3 Scegliere quando il mondo è incerto

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "3 Scegliere quando il mondo è incerto"

Transcript

1 3 Scegliere quando il mondo è incerto (Parte del cap. 3 di I. Lavanda e G. Rampa, Microeconomia. Scelte individuali e benessere sociale, Roma, Carocci, 2004) 1. Introduzione Nel capitolo precedente abbiamo studiato il processo di scelta di individui, i consumatori, che hanno un informazione perfetta sulle circostanze che caratterizzano il loro problema di scelta. In particolare, non esisteva alcuna incertezza circa le conseguenze delle scelte. Per esempio, ad ogni specifico numero di ore dedicate al lavoro corrispondeva un ben preciso ammontare di reddito, oppure ad ogni unità di consumo odierno al quale si rinunciava corrispondeva un ben preciso ammontare di consumo che si poteva ottenere in futuro. Ovviamente, l esperienza ci insegna che in generale le cose non stanno così: qualche malattia potrebbe impedirmi di lavorare tanto quanto avevo programmato; qualche evento esterno, per esempio climatico o tecnologico, potrebbe alterare il profitto che posso ottenere dalla mia attività; in futuro i prezzi dei beni, e quindi le mie possibilità di consumo, potrebbero rivelarsi diversi da quelli che avevo previsto. Come si vede, l incertezza relativa alla scelta può dipendere da varie circostanze. Tuttavia, il problema può essere impostato in modo semplificato. Anzitutto le varie fonti di incertezza possono essere ricondotte all unico caso generale in cui incerte sono le conseguenze delle scelte. Inoltre, le diverse forme di incertezza analizzate sopra possono essere rappresentate in termini di incertezza sulla somma monetaria di cui posso venire in possesso dopo aver rinunciato a qualcosa il cui valore monetario è invece certo. Ciò significa che possiamo pensare alla scelta sotto incertezza come scelta fra diverse lotterie. 2. Scelta sotto incertezza come scelta tra lotterie Se si accetta la semplificazione proposta sopra, il comportamento di scelta di fronte ad un mondo incerto consiste sostanzialmente nello scegliere tra diverse lotterie alternative, ciascuna delle quali ha caratteristiche diverse, cioè prezzi di partecipazione e premi potenziali diversi. L insieme di scelta di chi prende una decisione, dunque, è costituito dalle lotterie disponibili, il vincolo alla scelta potrebbe essere pensato come l ammontare di risorse che si possono impegnare nella partecipazione alle diverse lotterie e l informazione consiste nella conoscenza delle caratteristiche delle lotterie disponibili. La descrizione delle conseguenze delle lotterie e il loro ordinamento saranno gli aspetti nuovi che ci impegneranno in questo capitolo. Definiti questi aspetti, la scelta consisterà nel selezionare la lotteria preferita fra quelle disponibili. Per semplificare ulteriormente le cose, supporremo che le lotterie disponibili siano solo due Conseguenze di una lotteria Gli esiti di una lotteria possono essere rappresentati per mezzo di variabili casuali (per capire questa nozione, e in generale per studiare questo capitolo, è importante aver letto il Cap. 10, Par. 6). Consideriamo, per esempio, le conseguenze di una puntata di x euro su un singolo numero alla roulette: se esce quel numero si vince 36 volte la posta, altrimenti non si vince nulla. Tale conseguenza può essere descritta tramite una variabile casuale che assume valore zero con probabilità 36/37, e valore 36x con probabilità 1/37 (si rammenti che può uscire anche il numero zero). Un altro esempio è la scommessa di x euro sul fatto che esca croce nel lancio di una moneta: se esce croce si vince il doppio della puntata, altrimenti si perde tutto. Se la moneta non

2 è truccata, la conseguenza è una variabile casuale che vale 2x con probabilità ½ e zero con probabilità ½. Più in generale, una lotteria è caratterizzata da un costo di partecipazione x e da esiti che prendono la forma di diverse somme monetarie alternative, ciascuna con una sua probabilità. Esempi di lotterie importanti in economia possono essere i seguenti. Un progetto di investimento è caratterizzato da un costo iniziale, usualmente noto con certezza, e da possibili rendimenti futuri alternativi, alti o bassi, che potranno dipendere da varie circostanze non ancora note. La semina di un cereale ha le stesse caratteristiche, poiché il profitto che se ne potrà ottenere dipenderà dal clima durante l anno. Anche il profitto ottenibile da un attività industriale è soggetto a incertezza, per esempio a causa di possibili problemi di produzione. La guida di un autoveicolo potrà causare danni più o meno gravi a sé o ad altri, solitamente quantificati in termini monetari. L acquisto di un titolo in borsa ha le medesime caratteristiche, perché se ne conosce il prezzo di acquisto odierno, ma il prezzo futuro di realizzo è incerto. Interessante potrà essere più avanti anche il seguente esempio. Supponiamo che la qualità di un bene che vorrei comprare non mi sia nota, perché non tutti gli esemplari esistenti di quel bene, pur somigliandosi esteriormente, sono tra loro uguali. Supponiamo inoltre che io riesca ad attribuire valori monetari diversi alle diverse qualità, cioè supponiamo che io sia disposto a pagare prezzi diversi per i diversi benefici che le varie qualità mi arrecano. Anche l acquisto di un bene di qualità incerta, dunque, può essere rappresentato come una lotteria. Una prima caratteristica sintetica di una variabile casuale è il suo valore atteso, che si calcola moltiplicando ciascuno dei possibili esiti per la sua probabilità, e poi sommando tutti questi prodotti. Il valore atteso di una variabile casuale è una stima sintetica dell esito che ci si aspetta di poter osservare. Nel caso di una lotteria, gli esiti sono somme monetarie, per cui parleremo di valore monetario atteso o vincita monetaria attesa della lotteria. Se la lotteria è quella descritta nel precedente esempio della roulette, il valore monetario atteso è 0 (36/37) + 36x (1/37) = (36/37) x. Nel caso della moneta non truccata il valore monetario atteso della lotteria è pari a 0 (1/2) + 2x (1/2) = x. Una lotteria si dice equa se il suo valore monetario atteso è pari al costo di partecipazione. La puntata alla roulette, per esempio, non è una lotteria equa, mentre lo è la scommessa sulla moneta non truccata. La maggior parte delle lotterie effettivamente esistenti non è equa, perché altrimenti i suoi organizzatori non ne ricaverebbero alcun beneficio. Una seconda caratteristica molto importante di una variabile casuale è la variabilità dei suoi possibili valori rispetto al valore atteso. Tale caratteristica è misurabile tramite la varianza della variabile casuale, definita come media degli scostamenti dei diversi possibili esiti dal valore atteso, elevati al quadrato. La varianza misura in qualche modo il rischio connesso con la variabile casuale. Se quest ultima può assumere solo valori molto vicini tra loro, la media sarà essa stessa vicina a quei valori e gli scostamenti dalla media saranno piccoli. Se la variabile casuale, quindi, descrive gli esiti di una lotteria, quando la varianza è piccola la lotteria presenta un rischio basso: posso vincere somme tutte molto vicine al valore monetario atteso. Il contrario accade per una variabile che può assumere valori tra loro molto diversi, cosicché la varianza è grande. In questo caso la variabile casuale rappresenta gli esiti di una lotteria caratterizzata da un rischio elevato: posso vincere somme molto più alte, ma anche molto più basse, del valore monetario atteso. Siccome poi partecipare alla lotteria ha un prezzo, quando la lotteria ha varianza elevata posso sì guadagnare molto ma posso anche perdere molto. Lotterie caratterizzate da gradi diversi di rischiosità, cioè da varianza diversa, per alcuni soggetti possono non essere tra loro equivalenti pur avendo il medesimo valore monetario atteso. Si noti che possiamo avere, come caso particolare, variabili casuali che in realtà coincidono con eventi certi. In questo caso uno degli esiti, quello certo, ha probabilità pari ad uno, mentre tutti gli altri hanno probabilità pari a zero. Si tratta ovviamente di un artificio, ma l artificio è utile perché mostra che un evento certo può essere rappresentato come un caso particolare di variabile casuale. È facile calcolare che una variabile certa ha valore atteso pari al suo unico esito possibile, e ha varianza pari a zero, cioè comporta un rischio nullo, coerentemente con la nostra interpretazione della varianza. Ciò posto, la scelta sotto incertezza diventa una scelta tra lotterie alternative, ciascuna caratterizzata da un valore atteso ed una varianza. Nell insieme di scelta appariranno anche

3 lotterie degenerate, cioè somme monetarie certe, e ciò potrà essere molto utile per comprendere meglio il processo di scelta. Per esempio, la scelta se partecipare o meno alla scommessa sul lancio di una moneta non truccata, con costo x e premio 2x, può essere reinterpretata come scelta fra due lotterie: quella appena descritta, nel caso in cui si scommetta effettivamente, e quella coincidente con l avere x euro in tasca con certezza nel caso in cui non si scommetta. A questo punto occorre rivolgere l attenzione all ordinamento di preferenza fra le diverse lotterie Utilità, e utilità attesa A prima vista potrebbe apparire che il confronto fra lotterie possa avvenire sulla base dei soli valori monetari attesi: un valore monetario atteso, cioè un aspettativa di vincita, maggiore dovrebbe essere preferibile ad uno minore. Abbiamo già osservato, però, che anche il rischio costituisce un importante elemento di valutazione. Alcune persone, infatti, potrebbero essere molto caute e preferire un valore monetario atteso più basso, purché il rischio sia limitato, mentre altre persone potrebbe amare l azzardo. Inoltre, parlando della scelta del consumatore, abbiamo detto che ciò che conta non è ciò di cui un individuo dispone, beni o danaro, ma il benessere o soddisfazione che egli ottiene da ciò di cui dispone. Nel caso di lotterie con vincite monetarie, non è la vincita in sé che rileva, ma la soddisfazione che un individuo ottiene da quella vincita. In questo capitolo utilizzeremo esplicitamente il concetto di funzione di utilità. Si tratta di una funzione che assegna indicatori numerici di soddisfazione alle diverse possibili conseguenze delle scelte. Poiché nel caso di scelta tra lotterie le conseguenze sono somme monetarie, ipotizzeremo l esistenza di una funzione di utilità la cui variabile indipendente sono le diverse somme monetarie potenzialmente disponibili: ad ogni somma monetaria corrisponde un ammontare di soddisfazione, misurato da questa funzione. Ovviamente la relazione deve essere crescente, cioè al crescere della somma monetaria l utilità aumenta. L ipotesi di utilità crescente è illustrata nelle Fig. 1a e 1b. In entrambi i casi l utilità aumenta al crescere delle somme monetarie, tuttavia nel primo caso la relazione è concava, mentre nel secondo caso la relazione è convessa (per quanto riguarda le nozioni di concavità e convessità di una curva si veda il Cap. 10, Par. 3.2). Il significato economico della concavità, per esempio, è che quanto più grande è la somma che il signor Rossi già possiede, tanto più piccola è l utilità addizionale che egli ottiene da un euro addizionale. Ciò ricorda l ipotesi che abbiamo adottato nel capitolo precedente, e che allora giustificava la forma convessa delle curve di indifferenza: il possedere quantità maggiori di un certo bene rende le unità aggiuntive meno appetibili. Ma un soggetto potrebbe anche avere preferenze diverse da queste, come per esempio il signor Neri della Fig. 1b, la cui funzione di utilità è convessa. Non si può neppure escludere, infine, che un soggetto abbia una funzione di utilità lineare, cioè rappresentata da una retta. Figura 1 Due tipi di utilità delle somme monetarie Utilità di Rossi (a) Utilità di Neri (b) 0 Somma 0 Somma monetaria monetaria

4 Data questa descrizione del benessere ottenibile da somme monetarie alternative, possiamo ora affrontare il problema dell ordinamento delle lotterie. Ogni lotteria dà luogo ad una variabile casuale che consiste in varie somme monetarie alternative, ciascuna ottenibile con una certa probabilità. Da ciò consegue che chi partecipa alla lotteria può ottenere diversi livelli di utilità, ciascuno con una certa probabilità. Il suggerimento offerto dagli studiosi della scelta sotto incertezza è allora il seguente. Si consideri una lotteria e si valuti, tramite la funzione di utilità del consumatore, l utilità che egli otterrebbe in corrispondenza di ogni possibile esito della lotteria. Si calcoli poi il valore atteso, cioè la media, di queste utilità, usando come pesi proprio le probabilità dei diversi esiti. Il risultato di questa operazione è chiamato utilità attesa della lotteria, vale a dire è il valore atteso delle diverse possibili utilità. Si osservi quindi che l utilità attesa della lotteria si calcola come media di valori della grandezza rappresentata sull asse verticale del grafico, l utilità, e si dovrà rappresentarla sul medesimo asse. Il valore monetario atteso, invece, si calcola come media delle somme monetarie, rappresentate sull asse orizzontale del grafico. L utilità attesa, dunque, è un indicatore numerico del benessere fornito dalla lotteria in questione. Poiché ordinare i numeri è facile, chi deve prendere una decisione può scegliere, fra diverse lotterie alternative, quella caratterizzata dall utilità attesa più alta. Se si prende una decisione in questo modo, si dice che ci si comporta secondo il principio dell utilità attesa, e noi assumeremo che ci si comporti proprio in questo modo. Arrivati a questo punto, siamo riusciti anche nel caso di decisioni sotto incertezza a definire gli elementi essenziali del problema di scelta: l insieme di scelta sono le varie lotterie a disposizione del decisore, inclusa le scelta di non partecipare ad alcuna lotteria e disporre di somme certe; le conseguenze delle scelte sono variabili casuali (somme monetarie incerte) che conseguono dalle diverse scelte; l ordinamento è costruito guardando all utilità attesa di ogni scelta (lotteria); i vincoli dipendono in vario modo dalle regole e dai costi di partecipazione delle diverse lotterie; l informazione è, nelle nostre ipotesi, completa nel senso che le proprietà delle diverse lotterie (ma ovviamente non i loro esiti specifici) sono note con precisione a chi deve compiere la scelta. La Fig. 2 illustra alcuni esempi di calcolo dell utilità attesa. Supponiamo di avere tre diverse lotterie, caratterizzate dalle stesse possibili vincite monetarie, una bassa e una alta. Di conseguenza, le due utilità che un dato soggetto può ottenere nei due diversi esiti di ogni lotteria sono le medesime: l utilità B, se la vincita monetaria è quella bassa, e l utilità A, se la vincita monetaria è quella alta. Ovviamente A è maggiore di B, come rappresentato nella Fig. 2. La differenza tra le tre lotterie consiste nelle probabilità dei loro possibili esiti: nella prima lotteria la probabilità che si verifichi la vincita monetaria alta, e che quindi l utilità ottenuta sia A, è ¼ (dunque la probabilità di ottenere l utilità B è ¾); nella seconda lotteria la probabilità dell esito migliore è ½; nella terza lotteria infine tale probabilità è ¾. Di conseguenza (come si spiega nel Cap. 10, Par. 6), l utilità attesa, cioè la media delle possibili utilità, è diversa nei tre casi. Nella prima lotteria, dove la probabilità dell esito peggiore è più grande, l utilità attesa UA 1 si situa più vicino a B (per la precisione a un quarto di strada fra B e A); nella seconda lotteria l utilità attesa UA 2 è proprio a metà strada fra A e B; nella terza lotteria l utilità attesa UA 3 è più vicina ad A (a tre quarti di strada fra B e A). Figura 2 Se cambiano le probabilità cambia l utilità attesa O B O UA 1 UA 2 UA 3 A Utilità

5 Naturalmente un soggetto che si comporta secondo il principio dell utilità attesa sceglie la terza lotteria, che ha utilità attesa più alta. Ma questa semplice osservazione non esaurisce ciò che abbiamo da dire sulla scelta sotto incertezza Avversione e propensione al rischio Di fronte a prospettive incerte alcuni soggetti si sentono timorosi, mentre altri, amanti dell azzardo, potrebbero invece entusiasmarsi: soggetti diversi hanno attitudini diverse nei confronti del rischio, manifestando una maggiore o minore propensione nei suoi confronti. La definizione di avversione al rischio che adottiamo è piuttosto intuitiva: un individuo è avverso al rischio se, di fronte a due lotterie che hanno uguale valore monetario atteso, sceglie sempre quella caratterizzata da minore rischio, ovvero minore varianza. In caso contrario diremo che quell individuo è propenso al rischio. Infine, è neutrale nei confronti del rischio chi è indifferente fra lotterie con uguale valore atteso monetario, anche se hanno varianza diversa. Per collegare in modo semplice questa definizione con il principio dell utilità attesa conviene considerare inizialmente la scelta fra coppie di lotterie di uguale valore monetario atteso quando una delle due lotterie sia in realtà un evento certo. Il caso più semplice è la scelta se partecipare o meno ad una lotteria equa. In questo caso la scelta di non partecipare implica che alla fine avremo in tasca per certo il costo di partecipazione x: se non partecipiamo alla scommessa possiamo godere sicuramente della somma x che abbiamo risparmiato. Possiamo anche dire che la scelta di non partecipare ci promette un valore monetario atteso pari a x, in quanto si tratta del valore atteso di una variabile in realtà certa il cui valore è x. La partecipazione, invece, implica esiti incerti, ma con un valore monetario atteso esattamente pari al costo di partecipazione, essendo la lotteria equa. I valori monetari attesi delle due scelte sono dunque uguali, ma la varianza è diversa: non partecipare implica una varianza nulla, mentre partecipare implica una varianza positiva. Studiamo il problema secondo il principio dell utilità attesa. Figura 3 Avversione al rischio Utilità U(OA) U(OX) UA = ½U(OA) + ½U(OB) U(OB) 0 B X A Somme monetarie Consideriamo un soggetto che abbia una funzione di utilità concava. Supponiamo che costui possa scegliere se partecipare ad una lotteria equa i cui due esiti monetari, alto e basso, sono indicati come al solito come OA e OB. Il valore monetario atteso, OX, si situa a metà strada fra OB e OA poiché ipotizziamo che le probabilità dei due esiti siano ½; e OX è anche il costo di partecipazione alla lotteria. Questa situazione è illustrata nella Fig. 3. Se il nostro soggetto decide di non partecipare, risparmia OX euro, che si ritrova in tasca per certo e che gli garantiscono un utilità pari a U(OX), come vediamo dalla figura. Se invece decide di partecipare, il nostro decisore potrà ottenere due diversi livelli di utilità, ciascuno con probabilità ½, a seconda dell esito monetario. Se la vincita monetaria è quella più alta, l utilità

6 ottenuta sarà U(OA), altrimenti sarà U(OB). Questi due livelli di utilità sono indicati in ordinata nella Fig. 3. Ciò che conta ai fini della decisione, tuttavia, è l utilità attesa UA, cioè la media fra U(OA) e U(OB): siccome le probabilità di ottenere questi due livelli di utilità sono pari a ½, l utilità attesa si trova a metà strada fra i due (in verticale!), e corrisponde all altezza della linea continua riportata in figura. Siccome l utilità attesa di partecipare alla lotteria, UA, è chiaramente inferiore all utilità di non partecipare, U(OX), questo soggetto decide di non partecipare. Ne segue che un soggetto la cui funzione di utilità è concava è avverso al rischio, perché fra le due alternative di uguale valore monetario atteso preferisce quella di minor varianza. La scelta di non partecipare, infatti, dà luogo ad un esito certo, la cui varianza è zero, mentre la lotteria ha varianza positiva in quanto i due possibili esiti sono discostati dal valore monetario atteso. Consideriamo invece ora il caso di un individuo che abbia una funzione di utilità convessa. Gli altri dati del problema sono gli stessi di prima. La Fig. 4 illustra questa situazione, e se ne può agevolmente ricavare che in questo caso U(OX) è inferiore a UA. Il nostro individuo, dunque, sceglie di partecipare alla lotteria, perché ciò gli fornisce un utilità attesa maggiore. Questo è il caso di propensione al rischio: il soggetto preferisce la prospettiva con maggiore varianza. Una situazione esattamente intermedia fra le due precedenti sarà caratterizzata da una funzione di utilità né concava né convessa. Il grafico di questa funzione di utilità sarà una linea retta, e in tal caso chi deve decidere sarà indifferente fra le due alternative in esame. Costui è neutrale nei confronti del rischio, cioè guarda solo al valore monetario atteso delle due lotterie senza preoccuparsi della maggiore o minore varianza. Figura 4 Propensione al rischio Utilità U(OA) U(OX) U(OB) 0 B X A UA= ½U(OA) + ½U(OB) Somme monetarie Si potrebbe sospettare che i risultati appena ottenuti siano validi solo perché l alternativa alla prospettiva incerta è un evento certo. Da ciò potremmo dedurre, per esempio, che un soggetto avverso al rischio è semplicemente uno che preferisce solo le prospettive certe, ma in realtà le definizioni che abbiamo dato all inizio di questo paragrafo, che vi preghiamo di andare a rileggere, sono valide in generale. Per capire questo punto ci limitiamo al caso dell avversione al rischio, e ricorriamo alla Fig. 5. Qui un soggetto caratterizzato da una funzione di utilità concava si trova di fronte a due diverse lotterie con uguale vincita monetaria attesa: la prima ha come esiti possibili OA 1 e OB 1, la seconda ha esiti OA 2 e OB 2 ed in entrambe le lotterie le probabilità degli esiti sono pari a ½. Evidentemente la prima lotteria ha varianza maggiore della seconda, perché i suoi esiti sono più lontani, rispetto alla seconda, dal valore atteso.

7 Figura 5 Due lotterie diverse Utilità U(OA 1 ) U(OA 2 ) U(OB 2 ) L 2 L 1 U(OB 1 ) O B 1 B 2 A 2 A 1 Somme monetarie Ciò che conta per chi deve decidere è l utilità attesa. Siccome la probabilità degli esiti in entrambe le lotterie è pari a ½, l utilità attesa di ciascuna di esse si situa esattamente a metà strada fra le utilità dei due diversi esiti a cui esse possono condurre. Dunque l utilità attesa della prima lotteria è L 1, media fra U(OA 1 ) e U(OB 1 ), mentre l utilità attesa della seconda lotteria è L 2, media fra U(OA 2 ) e U(OB 2 ). La prima lotteria implica per il decisore un utilità attesa inferiore rispetto alla seconda: quest ultima, che ha varianza più bassa, sarà dunque preferita alla prima, e ciò significa avversione al rischio. Resta dunque confermato che un soggetto la cui funzione di utilità è concava è anche avverso al rischio. Poiché un soggetto avverso al rischio ha una funzione di utilità concava, potremmo pensare che una funzione di utilità più concava, cioè caratterizzata da una curvatura più pronunciata, implichi una maggiore avversione al rischio. Questa ipotesi è in un certo senso corretta, come avremo modo di vedere più avanti. Possiamo affermare, quindi, che la curvatura della funzione di utilità è un indicatore dell attitudine al rischio. Più la curva è concava, più il soggetto è avverso al rischio; se la curva è meno concava, lineare, o addirittura convessa, il soggetto è meno avverso, neutrale, o addirittura propenso nei confronti del rischio. Per concludere, accettando il principio dell utilità attesa abbiamo potuto giustificare rigorosamente un ipotesi abbastanza ragionevole: un individuo avverso al rischio sceglierà, fra diverse lotterie di uguale valore monetario atteso, quella caratterizzata da minor incertezza, cioè da minore varianza. Dunque, il fatto che oggi esista una gran quantità di persone che si dedicano a fare scommesse e a comprare biglietti di lotterie (e sappiamo che non si tratta di lotterie eque) può, al punto attuale della nostra analisi, essere interpretato in un solo modo: se sono persone che agiscono secondo il principio dell utilità attesa e sanno valutare correttamente le opzioni a loro disposizione, si tratta di persone amanti del rischio. 3. Il mondo visto da un economista 3.1. Assicurarsi o correre il rischio? Il signor Rossi possiede un appezzamento di terreno e sa che mettendolo a coltura potrebbe ottenere un certo profitto, che è dato dalla differenza tra ricavi e costi. Il profitto sarà alto se il clima sarà favorevole, e basso nel caso contrario. Supponiamo che la probabilità di un clima favorevole sia ½. Rossi, dunque, è incerto sul risultato finale della sua attività, ma d altra parte questo è l unico modo per ottenere un reddito. Rossi, quindi, non potrà astenersi dal coltivare il

8 suo appezzamento. Un giorno arriva il signor Verdi, che è un assicuratore, il quale propone a Rossi questo contratto: Rossi pagherà a Verdi ogni anno una somma, che si chiama premio assicurativo, pari alla metà della differenza fra il profitto alto e il profitto basso. Nel caso di un annata sfavorevole per il raccolto, Verdi pagherà a Rossi come risarcimento tutta la differenza fra profitto alto e profitto basso. Rossi deciderà di assicurarsi? Se A è il profitto alto e B il profitto basso, quando Rossi non si assicura può aspettarsi di avere in media ogni anno una somma pari a ½ A + ½ B = ½ (A + B). Cosa accade se Rossi si assicura? Se le cose vanno male, egli ottiene il profitto basso, riceve il risarcimento e paga il premio, cioè ottiene il reddito B + (A B) ½ (A B) = ½ (A + B). Se le cose vanno bene, invece, Rossi riceve il profitto alto e paga il premio, cioè ottiene il reddito A ½ (A B) = ½ (A + B). Allora, poiché in entrambi i casi Rossi riceve ½ (A + B), se si assicura egli può contare ogni anno su un reddito certo pari a tale valore. Rossi quindi si trova a scegliere tra due lotterie con lo stesso valore monetario atteso ma con una diversa varianza, perché l esito di una delle due lotterie, quella che consiste nell accettare l assicurazione, è certo. Dunque, se Rossi è avverso al rischio preferisce assicurarsi, e rinuncia ad assicurarsi se è propenso al rischio. Come già sappiamo, se Rossi è avverso al rischio accetterà di assicurarsi non solo quando gli si promette un reddito costante, ma anche quando gli si propone un qualsiasi contratto caratterizzato da un premio x e da un risarcimento 2 x, il cui effetto è una riduzione del rischio per Rossi. Si consideri infatti quanto segue. Se non si assicura Rossi può continuare ad avere in media un reddito pari a ½ (A + B). Se Rossi si assicura, quando le cose vanno bene ottiene il profitto alto e paga il premio, cioè ha un reddito pari a A x, e quando le cose vanno male ottiene il profitto basso, riceve il risarcimento e paga il premio, cioè ha un reddito pari a B + 2 x x = B + x. Il valore monetario atteso di questa lotteria, quindi, è ½ (A x) + ½ (B + x) = ½ (A + B). Rossi, dunque, deve scegliere tra due lotterie che hanno lo stesso valore monetario: ma la seconda ha varianza più bassa della prima, visto che i suoi esiti sono più vicino al valore monetario atteso. Se Rossi è avverso al rischio, dunque, deciderà di assicurarsi. Sinora abbiamo appreso che un soggetto avverso al rischio preferisce, se ne ha l opportunità, assicurarsi ed affrontare così una nuova situazione caratterizzata, a parità di valore monetario atteso, da una rischiosità inferiore. Non è detto, però, che tutte le assicurazioni siano eque, cioè non è detto che esse promettano all assicurato lo stesso reddito monetario atteso che egli avrebbe se non si assicurasse. Anzi, usualmente accade che il valore monetario atteso garantito da un assicurazione sia inferiore al valore monetario atteso che si avrebbe se non ci si assicurasse. L assicurazione, infatti, deve pagare i suoi dipendenti e tutti gli altri costi di gestione. Ciò significa che un soggetto avverso al rischio non trova più conveniente assicurarsi? Per studiare questo problema consideriamo la Fig. 6. Il profitto di Rossi è OB se il raccolto è cattivo, il profitto OA se il raccolto è buono e la probabilità che il raccolto sia cattivo è sempre ½. Ora Verdi, l assicuratore, gli propone il seguente contratto: Rossi pagherà a Verdi un premio all inizio dell anno. Se le cose vanno bene la storia finisce qui; se invece il raccolto sarà cattivo Verdi pagherà a Rossi un risarcimento tale che il reddito di Rossi sarà comunque OR, maggiore di OB. In altri termini, Verdi propone a Rossi un risarcimento netto, cioè al netto del premio, pari a BR = OR OB. La domanda che ci poniamo è: qual è il premio massimo che Rossi è disposto a pagare a Verdi? Poiché il reddito che Rossi ottiene senza assicurarsi può essere OB oppure OA, l utilità che Rossi ottiene senza assicurarsi è misurata da OL in caso sfavorevole e da OH in caso favorevole, e l utilità attesa in assenza di assicurazione (cioè la media fra queste due utilità) è OM, il segmento di lunghezza media fra OL e OH. Lo schema assicurativo proposto da Verdi implica che in caso sfavorevole Rossi ottenga un reddito, inclusivo del risarcimento netto, pari a OR, a cui corrisponde un utilità pari a ON. Poiché in caso favorevole Rossi deve comunque pagare il premio, egli si troverà in tal caso con un reddito inferiore a OA, e dunque con un utilità inferiore a OH. L utilità attesa in caso di accettazione dell assicurazione è la media fra ON e l utilità alternativa, che dipende dal premio da pagarsi. Rossi accetterà di assicurarsi solo se questa seconda utilità attesa sarà almeno pari a quella ottenibile senza assicurazione, OM.

9 Figura 6 Il massimo premio assicurativo che Rossi è disposto a pagare Utilità H S M N L Premio massimo Utilità attesa senza assicurazione 0 B R E A Reddito di Rossi Ciò accade solo se l utilità del caso favorevole (tenendo conto del pagamento del premio) è almeno pari a OS. In questo caso la lunghezza del segmento MS è la stessa del segmento NM, e la media tra ON e OS è proprio OM, uguale l utilità attesa in assenza di assicurazione. Dunque OM è sia la media fra OL e OH, sia quella fra ON e OS. Affinché l utilità del caso favorevole sia almeno pari a OS, il reddito al netto del premio ottenibile da Rossi in quel caso deve essere almeno OE. Dunque, poiché il reddito netto è pari alla differenza fra il profitto alto e il premio assicurativo, il premio massimo che Rossi è disposto a pagare a Verdi per accettare l assicurazione proposta è dato dal segmento EA. Naturalmente Rossi sarebbe ben contento di pagare un premio inferiore a EA, ma non sarebbe comunque disposto a pagarne un premio maggiore. La cosa importante da osservare è che, pagando il premio EA in caso favorevole e incassando il risarcimento netto BR in caso sfavorevole, Rossi si trova in una situazione incerta il cui valore monetario atteso è inferiore a quello che avrebbe senza assicurarsi. Ciò emerge dalla Fig. 6, dove potete chiaramente vedere che il punto medio del segmento BA, cioè il valore monetario atteso in assenza di assicurazione, sta a destra del punto medio del segmento RE, il valore monetario atteso in presenza di assicurazione. Possiamo concludere, dunque, che un soggetto avverso al rischio può preferire assicurarsi anche se il premio che deve pagare è superiore al risarcimento netto che gli è garantito in caso di sinistro. Per costui, infatti, non è importante il valore monetario atteso dell assicurazione, ma la sua utilità attesa, e quest ultima può essere maggiore di quella che si avrebbe senza assicurazione anche se il valore monetario atteso è inferiore. D altra parte un soggetto che, valutando le sue prospettive secondo il principio dell utilità attesa, preferisce non assicurarsi è un soggetto amante del rischio. (omissis) Diversificare il rischio Consideriamo ora due individui, Rossi e Bianchi, che guadagnano il medesimo reddito monetario, diciamo 100. Entrambi fanno il medesimo lavoro, che richiede l utilizzo di un automezzo. Durante i loro spostamenti in automobile essi rischiano di provocare incidenti che causano danni a terzi. Supponiamo che il danno che essi possono arrecare sia valutabile in 100, e che la probabilità di provocare un incidente sia ½ per entrambi. Ciascuno dei due si trova

Scelta sotto incertezza

Scelta sotto incertezza Scelta sotto incertezza 1. Introduzione Nei capitoli 1 e 2 della microeconomia standard si studia la scelta dei consumatori e dei produttori, che hanno un informazione perfetta sulle circostanze che caratterizzano

Dettagli

Tassi a pronti ed a termine (bozza)

Tassi a pronti ed a termine (bozza) Tassi a pronti ed a termine (bozza) Mario A. Maggi a.a. 2006/2007 Indice 1 Introduzione 1 2 Valutazione dei titoli a reddito fisso 2 2.1 Titoli di puro sconto (zero coupon)................ 3 2.2 Obbligazioni

Dettagli

risparmio, dove lo metto ora? le risposte alle domande che i risparmiatori si pongono sul mondo dei fondi

risparmio, dove lo metto ora? le risposte alle domande che i risparmiatori si pongono sul mondo dei fondi il risparmio, dove lo ora? metto le risposte alle domande che i risparmiatori si pongono sul mondo dei fondi Vademecum del risparmiatore le principali domande emerse da una recente ricerca di mercato 1

Dettagli

BANCA, TITOLI DI STATO E FONDI DI INVESTIMENTO

BANCA, TITOLI DI STATO E FONDI DI INVESTIMENTO BANCA, TITOLI DI STATO E FONDI DI INVESTIMENTO La banca è un istituto che compie operazioni monetarie e finanziarie utilizzando il denaro proprio e quello dei clienti. In particolare la Banca effettua

Dettagli

Accuratezza di uno strumento

Accuratezza di uno strumento Accuratezza di uno strumento Come abbiamo già accennato la volta scora, il risultato della misurazione di una grandezza fisica, qualsiasi sia lo strumento utilizzato, non è mai un valore numerico X univocamente

Dettagli

CELTA IUSTA. Cosa, come, quando, quanto e perché: quello che dovresti sapere per investire i tuoi risparmi

CELTA IUSTA. Cosa, come, quando, quanto e perché: quello che dovresti sapere per investire i tuoi risparmi ONDI OMUNI: AI A CELTA IUSTA Cosa, come, quando, quanto e perché: quello che dovresti sapere per investire i tuoi risparmi CONOSCERE I FONDI D INVESTIMENTO, PER FARE SCELTE CONSAPEVOLI I fondi comuni sono

Dettagli

(accuratezza) ovvero (esattezza)

(accuratezza) ovvero (esattezza) Capitolo n 2 2.1 - Misure ed errori In un analisi chimica si misurano dei valori chimico-fisici di svariate grandezze; tuttavia ogni misura comporta sempre una incertezza, dovuta alla presenza non eliminabile

Dettagli

Corso di Matematica finanziaria

Corso di Matematica finanziaria Corso di Matematica finanziaria modulo "Fondamenti della valutazione finanziaria" Eserciziario di Matematica finanziaria Università degli studi Roma Tre 2 Esercizi dal corso di Matematica finanziaria,

Dettagli

Modelli Binomiali per la valutazione di opzioni

Modelli Binomiali per la valutazione di opzioni Modelli Binomiali per la valutazione di opzioni Rosa Maria Mininni a.a. 2014-2015 1 Introduzione ai modelli binomiali La valutazione degli strumenti finanziari derivati e, in particolare, la valutazione

Dettagli

Capitolo 9: PROPAGAZIONE DEGLI ERRORI

Capitolo 9: PROPAGAZIONE DEGLI ERRORI Capitolo 9: PROPAGAZIOE DEGLI ERRORI 9.1 Propagazione degli errori massimi ella maggior parte dei casi le grandezze fisiche vengono misurate per via indiretta. Il valore della grandezza viene cioè dedotto

Dettagli

Le reverse convertible. Cosa sono e quali rischi comportano per chi le acquista. Ottobre 2012. Consob Divisione Tutela del Consumatore

Le reverse convertible. Cosa sono e quali rischi comportano per chi le acquista. Ottobre 2012. Consob Divisione Tutela del Consumatore Le reverse convertible Cosa sono e quali rischi comportano per chi le acquista Ottobre 2012 Consob Divisione Tutela del Consumatore Indice Introduzione 3 Le reverse convertible 4 Cos è una reverse convertible

Dettagli

guida introduttiva alla previdenza complementare

guida introduttiva alla previdenza complementare COVIP Commissione di Vigilanza sui Fondi Pensione COVIP Commissione di Vigilanza sui Fondi Pensione Con questa Guida la COVIP intende illustrarti, con un linguaggio semplice e l aiuto di alcuni esempi,

Dettagli

Capitolo 5. Il mercato della moneta

Capitolo 5. Il mercato della moneta Capitolo 5 Il mercato della moneta 5.1 Che cosa è moneta In un economia di mercato i beni non si scambiano fra loro, ma si scambiano con moneta: a fronte di un flusso reale di prodotti e di servizi sta

Dettagli

La scelta razionale del consumatore (Frank - Capitolo 3)

La scelta razionale del consumatore (Frank - Capitolo 3) La scelta razionale del consumatore (Frank - Capitolo 3) L'INSIEME OPPORTUNITÁ E IL VINCOLO DI BILANCIO Un paniere di beni rappresenta una combinazione di beni o servizi Il vincolo di bilancio o retta

Dettagli

Calcolo delle Probabilità

Calcolo delle Probabilità Calcolo delle Probabilità Il calcolo delle probabilità studia i modelli matematici delle cosidette situazioni di incertezza. Molte situazioni concrete sono caratterizzate a priori da incertezza su quello

Dettagli

Guido Candela, Paolo Figini - Economia del turismo, 2ª edizione

Guido Candela, Paolo Figini - Economia del turismo, 2ª edizione 8.2.4 La gestione finanziaria La gestione finanziaria non dev essere confusa con la contabilità: quest ultima, infatti, ha come contenuto proprio le rilevazioni contabili e il reperimento dei dati finanziari,

Dettagli

guida introduttiva alla previdenza complementare

guida introduttiva alla previdenza complementare 1 COVIP Commissione di Vigilanza sui Fondi Pensione guida introduttiva alla previdenza complementare www.covip.it 3 Questa Guida è stata realizzata dalla COVIP Indice grafica e illustrazioni Studio Marabotto

Dettagli

EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE

EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE 1. EQUAZIONI Definizione: un equazione è un uguaglianza tra due espressioni letterali (cioè in cui compaiono numeri, lettere

Dettagli

TEORIA DELL UTILITÀ E DECISION PROCESS

TEORIA DELL UTILITÀ E DECISION PROCESS TEORIA DELL UTILITÀ E DECISION PROCESS 1 UTILITÀ Classicamente sinonimo di Desiderabilità Fisher (1930):... uno degli elementi che contribuiscono ad identificare la natura economica di un bene e sorge

Dettagli

IFRS 2 Pagamenti basati su azioni

IFRS 2 Pagamenti basati su azioni Pagamenti basati su azioni International Financial Reporting Standard 2 Pagamenti basati su azioni FINALITÀ 1 Il presente IRFS ha lo scopo di definire la rappresentazione in bilancio di una entità che

Dettagli

Lezione 10: Il problema del consumatore: Preferenze e scelta ottimale

Lezione 10: Il problema del consumatore: Preferenze e scelta ottimale Corso di Scienza Economica (Economia Politica) prof. G. Di Bartolomeo Lezione 10: Il problema del consumatore: Preferenze e scelta ottimale Facoltà di Scienze della Comunicazione Università di Teramo Scelta

Dettagli

ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE

ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE Sia I un intervallo di R e siano a = inf(i) R { } e b = sup(i) R {+ }; i punti di I diversi dagli estremi a e b, ( e quindi appartenenti all intervallo aperto

Dettagli

La distribuzione Normale. La distribuzione Normale

La distribuzione Normale. La distribuzione Normale La Distribuzione Normale o Gaussiana è la distribuzione più importante ed utilizzata in tutta la statistica La curva delle frequenze della distribuzione Normale ha una forma caratteristica, simile ad una

Dettagli

Introduzione alla Teoria degli Errori

Introduzione alla Teoria degli Errori Introduzione alla Teoria degli Errori 1 Gli errori di misura sono inevitabili Una misura non ha significato se non viene accompagnata da una ragionevole stima dell errore ( Una scienza si dice esatta non

Dettagli

PROBABILITA, VALORE ATTESO E VARIANZA DELLE QUANTITÁ ALEATORIE E LORO RELAZIONE CON I DATI OSSERVATI

PROBABILITA, VALORE ATTESO E VARIANZA DELLE QUANTITÁ ALEATORIE E LORO RELAZIONE CON I DATI OSSERVATI statistica, Università Cattaneo-Liuc, AA 006-007, lezione del 08.05.07 IDICE (lezione 08.05.07 PROBABILITA, VALORE ATTESO E VARIAZA DELLE QUATITÁ ALEATORIE E LORO RELAZIOE CO I DATI OSSERVATI 3.1 Valore

Dettagli

Effetti delle imposte nel mercato internazionale dei capitali. Economia dei tributi_polin 1

Effetti delle imposte nel mercato internazionale dei capitali. Economia dei tributi_polin 1 Effetti delle imposte nel mercato internazionale dei capitali Economia dei tributi_polin 1 Allocazione internazionale del capitale Si possono definire due principi di neutralità della tassazione del capitale

Dettagli

Principio contabile internazionale n. 12 Imposte sul reddito

Principio contabile internazionale n. 12 Imposte sul reddito Principio contabile internazionale n. 12 Imposte sul reddito Finalità La finalità del presente Principio è quella di definire il trattamento contabile delle imposte sul reddito. L aspetto principale della

Dettagli

1. Limite finito di una funzione in un punto

1. Limite finito di una funzione in un punto . Limite finito di una funzione in un punto Consideriamo la funzione: f ( ) = il cui dominio risulta essere R {}, e quindi il valore di f ( ) non è calcolabile in =. Quest affermazione tuttavia non esaurisce

Dettagli

Moto sul piano inclinato (senza attrito)

Moto sul piano inclinato (senza attrito) Moto sul piano inclinato (senza attrito) Per studiare il moto di un oggetto (assimilabile a punto materiale) lungo un piano inclinato bisogna innanzitutto analizzare le forze che agiscono sull oggetto

Dettagli

Azionario Flessibile 7 anni Scheda sintetica - Informazioni specifiche 1 di 6

Azionario Flessibile 7 anni Scheda sintetica - Informazioni specifiche 1 di 6 Scheda sintetica - Informazioni specifiche 1 di 6 La parte Informazioni Specifiche, da consegnare obbligatoriamente all investitore contraente prima della sottoscrizione, è volta ad illustrare le principali

Dettagli

LAVORO, ENERGIA E POTENZA

LAVORO, ENERGIA E POTENZA LAVORO, ENERGIA E POTENZA Nel linguaggio comune, la parola lavoro è applicata a qualsiasi forma di attività, fisica o mentale, che sia in grado di produrre un risultato. In fisica la parola lavoro ha un

Dettagli

LE PROSPETTIVE PER L ECONOMIA ITALIANA NEL 2015-2017

LE PROSPETTIVE PER L ECONOMIA ITALIANA NEL 2015-2017 7 maggio 2015 LE PROSPETTIVE PER L ECONOMIA ITALIANA NEL 2015-2017 Nel 2015 si prevede un aumento del prodotto interno lordo (Pil) italiano pari allo 0,7% in termini reali, cui seguirà una crescita dell

Dettagli

i tassi di interesse per i prestiti sono gli stessi che per i depositi;

i tassi di interesse per i prestiti sono gli stessi che per i depositi; Capitolo 3 Prodotti derivati: forward, futures ed opzioni Per poter affrontare lo studio dei prodotti derivati occorre fare delle ipotesi sul mercato finanziario che permettono di semplificare dal punto

Dettagli

ELASTICITÀ. Sarebbe conveniente per il produttore aumentare ulteriormente il prezzo nella stessa misura del caso

ELASTICITÀ. Sarebbe conveniente per il produttore aumentare ulteriormente il prezzo nella stessa misura del caso Esercizio 1 Data la funzione di domanda: ELASTICITÀ Dire se partendo da un livello di prezzo p 1 = 1.5, al produttore converrà aumentare il prezzo fino al livello p 2 = 2. Sarebbe conveniente per il produttore

Dettagli

Misure di base su una carta. Calcoli di distanze

Misure di base su una carta. Calcoli di distanze Misure di base su una carta Calcoli di distanze Per calcolare la distanza tra due punti su una carta disegnata si opera nel modo seguente: 1. Occorre identificare la scala della carta o ricorrendo alle

Dettagli

derivati azionari guida alle opzioni aspetti teorici

derivati azionari guida alle opzioni aspetti teorici derivati azionari guida alle opzioni aspetti teorici derivati azionari guida alle opzioni aspetti teorici PREFAZIONE Il mercato italiano dei prodotti derivati 1. COSA SONO LE OPZIONI? Sottostante Strike

Dettagli

I beni pubblici come causa del fallimento del mercato. Definizioni e caratteristiche

I beni pubblici come causa del fallimento del mercato. Definizioni e caratteristiche I beni pubblici come causa del fallimento del mercato. Definizioni e caratteristiche (versione provvisoria) Marisa Faggini Università di Salerno mfaggini@unisa.it I beni pubblici rappresentano un esempio

Dettagli

Lezione 29: Modello Domanda-Offerta Aggregata (AD-AS)

Lezione 29: Modello Domanda-Offerta Aggregata (AD-AS) Corso di Economia Politica prof. S. Papa Lezione 29: Modello Domanda-Offerta Aggregata (AD-AS) Facoltà di Economia Sapienza Roma Introduciamo i prezzi Finora abbiamo ipotizzato che i prezzi fossero dati

Dettagli

Numeri reali. Funzioni e loro grafici

Numeri reali. Funzioni e loro grafici Argomento Numeri reali. Funzioni e loro grafici Parte B - Funzioni e loro grafici Funzioni reali di variabile reale Definizioni. Supponiamo che A sia un sottoinsieme di R e che esista una legge che ad

Dettagli

Esercizi di consolidamento di probabilità e calcolo combinatorio parte 1

Esercizi di consolidamento di probabilità e calcolo combinatorio parte 1 Esercizi di consolidamento di probabilità e calcolo combinatorio parte 1 1. Si lancia una moneta 2 volte: qual è la probabilità che esca TESTA 0 volte? 1 volta? 2 volte? 2. Si lancia una moneta 3 volte:

Dettagli

FORWARD RATE AGREEMENT

FORWARD RATE AGREEMENT FORWARD RATE AGREEMENT FLAVIO ANGELINI. Definizioni In generale, un contratto a termine o forward permette una compravendita di una certa quantità di un bene differita a una data futura a un prezzo fissato

Dettagli

CURVE DI LIVELLO. Per avere informazioni sull andamento di una funzione f : D IR n IR può essere utile considerare i suoi insiemi di livello.

CURVE DI LIVELLO. Per avere informazioni sull andamento di una funzione f : D IR n IR può essere utile considerare i suoi insiemi di livello. CURVE DI LIVELLO Per avere informazioni sull andamento di una funzione f : D IR n IR può essere utile considerare i suoi insiemi di livello. Definizione. Si chiama insieme di livello k della funzione f

Dettagli

Come si calcolano,nel 2013, le pensioni dei lavoratori iscritti all INPS

Come si calcolano,nel 2013, le pensioni dei lavoratori iscritti all INPS Come si calcolano,nel 2013, le pensioni dei lavoratori iscritti all INPS Salvatore Martorelli 0 Le regole e il sistema di calcolo delle pensioni INPS I vertiginosi cambiamenti nella normativa sulle pensioni

Dettagli

esame di stato 2014 seconda prova scritta per i licei scientifici di ordinamento

esame di stato 2014 seconda prova scritta per i licei scientifici di ordinamento ARTICOLO Archimede 4 4 esame di stato 4 seconda prova scritta per i licei scientifici di ordinamento Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. PROBLEMA Nella figura

Dettagli

Il regime fiscale degli interessi e degli altri redditi derivanti dai Titoli di Stato domestici

Il regime fiscale degli interessi e degli altri redditi derivanti dai Titoli di Stato domestici Il regime fiscale degli interessi e degli altri redditi derivanti dai Titoli di Stato domestici Il presente documento ha finalità meramente illustrative della tassazione degli interessi e degli altri redditi

Dettagli

Algoritmo euclideo, massimo comun divisore ed equazioni diofantee

Algoritmo euclideo, massimo comun divisore ed equazioni diofantee Algoritmo euclideo, massimo comun divisore ed equazioni diofantee Se a e b sono numeri interi, si dice che a divide b, in simboli: a b, se e solo se esiste c Z tale che b = ac. Si può subito notare che:

Dettagli

DISTRIBUZIONE di PROBABILITA. Si dice variabile aleatoria (o casuale) discreta X una quantità variabile che può assumere i

DISTRIBUZIONE di PROBABILITA. Si dice variabile aleatoria (o casuale) discreta X una quantità variabile che può assumere i DISTRIBUZIONE di PROBABILITA Si dice variabile aleatoria (o casuale) discreta X una quantità variabile che uò assumere i valori: ; ;, n al verificarsi degli eventi incomatibili e comlementari: E ; E ;..;

Dettagli

Convessità e derivabilità

Convessità e derivabilità Convessità e derivabilità Definizione 1 (convessità per funzioni derivabili) Sia f : (a, b) R derivabile su (a, b). Diremo che f è convessa o concava su (a, b) se per ogni 0 (a,b) il grafico di f sta tutto

Dettagli

1 n. Intero frazionato. Frazione

1 n. Intero frazionato. Frazione Consideriamo un intero, prendiamo un rettangolo e dividiamolo in sei parti uguali, ciascuna di queste parti rappresenta un sesto del rettangolo, cioè una sola delle sei parti uguali in cui è stato diviso.

Dettagli

Il bilancio con dati a scelta. Classe V ITC

Il bilancio con dati a scelta. Classe V ITC Il bilancio con dati a scelta Classe V ITC Il metodo da seguire Premesso che per la costruzione di un bilancio con dati a scelta si possono seguire diversi metodi, tutti ugualmente validi, negli esempi

Dettagli

Imprese individuali e società Le aziende possono essere distinte in: 1. aziende individuali, quando il soggetto giuridico è una persona fisica; 2.

Imprese individuali e società Le aziende possono essere distinte in: 1. aziende individuali, quando il soggetto giuridico è una persona fisica; 2. Imprese individuali e società Le aziende possono essere distinte in: 1. aziende individuali, quando il soggetto giuridico è una persona fisica; 2. aziende collettive, quando il soggetto giuridico è costituito

Dettagli

Parte 2. Determinante e matrice inversa

Parte 2. Determinante e matrice inversa Parte. Determinante e matrice inversa A. Savo Appunti del Corso di Geometria 013-14 Indice delle sezioni 1 Determinante di una matrice, 1 Teorema di Cramer (caso particolare), 3 3 Determinante di una matrice

Dettagli

IL MERCATO FINANZIARIO

IL MERCATO FINANZIARIO IL MERCATO FINANZIARIO Prima della legge bancaria del 1936, in Italia, era molto diffusa la banca mista, ossia un tipo di banca che erogava sia prestiti a breve che a medio lungo termine. Ma nel 1936 il

Dettagli

LA PENSIONE DI VECCHIAIA

LA PENSIONE DI VECCHIAIA Le pensioni di vecchiaia e di invalidità specifica per i lavoratori dello spettacolo (Categorie elencate nei numeri da 1 a 14 dell art. 3 del Dlgs CPS n.708/1947) Questa scheda vuole essere un primo contributo

Dettagli

PRINCIPI DI REDAZIONE DEL BILANCIO D ESERCIZIO

PRINCIPI DI REDAZIONE DEL BILANCIO D ESERCIZIO PRINCIPI DI REDAZIONE DEL BILANCIO D ESERCIZIO IL BILANCIO D ESERCIZIO E UN DOCUMENTO AZIENDALE DI SINTESI, DI DERIVAZIONE CONTABILE, RIVOLTO A VARI DESTINATARI, CHE RAPPRESENTA IN TERMINI CONSUNTIVI E

Dettagli

Se si insiste non si vince

Se si insiste non si vince Se si insiste non si vince Livello scolare: 2 biennio Abilità interessate Valutare la probabilità in diversi contesti problematici. Distinguere tra eventi indipendenti e non. Valutare criticamente le informazioni

Dettagli

IMPRENDITORIALITA E INNOVAZIONE

IMPRENDITORIALITA E INNOVAZIONE Università degli studi di Bergamo Anno accademico 2005 2006 IMPRENDITORIALITA E INNOVAZIONE Docente: Prof. Massimo Merlino Introduzione Il tema della gestione dell innovazione tecnologica è più che mai

Dettagli

Il concetto di valore medio in generale

Il concetto di valore medio in generale Il concetto di valore medio in generale Nella statistica descrittiva si distinguono solitamente due tipi di medie: - le medie analitiche, che soddisfano ad una condizione di invarianza e si calcolano tenendo

Dettagli

ANALISI MEDIANTE LO SPETTRO DI RISPOSTA

ANALISI MEDIANTE LO SPETTRO DI RISPOSTA ANALISI EDIANTE LO SPETTRO DI RISPOSTA arco BOZZA * * Ingegnere Strutturale, già Direttore della Federazione regionale degli Ordini degli Ingegneri del Veneto (FOIV), Amministratore di ADEPRON DINAICA

Dettagli

CORPO GIREVOLE ATTORNO AD UN ASSE E MOMENTI. TORNA ALL'INDICE

CORPO GIREVOLE ATTORNO AD UN ASSE E MOMENTI. TORNA ALL'INDICE CORPO GIREVOLE ATTORNO AD UN ASSE E MOMENTI. TORNA ALL'INDICE Consideriamo adesso un corpo esteso, formato da più punti, e che abbia un asse fisso, attorno a cui il corpo può ruotare. In questo caso l

Dettagli

METODO DEI MINIMI QUADRATI. Quest articolo discende soprattutto dai lavori di Deming, Press et al. (Numerical Recipes) e Jefferys.

METODO DEI MINIMI QUADRATI. Quest articolo discende soprattutto dai lavori di Deming, Press et al. (Numerical Recipes) e Jefferys. METODO DEI MINIMI QUADRATI GIUSEPPE GIUDICE Sommario Il metodo dei minimi quadrati è trattato in tutti i testi di statistica e di elaborazione dei dati sperimentali, ma non sempre col rigore necessario

Dettagli

FASI DI VITA DELL AZIENDA

FASI DI VITA DELL AZIENDA AZIENDA ORGANIZZAZIONE DI PERSONE E BENI CHE SVOLGE ATTIVITA ECONOMICA IN VISTA DEL SODDISFACIMENTO DEI BISOGNI UMANI. Dalla definizione si estraggono le 3 componenti principali dell azienda. Abbiamo ciò

Dettagli

Gli eventi sono stati definiti come i possibili risultati di un esperimento. Ogni evento ha una probabilità

Gli eventi sono stati definiti come i possibili risultati di un esperimento. Ogni evento ha una probabilità Probabilità Probabilità Gli eventi sono stati definiti come i possibili risultati di un esperimento. Ogni evento ha una probabilità Se tutti gli eventi fossero ugualmente possibili, la probabilità p(e)

Dettagli

Quando troncare uno sviluppo in serie di Taylor

Quando troncare uno sviluppo in serie di Taylor Quando troncare uno sviluppo in serie di Taylor Marco Robutti October 13, 2014 Lo sviluppo in serie di Taylor di una funzione è uno strumento matematico davvero molto utile, e viene spesso utilizzato in

Dettagli

Effetto reddito ed effetto sostituzione.

Effetto reddito ed effetto sostituzione. . Indice.. 1 1. Effetto sostituzione di Slutsky. 3 2. Effetto reddito. 6 3. Effetto complessivo. 7 II . Si consideri un consumatore che può scegliere panieri (x 1 ; ) composti da due soli beni (il bene

Dettagli

IN PENSIONE Come si calcola, quando se ne ha diritto, a quanto ammonta

IN PENSIONE Come si calcola, quando se ne ha diritto, a quanto ammonta a cura di Enzo Mologni e dell Uffi cio Comunicazione CGIL di Bergamo 4 Ottobre 2013 IN PENSIONE Come si calcola, quando se ne ha diritto, a quanto ammonta Presentiamo in questo numero alcune informazioni

Dettagli

I VERSAMENTI VOLONTARI

I VERSAMENTI VOLONTARI I VERSAMENTI VOLONTARI Le Guide Inps Direttore Annalisa Guidotti Capo Redattore Iride di Palma Testi Daniela Cerrocchi Fulvio Maiella Antonio Silvestri Progetto grafico Peliti Associati Impaginazione Aldo

Dettagli

L apertura di una economia ha 3 dimensioni

L apertura di una economia ha 3 dimensioni Lezione 19 (BAG cap. 6.1 e 6.3 e 18.1-18.4) Il mercato dei beni in economia aperta: moltiplicatore politica fiscale e deprezzamento Corso di Macroeconomia Prof. Guido Ascari, Università di Pavia Economia

Dettagli

CS. Cinematica dei sistemi

CS. Cinematica dei sistemi CS. Cinematica dei sistemi Dopo aver esaminato la cinematica del punto e del corpo rigido, che sono gli schemi più semplificati con cui si possa rappresentare un corpo, ci occupiamo ora dei sistemi vincolati.

Dettagli

Capitolo 10 Z Elasticità della domanda

Capitolo 10 Z Elasticità della domanda Capitolo 10 Z Elasticità della domanda Sommario Z 1. L elasticità della domanda rispetto al prezzo. - 2. La misura dell elasticità. - 3. I fattori determinanti l elasticità. - 4. L elasticità rispetto

Dettagli

L Emittente, Offerente e Responsabile del Collocamento. Banca di Credito Cooperativo di Flumeri

L Emittente, Offerente e Responsabile del Collocamento. Banca di Credito Cooperativo di Flumeri Prospetto Informativo Semplificato per l offerta al pubblico di strumenti diversi dai titoli di capitale emessi in modo continuo o ripetuto da banche di cui all art. 34-ter, comma 4 del Regolamento Consob

Dettagli

FONDAMENTI TEORICI DEL MOTORE IN CORRENTE CONTINUA AD ECCITAZIONE INDIPENDENTE. a cura di G. SIMONELLI

FONDAMENTI TEORICI DEL MOTORE IN CORRENTE CONTINUA AD ECCITAZIONE INDIPENDENTE. a cura di G. SIMONELLI FONDAMENTI TEORICI DEL MOTORE IN CORRENTE CONTINUA AD ECCITAZIONE INDIPENDENTE a cura di G. SIMONELLI Nel motore a corrente continua si distinguono un sistema di eccitazione o sistema induttore che è fisicamente

Dettagli

la Banca Centrale esercita in autonomia (indipendenza dal Governo) la politica monetaria.

la Banca Centrale esercita in autonomia (indipendenza dal Governo) la politica monetaria. Politica monetaria Obiettivi principali della politica monetaria stabilità monetaria interna (controllo dell inflazione) stabilità monetaria esterna (stabilità del cambio e pareggio della BdP) ma può avere

Dettagli

CAPITOLO PRIMO IL CONCETTO DI ALGORITMO 1

CAPITOLO PRIMO IL CONCETTO DI ALGORITMO 1 1.1 Che cos è un algoritmo CAPITOLO PRIMO IL CONCETTO DI ALGORITMO 1 Gli algoritmi sono metodi per la soluzione di problemi. Possiamo caratterizzare un problema mediante i dati di cui si dispone all inizio

Dettagli

Il regime fiscale degli interessi sui Titoli di Stato

Il regime fiscale degli interessi sui Titoli di Stato Il regime fiscale degli interessi sui Titoli di Stato Fonti normative Il principale testo normativo che disciplina il regime fiscale degli interessi sui Titoli di Stato è il decreto legislativo 1 aprile

Dettagli

Costruirsi una rendita. I principi d investimento di BlackRock

Costruirsi una rendita. I principi d investimento di BlackRock Costruirsi una rendita I principi d investimento di BlackRock I p r i n c i p i d i n v e s t i m e n t o d i B l a c k R o c k Ottenere una rendita è stato raramente tanto difficile quanto ai giorni nostri.

Dettagli

GUIDE Il lavoro part time

GUIDE Il lavoro part time Collana Le Guide Direttore: Raffaello Marchi Coordinatore: Annalisa Guidotti Testi: Iride Di Palma, Adolfo De Maltia Reporting: Gianni Boccia Progetto grafico: Peliti Associati Illustrazioni: Paolo Cardoni

Dettagli

Capitolo 12 Il monopolio. Robert H. Frank Microeconomia - 5 a Edizione Copyright 2010 - The McGraw-Hill Companies, srl

Capitolo 12 Il monopolio. Robert H. Frank Microeconomia - 5 a Edizione Copyright 2010 - The McGraw-Hill Companies, srl Capitolo 12 Il monopolio IL MONOPOLIO Il monopolio è una forma di mercato in cui un unico venditore offre un bene che non ha stretti sostituti, ad una moltitudine di consumatori La differenza fondamentale

Dettagli

Offerta pubblica di sottoscrizione di UNIT LINKED FONDI VITTORIA prodotto finanziario-assicurativo di tipo unit linked (Codice Prodotto 640U)

Offerta pubblica di sottoscrizione di UNIT LINKED FONDI VITTORIA prodotto finanziario-assicurativo di tipo unit linked (Codice Prodotto 640U) Offerta pubblica di sottoscrizione di UNIT LINKED FONDI VITTORIA prodotto finanziario-assicurativo di tipo unit linked (Codice Prodotto 640U) Il presente prodotto è distribuito dalle Agenzie Vittoria Assicurazioni

Dettagli

Crescere e far crescere. Finalmente la composizione ideale per i tuoi investimenti.

Crescere e far crescere. Finalmente la composizione ideale per i tuoi investimenti. Crescere e far crescere. Finalmente la composizione ideale per i tuoi investimenti. LINEA INVESTIMENTO GUIDA AI PRODOTTI Crescere e far crescere. Finalmente la composizione ideale per i tuoi investimenti!

Dettagli

Per lo svolgimento del corso risulta particolarmente utile considerare l insieme

Per lo svolgimento del corso risulta particolarmente utile considerare l insieme 1. L insieme R. Per lo svolgimento del corso risulta particolarmente utile considerare l insieme R = R {, + }, detto anche retta reale estesa, che si ottiene aggiungendo all insieme dei numeri reali R

Dettagli

La f(x) dovrà rimanere all interno di questo intorno quando la x è all interno di un intorno di x 0, cioè I(x 0 ), cioè:

La f(x) dovrà rimanere all interno di questo intorno quando la x è all interno di un intorno di x 0, cioè I(x 0 ), cioè: 1 Limiti Roberto Petroni, 2011 Possiamo introdurre intuitivamente il concetto di limite dicendo che quanto più la x si avvicina ad un dato valore x 0 tanto più la f(x) si avvicina ad un valore l detto

Dettagli

Kangourou Italia Gara del 19 marzo 2015 Categoria Student Per studenti di quarta e quinta della secondaria di secondo grado

Kangourou Italia Gara del 19 marzo 2015 Categoria Student Per studenti di quarta e quinta della secondaria di secondo grado Kangourou Italia Gara del 19 marzo 2015 Categoria Student Per studenti di quarta e quinta della secondaria di secondo grado I quesiti dal N. 1 al N. 10 valgono 3 punti ciascuno 1. Angela è nata nel 1997,

Dettagli

STUDIO DI UNA FUNZIONE

STUDIO DI UNA FUNZIONE STUDIO DI UNA FUNZIONE OBIETTIVO: Data l equazione Y = f(x) di una funzione a variabili reali (X R e Y R), studiare l andamento del suo grafico. PROCEDIMENTO 1. STUDIO DEL DOMINIO (CAMPO DI ESISTENZA)

Dettagli

Esercitazione VIII - Lavoro ed energia II

Esercitazione VIII - Lavoro ed energia II Esercitazione VIII - Lavoro ed energia II Forze conservative Esercizio Una pallina di massa m = 00g viene lanciata tramite una molla di costante elastica = 0N/m come in figura. Ammesso che ogni attrito

Dettagli

MATEMATICA. { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un numero x ed un numero y che risolvano entrambe le equazioni.

MATEMATICA. { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un numero x ed un numero y che risolvano entrambe le equazioni. MATEMATICA. Sistemi lineari in due equazioni due incognite. Date due equazioni lineari nelle due incognite x, y come ad esempio { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un

Dettagli

POLITICHE PER LA BILANCIA DEI PAGAMENTI

POLITICHE PER LA BILANCIA DEI PAGAMENTI capitolo 15-1 POLITICHE PER LA BILANCIA DEI PAGAMENTI OBIETTIVO: EQUILIBRIO (ANCHE SE NEL LUNGO PERIODO) DISAVANZI: IMPLICANO PERDITE DI RISERVE VALUTARIE AVANZI: DANNEGGIANO ALTRI PAESI E CONDUCONO A

Dettagli

I contributi pubblici nello IAS 20

I contributi pubblici nello IAS 20 I contributi pubblici nello IAS 20 di Paolo Moretti Il principio contabile internazionale IAS 20 fornisce le indicazioni in merito alle modalità di contabilizzazione ed informativa dei contributi pubblici,

Dettagli

RELAZIONE TRA DUE VARIABILI QUANTITATIVE

RELAZIONE TRA DUE VARIABILI QUANTITATIVE RELAZIONE TRA DUE VARIABILI QUANTITATIVE Quando si considerano due o più caratteri (variabili) si possono esaminare anche il tipo e l'intensità delle relazioni che sussistono tra loro. Nel caso in cui

Dettagli

LA FUNZIONE INTEGRALE

LA FUNZIONE INTEGRALE LA FUNZIONE INTEGRALE MAGLIOCURIOSO & CAMILLO magliocurioso@hotmail.it Sommario. In questa breve dispensa ho semplicementrascritto in L A TEX il contenuto di questa discussione: http://www.matematicamente.it/forum/

Dettagli

Il luogo delle radici (ver. 1.0)

Il luogo delle radici (ver. 1.0) Il luogo delle radici (ver. 1.0) 1 Sia dato il sistema in retroazione riportato in Fig. 1.1. Il luogo delle radici è uno strumento mediante il quale è possibile valutare la posizione dei poli della funzione

Dettagli

Analisi statistica di dati biomedici Analysis of biologicalsignals

Analisi statistica di dati biomedici Analysis of biologicalsignals Analisi statistica di dati biomedici Analysis of biologicalsignals II Parte Verifica delle ipotesi (a) Agostino Accardo (accardo@units.it) Master in Ingegneria Clinica LM in Neuroscienze 2013-2014 e segg.

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO 2006 Indirizzo Scientifico Tecnologico Progetto Brocca

ESAME DI STATO DI LICEO SCIENTIFICO 2006 Indirizzo Scientifico Tecnologico Progetto Brocca ESAME DI STATO DI LICEO SCIENTIFICO 2006 Indirizzo Scientifico Tecnologico Progetto Brocca Trascrizione del testo e redazione delle soluzioni di Paolo Cavallo. La prova Il candidato svolga una relazione

Dettagli

FOGLIO INFORMATIVO. relativo alle operazioni di

FOGLIO INFORMATIVO. relativo alle operazioni di FOGLIO INFORMATIVO relativo alle operazioni di FINANZIAMENTI IMPORT, ANTICIPI E PREFINANZIAMENTI EXPORT, FINANZIAMENTI SENZA VINCOLO DI DESTINAZIONE (questi ultimi se non rientranti nel credito ai consumatori)

Dettagli

Gli indici per l analisi di bilancio. Relazione di

Gli indici per l analisi di bilancio. Relazione di Gli indici per l analisi di bilancio Relazione di Giorgio Caprioli Gli indici di solidità Gli indici di solidità studiano il rapporto tra le parti alte dello Stato Patrimoniale, ossia tra Capitale proprio

Dettagli

Esercitazioni di Statistica

Esercitazioni di Statistica Esercitazioni di Statistica Test d ipotesi sul valor medio e test χ 2 di adattamento Prof. Livia De Giovanni statistica@dis.uniroma1.it Esercizio 1 Si supponga che il diametro degli anelli metallici prodotti

Dettagli

Operazioni, attività e passività in valuta estera

Operazioni, attività e passività in valuta estera OIC ORGANISMO ITALIANO DI CONTABILITÀ PRINCIPI CONTABILI Operazioni, attività e passività in valuta estera Agosto 2014 Copyright OIC PRESENTAZIONE L Organismo Italiano di Contabilità (OIC) si è costituito,

Dettagli

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Rappresentazione in virgola mobile

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Rappresentazione in virgola mobile Problemi connessi all utilizzo di un numero di bit limitato Abbiamo visto quali sono i vantaggi dell utilizzo della rappresentazione in complemento alla base: corrispondenza biunivoca fra rappresentazione

Dettagli