I CAMBIAMENTI DI STATO

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "I CAMBIAMENTI DI STATO"

Transcript

1 I CAMBIAMENTI DI STATO Il passaggio a uno stato in cui l molcol hanno maggior librtà di movimnto richid nrgia prché occorr vincr l forz attrattiv ch tngono vicin l molcol Ni passaggi ad uno stato in cui l molcol sono maggiormnt vincolat l nrgia ch si libra corrispond al lavoro (positivo) compiuto dall forz intrmolcolari attrattiv quando l molcol si avvicinano 1

2 Curva di riscaldamnto pr una sostanza pura Tmpratura di fusion: inizia il passaggio da stato solido a liquido Fusion: la tmpratura non aumnta Quando il passaggio è complto la tmpratura ricomincia a crscr Tmpratura di bollizion: formazion di vapor in tutta la massa dl liquido Vaporizzazion: trasformazion di una sostanza dallo stato liquido a qullo di vapor; avvin pr vaporazion o pr bollizion Ebollizion: la tmpratura è costant all intrno dl liquido Analoga curva di raffrddamnto Tmpratura di bollizion 100 C Tmpratura di fusion 0 C 2

3 Calor latnt Calor latnt di fusion (vaporizzazion) di una sostanza: quantità di nrgia ncssaria pr fondr (vaporizzar) compltamnt l unità di massa di qulla sostanza, quando ssa si trova alla tmpratura di fusion (bollizion) L E m = [J/Kg] Esmpio: Calor latnt di fusion acqua = J/Kg pr far fondr 1 Kg di ghiaccio occorrono J ch possono ssr forniti sottoforma di calor (fiamma) o di lavoro (strofinio) Calor latnt Calor latnt Tmpratura -Durant passaggio di stato rsta costant prché riman costant nrgia cintica mdia di traslazion dll molcol. L nrgia intrna dl corpo invc diminuisc (aumnta) prché vin cduta (assorbita) nrgia dall strno. Qusta diffrnza di nrgia corrispond calor latnt, cioè lavoro compiuto da (contro) forz d attrazion intramolcolar - Quando una sostanza solidifica l su molcol si raggruppano si dispongono in struttur cristallin rgolari; l nrgia cintica mdia è infrior risptto allo stato liquido 3

4 Sostanza Cal. Latnt fusion (J/g) T fusion ( C) Cal. Latnt bollizion (J/g) T bollizion ( C) Alcool tilico Ammoniaca Anidrid carbonica Elio Idrogno Azoto Ossigno Acqua Calor latnt non provoca una variazion di tmpratura. Quando un liquido vapora assorb calor, ma sua tmpratura non aumnta. Calor in forma latnt: ridispon atomi molcol dl liquido nlla nuova forma gassosa. S gas si trasforma in liquido, calor latnt vin librato quando atomi molcol dlla sostanza riprndndo loro forma liquida, mno nrgtica. 4

5 Vuoi raffrddar il più possibil la bibita hai a disposizion un cubtto di ghiaccio un ugual massa di acqua, ntramb a 0 C. E più convnint aggiungr l acqua o il ghiaccio? 1. Calor assorbito da ghiaccio = massa ghiaccio x calor latnt di fusion dl ghiaccio = m x 334 (kj.kg -1 ) = 334 kj x m La fusion dl ghiaccio produc una massa m di acqua a 0 C d assorb una quantità di calor Q L. La tmpratura final dlla bibita si ottin imponndo ch la somma dl calor latnt dl calor ncssario pr riscaldar l acqua dalla tmpratura di liqufazion a T f sia ugual al calor cduto dalla bibita ch si raffrdda a T f M c (T f - T i ) + m c (T f - T L ) + Q L =0 T f = [m c T L - Q L + M c T i ] / [mc[ + Mc] 2. No calor latnt 5

6 Esrcizio Uno strumnto ad immrsion fornisc calor con una potnza pari a 5 J/s. Il latt vin portato alla tmpratura di bollizion mantnuto a qulla tmpratura pr 3 minuti. Calcolar la prdita di massa al trmin di tal intrvallo di tmpo. Assumiamo calor latnt di vaporizzazion pr latt pari a qullo dll acqua L= J/Kg Calor fornito in 2 min = Calor ncssario pr trasformar massa m di latt dallo stato liquido a qullo di vapor alla tmpratura di bollizion 5 J/s x 180 s = m x J/Kg m = 5 J x 180 / ( J/Kg)= (900 / 2.253) 10-6 Kg 400 x 10-6 Kg = Kg m = 0.4 g 6

7 Esrcizio Si raffrdda prima una tazza di caffè o una ugual tazza di latt, s all inizio sono ntrambi alla stssa tmpratura? Sia caffè ch latt sono sostanzialmnt acqua: la diffrnza tra l vlocità di raffrddamnto di du sarà minima Volum tazza V Capacità trmica dlla tazza di caffè C caffè = m caffè c caffè Capacità trmica dlla tazza di latt C latt = m latt c latt Massa caffè = ρ caffè V = 1 Kg/l V Massa latt = ρ latt V = Kg/l V [dnsità latt variabil tra g/ml a sconda dlla quantità di grassi contnuta] C caffè = m caffè c caffè = V cal/ C C latt = m latt c latt = cal/ C = cal/ C Sottraiamo la stssa quantità di calor Q da ntrambi i liquidi. T caffè = Q / C caffè = ( Q/V ) C T latt = Q / C latt = ( Q/0.969V ) C = ( Q/V ) C T caffè < T latt 7

w(r)=w max (1-r 2 /R 2 ) completamente sviluppato in un tubo circolare è dato da wmax R w max = = max

w(r)=w max (1-r 2 /R 2 ) completamente sviluppato in un tubo circolare è dato da wmax R w max = = max 16-1 Copyright 009 Th McGraw-Hill Companis srl RISOLUZIONI CAP. 16 16.1 Nl flusso laminar compltamnt sviluppato all intrno di un tubo circolar vin misurata la vlocità a r R/. Si dv dtrminar la vlocità

Dettagli

Regimi di cambio. In questa lezione: Studiamo l economia aperta nel breve e nel medio periodo. Studiamo le crisi valutarie.

Regimi di cambio. In questa lezione: Studiamo l economia aperta nel breve e nel medio periodo. Studiamo le crisi valutarie. Rgimi di cambio In qusta lzion: Studiamo l conomia aprta nl brv nl mdio priodo. Studiamo l crisi valutari. Analizziamo brvmnt l Ar Valutari Ottimali. 279 Il mdio priodo Abbiamo visto ch gli fftti di politica

Dettagli

MARTEDI 26 NOVEMBRE ORE 18.00

MARTEDI 26 NOVEMBRE ORE 18.00 MARTDI 26 NOVMBR OR 18.00 COM SI LGG UNA BOLLTTA? VUOI CALCOLAR LA CLASS NRGTICA DLLA TUA ABITAZIO N? RLATORI: ING. ING. DAVID FRA CCARO PROF. ZIO DA VILLA ARCH. IGOR PANCIRA IL TRIST PRIMATO A QUAL STTOR

Dettagli

ESERCIZI PARTE I SOLUZIONI

ESERCIZI PARTE I SOLUZIONI UNIVR Facoltà di Economia Corso di Matmatica finanziaria 008/09 ESERCIZI PARTE I SOLUZIONI Domini di funzioni di du variabili Esrcizio a f, = log +. L unica condizion di sistnza è data dalla disquazion

Dettagli

CALORE. Compie lavoro. Il calore è energia. Temperatura e calore. L energia è la capacità di un corpo di compiere un lavoro

CALORE. Compie lavoro. Il calore è energia. Temperatura e calore. L energia è la capacità di un corpo di compiere un lavoro Cos è il calore? Per rispondere si osservino le seguenti immagini Temperatura e calore Il calore del termosifone fa girare una girandola Il calore del termosifone fa scoppiare un palloncino Il calore del

Dettagli

Teoria dell integrazione secondo Riemann per funzioni. reali di una variabile reale.

Teoria dell integrazione secondo Riemann per funzioni. reali di una variabile reale. Capitolo 2 Toria dll intgrazion scondo Rimann pr funzioni rali di una variabil ral Esistono vari tori dll intgrazion; tutt hanno com comun antnato il mtodo di saustion utilizzato dai Grci pr calcolar l

Dettagli

Calore Specifico

Calore Specifico 6.08 - Calor Spcifico 6.08.a) Lgg Fondamntal dlla Trmologia Un modo pr far aumntar la Tmpratura di un Corpo è qullo di cdr ad sso dl Calor, pr smpio mttndolo in Contatto Trmico con un Corpo a Tmpratura

Dettagli

Climatizzazione. Dati tecnici. Selettore di diramazione EEDIT15-200_1 BPMKS967A

Climatizzazione. Dati tecnici. Selettore di diramazione EEDIT15-200_1 BPMKS967A Climatizzazion Dati tcnici Slttor di diramazion EEDIT15-200_1 BPMKS967A INDICE BPMKS967A 1 Carattristich...................................................... 2 2 Spcifich...........................................................

Dettagli

Esercizio 1. Cov(X,Y)=E(X,Y)- E(X)E(Y).

Esercizio 1. Cov(X,Y)=E(X,Y)- E(X)E(Y). Esrcizi di conomtria: sri 4 Esrcizio Siano, Z variabili casuali distribuit scondo la lgg multinomial di paramtri n, p, p, p p p.. Calcolar la Covarianza tra l variabili d. Soluzion Dat du variabili dinit

Dettagli

È una grandezza fisica FONDAMENTALE, SCALARE UNITÀ DI MISURA NEL S.I. : K (KELVIN)

È una grandezza fisica FONDAMENTALE, SCALARE UNITÀ DI MISURA NEL S.I. : K (KELVIN) È una grandezza fisica FONDAMENTALE, SCALARE UNITÀ DI MISURA NEL S.I. : K (KELVIN) È STRETTAMENTE LEGATA ALLA VELOCITÀ DI VIBRAZIONE DELLE MOLECOLE IN UN CORPO: SE LA TEMPERATURA DI UN CORPO AUMENTA LE

Dettagli

PROPORZIONI. Cosa possiamo dire di esse? Che la superficie della figura A sta alla superficie della figura B come 4 sta a 6.

PROPORZIONI. Cosa possiamo dire di esse? Che la superficie della figura A sta alla superficie della figura B come 4 sta a 6. Corso di laura: BIOLOGIA Tutor: Floris Marta PRECORSI DI MATEMATICA PROPORZIONI Ossrvar l sgunti figur: Cosa possiamo dir di ss? Ch la suprfici dlla figura A sta alla suprfici dlla figura B com sta a 6.

Dettagli

LE FRAZIONI LE FRAZIONI. La frazione è un operatore che opera su una qualsiasi grandezza e che da come risultato una grandezza omogenea a quella data.

LE FRAZIONI LE FRAZIONI. La frazione è un operatore che opera su una qualsiasi grandezza e che da come risultato una grandezza omogenea a quella data. LE FRAZIONI La frazion è un oprator ch opra su una qualsiasi grandzza ch da com risultato una grandzza omogna a qulla data. AB (Il sgmnto AB è stato diviso i tr parti sono stat prs du) Una frazion è scritta

Dettagli

TIPI TIPI DI DI DECADIMENTO RADIOATTIVO --ALFA

TIPI TIPI DI DI DECADIMENTO RADIOATTIVO --ALFA TIPI TIPI DI DI DECDIMENTO RDIOTTIVO --LF LF Dcadimnto alfa: il nuclo instabil mtt una particlla alfa (), ch è composta da du protoni du nutroni (un nuclo di 4 H), quindi una particlla carica positivamnt.

Dettagli

2 PRINCIPIO DELLA TERMODINAMICA CICLO DI CARNOT

2 PRINCIPIO DELLA TERMODINAMICA CICLO DI CARNOT 2 PRINCIPIO DELLA TERMODINAMICA CICLO DI CARNOT Mntr il 1 principio rapprnta la conrazion dll nrgia, il 2 principio riguarda la maima quantità di calor ch può r conrtita in laoro. Alcun dfinizioni: Proco

Dettagli

Test di autovalutazione

Test di autovalutazione UNITÀ FUNZINI E LR RAPPRESENTAZINE Tst di autovalutazion 0 0 0 0 0 50 60 70 80 90 00 n Il mio puntggio, in cntsimi, è n Rispondi a ogni qusito sgnando una sola dll 5 altrnativ. n Confronta l tu rispost

Dettagli

Lrk - Lrk Nt. Lrk - Lrk nt: LA SOLUZIOnE In COnDEnSAZIOnE PEr LE GrOSSE POtEnZE

Lrk - Lrk Nt. Lrk - Lrk nt: LA SOLUZIOnE In COnDEnSAZIOnE PEr LE GrOSSE POtEnZE Lrk - Lrk nt: LA SOLUZIOnE In COnEnSAZIOnE PEr LE GrOSSE POtEnZE Marilla Progttista Lrk - Lrk Nt Caldaia in acciaio con in acciaio inox 316 Ti, lato a tr giri di fuo, tpratura costant, da quipaggiar di

Dettagli

PROPORZIONI. Cosa possiamo dire di esse? Che la superficie della figura A sta alla superficie della figura B come 4 sta a 6.

PROPORZIONI. Cosa possiamo dire di esse? Che la superficie della figura A sta alla superficie della figura B come 4 sta a 6. Corso di laura: BIOLOGIA Tutor: Floris Marta PRECORSI DI MATEMATICA PROPORZIONI Ossrvar l sgunti figur: Cosa possiamo dir di ss? Ch la suprfici dlla figura A sta alla suprfici dlla figura B com sta a 6.

Dettagli

LG ha introdotto NeON 2 dotato di tecnologia CELLO, una cella di nuova concezione che migliora le prestazioni e l'affidabilità. Fino a 320 W 300 W

LG ha introdotto NeON 2 dotato di tecnologia CELLO, una cella di nuova concezione che migliora le prestazioni e l'affidabilità. Fino a 320 W 300 W Tcnologia CELLO IT LG ha introdotto NON 2 dotato di tcnologia CELLO, una clla di nuova conczion ch migliora l prstazioni l'affidabilità. Fino a 320 W 300 W Tcnologia CELLO Cll Connction (Connssion Clla)

Dettagli

Aspettative, produzione e politica economica

Aspettative, produzione e politica economica Lzion 18 (BAG cap. 17) Aspttativ, produzion politica conomica Corso di Macroconomia Prof. Guido Ascari, Univrsità di Pavia 2 1 L aspttativ la curva IS Dividiamo il tmpo in du priodi: 1. un priodo corrnt

Dettagli

2. L ambiente celeste

2. L ambiente celeste unità 2. L ambint clst L EVOLUZIONE DI UNA STELLA nana Bruna s la massa inizial è poco infrior a qulla dl Sol nana Bianca Nbulosa Protostlla fusion nuclar stlla dlla squnza principal dl diagramma HR gigant

Dettagli

INTRODUZIONE ALLO STUDIO DELLE MACCHINE ELETTRICHE ROTANTI

INTRODUZIONE ALLO STUDIO DELLE MACCHINE ELETTRICHE ROTANTI Gnralità INTRODUZIONE ALLO STUDIO DELLE MACCHINE ELETTRICHE ROTANTI Una acchina lttrica rotant è un convrtitor di nrgia ccanica in lttrica (gnrator) o, vicvrsa, di nrgia lttrica in ccanica (otor). Il fnono

Dettagli

PROGRAMMA DI RIPASSO ESTIVO

PROGRAMMA DI RIPASSO ESTIVO ISTITUTO TECNICO PER IL TURISMO EUROSCUOLA ISTITUTO TECNICO PER GEOMETRI BIANCHI SCUOLE PARITARIE PROGRAMMA DI RIPASSO ESTIVO CLASSI MATERIA PROF. QUARTA TURISMO Matmatica Andra Brnsco Làvor ANNO SCOLASTICO

Dettagli

LEZIONE 1. Materia: Proprietà e Misura

LEZIONE 1. Materia: Proprietà e Misura LEZIONE 1 Materia: Proprietà e Misura MISCELE, COMPOSTI, ELEMENTI SOSTANZE PURE E MISCUGLI La materia può essere suddivisa in sostanze pure e miscugli. Un sistema è puro solo se è formato da una singola

Dettagli

Funzioni lineari e affini. Funzioni lineari e affini /2

Funzioni lineari e affini. Funzioni lineari e affini /2 Funzioni linari aini In du variabili l unzioni linari sono dl tipo a b l unzioni aini sono dl tipo a b c Il graico di una unzion linar è un piano passant pr l origin il graico di una unzion ain è un piano.

Dettagli

La popolazione in età da 0 a 2 anni residente nel comune di Bologna

La popolazione in età da 0 a 2 anni residente nel comune di Bologna Sttor Programmazion, Controlli La popolazion in tà da 0 a 2 anni rsidnt nl comun di Bologna Maggio 2007 La prsnt nota è stata ralizzata da un gruppo di dirignti funzionari dl Sttor Programmazion, Controlli

Dettagli

Misurazione del valore medio di una tensione tramite l uso di un voltmetro numerico

Misurazione del valore medio di una tensione tramite l uso di un voltmetro numerico Misurazion dl valor mdio di una tnsion tramit l uso di un voltmtro numrico La zion si conduc slzionando la funzion dc dllo strumnto collgando i trminali dllo strumnto al gnrator sotto zion: tnndo conto

Dettagli

Ulteriori esercizi svolti

Ulteriori esercizi svolti Ultriori srcizi svolti Effttuar uno studio qualitativo dll sgunti funzioni ) 4 f ( ) ) ( + ) f ( ) + 3) f ( ) con particolar rifrimnto ai sgunti asptti: a) trova il dominio di f b) indica quali sono gli

Dettagli

Riepilogo programma di Chimica Ginnasio Anno scolastico 2011/2012

Riepilogo programma di Chimica Ginnasio Anno scolastico 2011/2012 Riepilogo programma di Chimica Ginnasio Anno scolastico 2011/2012 Misure e grandezze Grandezze fondamentali Grandezza fisica Simbolo della grandezza Unità di misura Simbolo dell unità di misura lunghezza

Dettagli

Lezione 24: Equilibrio termico e calore

Lezione 24: Equilibrio termico e calore Lzion 4 - pag. Lzion 4: Equilibrio trmico calor 4.. Antich spigazioni: il calorico Abbiamo visto ch, mttndo in contatto un corpo caldo con uno frddo, si avvia un procsso ch ha trmin quando i du corpi raggiungono

Dettagli

MODULO 01 TERMODINAMICA

MODULO 01 TERMODINAMICA Programmazion di Impianti Trmici Class V TS A.S. 2011-2012 Insgnant: ing. Cardamon Antonio MODULO 01 TERMODINAMICA Prsntazion: con il modulo in oggtto, l allivo è nll condizioni di svolgr calcoli rlativi

Dettagli

0.06 100 + (100 100)/4 (100 + 2 100)/3

0.06 100 + (100 100)/4 (100 + 2 100)/3 A. Prtti Svolgimnto di tmi d sam di MDEF A.A. 5/ PROVA CONCLUSIVA DI MATEMATICA pr l DECISIONI ECONOMICO-FINANZIARIE Vicnza, 5// ESERCIZIO. Trovar una prima approssimazion dl tasso di rndimnto a scadnza

Dettagli

Progettazione di sistemi distribuiti

Progettazione di sistemi distribuiti Progttazion di sistmi distribuiti Valutazion dll prstazioni: cnni Prformanc Cosa vuol dir ch un sistma è più vloc di un altro? Tmpo di risposta (tmpo di scuzion): diffrnza tra T c, l'istant in cui un task

Dettagli

1 Derivate parziali 1. 2 Regole di derivazione 5. 3 Derivabilità e continuità 7. 4 Differenziabilità 7. 5 Derivate seconde e teorema di Schwarz 8

1 Derivate parziali 1. 2 Regole di derivazione 5. 3 Derivabilità e continuità 7. 4 Differenziabilità 7. 5 Derivate seconde e teorema di Schwarz 8 UNIVR Facoltà di Economia Sd di Vicnza Corso di Matmatica Drivat dll funzioni di più variabili Indic Drivat parziali Rgol di drivazion 5 3 Drivabilità continuità 7 4 Diffrnziabilità 7 5 Drivat scond torma

Dettagli

Esercitazione IX - Calorimetria

Esercitazione IX - Calorimetria Esercitazione IX - Calorimetria Esercizio 1 Un blocco di rame di massa m Cu = 5g si trova a una temperatura iniziale T i = 25 C. Al blocco viene fornito un calore Q = 120J. Determinare la temperatura finale

Dettagli

'RPDQGHFRQFHWWXDOL Alcuni interrogativi su fenomeni fisici e chimici

'RPDQGHFRQFHWWXDOL Alcuni interrogativi su fenomeni fisici e chimici ,OPDWHULDOHGLGDWWLFRFKHVHJXHqVWDWRVFHOWRWUDGRWWRHDGDWWDWRGDO*UXSSRGLFKLPLFD GHOO,7,60DMRUDQDGL*UXJOLDVFR7RULQR0DUFR)DODVFD$QJHOR&LPHQLV3DROD&RVFLD /RUHGDQD$QJHOHUL$QWRQHOOD0DUWLQL'DULR*D]]ROD*UD]LD5L]]R*LXVL'L'LR

Dettagli

Opuscolo sui sistemi. Totogoal

Opuscolo sui sistemi. Totogoal Opuscolo sui sistmi Totogoal Più info Conoscnz calcistich pr vincr Jackpot alti Informazioni dttagliat costantmnt aggiornat sul Totogoal, sui programmi Toto sui risultati rpribili su Tltxt, a partir dalla

Dettagli

la mente cosciente... oltre i neuroni?

la mente cosciente... oltre i neuroni? la mnt coscint... oltr i nuroni? smbra ch ci sia un problma insolubil pr la scinza! com puo il mondo fisico produrr qualcosa con l carattristich dlla mnt coscint? un problma cosi difficil ch qualcuno lo

Dettagli

COMMISSIONE DELLE COMUNITÀ EUROPEE. Progetto di RACCOMANDAZIONE DELLA COMMISSIONE. del (...)

COMMISSIONE DELLE COMUNITÀ EUROPEE. Progetto di RACCOMANDAZIONE DELLA COMMISSIONE. del (...) COMMISSIONE DELLE COMUNITÀ EUROPEE Bruxlls, xxx COM (2001) yyy final Progtto di RACCOMANDAZIONE DELLA COMMISSIONE dl (...) modificando la raccomandazion 96/280/CE rlativa alla dfinizion dll piccol mdi

Dettagli

1 Il concetto di funzione 1. 2 Funzione composta 4. 3 Funzione inversa 6. 4 Restrizione e prolungamento di una funzione 8

1 Il concetto di funzione 1. 2 Funzione composta 4. 3 Funzione inversa 6. 4 Restrizione e prolungamento di una funzione 8 UNIVR Facoltà di Economia Sd di Vicnza Corso di Matmatica 1 Funzioni Indic 1 Il conctto di funzion 1 Funzion composta 4 3 Funzion invrsa 6 4 Rstrizion prolungamnto di una funzion 8 5 Soluzioni dgli srcizi

Dettagli

R k = I k +Q k. Q k = D k-1 - D k

R k = I k +Q k. Q k = D k-1 - D k 1 AMMORTAMENTO AMMORTAMENTO Dbito inizial D 0 si volv (al tasso fisso t) D k = D k-1 (1+t) R k [D k dbito (rsiduo) al tmpo k, R k pagamnto al tmpo k ] Condizioni [D n =0 : stinzion dl dbito in n priodi

Dettagli

Appunti sulle disequazioni frazionarie

Appunti sulle disequazioni frazionarie ppunti sull disquazioni frazionari Sono utili l sgunti dfinizioni Una disquazion fratta o frazionaria è una disquazion nlla qual l incognita compar in qualch suo dnominator. Una disquazion razional è una

Dettagli

Compito di Fisica Generale I (Mod. A) Corsi di studio in Fisica ed Astronomia 4 aprile 2011

Compito di Fisica Generale I (Mod. A) Corsi di studio in Fisica ed Astronomia 4 aprile 2011 Compito di Fisica Gnral I (Mod A) Corsi di studio in Fisica d Astronomia 4 april 2011 Problma 1 Du blocchi A B di massa rispttivamnt m A d m B poggiano su un piano orizzontal scabro sono uniti da un filo

Dettagli

13 La temperatura - 8. Il gas perfetto

13 La temperatura - 8. Il gas perfetto La mole e l equazione del gas perfetto Tutto ciò che vediamo intorno a noi è composto di piccolissimi grani, che chiamiamo «molecole». Per esempio, il ghiaccio, l acqua liquida e il vapore acqueo sono

Dettagli

-LE ASPETTATIVE: NOZIONI DI - MERCATI FINANZIARI E BASE ASPETTATIVE

-LE ASPETTATIVE: NOZIONI DI - MERCATI FINANZIARI E BASE ASPETTATIVE 1 -LE ASPETTATIVE: NOZIONI DI BASE - MERCATI FINANZIARI E ASPETTATIVE DUE DEFINIZIONI PER IL TASSO DI INTERESSE Il tasso di intrss in trmini di monta è chiamato tasso di intrss nominal (i). Il tasso di

Dettagli

Esercizi di Fisica Generale

Esercizi di Fisica Generale Esercizi di Fisica Generale 2. Temodinamica prof. Domenico Galli, dott. Daniele Gregori, prof. Umberto Marconi dott. Alessandro Tronconi 27 marzo 2012 I compiti scritti di esame del prof. D. Galli propongono

Dettagli

Lezione 5. Analisi a tempo discreto di sistemi ibridi. F. Previdi - Controlli Automatici - Lez. 5 1

Lezione 5. Analisi a tempo discreto di sistemi ibridi. F. Previdi - Controlli Automatici - Lez. 5 1 Lzion 5. nalisi a tmpo discrto di sistmi ibridi F. Prvidi - Controlli utomatici - Lz. 5 Schma dlla lzion. Introduzion 2. nalisi a tmpo discrto di sistmi ibridi 3. utovalori di un sistma a sgnali campionati

Dettagli

Ripasso sulla temperatura, i gas perfetti e il calore

Ripasso sulla temperatura, i gas perfetti e il calore Ripasso sulla temperatura, i gas perfetti e il calore Prof. Daniele Ippolito Liceo Scientifico Amedeo di Savoia di Pistoia La temperatura Fenomeni non interpretabili con le leggi della meccanica Dilatazione

Dettagli

TEMPI SOGGETTI AZIONI Gennaio- Docenti dei due ordini di scuola e Pianificazione del progetto ponte per gli Anno

TEMPI SOGGETTI AZIONI Gennaio- Docenti dei due ordini di scuola e Pianificazione del progetto ponte per gli Anno PROGETTO PONTE TRA ORDINI DI SCUOLA Pr favorir la continuità ducativo didattica nl momnto dl passaggio da un ordin di scuola ad un altro, si labora un pont, sul modllo di qullo sottolncato. TEMPI SOGGETTI

Dettagli

Esercizi sullo studio di funzione

Esercizi sullo studio di funzione Esrcizi sullo studio di funzion Prima part Pr potr dscrivr una curva, data la sua quazion cartsiana splicita f () occorr procdr scondo l ordin sgunt: 1) Dtrminar l insim di sistnza dlla f () ) Dtrminar

Dettagli

IL RISPARMIO DI ENERGIA ELETTRICA NELLA PRODUZIONE DI ARIA COMPRESSA IL PROGETTO: AIR POINT

IL RISPARMIO DI ENERGIA ELETTRICA NELLA PRODUZIONE DI ARIA COMPRESSA IL PROGETTO: AIR POINT IL RISPARMIO DI NRGIA LTTRICA NLLA PRODUZION DI ARIA COMPRSSA IL PROGTTO: AIR POINT Carlo Carsana carsana@servitec.it Cinisello Balsamo (MI) - 23 Novembre 2007 S.r.l. LA SOCITA Società di gestione del

Dettagli

Spettro roto-vibrazionale di HCl (H 35 Cl, H 37 Cl )

Spettro roto-vibrazionale di HCl (H 35 Cl, H 37 Cl ) Spttro roto-vibrazional di HCl (H 5 Cl, H 7 Cl ) SCOPO: Misurar l nrgi dll transizioni vibro-rotazionali dll acido cloridrico gassoso utilizzar qust nrgi pr calcolar alcuni paramtri molcolari spttroscopici.

Dettagli

Termologia. Introduzione Scale Termometriche Espansione termica Capacità termica e calori specifici Cambiamenti di fase e calori latenti

Termologia. Introduzione Scale Termometriche Espansione termica Capacità termica e calori specifici Cambiamenti di fase e calori latenti Termologia Introduzione Scale Termometriche Espansione termica Capacità termica e calori specifici Cambiamenti di fase e calori latenti Trasmissione del calore Legge di Wien Legge di Stefan-Boltzmann Gas

Dettagli

INTEGRALI DOPPI Esercizi svolti

INTEGRALI DOPPI Esercizi svolti INTEGRLI OPPI Esrcizi svolti. Calcolar i sgunti intgrali doppi: a b c d f g h i j k y d dy, {, y :, y }; d dy, {, y :, y }; + y + y d dy, {, y :, y }; y d dy, {, y :, y }; y d dy, {, y :, y + }; + y d

Dettagli

Corso di Laurea in Economia Matematica per le applicazioni economiche e finanziarie. Esercizi 4

Corso di Laurea in Economia Matematica per le applicazioni economiche e finanziarie. Esercizi 4 Corso di Laura in Economia Matmatica pr l applicazioni conomich finanziari Esrcizi 4 Vrificar s l sgunti funzioni, nll intrvallo chiuso indicato, soddisfano l ipotsi dl torma di Roll, in caso affrmativo,

Dettagli

Capitolo 2 Le trasformazioni fisiche della materia

Capitolo 2 Le trasformazioni fisiche della materia Capitolo 2 Le trasformazioni fisiche della materia 1.Gli stati fisici della materia 2.I sistemi omogenei e i sistemi eterogenei 3.Le sostanze pure e i miscugli 4.I passaggi di stato 5. la teoria particellare

Dettagli

MODELPAK MD 400. [Persiana interamente metallica]

MODELPAK MD 400. [Persiana interamente metallica] MODELPAK MD 400 [Prsiana intramnt mtallica] MODELPAK MD 400 Lamll disponibili in 1000 tonalità PRESTAZIONI Protzion Protzion solar Protzion contro l intmpri Protzion dagli intrusi Isolamnto acustico Comfort

Dettagli

ESERCIZI SULLA CONVEZIONE

ESERCIZI SULLA CONVEZIONE Giorgia Mrli matr. 97 Lzion dl 4//0 ora 0:0-:0 ESECIZI SULLA CONVEZIONE Esrcizio n Considriamo un tubo d acciaio analizziamo lo scambio trmico complto, ossia qullo ch avvin sia all intrno sia all strno

Dettagli

13 - LA PROGRAMMAZIONE DELL'ALLENAMENTO

13 - LA PROGRAMMAZIONE DELL'ALLENAMENTO 132 13 - LA PROGRAMMAZIONE DELL'ALLENAMENTO La prparazion complta dl calciator si ralizza sottoponndo il suo organismo, la sua prsonalità la sua potnzialità motoria, ad una gran quantità di stimoli ch

Dettagli

La materia. La materia è ogni cosa che occupa uno spazio (e possiamo percepire con i nostri sensi).

La materia. La materia è ogni cosa che occupa uno spazio (e possiamo percepire con i nostri sensi). La materia La materia è ogni cosa che occupa uno spazio (e possiamo percepire con i nostri sensi). Essa è costituita da sostanze, ciascuna delle quali è formata da un determinato tipo di particelle piccolissime,

Dettagli

- Radioattività - - 1 - 1 Ci = 3,7 1010 dis / s. ln 2 T 2T = e ln 2 2 = e 2ln 2 = 1 4

- Radioattività - - 1 - 1 Ci = 3,7 1010 dis / s. ln 2 T 2T = e ln 2 2 = e 2ln 2 = 1 4 Radioattività - Radioattività - - - Un prparato radioattivo ha un attività A 0 48 04 dis / s. A quanti μci (microcuri) si riduc l attività dl prparato dopo du tmpi di dimzzamnto? Sapndo ch: ch un microcuri

Dettagli

Università di Napoli Parthenope Facoltà di Ingegneria

Università di Napoli Parthenope Facoltà di Ingegneria Univrità di apoli arthnop Facoltà di Inggnria Coro di Tramiioni umrich docnt: rof. Vito acazio 6 a Lzion: // Sommario Calcolo dlla proailità di rror nlla tramiion numrica in prnza di AWG AM inario M inario

Dettagli

0 < a < 1 a > 1. In entrambi i casi la funzione y = a x si può studiare per punti e constatare che essa presenta i seguenti andamenti y.

0 < a < 1 a > 1. In entrambi i casi la funzione y = a x si può studiare per punti e constatare che essa presenta i seguenti andamenti y. INTRODUZIONE Ossrviamo, in primo luogo, ch l funzioni sponnziali sono dlla forma a con a costant positiva divrsa da (il caso a è banal pr cui non sarà oggtto dl nostro studio). Si possono allora vrificar

Dettagli

Antenne e Telerilevamento. Esonero I ESONERO ( )

Antenne e Telerilevamento. Esonero I ESONERO ( ) I ESONERO (28.6.21) ESERCIZIO 1 (15 punti) Si considri un sistma ricvnt oprant alla frqunza di 13 GHz, composto da un antnna a parabola a polarizzazion linar con un rapporto fuoco-diamtro f/d=.3, illuminata

Dettagli

Tariffe delle prestazioni sanitarie nelle diverse regioni italiane. Laura Filippucci

Tariffe delle prestazioni sanitarie nelle diverse regioni italiane. Laura Filippucci Consumatori in cifr Tariff dll prstazioni sanitari nll divrs rgioni italian Laura Filippucci La rcnt proposta dl Govrno di aggiornar il tariffario dll prstazioni sanitari di laboratorio ha sollvato un

Dettagli

C V. gas monoatomici 3 R/2 5 R/2 gas biatomici 5 R/2 7 R/2 gas pluriatomici 6 R/2 8 R/2

C V. gas monoatomici 3 R/2 5 R/2 gas biatomici 5 R/2 7 R/2 gas pluriatomici 6 R/2 8 R/2 46 Tonzig La fisica del calore o 6 R/2 rispettivamente per i gas a molecola monoatomica, biatomica e pluriatomica. Per un gas perfetto, il calore molare a pressione costante si ottiene dal precedente aggiungendo

Dettagli

Riuscire a conservare l esistente con un restauro a regola d arte,

Riuscire a conservare l esistente con un restauro a regola d arte, san giovanni lupatoto - vrona Fra passato innovazion Riuscir a consrvar l sistnt con un rstauro a rgola d art, unndo sttica modrn tcnologi costruttiv pr il risparmio nrgtico, è la sfida affrontata dai

Dettagli

Errore standard di misurazione. Calcolare l intervallo del punteggio vero

Errore standard di misurazione. Calcolare l intervallo del punteggio vero Error sandard di misurazion Calcolar l inrvallo dl punggio vro Problmi di prcision La prsnza noa dll rror di misura rnd incro il significao dl punggio onuo. L andibilià dl s ci informa di quano rror di

Dettagli

Il vapor saturo e la sua pressione

Il vapor saturo e la sua pressione Il vapor saturo e la sua pressione Evaporazione = fuga di molecole veloci dalla superficie di un liquido Alla temperatura T, energia cinetica di traslazione media 3/2 K B T Le molecole più veloci sfuggono

Dettagli

CAT CASSONETTO 4-06-2008 10:26 Pagina 1 CATALOGO CASSONETTO A SCOMPARSA PER AVVOLGIBILI

CAT CASSONETTO 4-06-2008 10:26 Pagina 1 CATALOGO CASSONETTO A SCOMPARSA PER AVVOLGIBILI CAT CASSONETTO 4-06-2008 10:26 Pagina 1 CATALOGO CASSONETTO A SCOMPARSA PER AVVOLGIBILI CAT CASSONETTO 4-06-2008 10:26 Pagina 2 VANTAGGI DEL CASSONETTO PERCHÈ PREFERIRE IL CTS Facilità di impigo rapidità

Dettagli

Corso di Fisica Generale 1

Corso di Fisica Generale 1 Corso di Fisica Generale 1 corso di laurea in Ingegneria dell'automazione ed Ingegneria Informatica (A-C) 22 lezione (18 / 12 /2015) Dr. Laura VALORE Email : laura.valore@na.infn.it / laura.valore@unina.it

Dettagli

Applicazioni della Termochimica: Combustioni

Applicazioni della Termochimica: Combustioni CHIMICA APPLICATA Applicazioni della Termochimica: Combustioni Combustioni Il comburente più comune è l ossigeno dell aria Aria secca:! 78% N 2 21% O 2 1% gas rari Combustioni Parametri importanti:! 1.Potere

Dettagli

e n. inquinante 2 Frantoio 20.000 3 10 0,70 F.T.

e n. inquinante 2 Frantoio 20.000 3 10 0,70 F.T. QUADRO RIASSUNTIVO DELLE EMISSIONI CONVOGLIATE IN ATMOSFERA (cfr. A.I.A. n. 367/2014) Ei Tipo di Concntrazion Portata Durata Emiss. Camino Provninza n. inquinant rif. Nm 3 /h h / g m 1 Trasporto carbon

Dettagli

Equazioni di Secondo Grado in Una Variabile, x Complete, Pure e Spurie. Tecniche per risolverle ed Esempi svolti

Equazioni di Secondo Grado in Una Variabile, x Complete, Pure e Spurie. Tecniche per risolverle ed Esempi svolti Equazioni di Scondo Grado in Una Variabil, x Complt, Pur Spuri. Tcnich pr risolvrl d Esmpi svolti Francsco Zumbo www.francscozumbo.it http://it.gocitis.com/zumbof/ Qusti appunti vogliono ssr un ultrior

Dettagli

POTENZE NECESSARIE E DISPONIBILI

POTENZE NECESSARIE E DISPONIBILI POTENZE NECESSARIE E DISPONIBILI In qusto capitolo ci proponiamo di dtrminar l curv dll potnz ncssari pr l vari condizioni di volo. Tali curv dipndranno da divrsi fattori com il pso dl vlivolo, la quota,

Dettagli

ESERCIZI SULLA DEMODULAZIONE INCOERENTE

ESERCIZI SULLA DEMODULAZIONE INCOERENTE Esrcitazioni dl corso di trasmissioni numrich - Lzion 4 6 Fbbraio 8 ESERCIZI SULLA DEMODULAZIONE INCOERENE I du sgnali passa basso di figura sono utilizzati pr la trasmission di simboli binari quiprobabili

Dettagli

Stati di aggregazione della materia unità 2, modulo A del libro

Stati di aggregazione della materia unità 2, modulo A del libro Stati di aggregazione della materia unità 2, modulo A del libro Gli stati di aggregazione della materia sono tre: solido, liquido e gassoso, e sono caratterizzati dalle seguenti grandezze: Quantità --->

Dettagli

ISTITUTO COMPRENSIVO DI SCUOLA DELL INFANZIA, PRIMARIA E SECONDARIA DI 1 GRADO BORGATA PARADISO SCUOLA DELL INFANZIA STATALE A.

ISTITUTO COMPRENSIVO DI SCUOLA DELL INFANZIA, PRIMARIA E SECONDARIA DI 1 GRADO BORGATA PARADISO SCUOLA DELL INFANZIA STATALE A. ISTITUTO COMPRENSIVO DI SCUOLA DELL INFANZIA, PRIMARIA E SECONDARIA DI 1 GRADO Martin Luthr King Dirignt Scolastico Prof. Giuspp ASSANDRI PRESIDENZA E SEGRETERIA Vial Radich, 3 10095 GRUGLIASCO (TO) Tl.:

Dettagli

PROBLEMI SULLA LEGGE DELLA TERMOLOGIA

PROBLEMI SULLA LEGGE DELLA TERMOLOGIA PROBLEMI SULLA LEGGE DELLA TERMOLOGIA 1) 500 grammi di una sostanza liquida, di composizione ignota, vengono riscaldati per mezzo di un riscaldatore ad immersione, capace di fornire 75 J/s di energia termica

Dettagli

GRANDEZZE OPERATIVE DELLE MACCHINE OPERANTI CON FLUIDI INCOMPRIMIBILI. v 1. + v 2 2. + gz ( 2. + z

GRANDEZZE OPERATIVE DELLE MACCHINE OPERANTI CON FLUIDI INCOMPRIMIBILI. v 1. + v 2 2. + gz ( 2. + z CAPITOLO 5 GRANDEZZE OPERATIVE DELLE MACCHINE OPERANTI CON FLUIDI INCOMPRIMIBILI 5.1) Prvalnza salto motor. S considriamo un gnrico impianto idraulico in cui sia insrita una macchina oprant in rgim stazionario

Dettagli

1)Quale tra i seguenti elementi è un gas nobile? a. Si b. Mo c. Ge d. He. 2) L'acqua è:

1)Quale tra i seguenti elementi è un gas nobile? a. Si b. Mo c. Ge d. He. 2) L'acqua è: 1)Quale tra i seguenti elementi è un gas nobile? a. Si b. Mo c. Ge d. He 2) L'acqua è: a. una sostanza elementare b. un composto chimico c. una miscela omogenea d. una soluzione 3) Quale dei seguenti elementi

Dettagli

Corso di laurea in Scienze internazionali e diplomatiche. corso di POLITICA ECONOMICA

Corso di laurea in Scienze internazionali e diplomatiche. corso di POLITICA ECONOMICA Corso di laura in Scinz intrnazionali diplomatich corso di OLITICA ECONOMICA SAVERIA CAELLARI Curva di offrta aggrgata di brv priodo; quilibrio domanda offrta aggrgata nl brv nl lungo priodo Aspttativ

Dettagli

ORGANO GOLD PIANO COMPENSI. E Facile, E semplice. E caffè. Italia

ORGANO GOLD PIANO COMPENSI. E Facile, E semplice. E caffè. Italia ORGANO GOLD PIANO COMPENSI E Facil, E smplic. E caffè. Italia INDICE Indic INTRODUZIONE...2 PIANO COMPENSI...3 DEFINIZIONI ED ACRONIMI.4 COME DIVENTARE UN INCARICATO ALLE VENDITE OG...5 I SETTE MODI PER

Dettagli

LEGGI DEI GAS / CALORI SPECIFICI. Introduzione 1

LEGGI DEI GAS / CALORI SPECIFICI. Introduzione 1 LEGGI DEI GAS / CALORI SPECIFICI Introduzione 1 1 - TRASFORMAZIONE ISOBARA (p = costante) LA PRESSIONE RIMANE COSTANTE DURANTE TUTTA LA TRASFORMAZIONE V/T = costante (m, p costanti) Q = m c p (Tf - Ti)

Dettagli

Strategie di Monitoraggio della Piattaforma Java per Sistemi

Strategie di Monitoraggio della Piattaforma Java per Sistemi strumnti pr la il rnginring tsi di laura la Anno Accadmico 24-25 rlator Ch.mo Prof. Stfano Russo corrlator Ing. Salvator Orlando candidato Giuspp Scafuti Matr. 534-953 la strumnti pr il rnginring Architttura

Dettagli

Studio di funzione. R.Argiolas

Studio di funzione. R.Argiolas Studio di unzion R.Argiolas Introduzion Prsntiamo lo studio dl graico di alcun unzioni svolt durant l srcitazioni dl corso di analisi matmatica I assgnat nll prov scritt. Ringrazio anticipatamnt tutti

Dettagli

MISCUGLI E TECNICHE DI SEPARAZIONE

MISCUGLI E TECNICHE DI SEPARAZIONE MISCUGLI E TECNICHE DI SEPARAZIONE Classe 1^A Grafico Questo documento è solo una presentazione e non deve ritenersi completo se non è accompagnato dalla lezione in classe. Prof. Zarini Marta CLASSIFICAZIONE

Dettagli

Il mercato elettrico dopo la liberalizzazione per i clienti domestici

Il mercato elettrico dopo la liberalizzazione per i clienti domestici Il mrcato lttrico dopo la libralizzazion pr i clinti domstici Paolo Cazzaniga Introduzion: struttura dl mrcato lttrico dlla tariffa Dal 1 luglio 2007 la libralizzazion dl mrcato lttrico è compltata: anch

Dettagli

Tassare i redditi o i consumi? Giampaolo Arachi e Massimo D Antoni

Tassare i redditi o i consumi? Giampaolo Arachi e Massimo D Antoni Tassar i rdditi o i consumi? Giampaolo Arachi Massimo D Antoni Divrs ragioni sono stat avanzat a favor di uno spostamnto dll imposizion dal rddito al consumo, in particolar vrso l Iva: la possibilità di

Dettagli

(rendimento: 10-12%)

(rendimento: 10-12%) CELLE DI GRÄTZEL (rndimnto: 10-12%) Il principio dl loro funzionamnto,individuato nl 1990 dal chimico svizzro Michal Gratzl, sta nl porr sulla suprfici di un smiconduttor uno strato di molcol organich

Dettagli

Università degli Studi di Firenze Dipartimento di Ingegneria Civile ed Ambientale

Università degli Studi di Firenze Dipartimento di Ingegneria Civile ed Ambientale Univrsità dgli Studi di Firnz Dipartimnto di Inggnria Civil d Ambintal TARIFFARIO DELLE PRESTAZIONI IN CONTO TERZI (Approvato dal Consiglio di Dipartimnto dl 24/01/2002) ATTIVITÀ E SERVIZI OFFERTI PROVE

Dettagli

LA NOSTRA AVVENTURA NEL CREARE UN LIBRO

LA NOSTRA AVVENTURA NEL CREARE UN LIBRO LA NOSTRA AVVENTURA NEL CREARE UN LIBRO Abbiamo iniziato a lggr in class Nonno Tano la casa dll strgh. Lo scopo ra ascoltar comprndr. Sguir la mastra ch dava sprssività alla lttura imparar da lla a lggr.

Dettagli

Moduli e-learning ABB Istruzioni per la frequenza ai corsi. Sommario

Moduli e-learning ABB Istruzioni per la frequenza ai corsi. Sommario Moduli -larning ABB Istruzioni pr la frqunza ai corsi Il prsnt documnto ha lo scopo di dscrivr l principali carattristich di corsi -larning: com rgistrarsi d accdr al sistma, iscrivrsi ad un corso, frquntarlo

Dettagli

Ottimizzazione economica degli scambiatori di recupero.

Ottimizzazione economica degli scambiatori di recupero. Facoltà di Inggnria Univrsità dgli tudi di Bologna Dipartimnto di Inggnria Industrial Marco Gntilini Ottimizzazion conomica dgli scambiatori di rcupro Quadrni dl Dipartimnto MARCO GENTILINI OTTIMIZZAZIONE

Dettagli

MATER NITÀ. La legge recentemente approvata non si limita ad emanare. eciale. congedi parentali. Legge sui congedi parentali. Legge 8 marzo2000 n.

MATER NITÀ. La legge recentemente approvata non si limita ad emanare. eciale. congedi parentali. Legge sui congedi parentali. Legge 8 marzo2000 n. Lcco Sp ciale congdi parntali Lgg 8 marzo2000 n. 53 Lgg sui congdi parntali La lgg rcntmnt approvata non si limita ad manar disposizioni spcifich pr il sostgno dlla matrnità dlla patrnità, pr il diritto

Dettagli

Quale quantità produrre? Massimizzazione del profitto e offerta concorrenziale. Il significato della concorrenza. Il significato della concorrenza

Quale quantità produrre? Massimizzazione del profitto e offerta concorrenziale. Il significato della concorrenza. Il significato della concorrenza Qual quantità produrr? Massimizzazion dl profitto offrta concorrnzial In ch modo l imprsa scgli il livllo di produzion ch massimizza il profitto. Com l sclt di produzion dll singol imprs contribuiscono

Dettagli

Il ruolo delle aspettative in economia

Il ruolo delle aspettative in economia Capiolo XV. Il ruolo dll aspaiv in conomia . Tassi di inrss nominali rali Il asso di inrss in rmini di mona è chiamao asso di inrss nominal. Il asso di inrss sprsso in rmini di bni è chiamao asso di inrss

Dettagli

Docenti: LEONARDO SABA - EMANUELE CAPPAI A.S. 2014-2015

Docenti: LEONARDO SABA - EMANUELE CAPPAI A.S. 2014-2015 Disciplina: MACCHINE Class III E C A I M Docnti: LEONARDO SABA - EMANUELE CAPPAI A.S. 01-01 Libro Tsto : L. FERRARO Mccanica, Macchin Impianti ausiliari. Appunti tabll a cura docnti. I part U.D. 1 Sistmi

Dettagli

De Rossi, profumo di primavera Sabato 23 Marzo 2013 10:49 - DANIELE GIANNINI

De Rossi, profumo di primavera Sabato 23 Marzo 2013 10:49 - DANIELE GIANNINI DANIELE GIANNINI Frsco com un fior sboccia nl primo giorno primavra Il gol Danil D Rossi al Brasil ha s gnato simbolicamnt la fin dll invrno Il risvglio dlla natura qullo dlla Nazional stava prdndo immritatamnt

Dettagli

GLI STATI DI AGGREGAZIONE DELLA MATERIA. Lo stato gassoso

GLI STATI DI AGGREGAZIONE DELLA MATERIA. Lo stato gassoso GLI STATI DI AGGREGAZIONE DELLA MATERIA Lo stato gassoso Classificazione della materia MATERIA Composizione Struttura Proprietà Trasformazioni 3 STATI DI AGGREGAZIONE SOLIDO (volume e forma propri) LIQUIDO

Dettagli

FISICA-TECNICA Miscela di gas e vapori. Igrometria

FISICA-TECNICA Miscela di gas e vapori. Igrometria FISICA-TECNICA Miscela di gas e vapori. Igrometria Katia Gallucci Spesso è necessario variare il contenuto di vapore presente in una corrente gassosa. Lo studio di come si possono realizzare queste variazioni

Dettagli