Cenni di Teoria delle assicurazioni

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Cenni di Teoria delle assicurazioni"

Transcript

1 ei di Teoria dee assicurazioi Vautazioe di acue fore basiari di assicurazioi sua ita Probea di autazioe di ua redita di durata aeatoria Necessità di espriere a probabiità di sopraieza di u idiiduo: Fuzioi bioetriche

2 Le fuzioi bioetriche etta età itera, si idicao co: uero dee persoe ieti di età de isiee teorico cosiderato dae taoe di sopraieza d uero dee persoe di età che uoioo pria di aer raggiuto età successia

3 Fra esse esiste a reazioe: d I aori di decrescoo a crescere di fio a utia età rieata, detta età estrea ω L età estrea è tae che essu iete raggiuge età successia ω 0 quidi risuta: d ω ω

4 Utiizzado e fuzioi bioetriche si cacoao e probabiità di sopraiere e di orire ad ua certa data La probabiità che ua persoa di età raggiuga età, è detta tasso auo di sopraieza ed è data da: p La probabiità de eeto de eeto cotrario, ossia che a persoa di età uoia pria di raggiugere età, è detta tasso auo di ortaità e risuta: q p Iteressa cooscere e probabiità di sopraiere e di orire per assegati iterai di età d

5 ostruzioe di taoe di ortaità IPOTSI I LVORO La probabiità di orire e iterao di tepo ( t, t t) è espressa da ptt (, t) at () t O( t), at () 0 iò che aiee e iterao di tepo (t,t ) è idipedete da passato (t<t ) La probabiità di orte aa ascita è 0. Si ottiee faciete: π() t e t 0 az ( ) dz

6 MOLLO SMPLIFITO at () α βe γt π() t e αt β --e γt γ

7 La probabiità che ua persoa di età sia i ita dopo ai, detta probabiità di sopraieza dopo ai, è data da: p Si tratta di ua probabiità coposta e si ottiee da prodotto di tassi aui di sopraieza. p p p p

8 La probabiità di orte differita di ai e teporaea di ao, ossia a probabiità che ua persoa di età raggiuga età e uoia etro u ao, è ach essa ua probabiità coposta: d d q p q p q La probabiità cotraria è a probabiità di orte etro ai, ossia a probabiità che a persoa uoia pria di raggiugere età, è data da:

9 sepio. acoare per u uoo di 40 ai e probabiità: a) di sopraiere per u ao; b) di sopraiere per 5 ai; c) di orire etro 30 ai; d) di raggiugere gi 80 ai e di orire etro u ao. Ripetere i cacoo per ua doa di 40 ai. Utiizzado e taoe di sopraieza riferite ad u isiee teorico di eoati aschi i Itaia e 98: a) p ,99790 b) p ,77963 c) d) q q d 0, ,33764

10 Per ua doa di 40 ai. o i dati dea Taoa di sopraieza riferita ad u isiee teorico di eoate i Itaia e 98 si ha: a) p40 0, b) 5 p , c) 30 q ,7033 d) 40 q 40 d ,039576

11 Tasso istataeo di ortaità La probabiità che u idiiduo uoia pria di raggiugere età è data: q Suppoedo a fuzioe deriabie e co deriata cotiua si può sostituire a detto icreeto i differeziae dea coettedo u errore che è ifiitesio di ordie superiore a q

12 Poedo: µ d og d è detto tasso istataeo di ortaità o µ forza di ortaità Pertato: q µ

13 Quado si coosce a forza di ortaità si può dedurre a corrispodete egge di sopraieza d og du u µ Itegrado e iterao [0, ] si ricaa: u ossia og [ ] 0 og u µ d µ ud u 0 e u u µ u d u

14 u d u e 0 µ 0 a probabiità di sopraiere a età 0 si cosidera pari ad quidi Le arie probabiità si possoo espriere i fuzioe dea forza di ortaità, ad esepio: u u u u u u d d d e e e p µ µ µ 0 0

15 sepio acoare a probabiità per ua doa di 40 ai di sopraiere atri 5 ai ipotizzado che a forza di ortaità sia costate e pari ai 0,00: 65 p 40 e 65 0,00 d u 40 0,005 e 0,9753

16 ssicurazioi sua ita L assicurazioe sua ita è u cotratto co i quae assicuratore, erso i pagaeto di u preio, si obbiga a pagare a assicurato u capitae o ua redita, a erificarsi di u eeto attiete aa ita uaa. Otre a assicuratore iteregoo, i geere tre persoe che possoo o o coicidere: i cotraete i beeficiario assicurato. I cotratti sua ita si possoo distiguere i tre gruppi: assicurazioi i caso di ita, ee quai assicuratore si ipega a pagare a soa o e soe assicurate soo se assicurato è i ita; assicurazioi i caso orte, ee quai assicuratore è ipegato a pagare a soa assicurata i caso di orte de assicurato; assicurazioi iste, cobiazioi di assicurazioi i caso di ita e i caso di orte;

17 ssicurazioe eeetare di ita (o di capitae differito) Ua persoa, di età, si assicura u capitae, esigibie ad ua deteriata scadeza, soo se sarà i ita. t Idichiao co a scadeza. Se i capitae assicurato è uitario, i suo aore attuae aa stipuazioe de cotratto è dato da: ( i) osideriao a ariabie casuae S, che rappreseta i aore attuae dee soe che sarao pagate a assicurato: s p 0 q

18 Preio uico puro di ua assicurazioe di capitae differito Suppoiao che assicurato si ipegi a pagare i u uica souzioe e che i preio tega coto soo dee prestazioi che assicuratore si obbiga a pagare aa scadeza. I ta caso si para di preio uico puro e si idica geeraete, co a ettera U. Quato è disposta a pagare ua persoa di età, per assicurarsi u capitae uitario, ad ua scadeza fissata, a codizioe di essere i ita? U p 0 q p Se i capitae è pari a, i preio uico puro è dato da: U

19 Posto Si può espriere i aore atteso ache i u atro odo: La gradezza X era (o è tutt ora) tabuata. : a pari risuta atteso aore i

20 I fattore attuariae di scoto è detto fattore attuariae di scoto ed è i aore attuariae di u capitae uitario,, esigibie da ua persoa di età dopo ai se sarà i ita. ssedo: < p Poiché p < È detto fattore attuariae di capitaizzazioe e perette di cacoare i otate fra ai di u capitae uitario ersato oggi da ua persoa di età, otate esigibie soo se a persoa sarà i ita

21 ssicurazioe di redita itaizia L assicurato si garatisce ua successioe di capitai, dette rate, esigibii periodicaete a codizioe di essere i ita ae scadeze fissate. Si distiguoo quattro tipi di redite itaizie: iediate iiitate; differite iiitate; iediate teporaee; differite teporaee. Redita itaizia iediata iiitata Rappresetiao operazioe co uo schea teporae: X X ω t L assicurato di età ottiee, ae scadeze fissate, u capitae uitario se è i ita, eo schea abbiao cosiderato ua redita aticipata.

22 I preio uico (i aore attuae attuariae dea redita ) è dato da: N a N a a U ω ω ω ω Se a rata è R, i preio uico risuta: a R U Se a redita è posticipata ed uitaria, i aore attuariae è dato: N a a U ω ω

23 Redita itaizia differita iiitata Ua redita è differita se a pria rata scade dopo ai daa stipuazioe de cotratto. questa data assuiao che assicurato abbia età. Ne caso a rata sia uitaria e ega corrisposta aticipataete, i preio uico è dato da: U a a ω Se a rata dea redita è R, i preio uico risuta: U R a Se a redita è posticipata a si può trasforare: a a N

24 Redita itaizia iediata teporaea La pria rata iee corrisposta aa stipuazioe de cotratto (quado assicurato ha età ) per ai. acoiao i preio puro e caso a redita sia uitaria: N N a ) ( ) ( ω ω Quidi i preio uico puro per u assicurazioe di redita iediata aticipata uitaria teporaea per ai è: N N a

25 Redita itaizia differita teporaea Ua persoa di età si garatisce i godieto di rate co iizio fra ai. osiderado ua rata uitaria i preio da pagare si ricaa: a a U I ueratore si può scriere coe quidi: N N N N a

26 sepio U uoo di 40 ai uoe garatirsi ua redita itaizia di 0.000,00 aue. eteriare i preio uico ei segueti casi: a) a redita duri tutta a ita e a pria rata sia esigibie subito; b) a redita sia iiitata co a pria rata scadete a copieto dei 55 ai; c) a redita abbia ua durata di 5 ai, co a pria rata scadete dopo u ao; d) a redita abbia ua durata di 0 ai co a pria rata scadete a copieto dei 50 ai a) U 0.000,00 ā ,00 N ,5 b) U 0.000,00 5 ā ,00 c) U 0.000,00 5 a ,00 d) U 0.000,00 00 ā ,00 N 7.64, N4 N ,37 40 N4 N ,86

27 ssicurazioe i caso di orte Le assicurazioi i caso di orte ipegao assicuratore a pagaeto dea soa assicurata durate i periodo preisto da cotratto. Vi soo ari tipi di assicurazioe secodo i periodo assicurato. osideriao per pria assicurazioe eeetare di orte. L assicuratore si ipega a pagare i capitae di u euro fra ai se assicurato orirà e ao copreso fra e età e. osideriao, pertato, a ariabie casuae S, che rappreseta i aore attuae dee soe che assicuratore dee pagare. ssa assue i aore se assicurato uore e ao copreso fra e età e, 0 i caso cotrario : S q 0 q I aore atteso che rappreseta i preio uico puro, risuta: q 0 U ( q ) q

28 d d d d q Trasforado questa reazioe si può scriere.

29 ssicurazioe di orte iediata ita itera L assicurato co questo cotratto garatisce agi eredi u capitae esigibie aa fie de ao dea sua orte i quauque epoca egi uoia. Questa assicurazioe è a soa di tate assicurazioi eeetari di orte ciascua per u ao, da età a età. Se i capitae è uitario, i preio uico puro risuta pari a: M M U ω ω ω ω

30 ssicurazioe di orte iediata e teporaea L assicuratore si ipega a pagare agi eredi i capitae assicurato aa fie de ao i cui aerrà a orte de assicurato, se e soo se a orte aerrà etro ai daa stipua de cotratto. Se i capitae è uitario i preio uico è dato da: M M M M U

31 ssicurazioe di orte differita ita itera L assicuratore pagherà a soa stabiita soo se assicurato orirà dopo ai daa stipuazioe de cotratto. Se i capitae è uitario, i preio uico puro risuta pari a: M U ω ω

32 ssicurazioe di orte differita teporaea L assicuratore pagherà a soa stabiita soo se assicurato orirà dopo ai daa stipuazioe de cotratto ed etro gi ai successii. Se i capitae è uitario, i preio uico puro è dato da: M M U

33 Fiora abbiao ipotizzato che i capitae uitario ega corrisposto aa fie de ao i cui aiee a orte de idiiduo cosiderato Se si uoe cosiderare i caso che esso ega corrisposto a oeto dea orte ossia a tepo y co y copreso tra zero e uo, i aore attuae, che idichereo co Ā X, iee stiato co i aore attuae otteuto per i aore atteso di y ossia co. L assicuratore per copesare gi iteressi di ezzo ao, aggiora i prei uici dee assicurazioi i caso orte capitaizzadoi per (i). Per ua assicurazioe i caso orte a ita itera, si ha: ( i )

34 ssicurazioe ista sepice o questo tipo di cotratto, assicuratore, si ipega a corrispodere u capitae dopo ai se assicurato sarà i ita a età, o aa orte de assicurato se questa aerrà pria de età. I cotratto si copoe, pertato, di u capitae differito e di ua teporaea i caso orte. Se i capitae è uitario, i prei uico puro è dato: U M M ssicurazioe ista a capitae raddoppiato L assicuratore si ipega a corrispodere u capitae aa orte de assicurato, a quauque età egi uoia, ed u atro capitae soo dopo ai, se idiiduo sarà i ita. Se i capitae è uitario, i etrabi i casi, i preio uico è dato da: U M

35 sepio. U uoo di 3ai stipua u assicurazioe ista sepice per i capitae di ,00, scadete a 60 ai co pagaeto aa fie de ao de decesso. acoare i preio uico puro. M U ,00 * ,9 3. Ua doa di 36 ai stipua u assicurazioe ista a capitae raddoppiato per i capitae di ,00 co scadeza de capitae a 56 ai. acoare i preio uico puro e caso che i capitae ega corrisposto agi eredi a atto de decesso. M U ,00 * 56 M ,40 36

36 Prei aui Nea aggior parte dei cotratti di assicurazioe è preisto i pagaeto di prei periodici, i geere aui. Per assicuratore i prei aui puri, essedo i oro pagaeto codizioati da esisteza i ita de assicurato, costituiscoo ua redita itaizia aticipata, i geerae teporaea, i cui aore attuariae, per i pricipio di equiaeza fiaziaria, è uguae a preio uico puro. Idicato co P i preio auo costate per h ai si ha a reazioe: da cui è possibie ricaare P U P h a N N Per e assicurazioi di redite iediate o è cocesso i pagaeto de preio auo. Per e assicurazioi di orte ita itera,i preio può essere pagato per tutta a ita de assicurato e i ta caso si para di preio itaizio pari a: P U a N h

37 sepio. U uoo di 35 ai stipua ua assicurazioe ista sepice per i capitae di ,00 co scadeza a 55 ai, co capitae pagabie agi eredi a atto di orte( per ipotesi i4%). eteriare i preio auo che dorà pagare per tutta a durata. U ,00 ( Ā 35 ) ,00 55 (M 35 -M 55 ),04 35 ssedo: P U 0 a 35 U N N ( M 35 N 35 M N 55 ) (.04) ,5

Matematica Attuariale. Contratto di assicurazione

Matematica Attuariale. Contratto di assicurazione Matematica Attuariae La matematica attuariae studia a determiazioe dei premi assicurativi i fuzioe di determiati eveti che possoo verificarsi i reazioe a cotratti assicurativi. Cotratto di assicurazioe

Dettagli

MATEMATICA ATTUARIALE

MATEMATICA ATTUARIALE TETI TTURILE ssicuazioi Risea ateatica TETI TTURILE Studio cobiato di eeti ceti (opeazioi fiaziaie) ed eeti aeatoi (ita o ote di u idiiduo). La ateatica attuaiae è stettaete egata a cacoo dee pobabiità

Dettagli

1. Considerazioni generali

1. Considerazioni generali . osiderazioi geerali Il processaeto di ob su acchie parallele è iportate sia dal puto di vista teorico che pratico. Dal puto di vista teorico questo caso è ua geeralizzazioe dello schedulig su acchia

Dettagli

Capitolo Terzo. rappresenta la rata di ammortamento del debito di un capitale unitario. Si tratta di risolvere un equazione lineare nell incognita R.

Capitolo Terzo. rappresenta la rata di ammortamento del debito di un capitale unitario. Si tratta di risolvere un equazione lineare nell incognita R. 70 Capitolo Terzo i cui α i rappreseta la rata di ammortameto del debito di u capitale uitario. Si tratta di risolvere u equazioe lieare ell icogita R. SIANO NOTI IL MONTANTE IL TASSO E IL NUMERO DELLE

Dettagli

Elementi di matematica finanziaria

Elementi di matematica finanziaria Elemeti di matematica fiaziaria 18.X.2005 La matematica fiaziaria e l estimo Nell ambito di umerosi procedimeti di stima si rede ecessario operare co valori che presetao scadeze temporali differeziate

Dettagli

La matematica finanziaria

La matematica finanziaria La matematica fiaziaria La matematica fiaziaria forisce gli strumeti ecessari per cofrotare fatti fiaziari che avvegoo i mometi diversi Esempio: Come posso cofrotare i ricavi e i costi legati all acquisto

Dettagli

Capitolo 3 CARATTERIZZAZIONE MECCANICA DELLE FIBRE

Capitolo 3 CARATTERIZZAZIONE MECCANICA DELLE FIBRE Capitoo 3 CARATTERIZZAZIONE MECCANICA DELLE FIBRE 3.1 LA TEORIA DI WEIBULL I comportameto meccaico dee fibre di giestra e di juta è stato caratterizzato mediate o studio dea resisteza a trazioe dee fibre

Dettagli

Appunti su rendite e ammortamenti

Appunti su rendite e ammortamenti Corso di Matematica I Facoltà di Ecoomia Dipartimeto di Matematica Applicata Uiversità Ca Foscari di Veezia Fuari Stefaia, fuari@uive.it Apputi su redite e ammortameti 1. Redite Per redita si itede u isieme

Dettagli

L ammortamento dei prestiti. S. Corsaro Matematica Finanziaria a.a. 2007/08

L ammortamento dei prestiti. S. Corsaro Matematica Finanziaria a.a. 2007/08 L ammortameto dei prestiti. Corsaro Matematica Fiaziaria a.a. 27/8 Prestiti idivisi Operazioi fiaziarie co due cotraeti mutuate o creditore: presta u capitale mutuatario o debitore: si impega a restituire

Dettagli

Appunti sulla MATEMATICA FINANZIARIA

Appunti sulla MATEMATICA FINANZIARIA INTRODUZIONE Apputi sulla ATEATIA FINANZIARIA La matematica fiaziaria si occupa delle operazioi fiaziarie. Per operazioe fiaziaria si itede quella operazioe ella quale avviee uo scambio di capitali, itesi

Dettagli

Rendita perpetua con rate crescenti in progressione aritmetica

Rendita perpetua con rate crescenti in progressione aritmetica edita perpetua co rate cresceti i progressioe aritmetica iprediamo l'esempio visto ella scorsa lezioe di redita perpetua co rate cresceti i progressioe arimetica: Questa redita può ache essere vista come

Dettagli

La stima per capitalizzazione dei redditi

La stima per capitalizzazione dei redditi La stima per capitalizzazioe dei redditi 24.X.2005 La stima per capitalizzazioe La capitalizzazioe dei redditi è l operazioe matematico-fiaziaria che determia l ammotare del capitale - il valore di mercato

Dettagli

RELAZIONE DI CALCOLO DEL SOLAIO

RELAZIONE DI CALCOLO DEL SOLAIO RELAZIONE DI CALCOLO DEL SOLAIO I soaio, da reaizzare ea tipoogia ista i profiati di acciaio e aterizi, è progettato per u carico accidetae pari a 600 kg/q essedo i ocae destiato ad archivio. Esso è costituito

Dettagli

Selezione avversa e razionamento del credito

Selezione avversa e razionamento del credito Selezioe avversa e razioameto del credito Massimo A. De Fracesco Dipartimeto di Ecoomia politica e statistica, Uiversità di Siea May 3, 013 1 Itroduzioe I questa lezioe presetiamo u semplice modello del

Dettagli

Robotica industriale. Riduttori. Prof. Paolo Rocco (paolo.rocco@polimi.it)

Robotica industriale. Riduttori. Prof. Paolo Rocco (paolo.rocco@polimi.it) Robotica idustriae Riduttori Prof. Paoo Rocco (paoo.rocco@poii.it) Fuzioe de orgao di trasissioe La fuzioe di u orgao di trasissioe (riduttore) è di redere copatibii veocità e coppie dei otori e dei carichi

Dettagli

STRUMENTI MATEMATICI PER LE SCELTE ECONOMICHE. [brevi appunti di testo in bozza] 1) Scelta tra progetti economico-finanziari (generalità)

STRUMENTI MATEMATICI PER LE SCELTE ECONOMICHE. [brevi appunti di testo in bozza] 1) Scelta tra progetti economico-finanziari (generalità) UNIVERSITA DEGLI STUDI DI PAVIA Dipartieto di Scieze Ecooiche e Aziedali Via S. Felice, 7-271 Pavia Tel. 382/986268 - Fax 382/22486 STRUMENTI MATEMATICI PER LE SCELTE ECONOMICHE. [brevi apputi di testo

Dettagli

Capitolo 27. Elementi di calcolo finanziario EEE 2015-2016

Capitolo 27. Elementi di calcolo finanziario EEE 2015-2016 Capitolo 27 Elemeti di calcolo fiaziario EEE 205-206 27. Le diverse forme dell iteresse Si defiisce capitale (C) uo stock di moeta dispoibile i u determiato mometo. Si defiisce iteresse (I) il prezzo d

Dettagli

52. Se in una città ci fosse un medico ogni 500 abitanti, quale sarebbe la percentuale di medici? A) 5 % B) 2 % C) 0,2 % D) 0,5% E) 0,02%

52. Se in una città ci fosse un medico ogni 500 abitanti, quale sarebbe la percentuale di medici? A) 5 % B) 2 % C) 0,2 % D) 0,5% E) 0,02% RISPOSTE MOTIVATE QUIZ D AMMISSIONE 2000-2001 MATEMATICA 51. L espressioe log( 2 ) equivale a : A) 2log B) log2 C) 2log D) log E) log 2 Dati 2 umeri positivi a e b (co a 1), si defiisce logaritmo i base

Dettagli

DISPENSE DI MATEMATICA FINANZIARIA

DISPENSE DI MATEMATICA FINANZIARIA SPENSE MATEMATA FNANZAA 3 Piai di ammortameto. 3. osiderazioi geerali. U piao di ammortameto cosiste ella restituzioe di u importo preso a prestito mediate il versameto d'importi distribuiti el tempo.

Dettagli

+ l 35 l 60 l. U 1 + v p 35 + v 2 2 p 35

+ l 35 l 60 l. U 1 + v p 35 + v 2 2 p 35 Esercizio n. 1 n 35-enne stipua una poizza per assicurare, tra 25 anni, e 100:000 00 a se stesso, se sara vivo (E 1 ), e e 200:000 00, a coniuge superstite, in caso di premorienza sua o dea mogie (E 2

Dettagli

Sommario. 1. Aspetti teorici di base... 3 2. Generalizzazione... 4 3. Esempio: il costo standard dei rilevati autostradali...7

Sommario. 1. Aspetti teorici di base... 3 2. Generalizzazione... 4 3. Esempio: il costo standard dei rilevati autostradali...7 Allegato La deteriazioe dei costi stadardizzati per i lavori pubblici: ua proposta etodologica basata sulle icideze percetuali delle copoeti di lavorazioi prevaleti La deteriazioe dei costi stadardizzati

Dettagli

Interesse e formule relative.

Interesse e formule relative. Elisa Battistoi, Adrea Frozetti Collado Iteresse e formule relative Esercizio Determiare quale somma sarà dispoibile fra 7 ai ivestedo oggi 0000 ad u tasso auale semplice del 5% Soluzioe Il diagramma del

Dettagli

DISTRIBUZIONI DOPPIE

DISTRIBUZIONI DOPPIE DISTRIBUZIONI DOPPIE Fio ad ora abbiamo visto teciche di aalisi dei dati per il solo caso i cui ci si occupi di u solo carattere rilevato su u collettivo (distribuzioi semplici). I termii formali fio ad

Dettagli

4. Metodo semiprobabilistico agli stati limite

4. Metodo semiprobabilistico agli stati limite 4. Metodo seiprobabilistico agli stati liite Tale etodo cosiste el verificare che le gradezze che ifluiscoo i seso positivo sulla, valutate i odo da avere ua piccolissia probabilità di o essere superate,

Dettagli

BLOCCO TEMATICO DI ESTIMO. Diritti reali: usufrutto CORSO PRATICANTI 2015

BLOCCO TEMATICO DI ESTIMO. Diritti reali: usufrutto CORSO PRATICANTI 2015 BLOCCO TEMATICO DI ESTIMO Diritti reali: usufrutto CORSO PRATICANTI 2015 Usufrutto L'usufrutto è il diritto di godimeto da parte di ua persoa detta USUFRUTTUARIO di u bee altrui; il proprietario del bee

Dettagli

Momenti angolari e rotazioni

Momenti angolari e rotazioni Moeti agoari e rotazioi Defiizioe di rotazioe coe traforazioe di 3 Ua rotazioe i può defiire coe ua traforazioe R deo pazio fiico tridieioae i e, co e egueti proprietà : a) acia ivariate e ditaze b) o

Dettagli

Introduzione all assicurazione. (Dispensa per il corso di Microeconomia per manager. Prima versione, marzo 2013; versione aggiornata, marzo 2014)

Introduzione all assicurazione. (Dispensa per il corso di Microeconomia per manager. Prima versione, marzo 2013; versione aggiornata, marzo 2014) Itroduzioe all assicurazioe. (Dispesa per il corso di Microecoomia per maager. Prima versioe, marzo 2013; versioe aggiorata, marzo 2014) Massimo A. De Fracesco Uiversità di Siea March 14, 2014 1 Prezzo

Dettagli

I materiali. I materiali. Informatica Grafica per le arti. I materiali. I materiali. I materiali. I materiali

I materiali. I materiali. Informatica Grafica per le arti. I materiali. I materiali. I materiali. I materiali Iformatica Grafica per e arti L'esatto coore di u puto suo schermo viee determiato daa combiazioe dee proprieta' dee uci e degi oggetti iumiati. Le proprieta' di rifessioe dea uce da parte degi oggetti

Dettagli

Numerazione binaria Pagina 2 di 9 easy matematica di Adolfo Scimone

Numerazione binaria Pagina 2 di 9 easy matematica di Adolfo Scimone Numerazioe biaria Pagia di 9 easy matematica di Adolfo Scimoe SISTEMI DI NUMERAZIONE Sistemi di umerazioe a base fissa Facciamo ormalmete riferimeto a sistemi di umerazioe a base fissa, ad esempio el sistema

Dettagli

STATISTICA DESCRITTIVA

STATISTICA DESCRITTIVA STATISTICA DESCRITTIVA La statistica descrittiva serve per elaborare e sitetizzare dati. Tipicamete i dati si rappresetao i tabelle. Esempio. Suppoiamo di codurre u idagie per cooscere gli iscritti al

Dettagli

ma non sono uguali fra loro

ma non sono uguali fra loro Defiizioe U fuzioe f defiit i D (doiio) si dice cotiu i u puto c D se esiste i tle puto (è cioè possiile clcolre f (c)); se esiste, fiito, il ite dell fuzioe per che tede c e se il vlore del ite coicide

Dettagli

Università degli Studi La Sapienza. Facoltà di Economia. Anno accademico 2012-13. Matematica Finanziaria Canale D - K

Università degli Studi La Sapienza. Facoltà di Economia. Anno accademico 2012-13. Matematica Finanziaria Canale D - K 1 Matematica Fiaziaria Uiversità degli Studi La Sapieza Facoltà di Ecoomia Ao accademico 212-13 Matematica Fiaziaria Caale D - K Capitolo 3 Ammortameto di prestiti idivisi Atoio Aibali Atoio Aibali a.a.

Dettagli

Soluzione La media aritmetica dei due numeri positivi a e b è data da M

Soluzione La media aritmetica dei due numeri positivi a e b è data da M Matematica per la uova maturità scietifica A. Berardo M. Pedoe 6 Questioario Quesito Se a e b soo umeri positivi assegati quale è la loro media aritmetica? Quale la media geometrica? Quale delle due è

Dettagli

AZIENDA USL N. 12 DI VIAREGGIO REGOLAMENTO PER L ACCETTAZIONE DI DONAZIONI DI BENI O DI CONTRIBUTI LIBERALI I N D I C E D E G L I A R T I C O L I

AZIENDA USL N. 12 DI VIAREGGIO REGOLAMENTO PER L ACCETTAZIONE DI DONAZIONI DI BENI O DI CONTRIBUTI LIBERALI I N D I C E D E G L I A R T I C O L I AZIENDA USL N. 12 DI VIAREGGIO REGOLAMENTO PER L ACCETTAZIONE DI DONAZIONI DI BENI O DI CONTRIBUTI LIBERALI I N D I C E D E G L I A R T I C O L I Art. 1 Premessa Art. 2 Oggetto del Regolamento Art. 3 Principi

Dettagli

Analisi statistica dell Output

Analisi statistica dell Output Aalisi statistica dell Output IL Simulatore è u adeguata rappresetazioe della Realtà! E adesso? Come va iterpretato l Output? Quado le Osservazioi soo sigificative? Quati Ru del Simulatore è corretto effettuare?

Dettagli

Tante opportunità, un solo protagonista: TU

Tante opportunità, un solo protagonista: TU idi I Fodo dea Regioe Pugia a sostego dee Nuove Iiziative d Impresa Tate opportuità, u soo protagoista: TU Regioe Pugia Area Poitiche per o Sviuppo Ecoomico, i Lavoro e Iovazioe idi è i Fodo creato daa

Dettagli

Corso di Elementi di Impianti e macchine elettriche Anno Accademico 2014-2015

Corso di Elementi di Impianti e macchine elettriche Anno Accademico 2014-2015 Corso di Elemeti di Impiati e mahie elettriche Ao Aademico 014-015 Esercizio.1 U trasformatore moofase ha i segueti dati di targa: Poteza omiale A =10 kva Tesioe omiale V 1 :V =480:10 V Frequeza omiale

Dettagli

APPROFONDIMENTI SULLA TEORIA DEL CONSUMO AGGREGATO

APPROFONDIMENTI SULLA TEORIA DEL CONSUMO AGGREGATO Moduo 8a 1 APPROFONDIMENTI SULLA TEORIA DEL CONSUMO AGGREGATO 1. Iroduzioe 2. La eoria de cosumo di Dueseberry 3. La eoria de cico viae di Modigiai 2 1. Iroduzioe Dae esperieze dei maggiori sisemi macroecoomici,

Dettagli

Introduzione all assicurazione. (Dispensa per il corso di Microeconomia)

Introduzione all assicurazione. (Dispensa per il corso di Microeconomia) Itroduzioe all assicurazioe. (Dispesa per il corso di Microecoomia) Massimo A. De Fracesco Uiversità di Siea December 18, 2013 1 ichiami su utilità attesa e avversioe al rischio Prima di cosiderare il

Dettagli

Successioni. Grafico di una successione

Successioni. Grafico di una successione Successioi Ua successioe di umeri reali è semplicemete ua sequeza di ifiiti umeri reali:, 2, 3,...,,... dove co idichiamo il termie geerale della successioe. Ad esempio, discutedo il sigificato fiaziario

Dettagli

Anno 5 Successioni numeriche

Anno 5 Successioni numeriche Ao 5 Successioi umeriche Itroduzioe I questa lezioe impareremo a descrivere e calcolare il limite di ua successioe. Ma cos è ua successioe? Come si calcola il suo limite? Al termie di questa lezioe sarai

Dettagli

Matematica Finanziaria

Matematica Finanziaria Corso di Matematica Fiaziaria a.a. 202/203 Testo a cura del Prof. Sergio Biachi Programma Operazioi fiaziarie i codizioi di certezza L operazioe fiaziaria elemetare Operazioi a proti e a termie Regimi

Dettagli

Corso di Laurea Magistrale in Ingegneria Informatica A.A. 2014/15. Complementi di Probabilità e Statistica. Prova scritta del del 23-02-15

Corso di Laurea Magistrale in Ingegneria Informatica A.A. 2014/15. Complementi di Probabilità e Statistica. Prova scritta del del 23-02-15 Corso di Laurea Magistrale i Igegeria Iformatica A.A. 014/15 Complemeti di Probabilità e Statistica Prova scritta del del 3-0-15 Puteggi: 1. 3+3+4;. +3 ; 3. 1.5 5 ; 4. 1 + 1 + 1 + 1 + 3.5. Totale = 30.

Dettagli

Matematica II: Calcolo delle Probabilità e Statistica Matematica

Matematica II: Calcolo delle Probabilità e Statistica Matematica Matematica II: Calcolo delle Probabilità e Statistica Matematica ELT A-Z Docete: dott. F. Zucca Esercitazioe # 4 1 Distribuzioe Espoeziale Esercizio 1 Suppoiamo che la durata della vita di ogi membro di

Dettagli

Successioni ricorsive di numeri

Successioni ricorsive di numeri Successioi ricorsive di umeri Getile Alessadro Laboratorio di matematica discreta A.A. 6/7 I queste pagie si voglioo predere i esame alcue tra le più famose successioi ricorsive, presetadoe alcue caratteristiche..

Dettagli

Campi vettoriali conservativi e solenoidali

Campi vettoriali conservativi e solenoidali Campi vettoriali coservativi e soleoidali Sia (x,y,z) u campo vettoriale defiito i ua regioe di spazio Ω, e sia u cammio, di estremi A e B, defiito i Ω. Sia r (u) ua parametrizzazioe di, fuzioe della variabile

Dettagli

DEFINIZIONE PROCESSO LOGICO E OPERATIVO MEDIANTE IL QUALE, SULLA BASE

DEFINIZIONE PROCESSO LOGICO E OPERATIVO MEDIANTE IL QUALE, SULLA BASE DEFINIZIONE PROCESSO LOGICO E OPERATIVO MEDIANTE IL QUALE, SULLA BASE DI UN GRUPPO DI OSSERVAZIONI O DI ESPERIMENTI, SI PERVIENE A CERTE CONCLUSIONI, LA CUI VALIDITA PER UN COLLETTIVO Più AMPIO E ESPRESSA

Dettagli

LA VERIFICA DELLE IPOTESI SUI PARAMETRI

LA VERIFICA DELLE IPOTESI SUI PARAMETRI LA VERIFICA DELLE IPOTESI SUI PARAMETRI E u problema di ifereza per molti aspetti collegato a quello della stima. Rispode ad u esigeza di carattere pratico che spesso si preseta i molti campi dell attività

Dettagli

19 31 43 55 67 79 91 103 870,5 882,5 894,5 906,5 918,5 930,5 942,5 954,5

19 31 43 55 67 79 91 103 870,5 882,5 894,5 906,5 918,5 930,5 942,5 954,5 Il 16 dicembre 015 ero a Napoli. Ad u agolo di Piazza Date mi soo imbattuto el "matematico di strada", come egli si defiisce, Giuseppe Poloe immerso el suo armametario di tabelle di umeri. Il geiale persoaggio

Dettagli

Progressioni aritmetiche

Progressioni aritmetiche Progressioi aritmetiche Comiciamo co due esempi: Esempio Cosideriamo la successioe di umeri:, 7,, 5, 9, +4 +4 +4 +4 +4 La successioe è tale che si passa da u termie al successivo aggiugedo sempre +4. Si

Dettagli

Stima di un immobile a destinazione alberghiera APPROFONDIMENTI

Stima di un immobile a destinazione alberghiera APPROFONDIMENTI APPROFONDIMENTI www.shutterstock.com/vladitto Stima di u immobile a destiazioe alberghiera di Maria Ciua (Ricercatore di Estimo Facoltà di Igegeria dell Uiversità di Palermo) I geere ell expertise immobiliare

Dettagli

CONCETTI BASE DI STATISTICA

CONCETTI BASE DI STATISTICA CONCETTI BASE DI STATISTICA DEFINIZIONI Probabilità U umero reale compreso tra 0 e, associato a u eveto casuale. Esso può essere correlato co la frequeza relativa o col grado di credibilità co cui u eveto

Dettagli

Esercizi per il recupero e per l autovalutazione. L interesse e i problemi connessi VERIFICA 1

Esercizi per il recupero e per l autovalutazione. L interesse e i problemi connessi VERIFICA 1 Telepass + 1 bieio UNITÀ G I calcoli fiaziari Esercizi per il recupero e per l autovalutazioe L iteresse e i problemi coessi VERIFICA 1 Test 1 Il regime di capitalizzazioe secodo cui gli iteressi maturati

Dettagli

FONDO EUROPEO DI SVILUPPO REGIONALE. nuove iniziative d impresa

FONDO EUROPEO DI SVILUPPO REGIONALE. nuove iniziative d impresa regioe puglia il lavoro e l iovazioe PO FESR 2007-2013 Asse VI Azioe 6.1.5. idi uove iiziative d impresa Regioe Puglia cosa trovo i questa scheda? Questa scheda cotiee alcue iformazioi sulla Misura Nidi

Dettagli

V Tutorato 6 Novembre 2014

V Tutorato 6 Novembre 2014 1. Data la successioe V Tutorato 6 Novembre 01 determiare il lim b. Data la successioe b = a = + 1 + 1 8 6 + 1 80 + 18 se 0 se < 0 scrivere i termii a 0, a 1, a, a 0 e determiare lim a. Data la successioe

Dettagli

STATISTICA INFERENZIALE SCHEDA N. 2 INTERVALLI DI CONFIDENZA PER IL VALORE ATTESO E LA FREQUENZA

STATISTICA INFERENZIALE SCHEDA N. 2 INTERVALLI DI CONFIDENZA PER IL VALORE ATTESO E LA FREQUENZA Matematica e statistica: dai dati ai modelli alle scelte www.dima.uige/pls_statistica Resposabili scietifici M.P. Rogati e E. Sasso (Dipartimeto di Matematica Uiversità di Geova) STATISTICA INFERENZIALE

Dettagli

IL CALCOLO COMBINATORIO

IL CALCOLO COMBINATORIO IL CALCOLO COMBINATORIO Calcolo combiatorio è il termie che deota tradizioalmete la braca della matematica che studia i modi per raggruppare e/o ordiare secodo date regole gli elemeti di u isieme fiito

Dettagli

LE MISURE DI VARIABILITÀ DI CARATTERI QUANTITATIVI

LE MISURE DI VARIABILITÀ DI CARATTERI QUANTITATIVI Apputi di Statistica Sociale Uiversità ore di Ea LE MISURE DI VARIABILITÀ DI CARATTERI QUATITATIVI La variabilità di u isieme di osservazioi attiee all attitudie delle variabili studiate ad assumere modalità

Dettagli

Calcolo della risposta di un sistema lineare viscoso a più gradi di libertà con il metodo dell Analisi Modale

Calcolo della risposta di un sistema lineare viscoso a più gradi di libertà con il metodo dell Analisi Modale Calcolo della risposta di u sistema lieare viscoso a più gradi di libertà co il metodo dell Aalisi Modale Lezioe 2/2 Prof. Adolfo Satii - Diamica delle Strutture 1 La risposta a carichi variabili co la

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2006

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2006 ESAME DI STAT DI LICE SCIENTIFIC CRS DI RDINAMENT 006 Il cadidato risolva uo dei due problemi e 5 dei 0 quesiti i cui si articola il questioario. PRBLEMA U filo metallico di lughezza l viee utilizzato

Dettagli

STIMA DEI DIRITTI REALI SU COSA ALTRUI (CAPP. 15-16-17)) STIMA INERENTI L USUFRUTTO, USO E ABITAZIONE (CAP. 15)

STIMA DEI DIRITTI REALI SU COSA ALTRUI (CAPP. 15-16-17)) STIMA INERENTI L USUFRUTTO, USO E ABITAZIONE (CAP. 15) STIMA DEI DIRITTI REALI SU COSA ALTRUI (CAPP. 15-16-17)) Apputi di estimo STIMA INERENTI L USUFRUTTO, USO E ABITAZIONE (CAP. 15) DIRITTO DI USUFRUTTO Defiizioe di usufrutto L usufrutto è u diritto reale

Dettagli

! CRITERI DI VALUTAZIONE E REGOLE DI PRIORITA! SCHEDULING A MACCHINA SINGOLA (m=1) ! SCHEDULING MACCHINE IN SERIE (m 3)

! CRITERI DI VALUTAZIONE E REGOLE DI PRIORITA! SCHEDULING A MACCHINA SINGOLA (m=1) ! SCHEDULING MACCHINE IN SERIE (m 3) CORSO DI GESTIONE DELLA PRODUZIONE INDUSTRIALE PROF. ING. GIOVANNI MUMMOLO PROGRAMMAZIONE OPERATIVA Schedulig PROBLEMI DI SCHEDULING! CRITERI DI VALUTAZIONE E REGOLE DI PRIORITA! SCHEDULING A MACCHINA

Dettagli

Principi base di Ingegneria della Sicurezza

Principi base di Ingegneria della Sicurezza Pricipi base di Igegeria della Sicurezza L aalisi delle codizioi di Affidabilità del sistema si articola i: (i) idetificazioe degli sceari icidetali di riferimeto (Eveti critici Iiziatori - EI) per il

Dettagli

Problemi di Scheduling Definizioni. Problemi di Scheduling Definizioni. Problemi di Scheduling Definizioni. Problemi di Scheduling Definizioni

Problemi di Scheduling Definizioni. Problemi di Scheduling Definizioni. Problemi di Scheduling Definizioni. Problemi di Scheduling Definizioni Problemi di Schedulig Defiizioi I problemi di schedulig soo caratterizzati da tre isiemi: Attività (Task) T {T,T 2, T } macchie (Machies) P {P,P 2, P m } Risorse R {R,R 2, R s } Schedulig: assegare m Macchie

Dettagli

Probabilità e Statistica I

Probabilità e Statistica I Probabilità e Statistica I Elvira Di Nardo (Dipartimeto di Matematica) Uiversità degli Studi della Basilicata e-mail:diardo@uibas.it http://www.uibas.it/uteti/diardo/home.html Tel:097/05890 Prerequisiti:

Dettagli

Estimo rurale appunti 2005. Estimo rurale

Estimo rurale appunti 2005. Estimo rurale Estimo rurale apputi 2005 Estimo rurale L estimo rurale rietra ell ambito delle disciplie ecoomiche, ma metre l ecoomia si occupa della coosceza della realtà, esso si occupa della valutazioe dei bei. Compito

Dettagli

Modelli multiperiodali discreti. Strategie di investimento

Modelli multiperiodali discreti. Strategie di investimento Modelli multiperiodali discreti Cosideriamo ora modelli discreti cioè co u umero fiito di stati del modo multiperiodali, cioè apputo co più periodi. Il prototipo di questa classe di modelli è il modello

Dettagli

1 Successioni 1 1.1 Limite di una successione... 2. 2 Serie 3 2.1 La serie armonica... 6 2.2 La serie geometrica... 6

1 Successioni 1 1.1 Limite di una successione... 2. 2 Serie 3 2.1 La serie armonica... 6 2.2 La serie geometrica... 6 SUCCESSIONI Successioi e serie Idice Successioi. Limite di ua successioe........................................... Serie 3. La serie armoica................................................ 6. La serie

Dettagli

McGraw-Hill. Tutti i diritti riservati. Caso 18

McGraw-Hill. Tutti i diritti riservati. Caso 18 Mauale di Estimo Vittorio Gallerai, Giacomo Zai, Davide Viaggi Caso 18 Copyright 2005 The Compaies srl Stima del diritto di usufrutto e del valore della uda proprietà relativi ad u appartameto di civile

Dettagli

Visione d insieme DOMANDE E RISPOSTE SULL UNITÀ

Visione d insieme DOMANDE E RISPOSTE SULL UNITÀ Visione d insiee DOMANDE E RISPOSTE SULL UNITÀ Ce cos è inerzia? L inerzia è a tendenza di un corpo a antenere i proprio stato di quiete o di oto rettiineo unifore (prio principio dea dinaica). L inerzia

Dettagli

Matematica Finanziaria

Matematica Finanziaria Corso di Matematica Fiaziaria a.a. 202/203 Testo a cura del Prof. Sergio Biachi Programma Operazioi fiaziarie i codizioi di certezza L operazioe fiaziaria elemetare Operazioi a proti e a termie Regimi

Dettagli

Calcolo Combinatorio (vers. 1/10/2014)

Calcolo Combinatorio (vers. 1/10/2014) Calcolo Combiatorio (vers. 1/10/2014 Daiela De Caditiis modulo CdP di teoria dei segali Igegeria dell Iformazioe - sede di Latia, CALCOLO COMBINATORIO Pricipio Fodametale del Calcolo Combiatorio: Si realizzio

Dettagli

Esercizi di dinamica 2

Esercizi di dinamica 2 Esercizi di dinaica ) Un corpo di assa.0 kg si trova su un piano orizzontae scabro. I coefficiente di attrito statico tra corpo e piano è s 0.8. I corpo è sottoposto a azione di una forza orizzontae 7.0

Dettagli

Modifica del regolamento della Cassa pensione Novartis

Modifica del regolamento della Cassa pensione Novartis Modifica del regolameto della Cassa pesioe Novartis Agli assicurati della Cassa pesioe Novartis Il Cosiglio di fodazioe della Cassa pesioe Novartis ha emaato importati modifiche del cocetto e delle prestazioi

Dettagli

ARGOMENTI Scopi e caratteristiche dello strumento Tipologie di mutui Il mercato secondario e il ruolo svolto nella crisi finanziaria

ARGOMENTI Scopi e caratteristiche dello strumento Tipologie di mutui Il mercato secondario e il ruolo svolto nella crisi finanziaria MERCATO DEI MUTUI A.A. 2015/2016 Prof. Alberto Dreassi adreassi@uits.it DEAMS Uiversità di Trieste ARGOMENTI Scopi e caratteristiche dello strumeto Tipologie di mutui Il mercato secodario e il ruolo svolto

Dettagli

Campionamento stratificato. Esempio

Campionamento stratificato. Esempio ez. 3 8/0/05 Metodi Statiici per il Marketig - F. Bartolucci Uiversità di Urbio Campioameto ratificato Ua tecica molto diffusa per sfruttare l iformazioe coteuta i ua variabile ausiliaria (o evetualmete

Dettagli

Esercizi riguardanti limiti di successioni

Esercizi riguardanti limiti di successioni Esercizi riguardati iti di successioi Davide Boscaii Queste soo le ote da cui ho tratto le esercitazioi del gioro 27 Ottobre 20. Come tali soo be lugi dall essere eseti da errori, ivito quidi chi e trovasse

Dettagli

1 Limiti di successioni

1 Limiti di successioni Esercitazioi di matematica Corso di Istituzioi di Matematica B Facoltà di Architettura Ao Accademico 005/006 Aa Scaramuzza 4 Novembre 005 Limiti di successioi Esercizio.. Servedosi della defiizioe di ite

Dettagli

II-9 Successioni e serie

II-9 Successioni e serie SUCCESSIONI II-9 Successioi e serie Idice Successioi. Limite di ua successioe........................................... Serie 3. La serie armoica................................................ 6. La

Dettagli

Statica del corpo rigido: esercizi svolti dai compitini degli anni precedenti

Statica del corpo rigido: esercizi svolti dai compitini degli anni precedenti Statica de corpo riido: eercizi voti dai compitini dei anni precedenti II COMPITIO 00 003 Un ae di eno orizzontae omoenea, di maa M0 k e unhezza L m, è appoiata u due cavaetti. L ae pore di 60 cm otre

Dettagli

Percorsi di matematica per il ripasso e il recupero

Percorsi di matematica per il ripasso e il recupero Giacomo Pagia Giovaa Patri Percorsi di matematica per il ripasso e il recupero 2 per la Scuola secodaria di secodo grado UNITÀ CAMPIONE Edizioi del Quadrifoglio à t i U 2 Radicali I questa Uità affrotiamo

Dettagli

SUCCESSIONI NUMERICHE

SUCCESSIONI NUMERICHE SUCCESSIONI NUMERICHE Ua fuzioe reale di ua variabile reale f di domiio A è ua legge che ad ogi x A associa u umero reale che deotiamo co f(x). Se A = N, la f è detta successioe di umeri reali. Se co si

Dettagli

(DA COMPLETARE!!) Esercizi per il corso di Calcolo delle Probabilità e Statistica Matematica per Scienze dell Informazione

(DA COMPLETARE!!) Esercizi per il corso di Calcolo delle Probabilità e Statistica Matematica per Scienze dell Informazione (DA COMPLETARE!!) Esercizi per il corso di Calcolo delle Probabilità e Statistica Matematica per Scieze dell Iformazioe NOTA Quado i problemi soo formulati el liguaggio ordiario, teere presete che la soluzioe

Dettagli

DIDATTICA DI DISEGNO E DI PROGETTAZIONE DELLE COSTRUZIONI PROF. CARMELO MAJORANA ING. LAURA SGARBOSSA MODULO DUE

DIDATTICA DI DISEGNO E DI PROGETTAZIONE DELLE COSTRUZIONI PROF. CARMELO MAJORANA ING. LAURA SGARBOSSA MODULO DUE DIDTTIC DI DISEGNO E DI ROGETTZIONE DELLE COSTRUZIONI ROF. CRELO JORN ING. LUR SGRBOSS ODULO DUE IL ROBLE DELL TRVE DI DE SINT VENNT (RTE B) TERILE DIDTTICO D UTILIZZRE IN UL (SCUOL SUERIORE) Esempio di

Dettagli

Disposizioni semplici. Disposizioni semplici esercizi

Disposizioni semplici. Disposizioni semplici esercizi Disposizioi semplici Ua disposizioe (semplice) di oggetti i k posti (duque 1 < k < ) è ogi raggruppameto di k oggetti, seza ripetizioi, scelti fra gli oggetti dati, cioè ciascuo dei raggruppameti ordiati

Dettagli

ESTIMO PARTE SPECIALE. Cap. I

ESTIMO PARTE SPECIALE. Cap. I ESTIMO PARTE SPECIALE Cap. I STIMA DEI FONDI RUSTICI CON COLTURE: 1. A ciclo auale di produzioe e a prodotto auo costate. 2. A ciclo poliauale e a prodotto auo variabile. 1)STIMA DEI FONDI RUSTICI CON

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2006

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2006 ESAME DI STAT DI LICE SCIENTIFIC CRS SPERIMENTALE P.N.I. 006 Il cadidato risolva uo dei due problemi e 5 dei 0 quesiti i cui si articola il questioario. PRBLEMA U filo metallico di lughezza l viee utilizzato

Dettagli

Prova scritta di Statistica per Biotecnologie. 29 Aprile Programma Cristallo 1

Prova scritta di Statistica per Biotecnologie. 29 Aprile Programma Cristallo 1 Prova scritta di Statistica per Biotecologie 9 Aprile Programma Cristallo. Uo dei processi di purificazioe impiegati i ua certa sostaza chimica prevede di metterla i soluzioe e di filtrarla co ua resia

Dettagli

Esame 2003. 1 - Generalità - Rapporto di riduzione

Esame 2003. 1 - Generalità - Rapporto di riduzione Esae 003 Si deve provvedere all accoppiaeto tra u otore asicroo trifase ed ua popa a vite, ediate u riduttore a ruote detate cilidriche a deti diritti. Cosiderado che: il otore asicroo ha ua sola coppia

Dettagli

PARTE QUARTA Teoria algebrica dei numeri

PARTE QUARTA Teoria algebrica dei numeri Prerequisiti: Aelli Spazi vettoriali Sia A u aello commutativo uitario PARTE QUARTA Teoria algebrica dei umeri Lezioe 7 Cei sui moduli Defiizioe 7 Si dice modulo (siistro) su A (o semplicemete, A-modulo)

Dettagli

Capitolo Decimo SERIE DI FUNZIONI

Capitolo Decimo SERIE DI FUNZIONI Capitolo Decimo SERIE DI FUNZIONI SUCCESSIONI DI FUNZIONI I cocetti di successioe e di serie possoo essere estesi i modo molto aturale al caso delle fuzioi DEFINIZIONE Sia E u sottoisieme di  e, per ogi

Dettagli

Random walk classico. Simulazione di un random walk

Random walk classico. Simulazione di un random walk Radom walk classico Il radom walk classico) è il processo stocastico defiito da co prob. S = S0 X k, co X k = k= co prob. e le X soo tra di loro idipedeti. k Si tratta di u processo a icremeti idipedeti

Dettagli

Teorema 13. Se una sere converge assolutamente, allora converge:

Teorema 13. Se una sere converge assolutamente, allora converge: Apputi sul corso di Aalisi Matematica complemeti (a) - prof. B.Bacchelli Apputi 03: Riferimeti: R.Adams, Calcolo Differeziale.- Si cosiglia vivamete di fare gli esercizi del testo. Covergeza assoluta e

Dettagli

Matematica finanziaria

Matematica finanziaria C:\Users\Public\Documets\03_DIDATTICA\02. MATERIALE ON LINE\Documeti doc&exe\03. Matematica fiaziaria.docx Materiale didattico Ultimo aggiorameto: 28 dicembre 2012 Matematica fiaziaria A cura di Fracesco

Dettagli

Successioni. Capitolo 2. 2.1 Definizione

Successioni. Capitolo 2. 2.1 Definizione Capitolo 2 Successioi 2.1 Defiizioe Ua prima descrizioe, più ituitiva che rigorosa, di quel che itediamo per successioe cosiste i: Ua successioe è ua lista ordiata di oggetti, avete u primo ma o u ultimo

Dettagli

Foglio di esercizi N. 1 - Soluzioni

Foglio di esercizi N. 1 - Soluzioni Foglio di esercizi N. - Soluzioi. Determiare il domiio della fuzioe f) = log 3 + log 3 3)). Deve essere + log 3 3) > 0, ovvero log 3 3) >, ovvero prededo l espoeziale i base 3 di etrambi i membri) 3 >

Dettagli

Una funzione è una relazione che ad ogni elemento del dominio associa uno e un solo elemento del codominio

Una funzione è una relazione che ad ogni elemento del dominio associa uno e un solo elemento del codominio Radicali Per itrodurre il cocetto di radicali che già avete icotrato alle medie quado avete imparato a calcolare la radice quadrata e cubica dei umeri iteri, abbiamo bisogo di rivedere il cocetto di uzioe

Dettagli

I appello - 29 Giugno 2007

I appello - 29 Giugno 2007 Facoltà di Igegeria - Corso di Laurea i Ig. Iformatica e delle Telecom. A.A.6/7 I appello - 9 Giugo 7 ) Studiare la covergeza putuale e uiforme della seguete successioe di fuzioi: [ ( )] f (x) = cos (

Dettagli

APPUNTI DI MATEMATICA ALGEBRA \ ARITMETICA \ NUMERI NATURALI (1)

APPUNTI DI MATEMATICA ALGEBRA \ ARITMETICA \ NUMERI NATURALI (1) ALGEBRA \ ARITMETICA \ NUMERI NATURALI (1) I umeri aturali hao u ordie; ogi umero aturale ha u successivo (otteuto aggiugedo 1), e ogi umero aturale diverso da zero ha u precedete (otteuto sottraedo 1).

Dettagli

Capitolo 8 Le funzioni e le successioni

Capitolo 8 Le funzioni e le successioni Capitolo 8 Le fuzioi e le successioi Prof. A. Fasao Fuzioe, domiio e codomiio Defiizioe Si chiama fuzioe o applicazioe dall isieme A all isieme B ua relazioe che fa corrispodere ad ogi elemeto di A u solo

Dettagli