Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download ""

Transcript

1 )1.CE 1BH=JEL *)+)41 E L=KJ= = A E L=KJ=AKH = 1.4)11 57) *)+) *)+) )76) +, ) ) IJ 15+

2

3 )64 +,

4 * )46) )4) 75

5 * )46) )4) :64) 75 * )4418 )4) 75

6 * )4418 )4) :64) 75 * )46) )4) 75

7 * )46) )4) :64) 75 * )4418 )4) 75 * )4418 )4) :64) 75

8 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! """"""""""" """""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""" """""""""""#

9 $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% )1 &&&&&&&&&&&&&&&&&&&&&&& &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& /,)

10

11 1 ' &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& ()))))))))))))))))))))))))) ))))))))))))))))))))))))))))))))))))))))))) ))))))))))))))))))))))))))))))))))))))))))))) ))))))))))))))))))))))))))) )))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) *** *** +)5,1..46).741 5,

1. 4 ) 1 1 57 ) *) +). C E 1 B H =JEL + 6 4 " 9* 61,2 516 9* +0 + 5) 1 + 6 + 44 6 +0 + 5) 1 61,2 516 9* + J? HHA JA = F=??DAJJ HEIAHL=J =E? IK =J HE 1 5481 1 + /)61 ) + 6 + 44 6 +)4)6641561+0, + 6 + 44

Dettagli

1. 4 ) 1 1 57 ) *) +) +0 + 5 1 + 6 +)46) 4 " 2 + 6. C E 1 B H =JEL + 6 +)46) 4 " 2 + 6 + J? HHA JA = F=??DAJJ HEIAHL=J =E? IK =J HE 241 +12) 1 +,1 1 1 + 1+0 37) 6 27 + 56)4 1 + 6 + 44 6 1 @E?=J HA 5E

Dettagli

. C E 1 B H =JEL 1. 4 ) 1 1 57 ) *) +) + 6 +)46) 7 1./ + J? HHA JA = F=??DAJJ HEIAHL=J =E? IK =J HE +0 + 5 1 + 6 +)46) 7 1./ 241 +12) 1 +,1 1 1 + 1+0 37) 6 + 56) 1 + 6 + 44 6 1 @E?=J HA 5E JAJE? @E +

Dettagli

. C E 1 B H =JEL + 61 + 44 61 + 7* 5 +1 2418)61 + 6 5 +1 ; 7 / + 6 5 +1.) 1 ; + 6 5 +1 /, + JE? HHA JE = F=??DAJJ HEIAHL=JE =E? IK =J HE 1. 4 ) 1 1 57 ) *) +) +0 + 5) 1 + 6 + 44 6 1 5481 1 + /)61 ) + 6

Dettagli

! "## $"#%# $& ! # (.) (! + /!! ,&' 233-2452 ,'&.' " &'&!+!+ '! +7&+"! & &7&' ! 6 &&& &+ &' &'"%!& %!"!'!&!%!&& +'!7 '&!' %!" &&! +! 67 %!

! ## $#%# $& ! # (.) (! + /!! ,&' 233-2452 ,'&.'  &'&!+!+ '! +7&+! & &7&' ! 6 &&& &+ &' &'%!& %!!'!&!%!&& +'!7 '&!' %! &&! +! 67 %! ! "## $"#%# $&!"# $%!&'&! # (") # ()# *+)#,!''')) -))) (.) (! + /!!,+# #) 0!&+) 0&&&#,&' (&# 1&) 233-2452 '($)'*$+,$*$((-$.//(' - &6)7%!7 (&!8 &6 &+'#7#7&!&&+ "79,'&.' " &'&!+!+ '! +7&+"! & &7&'!677 &&%!'8

Dettagli

.CE 1BH=JEL 24/-66 )/41+674) 1FHAIA =CHE?A 1.4)11 57) *)+) 1 +)5,1..-46).741 5-,- +0- +5 1 24/-66 )/41+674) 767 +014/4).)41 +,111 -+1+0-6)55.155 6)55 8)41)*1- 5-4811 )++-5541.)+6)6181,1 612 )551+74)618

Dettagli

Corso di Matematica per la Chimica

Corso di Matematica per la Chimica Dott.ssa Maria Carmela De Bonis a.a. 2013-14 Pivoting e stabilità Se la matrice A non appartiene a nessuna delle categorie precedenti può accadere che al k esimo passo risulti a (k) k,k = 0, e quindi il

Dettagli

Progetto di Reti di Telecomunicazione Modelli in Programmazione Lineare Problemi di flusso

Progetto di Reti di Telecomunicazione Modelli in Programmazione Lineare Problemi di flusso Progetto di Reti di Telecomunicazione Modelli in Programmazione Lineare Problemi di flusso Flusso di costo minimo È dato un grafo direzionato G = (N, A). Ad ogni arco (i, j) A è associato il costo c ij

Dettagli

P r o g r a m m a C u c i n a

P r o g r a m m a C u c i n a 10x10 Giallo Ginestra 10x12 Torello Blu Faraglioni 10x10 Blu Faraglioni 10x10 Battistraccio Lavello Quadro appoggio 40x40 Giallo Ginestra 10x10 Resicco/Resicco finale 3x20 Becco civetta Blu Faraglioni

Dettagli

Progetto di Reti di Telecomunicazione Modelli in Programmazione Lineare Problemi di Network design

Progetto di Reti di Telecomunicazione Modelli in Programmazione Lineare Problemi di Network design Progetto di Reti di Telecomunicazione Modelli in Programmazione Lineare Problemi di Network design Network Design È data una rete rappresentata su da un grafo G = (V, A) e un insieme di domande K, ciascuna

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Corso di Calcolo Numerico Dottssa MC De Bonis Università degli Studi della Basilicata, Potenza Facoltà di Ingegneria Corso di Laurea in Ingegneria Meccanica Corso di Calcolo Numerico - Dottssa MC De Bonis

Dettagli

7=AIJH?HEIJE=GKEAIJEIJ=.4)+1+0-116++1,EI?HIJAKJ=4=E BA>>H=E =GKEAJA=F=?AEJAHEHAKAAAJ>=IA@ECE BH=@EIFEHEJK=EJA?HEIJE=AIEHEAJ=AAII=@E A==FH=JE?=A@EJ=JEL=?DA?=H=JJAHE=E=?E@A JA)JDI,=DAIE?D=?DALK@EHA=FFKJF=?A

Dettagli

Politecnico di Milano. Reti Wireless. Seminari didattici. Introduzione all ottimizzazione. Ilario Filippini

Politecnico di Milano. Reti Wireless. Seminari didattici. Introduzione all ottimizzazione. Ilario Filippini Politecnico di Milano Reti Wireless Seminari didattici Introduzione all ottimizzazione Ilario Filippini 2 Esempio 1! 3 Esempio 1!! 4 Esempio 2!!? 5 Ottimizzazione!!!!!! Ottimizzazione 6 Approccio matematico

Dettagli

IEIM Esercitazione V Matrici, funzioni, puntatori & enum. Alessandro A. Nacci -

IEIM Esercitazione V Matrici, funzioni, puntatori & enum. Alessandro A. Nacci - IEIM - Esercitazione V Matrici, funzioni, puntatori & enum Alessandro A. Nacci alessandro.nacci@polimi.it - www.alessandronacci.it Cosa facciamo oggi? MATRICI E FUNZIONI PUNTATORI E MEMORIA ESERCIZIO:

Dettagli

Laboratorio di educazione multimediale all'immagine. Luisa Bortolotti Università di Trento, novembre 2006 1

Laboratorio di educazione multimediale all'immagine. Luisa Bortolotti Università di Trento, novembre 2006 1 Laboratorio di educazione multimediale all'immagine Luisa Bortolotti Università di Trento, novembre 2006 1 1 incontro LE IMMAGINI E LE ARTI FIGURATIVE IN INTERNET Educazione Multimediale Sommario 1.1.

Dettagli

Metodi statistici per l economia (Prof. Capitanio) Slide n. 4. Materiale di supporto per le lezioni. Non sostituisce il libro di testo

Metodi statistici per l economia (Prof. Capitanio) Slide n. 4. Materiale di supporto per le lezioni. Non sostituisce il libro di testo Metodi statistici per l economia (Prof. Capitanio) Slide n. 4 Materiale di supporto per le lezioni. Non sostituisce il libro di testo Dipendenza di un carattere QUANTITATIVO da un carattere QUALITATIVO

Dettagli

.CE 1BH=JEL +6 4,1)41 ) +57 +J?HHAJA =?IK HEIAHL=J =E?IK=JHE 1.4)11 57) *)+) +0 +5 1 +6 +446 54811 +/)61 ) +6 +446 241+12)1 +,111 +1+0 37)6 27 +56)4 1 +6 +446 1@E?=JHA 5EJAJE? @E +IJ 15+ 37)6 27 +56)4

Dettagli

ESERCITAZIONE Ammortamento economico

ESERCITAZIONE Ammortamento economico Impianti Industriali ESERCITAZIONE Ammortamento economico Prof. Ing. Augusto Bianchini DIN Dipartimento di Ingegneria Industriale Università degli Studi di Bologna Forlì, 21 febbraio 217 Esercizio 1 Costruire

Dettagli

1.4)11 57) *)+) +0 +5 1 + 6 +446.CE 1BH=JEL +6 4,1)41 ) +57 +J?HHAJA =?IK HEIAHL=J =E?IK=JHE 54811 +/)61 ) +6 +446 241+12)1 +,111 +1+0 37)6 27 +56)4 1.1, 37)6 27 +56)4 1 +6 +446 1@E?=JHA 5EJAJE? @E +IJ

Dettagli

Progetto di Reti di Telecomunicazione Modelli in Programmazione Lineare Problemi di Localizzazione

Progetto di Reti di Telecomunicazione Modelli in Programmazione Lineare Problemi di Localizzazione Progetto di Reti di Telecomunicazione Modelli in Programmazione Lineare Problemi di Localizzazione Posizionamento di antenne È dato un insieme A di possibili siti in cui installare antenne, a ciascuno

Dettagli

Problema della produzione dei monitor

Problema della produzione dei monitor Problema della produzione dei monitor Una azienda produce monitor per PC in tre diversi stabilimenti. Il costo di produzione di ciascun monitor varia a causa della diversa efficienza produttiva degli stabilimenti.

Dettagli

Politecnico di Milano (sede di Mantova) ME=TePCeS2 1.07.05001 REAZIONI VINCOLARI ME=TePCeS2 1.07.05001 y,v,v,q H I K 5F J L 11F 11F 15F 15F 5F 5F 11F 11F 11F 26F 26F 15F F G 2F 5F 11F 5F 5F 15F 26F C 3W

Dettagli

numero fattura data fattura imnpo~ofotb~ra residuo dovuto Interessi legali D.I. n. 3 partenza aino alla data de118.11.15

numero fattura data fattura imnpo~ofotb~ra residuo dovuto Interessi legali D.I. n. 3 partenza aino alla data de118.11.15 numero fattura data fattura importo fattura residuo dovuto Interessi ega iedinnoraoj.n.3188/14 Interessi Legali sino alla domanda giudiziale Interessi Moratori dalla domanda giudiziale interessi legali

Dettagli

Un applicazione della programmazione lineare ai problemi di trasporto

Un applicazione della programmazione lineare ai problemi di trasporto Un applicazione della programmazione lineare ai problemi di trasporto Corso di Ricerca Operativa per il Corso di Laurea Magistrale in Ingegneria della Sicurezza: Trasporti e Sistemi Territoriali AA 2012-2013

Dettagli

Creiamo una pagina HTML

Creiamo una pagina HTML Creiamo una pagina HTML Giorgio Cadorini giorgio (ad) cadorini.org Università della Slesia Opava Cos'è l'html? HTML = Hypertext Markup Language Inventato nel 1989 da Tim Berners-Lee È un linguaggio SGML,

Dettagli

Lezioni di Ricerca Operativa. Corso di Laurea in Informatica Università di Salerno. Lezione n 4

Lezioni di Ricerca Operativa. Corso di Laurea in Informatica Università di Salerno. Lezione n 4 Lezioni di Ricerca Operativa Lezione n 4 - Problemi di Programmazione Matematica - Problemi Lineari e Problemi Lineari Interi - Forma Canonica. Forma Standard Corso di Laurea in Informatica Università

Dettagli

La dipendenza. Antonello Maruotti

La dipendenza. Antonello Maruotti La dipendenza Antonello Maruotti Outline 1 Distribuzioni doppie 2 Medie e varianze condizionate 3 Indici di associazione Distribuzione doppia Definizione Una distribuzione doppia si ha quando su di uno

Dettagli

AMPL Problemi su Reti

AMPL Problemi su Reti Dipartimento di Matematica Università di Padova Corso di Laurea Informatica Outline Problemi su Reti Cammino Minimo Molti problemi di ottimizzazione combinatoria possono essere modellati ricorrendo ai

Dettagli

, mentre Y è una variabile geometrica di costante q = 1 2. (1 q) n = q (1 q) 3 1 q = (1 2 )3 = 1 8. n=0

, mentre Y è una variabile geometrica di costante q = 1 2. (1 q) n = q (1 q) 3 1 q = (1 2 )3 = 1 8. n=0 SOLUZIONI DEGLI ESERCIZI SULLE VARIABILI ALEATORIE DISCRETE Esercizio. Sono date due urne denominate rispettivamente A e B. A contiene palline bianche e 6 palline rosse, B contiene 8 palline bianche e

Dettagli

Problema del trasporto

Problema del trasporto p. 1/1 Problema del trasporto Supponiamo di avere m depositi in cui è immagazzinato un prodotto e n negozi che richiedono tale prodotto. Nel deposito i è immagazzinata la quantità a i di prodotto. Nel

Dettagli

Grafi e Funzioni di Costo ESERCIZI

Grafi e Funzioni di Costo ESERCIZI Grafi e Funzioni di Costo ESERCIZI Esercizio1 Si determini la matrice di incidenza archi-percorsi ed i costi di percorso per la rete di trasporto rappresentata in figura. 1 4 2 3 5 Ramo Costo Ramo Costo

Dettagli

Inversa. Inversa. Elisabetta Colombo

Inversa. Inversa. Elisabetta Colombo Corso di Approfondimenti di Matematica per Biotecnologie, Anno Accademico 00-0, http://users.mat.unimi.it/users/colombo/programmabio.html e 3 con i Matrici inverse di matrici quadrate e con i Sia A una

Dettagli

SABATO 5 OTTOBRE tessitura punto croce Gioco dell Oca lessiva knitting ricamo Bandera pittura naturalistica tessile lana cardata presine, appliques

SABATO 5 OTTOBRE tessitura punto croce Gioco dell Oca lessiva knitting ricamo Bandera pittura naturalistica tessile lana cardata presine, appliques SABATO 5 OTTOBRE rievocazione della tessitura, dell esecuzione del punto croce e del Gioco dell Oca a cura del gruppo storico Miraflores rievocazione dell antico bucato con la caldaia e la cenere (lessiva)

Dettagli

Laboratorio di Ricerca Operativa Cad Ingegneria Gestionale (BGER3 - I semestre) a.a. 2012-13 Homework n 19. Docente: Laura Palagi

Laboratorio di Ricerca Operativa Cad Ingegneria Gestionale (BGER3 - I semestre) a.a. 2012-13 Homework n 19. Docente: Laura Palagi Laboratorio di Ricerca Operativa Cad Ingegneria Gestionale (BGER3 - I semestre) a.a. 2012-13 Homework n 19 Docente: Laura Palagi Gruppo 19: Valentina Rabagliati Luca Quaresima Andrea Martullo Istanza del

Dettagli

AMBITO DISTRETTUALE BASSA BRESCIANA ORIENTALE Comuni di Acquafredda, Calcinato, Calvisano, Carpenedolo, Montichiari, Remedello e Visano

AMBITO DISTRETTUALE BASSA BRESCIANA ORIENTALE Comuni di Acquafredda, Calcinato, Calvisano, Carpenedolo, Montichiari, Remedello e Visano 1 !" " $" " "" %!! & " % %!" $!" ''('')+(('' $, $ -. +(/(''' "!!" (!01('')+ %('' 0"%!! -0 2 %!!,32 $ +-4-4.!"$ " " % $ %55-2$ - -! -, - - 4! 67)8'$!!%+'/(''/98!"! %3:!1-2$ ( - (8 -! 9 -, +9 - ( - 4 (,;

Dettagli

LEZIONE 31. B i : R n R. R m,n, x = (x 1,..., x n ). Allora sappiamo che è definita. j=1. a i,j x j.

LEZIONE 31. B i : R n R. R m,n, x = (x 1,..., x n ). Allora sappiamo che è definita. j=1. a i,j x j. LEZIONE 31 31.1. Domini di funzioni di più variabili. Sia ora U R n e consideriamo una funzione f: U R m. Una tale funzione associa a x = (x 1,..., x n ) U un elemento f(x 1,..., x n ) R m : tale elemento

Dettagli

Titolo della lezione. Analisi dell associazione tra due caratteri: indipendenza e dipendenza

Titolo della lezione. Analisi dell associazione tra due caratteri: indipendenza e dipendenza Titolo della lezione Analisi dell associazione tra due caratteri: indipendenza e dipendenza Introduzione Analisi univariata, bivariata, multivariata Analizzare le relazioni tra i caratteri, per cercare

Dettagli

Matrici OD Interregionali

Matrici OD Interregionali Corso di LOGISTICA TERRITORIALE www.uniroa2.it/didattica/lt DOCETE prof. ing. Agostino uzzolo Matrici OD Interregionali Modello Input/Output Multi-Regionale La zona j di consuo della produzione interedia

Dettagli

Determinante e inversa di una matrice

Determinante e inversa di una matrice CPITOLO 6 Determinante e inversa di una matrice Esercizio 6.. Calcolare il determinante delle seguenti matrici: 3 3 = B = 0 3 7 C = 0 D = 0 F = 0 0 3 4 0 3 4 3 Esercizio 6.. Calcolare il determinante delle

Dettagli

INCARICHI. Supplemento al Bollettino Ufficiale della Regione Toscana n. 38 del

INCARICHI. Supplemento al Bollettino Ufficiale della Regione Toscana n. 38 del III upplemento al ollettino fficiale della egione oscana n. 38 del 23.9.2015 I irezione iritti di ittadinanza e oesione ociale ettore rogrammazione e rganizzazione delle ure... edicina generale del 29/07/2009

Dettagli

Caratteristiche V-I di un elemento ohmico e del filamento di una lampadina

Caratteristiche V-I di un elemento ohmico e del filamento di una lampadina U n i v e r s i t à d e g l i S t u d i d i U d i n e - Facoltà di Ingegneria Laboratorio di Fisica Generale 2 1 Caratteristiche V-I: Caratteristiche V-I di un elemento ohmico e del filamento di una lampadina

Dettagli

Alberi di copertura. Mauro Passacantando. Dipartimento di Informatica Largo B. Pontecorvo 3, Pisa

Alberi di copertura. Mauro Passacantando. Dipartimento di Informatica Largo B. Pontecorvo 3, Pisa Alberi di copertura Mauro Passacantando Dipartimento di Informatica Largo B. Pontecorvo, Pisa mpassacantando@di.unipi.it M. Passacantando TFA 0/ - Corso di Ricerca Operativa Università di Pisa / 9 Definizioni

Dettagli

Politecnico di Milano. Reti Wireless. Seminari didattici. Dalla teoria alla soluzione. Ilario Filippini

Politecnico di Milano. Reti Wireless. Seminari didattici. Dalla teoria alla soluzione. Ilario Filippini Politecnico di Milano Reti Wireless Seminari didattici Dalla teoria alla soluzione Ilario Filippini 2 Approccio euristico 3 Obiettivo dell approccio euristico 4 Tipi di euristiche Dalla teoria alla soluzione

Dettagli

Modelli di PL: allocazione ottima di risorse. Un esempio Modelli a risorse condivise Modelli a risorse alternative Modelli multi-periodo

Modelli di PL: allocazione ottima di risorse. Un esempio Modelli a risorse condivise Modelli a risorse alternative Modelli multi-periodo Modelli di PL: allocazione ottima di risorse Un esempio Modelli a risorse condivise Modelli a risorse alternative Modelli multi-periodo Allocazione ottima di robot Un azienda automobilistica produce tre

Dettagli

Algebra lineare con R

Algebra lineare con R Università di Napoli Federico II cristina.tortora@unina.it Standardizzare una variabile Standardizzazione Data una variabile X distribuita secondo una media µ e una varianza σ 2 la standardizzazione permette

Dettagli

Laboratorio di Ricerca Operativa Cad Ingegneria Gestionale (BGER3 - I semestre) a.a. 2012-13 Homework n 13. Docente: Laura Palagi

Laboratorio di Ricerca Operativa Cad Ingegneria Gestionale (BGER3 - I semestre) a.a. 2012-13 Homework n 13. Docente: Laura Palagi Laboratorio di Ricerca Operativa Cad Ingegneria Gestionale (BGER3 - I semestre) a.a. 2012-13 Homework n 13 Docente: Laura Palagi A.A. 2012/2013 Laboratorio di Ricerca Operativa BGER Leonardo Mastrantoni

Dettagli

Federico Lastaria. Analisi e Geometria 2. Integrali multipli. Cambi di variabili. 1/21

Federico Lastaria. Analisi e Geometria 2. Integrali multipli. Cambi di variabili. 1/21 Contenuto Integrali doppi. Teorema di Fubini Cambio di variabili: coordinate polari. Cambio di variabili: caso generale. Coordinate sferiche. Federico Lastaria. Analisi e Geometria 2. Integrali multipli.

Dettagli

Chiusura lineare. N.B. A può essere indifferentemente un insieme, finito o no, o un sistema. Es.1. Es.2

Chiusura lineare. N.B. A può essere indifferentemente un insieme, finito o no, o un sistema. Es.1. Es.2 Chiusura lineare Def. Sia A V (K) con A. Si dice copertura lineare (o chiusura lineare) di A, e si indica con L(A), l insieme dei vettori di V che risultano combinazioni lineari di un numero finito di

Dettagli

Statistica. Esercitazione 3 5 maggio 2010 Serie storiche. Connessione e indipendenza statistica

Statistica. Esercitazione 3 5 maggio 2010 Serie storiche. Connessione e indipendenza statistica Corso di Laurea in Scienze dell Organizzazione Facoltà di Sociologia, Università degli Studi di Milano-Bicocca a.a. 2008/2009 Statistica Esercitazione 3 5 maggio 2010 Serie storiche. Connessione e indipendenza

Dettagli

ORIENTAMENTO E COMUNICAZIONE. Analisi del territorio. Definizione di alternative. Analisi e rappresentazione degli effetti. Scelta tra alternative

ORIENTAMENTO E COMUNICAZIONE. Analisi del territorio. Definizione di alternative. Analisi e rappresentazione degli effetti. Scelta tra alternative SOFTWARE ORIENTAMENTO E COMUNICAZIONE Diario del processo Mappa degli attori Trasparenza delle procedure Analisi del territorio Catalogo dati e indicatori Sistema informativo leggero Definizione di Generazione

Dettagli

Modelli di Programmazione Lineare Intera

Modelli di Programmazione Lineare Intera 8 Modelli di Programmazione Lineare Intera 8.1 MODELLI DI PROGRAMMAZIONE LINEARE INTERA Esercizio 8.1.1 Una compagnia petrolifera dispone di 5 pozzi (P1, P2, P3, P4, P5) dai quali può estrarre petrolio.

Dettagli

ESERCITAZIONE CON EXCEL SULLE MATRICI

ESERCITAZIONE CON EXCEL SULLE MATRICI ESERCITAZIONE CON EXCEL SULLE MATRICI PROBLEMA 1 commutativa. 2 1 0 e 1 2 4 B = 3 1 2, verificare che la loro somma è Per poter risolvere il problema proposto, è necessario predisporre le matrici sul foglio

Dettagli

Le matrici. Sia K un campo con elemento neutro dell addizione 0 ed elemento neutro della moltiplicazione 1.

Le matrici. Sia K un campo con elemento neutro dell addizione 0 ed elemento neutro della moltiplicazione 1. Le matrici Sia K un campo con elemento neutro dell addizione 0 ed elemento neutro della moltiplicazione 1. Siano m, n N\{0}. Una matrice m n a coefficienti in K è una tabella di m n elementi di K disposti

Dettagli

BORSA DI STUDIO PER LA REALIZZAZIONE DI UN TIROCINIO NON RETRIBUITO PRESSO L UFFICIO JISSA JUGENDINFOSERVICE DI MAGDEBURGO (GERMANIA)

BORSA DI STUDIO PER LA REALIZZAZIONE DI UN TIROCINIO NON RETRIBUITO PRESSO L UFFICIO JISSA JUGENDINFOSERVICE DI MAGDEBURGO (GERMANIA) BORSA DI STUDIO PER LA REALIZZAZIONE DI UN TIROCINIO NON RETRIBUITO PRESSO L UFFICIO JISSA JUGENDINFOSERVICE DI MAGDEBURGO (GERMANIA) La Comunità Montana dell Appennino Reggiano, in collaborazione con

Dettagli

Modelli Input/Output Esempi applicativi

Modelli Input/Output Esempi applicativi Corso di LOGISTICA TERRITORIALE www.uniroma2.it/didattica/lt2010 DOCENTE prof. ing. Agostino Nuzzolo Modelli Input/Output Esempi applicativi Esempio 1 La Regione Alfa è caratterizzata da una particolare

Dettagli

Problema del trasporto

Problema del trasporto p. 1/1 Problema del trasporto Supponiamo di avere m depositi in cui è immagazzinato un prodotto e n negozi che richiedono tale prodotto. p. 1/1 Problema del trasporto Supponiamo di avere m depositi in

Dettagli

Introduzione e modellistica dei sistemi

Introduzione e modellistica dei sistemi Introduzione e modellistica dei sistemi Modellistica dei sistemi dinamici termici Elementi fondamentali Scrittura delle equazioni dinamiche Rappresentazione in variabili di stato Esempio di rappresentazione

Dettagli

Produzione e forza lavoro

Produzione e forza lavoro Produzione e forza lavoro Testo Un azienda produce i modelli I, II e III di un certo prodotto a partire dai materiali grezzi A e B, di cui sono disponibili 4000 e 6000 unità, rispettivamente. In particolare,

Dettagli

Approssimazione polinomiale di funzioni e dati

Approssimazione polinomiale di funzioni e dati Approssimazione polinomiale di funzioni e dati Approssimare una funzione f significa trovare una funzione f di forma più semplice che possa essere usata al posto di f. Questa strategia è utilizzata nell

Dettagli

Esame di Ricerca Operativa del 20/12/13. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

Esame di Ricerca Operativa del 20/12/13. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare: Esame di Ricerca Operativa del 0// (Cognome) (Nome) (Corso di laurea) Esercizio. Completare la seguente tabella considerando il problema di programmazione lineare: max x x x + x x +x x x x x x x 0 x x

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati Elementi di Programmazione Dinamica Maria Rita Di Berardini, Emanuela Merelli 1 1 Dipartimento di Matematica e Informatica Università di Camerino Il problema La CMC produce automobili in uno stabilimento

Dettagli

STATISTICA 1 ESERCITAZIONE 1 CLASSIFICAZIONE DELLE VARIABILI CASUALI

STATISTICA 1 ESERCITAZIONE 1 CLASSIFICAZIONE DELLE VARIABILI CASUALI STATISTICA 1 ESERCITAZIONE 1 Dott. Giuseppe Pandolfo 30 Settembre 2013 Popolazione statistica: insieme degli elementi oggetto dell indagine statistica. Unità statistica: ogni elemento della popolazione

Dettagli

Esercizi proposti nel Cap. 2 - Soluzioni. Esercizio 2.1

Esercizi proposti nel Cap. 2 - Soluzioni. Esercizio 2.1 M. CARAMIA, S. GIORDANI, F. GUERRIERO, R. MUSMANNO, D. PACCIARELLI RICERCA OPERATIVA Isedi Esercizi proposti nel Cap. 2 - Soluzioni Esercizio 2.1 x i, chili di prodotto venduti settimanalmente del composto

Dettagli

STATISTICA DESCRITTIVA BIVARIATA

STATISTICA DESCRITTIVA BIVARIATA STATISTICA DESCRITTIVA BIVARIATA Si parla di Analisi Multivariata quando su ogni unità statistica, appartenente ad una determinata popolazione, si rileva un certo numero s di caratteri X 1, X 2,,X s. Si

Dettagli

Prodotto Disponibilità Costo 1 3000 3 2 2000 6 3 4000 4. e rispettando le seguenti regole di composizione delle benzine:

Prodotto Disponibilità Costo 1 3000 3 2 2000 6 3 4000 4. e rispettando le seguenti regole di composizione delle benzine: 1.1 Pianificazione degli investimenti. Una banca deve investire C milioni di Euro, e dispone di due tipi di investimento: (a) con interesse annuo del 15%; (b) con interesse annuo del 25%. Almeno 1 di C

Dettagli

Statistica. Alfonso Iodice D Enza iodicede@unicas.it

Statistica. Alfonso Iodice D Enza iodicede@unicas.it Statistica Alfonso Iodice D Enza iodicede@unicas.it Università degli studi di Cassino () Statistica 1 / 2 Outline 1 2 3 4 () Statistica 2 / 2 Misura del legame Data una variabile doppia (X, Y ), la misura

Dettagli

Rainbow Portal. Rainbow. Rainbow. Rainbow. Cos'è e come si installa. Rainbow Webcast - Agenda. Rainbow. Presentazione - Caratteristiche

Rainbow Portal. Rainbow. Rainbow. Rainbow. Cos'è e come si installa. Rainbow Webcast - Agenda. Rainbow. Presentazione - Caratteristiche Portal Management System Open Source in ambiente Microsoft Portal Cos'è e come si installa Webcast - Agenda Presentazione del progetto Installazione di Concetti di base sui moduli La grafica Risorse di

Dettagli

Problemi di localizzazione impianti

Problemi di localizzazione impianti Problemi di localizzazione impianti Laura Galli Dipartimento di Informatica Largo B. Pontecorvo 3, 56127 Pisa laura.galli@unipi.it http://www.di.unipi.it/~galli 2 Dicembre 2014 Ricerca Operativa 2 Laurea

Dettagli

CERAMICHE GRAZIA S.P.A. - VIA RADICI IN PIANO, 71 41040 CORLO (MODENA) ITALY TEL. 059.558.154 - FAX 059.558.520 - E-MAIL: CEGRAZIA@TIN.

CERAMICHE GRAZIA S.P.A. - VIA RADICI IN PIANO, 71 41040 CORLO (MODENA) ITALY TEL. 059.558.154 - FAX 059.558.520 - E-MAIL: CEGRAZIA@TIN. CERAMICHE GRAZIA S.P.A. - VIA RADICI IN PIANO, 71 41040 CORLO (MODENA) ITALY TEL. 059.558.154 - FAX 059.558.520 - E-MAIL: CEGRAZIA@TIN.IT Serie in via di esaurimento, controllare disponibilità prima di

Dettagli

2.3.4 Pianificazione di progetti

2.3.4 Pianificazione di progetti .. Pianificazione di progetti Un progetto è costituito da un insieme di attività i, con i =,..., m, ciascuna di durata d i. stima Tra alcune coppie di attività esistono relazioni di precedenza del tipo

Dettagli

Il calcolo della potenza di riscaldamento. P. Romagnoni Università IUAV di Venezia Dorsoduro, 2206 30123 Venezia

Il calcolo della potenza di riscaldamento. P. Romagnoni Università IUAV di Venezia Dorsoduro, 2206 30123 Venezia Il calcolo della potenza di riscaldamento P. Romagnoni Università IUAV di Venezia Dorsoduro, 2206 30123 Venezia UNI EN 12831 Dati climatici Per questo metodo di calcolo, si utilizzano i seguenti dati climatici:

Dettagli

MATRICI E VETTORI APPROFONDIMENTO PER IL CORSO DI LABORATORIO DI INFORMATICA SARA POLTRONIERI

MATRICI E VETTORI APPROFONDIMENTO PER IL CORSO DI LABORATORIO DI INFORMATICA SARA POLTRONIERI MATRICI E VETTORI APPROFONDIMENTO PER IL CORSO DI LABORATORIO DI INFORMATICA SARA POLTRONIERI LE MATRICI DEFINIZIONE: Una matrice è un insieme di numeri disposti su righe e colonne. 1 3 7 M = 2 5 1 M è

Dettagli

Dipendenza tra caratteri: connessione. N:B: Si tratta di coppie di caratteri sia qualitativi

Dipendenza tra caratteri: connessione. N:B: Si tratta di coppie di caratteri sia qualitativi 1 Associazione tra variabili Tratteremo: Dipendenza tra caratteri: connessione N:B: Si tratta di coppie di caratteri sia qualitativi che quantitativi!!!! 2 Associazione tra variabili Riprendiamo l esempio

Dettagli

Opzioni americane. Opzioni americane

Opzioni americane. Opzioni americane Opzioni americane Le opzioni di tipo americano sono simili a quelle europee con la differenza che possono essere esercitate durante tutto l intervallo [0, T ]. Supponiamo di avere un opzione call americana

Dettagli

Budget - 4. Uva - Uva -

Budget - 4. Uva - Uva - Budget - 4 La A&P Srl è un impresa che produce e vende due tipi di vini. Vino rosso (VR) e vino bianco (VB). L 1/1/02 ha a scorta le seguenti quantità di prodotto finito e di materie prime: Vino rosso

Dettagli

x 1 + x 2 3x 4 = 0 x1 + x 2 + x 3 = 0 x 1 + x 2 3x 4 = 0.

x 1 + x 2 3x 4 = 0 x1 + x 2 + x 3 = 0 x 1 + x 2 3x 4 = 0. Problema. Sia W il sottospazio dello spazio vettoriale R 4 dato da tutte le soluzioni dell equazione x + x 2 + x = 0. (a. Sia U R 4 il sottospazio dato da tutte le soluzioni dell equazione Si determini

Dettagli

SCUOLA NORMALE SUPERIORE DI PISA Classe di Scienze

SCUOLA NORMALE SUPERIORE DI PISA Classe di Scienze ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA Classe di Scienze A. MARINO S. SPAGNOLO Un tipo di approssimazione dell operatore con operatori n 1 j D j (β(x)d j ) n 1 i j D i (a i j (x)d j ) Annali della

Dettagli

Laboratorio di Ricerca Operativa Cad Ingegneria Gestionale (BGER3 - I semestre) a.a. 2012-13 Homework n 11. Docente: Laura Palagi

Laboratorio di Ricerca Operativa Cad Ingegneria Gestionale (BGER3 - I semestre) a.a. 2012-13 Homework n 11. Docente: Laura Palagi Laboratorio di Ricerca Operativa Cad Ingegneria Gestionale (BGER3 - I semestre) a.a. 2012-13 Homework n 11 Docente: Laura Palagi Alina Volovei Ilaria Noce Lea Mariella Pianificazione degli approvvigionamenti

Dettagli

ESERCIZI SULLE CATENE DI MARKOV. Docente titolare: Irene Crimaldi 18/11/2009 P =

ESERCIZI SULLE CATENE DI MARKOV. Docente titolare: Irene Crimaldi 18/11/2009 P = ESERCIZI SULLE CATENE DI MARKOV Docente titolare: Irene Crimaldi 8//9 ESERCIZIO Una catena di Markov (X n ) n con insieme degli stati S = {,,} ha matrice di transizione µ() =, µ() =, µ() =. a) Calcolare

Dettagli

!"#$% &'( )#"*'+!"#$

!#$% &'( )#*'+!#$ "$%&'( )"*'+ "$ , %-. /01. 1 /. / 0 /, 220,, 3 45 6 77 0 6 181 66 20 9 www.sulpalco.it redazione@sulpalco.it 2 " $ % www.sulpalco.it redazione@sulpalco.it 3 &' ( ) ( * +, ( - % %,./0001./0021./0301./0331

Dettagli

IL POSTULATO DELLE PRESSIONI EFFICACI

IL POSTULATO DELLE PRESSIONI EFFICACI IL POSTULTO DELLE PRESSIONI EFFICCI 1.1 L acqua L CQU NEL TERRENO È PERICOLOS? DIPENDE 1.2 Variabili tensionali misurabili Con i termini pressione totale e pressione dell acqua interstiziale definiamo

Dettagli

Problema del Trasporto. Container vuoti Verona 10 Perugia 12 Roma 20 Pescara 24 Taranto 18 Lamezia 40

Problema del Trasporto. Container vuoti Verona 10 Perugia 12 Roma 20 Pescara 24 Taranto 18 Lamezia 40 Problema del Trasporto Una ditta di trasporto deve trasferire container vuoti dai propri 6 Magazzini, situati a Verona, Perugia, Roma, Pescara, Taranto e Lamezia, ai principali Porti nazionali (Genova,

Dettagli

RETI DI TELECOMUNICAZIONE

RETI DI TELECOMUNICAZIONE RETI DI TELECOMUNICAZIONE CATENE DI MARKOV TEMPO CONTINUE Definizioni Sia dato un processo stocastico x(t) che può assumere valori discreti appartenenti ad un insieme se accade che il processo è una catena

Dettagli

Laboratorio di dati e sistemi multimediali

Laboratorio di dati e sistemi multimediali Laboratorio di dati e sistemi multimediali Scienze e tecnologie Multimediale Prof. Christian Micheloni Relazioni tra dati Si consideri un insieme di elementi generico O = o 1,, o n Potrebbe essere imossibile

Dettagli

Laboratorio di Ricerca Operativa Cad Ingegneria Gestionale (BGER3 - I semestre) a.a. 2012-13 Homework n 9. Docente: Laura Palagi

Laboratorio di Ricerca Operativa Cad Ingegneria Gestionale (BGER3 - I semestre) a.a. 2012-13 Homework n 9. Docente: Laura Palagi Laboratorio di Ricerca Operativa Cad Ingegneria Gestionale (BGER3 - I semestre) a.a. 2012-13 Homework n 9 Docente: Laura Palagi LA DIETA A COSTO MINIMO AL MCDONALD S Realizzata da: Erasmo Percoco Simone

Dettagli

Strutture dati complesse. Vettori. Tipi di dato strutturati. Strutture dati complesse nome fulvio. Esigenze. Esigenze. dato

Strutture dati complesse. Vettori. Tipi di dato strutturati. Strutture dati complesse nome fulvio. Esigenze. Esigenze. dato Tipi di strutturati Introduzione ai vettori Caratteristiche dei vettori Tipi di strutturati Finora abbiamo utilizzato dei tipi di semplici int, float Ogni variabile può contenere un solo valore Il linguaggio

Dettagli

Anno 4 Matrice inversa

Anno 4 Matrice inversa Anno 4 Matrice inversa 1 Introduzione In questa lezione parleremo della matrice inversa di una matrice quadrata: definizione metodo per individuarla Al termine della lezione sarai in grado di: descrivere

Dettagli

REGIONE 'PIEMONTE. .w. ', I ' %, M I Il ISTERO DEl LAVORO E DELLE POLITICHE SOCIALI 520,000 107.200.00. Pago. UNIONE EUROPEA Fondo sociale europeo

REGIONE 'PIEMONTE. .w. ', I ' %, M I Il ISTERO DEl LAVORO E DELLE POLITICHE SOCIALI 520,000 107.200.00. Pago. UNIONE EUROPEA Fondo sociale europeo "#,ft'f',&f:-3e.w. ', I ' %, M I Il ISTERO DEl LAVORO Dire,;o.e Generale per le Poilliche per VOrientomento e lo F'Ormozione ' Progr. DispomòiJita 1 Totale Disponibilitf= Euro 214.400,00 Corsi Approvati

Dettagli

Problem solving elementare su dati vettoriali

Problem solving elementare su dati vettoriali Problem solving elementare su dati vettoriali Introduzione Verifiche su sequenze di dati Selezione o ricerca di dati 2 2006 Politecnico di Torino 1 Introduzione (1/2) I problemi di verifica consistono

Dettagli

ALGORITMI DI OTTIMIZZAZIONE M Esercizi Parte I

ALGORITMI DI OTTIMIZZAZIONE M Esercizi Parte I ALGORITMI DI OTTIMIZZAZIONE M Esercizi Parte I Esercizio 1 Dati n oggetti ed un contenitore, ad ogni oggetto j (j = 1,, n) sono associati un peso p j ed un costo c j (con p j e c j interi positivi). Si

Dettagli

Teoria dei Circuiti. Corso di. di analisi dei circuiti. Metodi sistematici. Università degli Studi di Pavia. Facoltà di Ingegneria

Teoria dei Circuiti. Corso di. di analisi dei circuiti. Metodi sistematici. Università degli Studi di Pavia. Facoltà di Ingegneria Università degli Studi di Pavia Facoltà di ngegneria Corso di Teoria dei Circuiti Metodi sistematici di analisi dei circuiti MTODO DLL CONT D MAGLA (MTODO DLL MAGL) DU CAS: A) Correnti di maglia = correnti

Dettagli

(a cura di Francesca Godioli)

(a cura di Francesca Godioli) lezione n. 12 (a cura di Francesca Godioli) Ad ogni categoria della variabile qualitativa si può assegnare un valore numerico che viene chiamato SCORE. Passare dalla variabile qualitativa X2 a dei valori

Dettagli

U.O NEURO PSICHIATRIA INFANTILE

U.O NEURO PSICHIATRIA INFANTILE U.O NEURO PSICHIATRIA INFANTILE Descrizione processo Primo colloquio d accoglienza Responsabile Procedimento Responsabile Istruttoria Responsabile Provvedimento finale Tempi medi d esecuzione 30 gg circa

Dettagli

Un esempio di applicazione della programmazione lineare intera all ingegneria del software: stima del worst-case execution time di un programma

Un esempio di applicazione della programmazione lineare intera all ingegneria del software: stima del worst-case execution time di un programma Un esempio di applicazione della programmazione lineare intera all ingegneria del software: stima del worst-case execution time di un programma Corso di Ricerca Operativa per il Corso di Laurea Magistrale

Dettagli

" COMPAGNIA DEI LEPINI SOCIETA' CONSORTILE PER AZIONI" IN SIGLA S.C.P.A." STATUTO DATI ANAGRAFI CI

 COMPAGNIA DEI LEPINI SOCIETA' CONSORTILE PER AZIONI IN SIGLA S.C.P.A. STATUTO DATI ANAGRAFI CI STATUTO " COMPAGNIA DEI LEPINI SOCIETA' CONSORTILE PER AZIONI" IN SIGLA " COMPAGNIA DEI LEPINI S.C.P.A." DATI ANAGRAFI CI Indirizzo Sede legale: SEZZE LT VIA UMBERTO I 46/48 Numero REA: LT - 147795 Forma

Dettagli

Esercitazione n o 6 per il corso di Ricerca Operativa

Esercitazione n o 6 per il corso di Ricerca Operativa Esercitazione n o 6 per il corso di Ricerca Operativa Il problema è stato tratto dal libro C. Mannino, L.Palagi, M. Roma. Complementi ed esercizi di Ricerca Operativa, Edizioni Ingegneria 2000, 1998, ISBN:

Dettagli

Analisi della varianza

Analisi della varianza 1. 2. univariata ad un solo fattore tra i soggetti (between subjects) 3. univariata: disegni fattoriali 4. univariata entro i soggetti (within subjects) 5. : disegni fattoriali «misti» L analisi della

Dettagli

Il rischio di un portafoglio

Il rischio di un portafoglio Come si combinano in un portafoglio i rischi di 2 titoli? dipende dai pesi e dal valore delle covarianze covarianza a a ρ a b ρ a b ρ b b ρ coefficiente di correlazione = cov / ² p = a² ² + b² ² + 2 a

Dettagli

ACCESSORI E RICAMBI _ _

ACCESSORI E RICAMBI _ _ ACCESSORI E RICAMBI _227_ MEMBRANE PRODOTTI CE IN GOMMA EPDM IN GOMMA BUTILE UTILIZZO SANY S 0.5/SANY S 1 - Q110005 00002 SANY S 2/SANY L 3 - Q110007 00002 AC-2 / HX-2F - Q110008 00002 SANY S 3/SANY S

Dettagli