIONI per il corso di ECONOMIA DELL ARTE E DELLA CULTURA 1 1 MODULO (prof. Bianchi) a.a. 2007-2008 A. Il modello macroeconomico in economia chiusa e senza settore pubblico. A.1. Un sistema economico

Dettagli

Massimizzazione del Profitto e offerta concorrenziale. G. Pignataro Microeconomia SPOSI

Massimizzazione del Profitto e offerta concorrenziale. G. Pignataro Microeconomia SPOSI Massimizzazione del Profitto e offerta concorrenziale 1 Mercati perfettamente concorrenziali 1. Price taking Poiché ogni impresa vende una porzione relativamente piccola della produzione complessiva del

Dettagli

Capitolo 2: I guadagni dallo scambio

Capitolo 2: I guadagni dallo scambio Capitolo 2: I guadagni dallo scambio 2.1: Introduzione Questo capitolo, sebbene di natura introduttiva, permette di raggiungere importanti conclusioni. In esso si mostra come lo scambio possa dare vantaggi

Dettagli

Imposte ed efficienza economica

Imposte ed efficienza economica Imposte ed efficienza economica Imposte ed efficienza economica Nell immediato, ogni aumento delle imposte fa diminuire il benessere dei contribuenti. Nel lungo periodo, tale diminuzione è compensata dai

Dettagli

Richiami di microeconomia

Richiami di microeconomia Capitolo 5 Richiami di microeconomia 5. Le preferenze e l utilità Nell analisi microeconomica si può decidere di descrivere ogni soggetto attraverso una funzione di utilità oppure attraverso le sue preferenze.

Dettagli

1.4 Risposte alle domande di ripasso

1.4 Risposte alle domande di ripasso Pensare da economisti 1 1.4 Risposte alle domande di ripasso 1. Il costo opportunità di leggere un romanzo questa sera consiste nel non poter fare qualsiasi altra cosa avreste voluto fare in alternativa.

Dettagli

SCAMBIO EFFICIENTE. Cos è la Scatola di Edgeworth?

SCAMBIO EFFICIENTE. Cos è la Scatola di Edgeworth? SCAMBIO EFFICIENTE Per determinare se l equilibrio competitivo soddisfa la condizione di scambio efficiente, dovremo sviluppare uno strumento grafico chiamato la Scatola di Edgeworth e utilizzato per descrivere

Dettagli

Il mercato assicurativo: selezione avversa, fallimenti del mercato, menù di contratti, assicurazione obbligatoria

Il mercato assicurativo: selezione avversa, fallimenti del mercato, menù di contratti, assicurazione obbligatoria Il mercato assicurativo: selezione avversa, fallimenti del mercato, menù di contratti, assicurazione obbligatoria Esercizio 1 Ci sono 2000 individui ciascuno con funzione di utilità Von Neumann-Morgestern

Dettagli

LE SUCCESSIONI 1. COS E UNA SUCCESSIONE

LE SUCCESSIONI 1. COS E UNA SUCCESSIONE LE SUCCESSIONI 1. COS E UNA SUCCESSIONE La sequenza costituisce un esempio di SUCCESSIONE. Ecco un altro esempio di successione: Una successione è dunque una sequenza infinita di numeri reali (ma potrebbe

Dettagli

PROBABILITA, VALORE ATTESO E VARIANZA DELLE QUANTITÁ ALEATORIE E LORO RELAZIONE CON I DATI OSSERVATI

PROBABILITA, VALORE ATTESO E VARIANZA DELLE QUANTITÁ ALEATORIE E LORO RELAZIONE CON I DATI OSSERVATI statistica, Università Cattaneo-Liuc, AA 006-007, lezione del 08.05.07 IDICE (lezione 08.05.07 PROBABILITA, VALORE ATTESO E VARIAZA DELLE QUATITÁ ALEATORIE E LORO RELAZIOE CO I DATI OSSERVATI 3.1 Valore

Dettagli

Capitolo V. I mercati dei beni e i mercati finanziari: il modello IS-LM

Capitolo V. I mercati dei beni e i mercati finanziari: il modello IS-LM Capitolo V. I mercati dei beni e i mercati finanziari: il modello IS-LM 2 OBIETTIVO: Il modello IS-LM Fornire uno schema concettuale per analizzare la determinazione congiunta della produzione e del tasso

Dettagli

1. Calcolare la probabilità che estratte a caso ed assieme tre carte da un mazzo di 40, fra di esse vi sia un solo asso, di qualunque seme.

1. Calcolare la probabilità che estratte a caso ed assieme tre carte da un mazzo di 40, fra di esse vi sia un solo asso, di qualunque seme. Esercizi difficili sul calcolo delle probabilità. Calcolare la probabilità che estratte a caso ed assieme tre carte da un mazzo di, fra di esse vi sia un solo asso, di qualunque seme. Le parole a caso

Dettagli

CAPITOLO 10 I SINDACATI

CAPITOLO 10 I SINDACATI CAPITOLO 10 I SINDACATI 10-1. Fate l ipotesi che la curva di domanda di lavoro di una impresa sia data da: 20 0,01 E, dove è il salario orario e E il livello di occupazione. Ipotizzate inoltre che la funzione

Dettagli

Economia Applicata ai sistemi produttivi. 06.05.05 Lezione II Maria Luisa Venuta 1

Economia Applicata ai sistemi produttivi. 06.05.05 Lezione II Maria Luisa Venuta 1 Economia Applicata ai sistemi produttivi 06.05.05 Lezione II Maria Luisa Venuta 1 Schema della lezione di oggi Argomento della lezione: il comportamento del consumatore. Gli economisti assumono che il

Dettagli

Utilità Attesa (Cap. 24 Hey)

Utilità Attesa (Cap. 24 Hey) Utilità Attesa (Cap. 24 Hey) Solito preambolo: In Economia le scelte/decisioni vengono distinte in: 1. decisioni in situazioni di certezza 2. decisioni in situazioni di rischio 3. decisioni in situazioni

Dettagli

Le derivate versione 4

Le derivate versione 4 Le derivate versione 4 Roberto Boggiani 2 luglio 2003 Riciami di geometria analitica Dalla geometria analitica sulla retta sappiamo ce dati due punti del piano A(x, y ) e B(x 2, y 2 ) con x x 2 la retta

Dettagli

Capitolo 4 Probabilità

Capitolo 4 Probabilità Levine, Krehbiel, Berenson Statistica II ed. 2006 Apogeo Capitolo 4 Probabilità Insegnamento: Statistica Corso di Laurea Triennale in Economia Facoltà di Economia, Università di Ferrara Docenti: Dott.

Dettagli

Vincere a testa o croce

Vincere a testa o croce Vincere a testa o croce Liceo Scientifico Pascal Merano (BZ) Classe 2 Liceo Scientifico Tecnologico Insegnante di riferimento: Maria Elena Zecchinato Ricercatrice: Ester Dalvit Partecipanti: Jacopo Bottonelli,

Dettagli

I ricavi ed i costi di produzione

I ricavi ed i costi di produzione I ricavi ed i costi di produzione Supponiamo che le imprese cerchino di operare secondo comportamenti efficienti, cioè comportamenti che raggiungono i fini desiderati con mezzi minimi (o, che è la stessa

Dettagli

1. Scopo dell esperienza.

1. Scopo dell esperienza. 1. Scopo dell esperienza. Lo scopo di questa esperienza è ricavare la misura di tre resistenze il 4 cui ordine di grandezza varia tra i 10 e 10 Ohm utilizzando il metodo olt- Amperometrico. Tale misura

Dettagli

Basi di matematica per il corso di micro

Basi di matematica per il corso di micro Basi di matematica per il corso di micro Microeconomia (anno accademico 2006-2007) Lezione del 21 Marzo 2007 Marianna Belloc 1 Le funzioni 1.1 Definizione Una funzione è una regola che descrive una relazione

Dettagli

Lezione 10: Il problema del consumatore: Preferenze e scelta ottimale

Lezione 10: Il problema del consumatore: Preferenze e scelta ottimale Corso di Scienza Economica (Economia Politica) prof. G. Di Bartolomeo Lezione 10: Il problema del consumatore: Preferenze e scelta ottimale Facoltà di Scienze della Comunicazione Università di Teramo Scelta

Dettagli

0. Piano cartesiano 1

0. Piano cartesiano 1 0. Piano cartesiano Per piano cartesiano si intende un piano dotato di due assi (che per ragioni pratiche possiamo scegliere ortogonali). Il punto in comune ai due assi è detto origine, e funziona da origine

Dettagli

Elementi di economia Economia dell informazione

Elementi di economia Economia dell informazione Elementi di economia Economia dell informazione Dott.ssa Michela Martinoia michela.martinoia@unimib.it Corso di laurea in Scienze del Turismo e Comunità Locale A.A. 2014/15 Informazione completa Significa

Dettagli

Introduzione all informazione asimmetrica. Informazione imperfetta; Informazione nascosta; Selezione avversa; Azione nascosta; Azzardo morale;

Introduzione all informazione asimmetrica. Informazione imperfetta; Informazione nascosta; Selezione avversa; Azione nascosta; Azzardo morale; Introduzione all informazione asimmetrica Informazione imperfetta; Informazione nascosta; Selezione avversa; Azione nascosta; Azzardo morale; Informazione imperfetta Virtualmente ogni transazione economica

Dettagli

= 8.000 + 2.000 = 5.000.

= 8.000 + 2.000 = 5.000. Esercizio 1 Consideriamo il mercato delle barche usate e supponiamo che esse possano essere di due tipi, di buona qualità e di cattiva qualità. Il valore di una barca di buona qualità è q = 8000, mentre

Dettagli