4. SERIE NUMERICHE FIGURALI

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "4. SERIE NUMERICHE FIGURALI"

Transcript

1 4. SERIE NUMERICHE FIGURALI Le serie numeriche figurali consistono in: - una successione di numeri collocati all interno di alcune figure, OPPURE - una serie di figure a cui è possibile associare un valore numerico.

2 In modo particolare, le 4 tipologie più frequenti di serie numeriche figurali sono: 1. successioni riconducibili ad una serie numerica classica 2. successioni che propongono un confronto tra due o più unità grafiche 3 test del domino 4. test del poker

3 1. successioni riconducibili ad una serie numerica classica: consistono in una successione di numeri collocati all interno di una tabella, o in un insieme di figure geometriche, o di disegni di altra natura. Questa tipologia di quesiti si risolvono adottando le stesse tecniche risolutive esposte in precedenza, mostrate nell esempio seguente

4 Soluzione: provate a riscrivere i numeri contenuti nel cerchio, ponendoli l uno a fianco all altro, iniziando dal numero più piccolo (ma potreste iniziare anche dal numero più grande): in questo modo dovrebbe risultare agevole constatare che si tratta di una serie crescente, con incremento crescente :

5 La risposta corretta, dunque, è la b). - con il secondo numero, il 2, uguale precedente incrementato di +2 (0 + 2 = 2); - il terzo, il 6, uguale al precedente incrementato di +4 (2 + 4 = 6); - il quarto, il 12, uguale al precedente incrementato di +6 (6 + 6 = 12); - il quinto, il 20, uguale al precedente incrementato di +8 ( = 20). Seguendo questo ragionamento, il numero che completa la serie proposta è 30 perché, dopo incrementi pari a +2, +4, +6 e +8, il sesto numero della serie si ottiene incrementando di +10. Il precedente è 20 e + 10 è uguale 30. La risposta corretta, dunque, è la b.

6 2. successioni che propongono un confronto tra due o più unità grafiche: sono quesiti che propongono un confronto tra i numeri collocati all interno di due o più unità grafiche simili tra loro (le unità grafiche possono consistere in piccole tabelle, oppure in figure di altra natura, come mostrato nella figura seguente).

7

8 Una o più unità grafiche sono complete (ovvero non presentano numeri incogniti) e servono ad indicarvi la logica da applicare per scoprire il numero incognito presente nell altra o nelle altre unità grafiche (come mostrato negli esempi , e )

9

10 La risposta corretta è la d). Soluzione: L esempio proposto è caratterizzato da una logica verticale, ovvero i numeri contenuti nei riquadri superiori hanno un valore triplo rispetto ai numeri contenuti nei rispettivi riquadri inferiori è uguale a 9 x 3; - 57 è uguale a 19 x 3; - 39 è uguale a 13 x 3. II numero incognito, quindi, è 32 perché 96 è il triplo di 32 (32 x 3 = 96). La risposta corretta è la d, come mostrato di seguito:

11

12

13 La risposta corretta è la d). Soluzione: Non sempre è semplice individuare le unità grafiche. Nell esempio proposto, anche se non immediatamente evidente, ogni riga può essere considerata un unità grafica. - I numeri della prima riga sono legati dalle operazioni x 1 e - 1 ; - i numeri della seconda riga sono legati dalle operazioni x 2 e -2 ; - i numeri della terza riga sono legati dalle operazioni x3 e -3 (come mostrato nella figura seguente).

14 Il numero incognito, quindi, è uguale a 33 perché, trovandosi nella terza riga, bisognerebbe sottrarre al precedente (al 36) il 3 e pertanto 36-3 = 33. Di conseguenza, la risposta corretta è la d.

15 Esempio

16 La risposta corretta è la c), come mostrato di seguito:

17 Soluzione: In questo caso sono presenti tre unità grafiche, di cui due complete. La logica da seguire per determinare il numero incognito, però, è differente rispetto ai due quiz precedenti, ovvero il legame da ricercare è tra numeri disposti in posizioni corrispondenti nelle tre unità grafiche (e non all interno della stessa unità grafica!). - In altri termini, esiste un legame tra i numeri collocati in alto a sinistra in ciascuna unità grafica (13, 7 e 20): sommando 13 e 7, infatti, si ottiene 20, ovvero il numero collocato nella medesima posizione della terza unità grafica. - Un legame analogo caratterizza i numeri collocati in alto a destra in ciascuna unità grafica (21, 1 e 22): eseguendo l operazione si ottiene 22, ovvero il numero collocato nella terza unità grafica, in alto a destra. - Allo stesso modo, sommando i numeri collocati in basso nelle prime due unità grafiche (37 e il numero incognito), si dovrebbe ottenere il numero collocato in basso nella terza unità grafica, ovvero 42. Alla domanda: quale numero, sommato a 37, dà come risultato 42? si risponde con il numero 5. Pertanto la risposta corretta è la c).

18 3. test del domino: è un argomento affine alle serie numeriche figurali. Il domino è un gioco da tavolino in cui si usano 28 tessere costituite da due riquadri (come mostrato nell immagine seguente):

19 Ciascuno di essi reca un numero compreso tra lo zero e il sei. I numeri sono rappresentati con puntini neri: se nel riquadro non compare nessun puntino il suo valore è zero. Il test del domino consiste nella capacità di individuare il valore numerico incognito di una delle tessere raffigurate.

20 Poiché i numeri di ciascun riquadro sono compresi tra 0 e 6, dopo il 6 si ricomincia con lo zero (il domino, infatti, è un gioco con ciclicità nel quale dopo il 6, non si continua con 7, 8,., bensì con 0, 1,.... Le tessere possono avere differenti disposizioni spaziali (lineare, o a corona, o a croce, ecc.). La logica da ricercare è affine ai concetti illustrati in precedenza; talvolta è persino più semplice, come constaterete analizzando gli esempi successivi e ;

21

22 La risposta corretta è la a). Soluzione: Nel quiz proposto, sia i riquadri superiori, sia gli inferiori presentano un decremento costante pari a -1. L elemento incognito, quindi, è, nei riquadri inferiori, il riquadro di valore zero, ovvero il riquadro privo di puntini (perché 3-1 = 2, 2-1 = 1 e 1-1 = 0). La risposta corretta è la a), come mostrato nella figura seguente:

23 La risposta corretta è la a) come mostrato nella figura seguente: Prestate molta attenzione all opzione scelta perché, talvolta, non c è corrispondenza tra la lettera identificativa dell immagine corretta e l opzione, espressa in lettere dell alfabeto, che la riporta. In questo caso, ad esempio, il disegno corretto è identificato dalla lettera B, che è riportata nell opzione a).

24

25 La risposta corretta è la c). Soluzione: - Sommando i valori numerici dei riquadri di sinistra delle prime due tessere in alto (1 e 2), si ottiene il valore numerico del riquadro di sinistra della terza tessera in alto (1 + 2 = 3); - sommando i valori numerici dei riquadri di destra delle prime due tessere in alto (5 e 0), si ottiene il valore numerico del riquadro di destra della terza tessera in alto (5 + 0 = 5). - Seguendo un ragionamento analogo al precedente anche per le tessere in basso, si giunge alla conclusione che il numero incognito è il 3, ottenuto sommando il valore numerico dei riquadri di sinistra delle prime due tessere (2 + 1 = 3). La tessera da sostituire a quella incognita, dunque, è indicata con la lettera D e l opzione da barrare è la c, come mostrato nella figura seguente.

26

27 4. test del poker: è un argomento affine alle serie numeriche figurali. Consiste in una successione di carte, di cui una o due sono incognite (esempi e 4.1.8). L obiettivo da perseguire è individuare il valore numerico e il seme (fiori, picche, cuori o denari) della carta incognita. Non dimenticate che il valore numerico delle carte contrassegnate con le lettere J, Q, K e A è, rispettivamente, 11, 12, 13 e 1. Le carte, quindi, possono assumere un valore numerico compreso tra 1 e 13 (il test del poker, infatti, è un classico esempio di ciclicità per cui dopo il 13, non si continua con 14, 15, bensì si ricomincia con 1, 2,...).

28 Esempio

29 La risposta corretta è la b). Soluzione: come mostrato nella figura seguente, le carte rappresentate nel quiz precedente seguono la logica dell incremento costante di +3. La carta incognita, quindi, deve necessariamente essere il Q perché la precedente è un 9 che incrementato di 3 unità dà come risultato 12 ( Q equivale a 12). Tra le opzioni ci sono 2 Q. Quale scegliere? Osservando con attenzione le carte proposte, noterete che appartengono a tre semi differenti (cuori, fiori e picche). Di conseguenza è verosimile che la carta incognita appartenga ai seme mancante, ovvero quadri. Ecco perché la soluzione corretta è il Q di quadri, ovvero la carta B e l opzione da barrare è la b (in questo caso la lettera identificativa della carta corretta coincide all opzione che la riporta).

30

31 Esempio

32 La risposta corretta è la c). Soluzione: Molto spesso, per risolvere questa tipologia di quiz, è necessario sommare i valori numerici delle carte in senso orizzontale o in senso verticale. - Nell esempio proposto, osservando le due carte superiori (il 4 e il 7) noterete che la loro somma è 11 (4 + 7 = 11). - Osservando, poi, le due carte inferiori (l asso e il 10) noterete che la loro somma è ancora 11 ( = 11). - È verosimile, quindi, che sommando le due carte centrali (la carta incognita e il 5, si debba ottenere 11. Quale carta, sommata a 5 dà come risultato 11? È il 6 e tra le opzioni, l unico 6 rappresentato è il 6 di fiori (la carta C ).

33 La risposta corretta, dunque, è l opzione b), come mostrato nella figura seguente:

34 Dopo la carrellata di esempi proposta, che certamente non esaurisce la casistica esistente, ma rappresenta l illustrazione dei casi più frequenti, non vi resta che iniziare a testare le conoscenze acquisite, cimentandovi con altri quiz analoghi a quelli appena ora proposti e spiegati.

Ragionamento spaziale visivo e percezione

Ragionamento spaziale visivo e percezione 2 Ragionamento spaziale visivo e percezione Serie e analogie figurali! In alcune batterie di test psicoattitudinali sono ampiamente rappresentati i quesiti che propongono un elenco di figure: in alcuni

Dettagli

Bonus Poker Multi - Regole di Gioco

Bonus Poker Multi - Regole di Gioco Bonus Poker Multi - Regole di Gioco Come giocare Il gioco Bonus Poker Multi utilizza un mazzo francese da 52 carte, e scopo del gioco è ottenere una combinazione pari o superiore alla coppia di Fanti (Jack),

Dettagli

In base alla formula di torneo adottata i tornei possono pertanto prevedere lo svolgimento di una o più partite.

In base alla formula di torneo adottata i tornei possono pertanto prevedere lo svolgimento di una o più partite. Formule di gioco La successione di mani necessarie per l eliminazione del penultimo giocatore o per la determinazione dei giocatori che accedono ad un turno successivo costituisce una partita. In base

Dettagli

FORMEZ - Centro di Formazione e Studi. Banca dati Consiglio di Stato 2010

FORMEZ - Centro di Formazione e Studi. Banca dati Consiglio di Stato 2010 FORMEZ - Centro di Formazione e Studi Banca dati Consiglio di Stato 0 Area logico-matematica N domande: 00 RAGIONAMENTO NUMERICO I quesiti sono composti da numeri posti in serie. Di ogni serie è stato

Dettagli

Double Bonus Poker - Regole di Gioco

Double Bonus Poker - Regole di Gioco Double Bonus Poker - Regole di Gioco Come giocare Il gioco Double Bonus Poker utilizza un mazzo francese da 52 carte, e scopo del gioco è ottenere una combinazione pari o superiore alla coppia di Fanti

Dettagli

Jack or Better - Regole di Gioco

Jack or Better - Regole di Gioco Jack or Better - Regole di Gioco Come giocare Il gioco Jacks or Better utilizza un mazzo francese da 52 carte, e scopo del gioco e' ottenere una combinazione pari o superiore alla coppia di Jack, come

Dettagli

Studio di funzioni ( )

Studio di funzioni ( ) Studio di funzioni Effettuare uno studio qualitativo e tracciare un grafico approssimativo delle seguenti funzioni. Si studi in particolare anche la concavità delle funzioni e si indichino esplicitamente

Dettagli

Pokerclub Texas Hold em modalità torneo

Pokerclub Texas Hold em modalità torneo Regole di gioco Pokerclub Texas Hold em modalità torneo Scopo del gioco Lo scopo del gioco Pokerclub Texas Hold em è riuscire a tenere per sé tutte le chips. Man mano che i giocatori finiscono le chips

Dettagli

Capitolo 6. 6.1 TOTALI PARZIALI E COMPLESSIVI Aprire la cartella di lavoro Lezione2 e inserire la tabella n 2 nel Foglio1 che chiameremo Totali.

Capitolo 6. 6.1 TOTALI PARZIALI E COMPLESSIVI Aprire la cartella di lavoro Lezione2 e inserire la tabella n 2 nel Foglio1 che chiameremo Totali. Capitolo 6 GESTIONE DEI DATI 6.1 TOTALI PARZIALI E COMPLESSIVI Aprire la cartella di lavoro Lezione2 e inserire la tabella n 2 nel Foglio1 che chiameremo Totali. Figura 86. Tabella Totali Si vuole sapere

Dettagli

Prof.ssa Paola Vicard

Prof.ssa Paola Vicard DISTRIBUZIONE DI FREQUENZE PER CARATTERI QUALITATIVI Questa nota consiste per la maggior parte nella traduzione (con alcune integrazioni) da Descriptive statistics di J. Shalliker e C. Ricketts, 2000,

Dettagli

Appunti sulla Macchina di Turing. Macchina di Turing

Appunti sulla Macchina di Turing. Macchina di Turing Macchina di Turing Una macchina di Turing è costituita dai seguenti elementi (vedi fig. 1): a) una unità di memoria, detta memoria esterna, consistente in un nastro illimitato in entrambi i sensi e suddiviso

Dettagli

0. Piano cartesiano 1

0. Piano cartesiano 1 0. Piano cartesiano Per piano cartesiano si intende un piano dotato di due assi (che per ragioni pratiche possiamo scegliere ortogonali). Il punto in comune ai due assi è detto origine, e funziona da origine

Dettagli

2.2.2.1 Identificare le diverse parti di una finestra: barra del titolo, barra dei menu, barra degli strumenti, barra di stato, barra di scorrimento.

2.2.2.1 Identificare le diverse parti di una finestra: barra del titolo, barra dei menu, barra degli strumenti, barra di stato, barra di scorrimento. Uso del computer e gestione dei file 57 2.2.2.1 Identificare le diverse parti di una finestra: barra del titolo, barra dei menu, barra degli strumenti, barra di stato, barra di scorrimento. All interno

Dettagli

Utilizzo I mintermini si usano quando si considererà la funzione di uscita Q come Somma di Prodotti (S. P.) ossia OR di AND.

Utilizzo I mintermini si usano quando si considererà la funzione di uscita Q come Somma di Prodotti (S. P.) ossia OR di AND. IPSI G. Plana Via Parenzo 46, Torino efinizione di Mintermine onsiderata una qualunque riga della tabella di verità in cui la funzione booleana di uscita Q vale, si definisce mintermine il prodotto logico

Dettagli

0 < a < 1 a > 1. In entrambi i casi la funzione y = log a (x) si può studiare per punti e constatare che essa presenta i seguenti andamenti y

0 < a < 1 a > 1. In entrambi i casi la funzione y = log a (x) si può studiare per punti e constatare che essa presenta i seguenti andamenti y INTRODUZIONE Osserviamo, in primo luogo, che le funzioni logaritmiche sono della forma y = log a () con a costante positiva diversa da (il caso a = è banale per cui non sarà oggetto del nostro studio).

Dettagli

Statistica 1. Esercitazioni. Dott. Luigi Augugliaro 1. Università di Palermo

Statistica 1. Esercitazioni. Dott. Luigi Augugliaro 1. Università di Palermo Statistica 1 Esercitazioni Dott. 1 1 Dipartimento di Scienze Statistiche e Matematiche S. Vianelli, Università di Palermo ricevimento: lunedì ore 15-17 mercoledì ore 15-17 e-mail: luigi.augugliaro@unipa.it

Dettagli

Joker Poker - Regole di Gioco

Joker Poker - Regole di Gioco Joker Poker - Regole di Gioco Come giocare Il gioco Joker Poker utilizza un mazzo da 53 carte composto da 52 carte francesi più una carta Joker(Jolly) che quindi può assumere il valore di ogni altra carta.

Dettagli

al via 1 Percorsi guidati per le vacanze di matematica e scienze UNITÀ CAMPIONE Edizioni del Quadrifoglio Evelina De Gregori Alessandra Rotondi

al via 1 Percorsi guidati per le vacanze di matematica e scienze UNITÀ CAMPIONE Edizioni del Quadrifoglio Evelina De Gregori Alessandra Rotondi Evelina De Gregori Alessandra Rotondi al via 1 Percorsi guidati per le vacanze di matematica e scienze per la Scuola secondaria di primo grado UNITÀ CAMPIONE Edizioni del Quadrifoglio Test d'ingresso NUMERI

Dettagli

Esercizi di Probabilità e Statistica

Esercizi di Probabilità e Statistica Esercizi di Probabilità e Statistica Samuel Rota Bulò 19 marzo 2007 Spazi di probabilità finiti e uniformi Esercizio 1 Un urna contiene due palle nere e una rossa. Una seconda urna ne contiene una bianca

Dettagli

Kangourou Italia Gara del 18 marzo 2010 Categoria Ecolier Per studenti di quarta o quinta della scuola primaria

Kangourou Italia Gara del 18 marzo 2010 Categoria Ecolier Per studenti di quarta o quinta della scuola primaria Testi_10Mat.qxp 15-02-2010 7:17 Pagina 5 Kangourou Italia Gara del 18 marzo 2010 Categoria Per studenti di quarta o quinta della scuola primaria I quesiti dal N. 1 al N. 8 valgono 3 punti ciascuno 1. Nella

Dettagli

Elementi di topologia della retta

Elementi di topologia della retta Elementi di topologia della retta nome insieme definizione l insieme è un concetto primitivo che si accetta come intuitivamente noto secondo George Cantor, il padre della teoria degli insiemi: Per insieme

Dettagli

Pinella Singolo ASC-CAAM 2013/14

Pinella Singolo ASC-CAAM 2013/14 Pinella Singolo ASC-CAAM 2013/14 Vedi Calendario Premi del campionato ( si svolge in 4/5 tappe di qualificazione ) : > Trofei per i primi nr 4 ( quattro ) > Ai prmi due omaggio pernottamento in residence

Dettagli

Limiti e continuità delle funzioni reali a variabile reale

Limiti e continuità delle funzioni reali a variabile reale Limiti e continuità delle funzioni reali a variabile reale Roberto Boggiani Versione 4.0 9 dicembre 2003 1 Esempi che inducono al concetto di ite Per introdurre il concetto di ite consideriamo i seguenti

Dettagli

Capitolo 4 Probabilità

Capitolo 4 Probabilità Levine, Krehbiel, Berenson Statistica II ed. 2006 Apogeo Capitolo 4 Probabilità Insegnamento: Statistica Corso di Laurea Triennale in Economia Facoltà di Economia, Università di Ferrara Docenti: Dott.

Dettagli

Geometria analitica di base (prima parte)

Geometria analitica di base (prima parte) SAPERE Al termine di questo capitolo, avrai appreso: come fissare un sistema di riferimento cartesiano ortogonale il significato di equazione di una retta il significato di coefficiente angolare di una

Dettagli

Inserimento dei dati

Inserimento dei dati Inserimento dei dati Ulisse Di Corpo Terminata la fase di progettazione della scheda è possibile iniziare ad inserire i dati. A tal fine si seleziona Inserimento/Modifica dal menù Schede. Il programma

Dettagli

Centro studi LOGOS ONLUS - Messina. Emidio Tribulato

Centro studi LOGOS ONLUS - Messina. Emidio Tribulato Centro studi LOGOS ONLUS - Messina Emidio Tribulato Emidio Tribulato Volume sesto Centro studi LOGOS ONLUS - Messina C 2010- Tutti i diritti riservati. Sito web: www.cslogos.it E - mail: postmaster@cslogos.it

Dettagli

Probabilità discreta

Probabilità discreta Probabilità discreta Daniele A. Gewurz 1 Che probabilità c è che succeda...? Una delle applicazioni della combinatoria è nel calcolo di probabilità discrete. Quando abbiamo a che fare con un fenomeno che

Dettagli

L idea. Scopo del gioco. Un gioco di Marco Ruskowski e Marcel Süßelbeck per 2-4 persone a partire da 10 anni

L idea. Scopo del gioco. Un gioco di Marco Ruskowski e Marcel Süßelbeck per 2-4 persone a partire da 10 anni Un gioco di Marco Ruskowski e Marcel Süßelbeck per 2-4 persone a partire da 10 anni Il Vescovo è in attesa di ospiti importanti, ma il grande affresco il dipinto che decora il soffitto del Duomo deve essere

Dettagli

Parliamo un po di più di bridge. La filosofia del gioco. Nico Andriola

Parliamo un po di più di bridge. La filosofia del gioco. Nico Andriola Parliamo un po di più di bridge La filosofia del gioco Si gioca a bridge con le carte francesi prive di Jolly Il mazziere distribuisce le carte, 13 per giocatore (o vengono estratte dall astuccio) Ogni

Dettagli

Traduzione a cura di Michele Lo Mundo. Società attiva: Una società che si trova sul piano di gioco.

Traduzione a cura di Michele Lo Mundo. Società attiva: Una società che si trova sul piano di gioco. Traduzione a cura di Michele Lo Mundo Giocatori: da 2 a 6 Età: dai 12 anni in su Livello di Difficoltà: Basso Termini di gioco: Società: Due o più tessere adiacenti (non in diagonale), identificate da

Dettagli

Ogni primino sa che...

Ogni primino sa che... Ogni primino sa che... A cura della équipe di matematica 25 giugno 2015 Competenze in ingresso Tradizionalmente, nei primi giorni di scuola, gli studenti delle classi prime del Pascal sostengono una prova

Dettagli

In base alla formula di torneo adottata i tornei possono pertanto prevedere lo svolgimento di una o più partite.

In base alla formula di torneo adottata i tornei possono pertanto prevedere lo svolgimento di una o più partite. Formule di gioco La successione di mani necessarie per l eliminazione del penultimo giocatore o per la determinazione dei giocatori che accedono ad un turno successivo costituisce una partita. In base

Dettagli

Regolamento Casinò Poker Joker Poker

Regolamento Casinò Poker Joker Poker Regolamento Casinò Poker Joker Poker Lo scopo del poker Joker è di ottenere una mano di poker da 5 carte che contenga una combinazione vincente (vedi la tabella dei pagamenti sulla macchina). Migliore

Dettagli

13. GLI ZII DI PIERINO

13. GLI ZII DI PIERINO 13 o RALLY MATEMATICO TRANSALPINO PROVA II - marzo - aprile 2005 ARMT.2005 p. 1 12. DADI (Cat. 6, 7, 8, 9) ARMT.2005-13 - II prova Un dado (di tipo «occidentale») è costruito correttamente se sono rispettate

Dettagli

FUNZIONI ELEMENTARI - ESERCIZI SVOLTI

FUNZIONI ELEMENTARI - ESERCIZI SVOLTI FUNZIONI ELEMENTARI - ESERCIZI SVOLTI 1) Determinare il dominio delle seguenti funzioni di variabile reale: (a) f(x) = x 4 (c) f(x) = 4 x x + (b) f(x) = log( x + x) (d) f(x) = 1 4 x 5 x + 6 ) Data la funzione

Dettagli

FUNZIONE ESPONENZIALE E FUNZIONE LOGARITMICA

FUNZIONE ESPONENZIALE E FUNZIONE LOGARITMICA FUNZIONE ESPONENZIALE E FUNZIONE LOGARITMICA DEFINIZIONE: Dato un numero reale a che sia a > 0 e a si definisce funzione esponenziale f(x) = a x la relazione che ad ogni valore di x associa uno e un solo

Dettagli

Pivot è bello. Principali. misure di variabilità. Il contesto è di tipo matematico, in particolare riguarda l uso di dati numerici e delle loro

Pivot è bello. Principali. misure di variabilità. Il contesto è di tipo matematico, in particolare riguarda l uso di dati numerici e delle loro Pivot è bello Livello scolare: 1 biennio Abilità Conoscenze interessate Predisporre la struttura della Distribuzioni delle matrice dei dati grezzi con frequenze a seconda del riguardo a una rilevazione

Dettagli

ESERCIZI DI ALGEBRA LINEARE E GEOMETRIA

ESERCIZI DI ALGEBRA LINEARE E GEOMETRIA ESERCIZI DI ALGEBRA LINEARE E GEOMETRIA Francesco Bottacin Padova, 24 febbraio 2012 Capitolo 1 Algebra Lineare 1.1 Spazi e sottospazi vettoriali Esercizio 1.1. Sia U il sottospazio di R 4 generato dai

Dettagli

Consideriamo due polinomi

Consideriamo due polinomi Capitolo 3 Il luogo delle radici Consideriamo due polinomi N(z) = (z z 1 )(z z 2 )... (z z m ) D(z) = (z p 1 )(z p 2 )... (z p n ) della variabile complessa z con m < n. Nelle problematiche connesse al

Dettagli

Le derivate versione 4

Le derivate versione 4 Le derivate versione 4 Roberto Boggiani 2 luglio 2003 Riciami di geometria analitica Dalla geometria analitica sulla retta sappiamo ce dati due punti del piano A(x, y ) e B(x 2, y 2 ) con x x 2 la retta

Dettagli

SISTEMI DI NUMERAZIONE E CODICI

SISTEMI DI NUMERAZIONE E CODICI SISTEMI DI NUMERAZIONE E CODICI Il Sistema di Numerazione Decimale Il sistema decimale o sistema di numerazione a base dieci usa dieci cifre, dette cifre decimali, da O a 9. Il sistema decimale è un sistema

Dettagli

Derivate Limiti e funzioni continue

Derivate Limiti e funzioni continue Derivate Limiti e funzioni continue Se il valore di una funzione f() si avvicina al valore l quando si avvicina ad 0 diciamo che f() ha come ite l per tendente ad 0. Noi per rappresentare questo fatto

Dettagli

Regolamento di gioco di PokerClub

Regolamento di gioco di PokerClub Regolamento di gioco di PokerClub Obiettivo del gioco Lo scopo del poker Texas Holdem è avere la migliore mano con cinque carte, usando la combinazione delle due carte coperte personali e le cinque carte

Dettagli

BALDAZZI STYL ART S.p.A. - Via dell artigiano 17-40065 Pianoro (BO) Tel. 051-6516102 - Fax 051-6516142 info@baldazzi.com

BALDAZZI STYL ART S.p.A. - Via dell artigiano 17-40065 Pianoro (BO) Tel. 051-6516102 - Fax 051-6516142 info@baldazzi.com GIOCO CHILI KING é un gioco video slot 5 rulli multi - linea, con 10 linee di vincita. Il giocatore vince se 3 o più simboli uguali si allineano (all interno di una linea di vincita). Il gioco viene suddiviso

Dettagli

LIMITI E CONFRONTO LOCALE Esercizi svolti. b) lim. d) lim. h) lim x x + 1 x. l) lim. b) lim x cos x. x 0 sin 2 3x cos x p) lim.

LIMITI E CONFRONTO LOCALE Esercizi svolti. b) lim. d) lim. h) lim x x + 1 x. l) lim. b) lim x cos x. x 0 sin 2 3x cos x p) lim. LIMITI E CONFRONTO LOCALE Esercizi svolti. Calcolare i seguenti iti: a + 4 + b + 4 + 4 c 5 e ± g i + + sin 4 m sin o π q sin π + 4 + 7 d + 4 + + 5 4 + f 4 4 + 5 4 + 4 h + + l + + cos n sin cos p π π +

Dettagli

Pokerclub Texas Hold em Cash Game

Pokerclub Texas Hold em Cash Game Regole di gioco Pokerclub Texas Hold em Cash Game Scopo del gioco Il gioco Pokerclub Texas Hold em è offerto, nella modalità di gioco Tavoli Cash, nel quale le vincite sono assegnate sulla base dei risultati

Dettagli

ESERCITAZIONI PROPEDEUTICHE DI MATEMATICA. A. Concetti e proprietà di base del sistema dei numeri della matematica ( ) + 64 7 10 :5

ESERCITAZIONI PROPEDEUTICHE DI MATEMATICA. A. Concetti e proprietà di base del sistema dei numeri della matematica ( ) + 64 7 10 :5 ESERCITAZIONI PROPEDEUTICHE DI MATEMATICA PER IL CORSO DI LAUREA IN SCIENZE DELLA FORMAZIONE PRIMARIA Ana Millán Gasca Luigi Regoliosi La lettura e lo studio del libro Pensare in matematica da parte degli

Dettagli

~ Copyright Ripetizionando - All rights reserved ~ http://ripetizionando.wordpress.com STUDIO DI FUNZIONE

~ Copyright Ripetizionando - All rights reserved ~ http://ripetizionando.wordpress.com STUDIO DI FUNZIONE STUDIO DI FUNZIONE Passaggi fondamentali Per effettuare uno studio di funzione completo, che non lascia quindi margine a una quasi sicuramente errata inventiva, sono necessari i seguenti 7 passaggi: 1.

Dettagli

Come si analizza un gioco

Come si analizza un gioco Come si analizza un gioco Parte II Giochi strategici a somma zero Alberto Abbondandolo Filippo Giuliani Alessandro Montagnani Università di Pisa Settimana di orientamento in Matematica 2010 Alice e Bruno

Dettagli

Teoria delle code. Sistemi stazionari: M/M/1 M/M/1/K M/M/S

Teoria delle code. Sistemi stazionari: M/M/1 M/M/1/K M/M/S Teoria delle code Sistemi stazionari: M/M/1 M/M/1/K M/M/S Fabio Giammarinaro 04/03/2008 Sommario INTRODUZIONE... 3 Formule generali di e... 3 Leggi di Little... 3 Cosa cerchiamo... 3 Legame tra N e le

Dettagli

ISTITUTO COMPRENSIVO DELLA VALLE DEI LAGHI

ISTITUTO COMPRENSIVO DELLA VALLE DEI LAGHI ISTITUTO COMPRENSIVO DELLA VALLE DEI LAGHI PROGRAMMA DI MATEMATICA PER LE CLASSI SECONDA E TERZA DELLA SCUOLA PRIMARIA SETTEMBRE 2003 COMPETENZE IN NUMERO Obiettivi: - Contare, eseguire semplici operazioni

Dettagli

Indicando con x i minuti di conversazione effettuati in un mese, con la spesa totale nel mese e con il costo medio al minuto:

Indicando con x i minuti di conversazione effettuati in un mese, con la spesa totale nel mese e con il costo medio al minuto: PROBLEMA 1. Il piano tariffario proposto da un operatore telefonico prevede, per le telefonate all estero, un canone fisso di 10 euro al mese, più 10 centesimi per ogni minuto di conversazione. Indicando

Dettagli

Liceo linguistico Trento Classi quarte vecchio ordinamento Studio di funzioni (prima parte) Visita il sito: www.raimondovaleri.it

Liceo linguistico Trento Classi quarte vecchio ordinamento Studio di funzioni (prima parte) Visita il sito: www.raimondovaleri.it Liceo linguistico Trento Classi quarte vecchio ordinamento Studio di funzioni (prima parte) Visita il sito: www.raimondovaleri.it Esempio 1 y= f (x)= x 1 x 2 9 a Dominio: D= R { 3,3} Il denominatore deve

Dettagli

I PROBLEMI ALGEBRICI

I PROBLEMI ALGEBRICI I PROBLEMI ALGEBRICI La risoluzione di problemi è una delle attività fondamentali della matematica. Una grande quantità di problemi è risolubile mediante un modello algebrico costituito da equazioni e

Dettagli

( x) ( x) 0. Equazioni irrazionali

( x) ( x) 0. Equazioni irrazionali Equazioni irrazionali Definizione: si definisce equazione irrazionale un equazione in cui compaiono uno o più radicali contenenti l incognita. Esempio 7 Ricordiamo quanto visto sulle condizioni di esistenza

Dettagli

Esercitazione del 05-03-2007

Esercitazione del 05-03-2007 FUNZIONI Esercitazione del 05-03-2007 1. Aprire una nuova cartella di lavoro. 2. Inserire nel foglio di lavoro di Excel le seguenti colonne: A B 1000 100 1100 200 1200 300 1300 400 1400 500 1500 600 1600

Dettagli

G3. Asintoti e continuità

G3. Asintoti e continuità G3 Asintoti e continuità Un asintoto è una retta a cui la funzione si avvicina sempre di più senza mai toccarla Non è la definizione formale, ma sicuramente serve per capire il concetto di asintoto Nei

Dettagli

CURRICOLO DI MATEMATICA CLASSE PRIMA

CURRICOLO DI MATEMATICA CLASSE PRIMA CURRICOLO DI MATEMATICA CLASSE PRIMA TRAGUARDI DI COMPETENZA NUCLEI FONDANTI OBIETTIVI DI APPRENDIMENTO CONOSCITIVA IL NUMERO CARATTERISTICHE Quantità entro il numero 20 Cardinalità Posizionalità RELAZIONI

Dettagli

Le equazioni. Diapositive riassemblate e rielaborate da prof. Antonio Manca da materiali offerti dalla rete.

Le equazioni. Diapositive riassemblate e rielaborate da prof. Antonio Manca da materiali offerti dalla rete. Le equazioni Diapositive riassemblate e rielaborate da prof. Antonio Manca da materiali offerti dalla rete. Definizione e caratteristiche Chiamiamo equazione l uguaglianza tra due espressioni algebriche,

Dettagli

Esame di Informatica CHE COS È UN FOGLIO ELETTRONICO CHE COS È UN FOGLIO ELETTRONICO CHE COS È UN FOGLIO ELETTRONICO. Facoltà di Scienze Motorie

Esame di Informatica CHE COS È UN FOGLIO ELETTRONICO CHE COS È UN FOGLIO ELETTRONICO CHE COS È UN FOGLIO ELETTRONICO. Facoltà di Scienze Motorie Facoltà di Scienze Motorie CHE COS È UN FOGLIO ELETTRONICO Una tabella che contiene parole e numeri che possono essere elaborati applicando formule matematiche e funzioni statistiche. Esame di Informatica

Dettagli

Anno 4 Grafico di funzione

Anno 4 Grafico di funzione Anno 4 Grafico di funzione Introduzione In questa lezione impareremo a disegnare il grafico di una funzione reale. Per fare ciò è necessario studiare alcune caratteristiche salienti della funzione che

Dettagli

OCCUPATI SETTORE DI ATTIVITA' ECONOMICA

OCCUPATI SETTORE DI ATTIVITA' ECONOMICA ESERCIZIO 1 La tabella seguente contiene i dati relativi alla composizione degli occupati in Italia relativamente ai tre macrosettori di attività (agricoltura, industria e altre attività) negli anni 1971

Dettagli

ARRAY. ARRAY a 3 DIMENSIONI

ARRAY. ARRAY a 3 DIMENSIONI Prof. Claudio Maccherani a.s. 2005 / 2006 ARRAY 1 TRESSETTE 2 BRISCOLA 4 POKER 6 ARRAY Una VARIABILE SEMPLICE è una scatola che può contenere un oggetto alla volta. La variabile è caratterizzata dal proprio

Dettagli

SoftWare DMGraphics. Indice. Manuale d uso. 1) Introduzione. 2) Pagine grafiche. 3) Grafici. 4) Menù

SoftWare DMGraphics. Indice. Manuale d uso. 1) Introduzione. 2) Pagine grafiche. 3) Grafici. 4) Menù SoftWare DMGraphics Manuale d uso Indice 1) Introduzione 2) Pagine grafiche. 2.1) Pagina grafica 2.2) Concetti generali 2.3) Scale dei valori 2.4) Posizionamento elementi nel grafico 3) Grafici 3.1) Grafici

Dettagli

Alcuni consigli per un uso di base delle serie di dati automatiche in Microsoft Excel

Alcuni consigli per un uso di base delle serie di dati automatiche in Microsoft Excel Alcuni consigli per un uso di base delle serie di dati automatiche in Microsoft Excel Le serie Una serie di dati automatica è una sequenza di informazioni legate tra loro da una relazione e contenute in

Dettagli

Per studio di funzione intendiamo un insieme di procedure che hanno lo scopo di analizzare le proprietà di una funzione f ( x) R R

Per studio di funzione intendiamo un insieme di procedure che hanno lo scopo di analizzare le proprietà di una funzione f ( x) R R Studio di funzione Per studio di funzione intendiamo un insieme di procedure che hanno lo scopo di analizzare le proprietà di una funzione f ( x) R R : allo scopo di determinarne le caratteristiche principali.

Dettagli

Statistica 1. Esercitazioni. Dott. Luigi Augugliaro 1. Università di Palermo

Statistica 1. Esercitazioni. Dott. Luigi Augugliaro 1. Università di Palermo Statistica 1 Esercitazioni Dott. 1 1 Dipartimento di Scienze Statistiche e Matematiche S. Vianelli, Università di Palermo ricevimento: lunedì ore 15-17 mercoledì ore 15-17 e-mail: luigi.augugliaro@unipa.it

Dettagli

INDICE INTRODUZIONE 9 I SOLITARI AGONISTICI 33 I GIOCHI DI COMBINAZIONE 12 I SOLITARI 40 I GIOCHI DOMINO 21 I GIOCHI PER BAMBINI 27 IL POKER 45

INDICE INTRODUZIONE 9 I SOLITARI AGONISTICI 33 I GIOCHI DI COMBINAZIONE 12 I SOLITARI 40 I GIOCHI DOMINO 21 I GIOCHI PER BAMBINI 27 IL POKER 45 INDICE INTRODUZIONE 9 CAPITOLO 1 I GIOCHI DI COMBINAZIONE 12 1.1 Scala Quarantaquattro 13 (dal gioco Scala Quaranta) 1.1/1 Variante Scala Quarantaquattro ai 151 16 1.2 Pinellix 16 1.3 Flash 18 1.3/1 Variante

Dettagli

Guida all uso di Java Diagrammi ER

Guida all uso di Java Diagrammi ER Guida all uso di Java Diagrammi ER Ver. 1.1 Alessandro Ballini 16/5/2004 Questa guida ha lo scopo di mostrare gli aspetti fondamentali dell utilizzo dell applicazione Java Diagrammi ER. Inizieremo con

Dettagli

Percorsi di matematica per il ripasso e il recupero

Percorsi di matematica per il ripasso e il recupero Giacomo Pagina Giovanna Patri Percorsi di matematica per il ripasso e il recupero 1 per la Scuola secondaria di secondo grado UNITÀ CMPIONE Edizioni del Quadrifoglio à t i n U 1 Insiemi La teoria degli

Dettagli

DEFINIZIONE DI NUOVI TIPI Un tipo è un insieme di valori.

DEFINIZIONE DI NUOVI TIPI Un tipo è un insieme di valori. 1 DEFINIZIONE DI NUOVI TIPI Un tipo è un insieme di valori. Per definire un nuovo tipo occorre specificare: 1. un nome per il tipo 2. come costruire i valori del tipo, cioè quali sono i costruttori del

Dettagli

Esercizi svolti sui numeri complessi

Esercizi svolti sui numeri complessi Francesco Daddi - ottobre 009 Esercizio 1 Risolvere l equazione z 1 + i = 1. Soluzione. Moltiplichiamo entrambi i membri per 1 + i in definitiva la soluzione è z 1 + i 1 + i = 1 1 + i z = 1 1 i. : z =

Dettagli

Vincolo di bilancio del consumatore, paniere ottimo

Vincolo di bilancio del consumatore, paniere ottimo Microeconomia, Esercitazione 2 (26/02/204) Vincolo di bilancio del consumatore, paniere ottimo Dott. Giuseppe Francesco Gori Domande a risposta multipla ) Antonio compra solo due beni, sigarette e banane.

Dettagli

la funzione è definita la funzione non è definita Si osservi, infatti, che la radice di un numero negativo non esiste nel campo dei numeri reali.

la funzione è definita la funzione non è definita Si osservi, infatti, che la radice di un numero negativo non esiste nel campo dei numeri reali. 1 y 4 CAMPO DI ESISTENZA. Poiché data è una irrazionale con indice di radice pari, il cui radicando è un polinomio, essa risulta definita solo per i valori della per i quali il radicando è positivo, ovvero

Dettagli

La funzione è continua nel suo dominio perchè y = f(x) è composizione di funzioni continue. Il punto x = 0 è un punto isolato per D f.

La funzione è continua nel suo dominio perchè y = f(x) è composizione di funzioni continue. Il punto x = 0 è un punto isolato per D f. FUNZIONI CONTINUE - ALCUNI ESERCIZI SVOLTI SIMONE ALGHISI 1. Continuità di una funzione Dati un insieme D R, una funzione f : D R e x 0 R, si è detto che f è continua in x 0 se sono soddisfatte le seguenti

Dettagli

GUIDA A LOGICA. Indicazioni preliminari per lo svolgimento della prima batteria di test

GUIDA A LOGICA. Indicazioni preliminari per lo svolgimento della prima batteria di test GUIDA A LOGICA Indicazioni preliminari per lo svolgimento della prima batteria di test L esame di Stato è certamente uno dei traguardi più significativi nella vita di uno studente e il suo superamento

Dettagli

Nella seconda partita Tommaso ha vinto o perso delle figurine? E quante? Spiegate il vostro ragionamento.

Nella seconda partita Tommaso ha vinto o perso delle figurine? E quante? Spiegate il vostro ragionamento. 11 o RALLY MATEMATICO TRANSALPINO - PROVA II marzo 2003 ARMT.2003 p. 1 1. GIOCHI CON ME? (Cat. 3) /ARMT/2003-11 - II prova Tommaso va a casa di Francesco per giocare con le figurine. Tommaso ha 27 figurine.

Dettagli

Clickomania con Blockly

Clickomania con Blockly Clickomania con Blockly Violetta Lonati Sommario Clickomania è un solitario, noto anche come Chain Shot! o Same Game. Il campo di gioco è costituito da una parete inizialmente coperta di mattoni, uno per

Dettagli

Regole di gioco Roulette Mobile

Regole di gioco Roulette Mobile Regole di gioco Roulette Mobile European Classic Roulette European Premium Roulette European VIP Roulette Regole di gioco European Classic Roulette Il gioco si svolge esclusivamente nella modalità a solitario,

Dettagli

Parte 3. Rango e teorema di Rouché-Capelli

Parte 3. Rango e teorema di Rouché-Capelli Parte 3. Rango e teorema di Rouché-Capelli A. Savo Appunti del Corso di Geometria 203-4 Indice delle sezioni Rango di una matrice, 2 Teorema degli orlati, 3 3 Calcolo con l algoritmo di Gauss, 6 4 Matrici

Dettagli

SITI Cloud Manuale utente

SITI Cloud Manuale utente 1 SITI Cloud Manuale utente 2 Autenticazione Per accedere ai servizi forniti da SITICloud, dopo aver richiamato con il browser l'indirizzo che Vi è stato assegnato è necessario identificarsi. Si apre la

Dettagli

lo 4 1. SELEZIONARE; le celle da tagliare (spostare) 2. Comando TAGLIA

lo 4 1. SELEZIONARE; le celle da tagliare (spostare) 2. Comando TAGLIA Capittol lo 4 Copia Taglia Incolla 4-1 - Introduzione Durante la stesura di un foglio di lavoro o durante un suo aggiornamento, può essere necessario copiare o spostare dati e formule. Per questo sono

Dettagli

risulta (x) = 1 se x < 0.

risulta (x) = 1 se x < 0. Questo file si pone come obiettivo quello di mostrarvi come lo studio di una funzione reale di una variabile reale, nella cui espressione compare un qualche valore assoluto, possa essere svolto senza necessariamente

Dettagli

PROGRAMMAZIONE MODULARE DI MATEMATICA CLASSE SECONDA INDIRIZZI: AMMINNISTRAZIONE FINANZA E MARKETING - TURISMO SEZIONE TECNICO

PROGRAMMAZIONE MODULARE DI MATEMATICA CLASSE SECONDA INDIRIZZI: AMMINNISTRAZIONE FINANZA E MARKETING - TURISMO SEZIONE TECNICO PROGRAMMAZIONE MODULARE MATEMATICA CL SECONDA INRIZZI: AMMINNISTRAZIONE FINANZA E MARKETING - TURISMO SEZIONE TECNICO MODULO 1 : Frazioni algebriche ed equazioni fratte C1, M1, M3 Determinare il campo

Dettagli

MATEMATICA OBIETTIVI GENERALI ATTIVITA OBIETTIVI SPECIFICI

MATEMATICA OBIETTIVI GENERALI ATTIVITA OBIETTIVI SPECIFICI MATEMATICA OBIETTIVI GENERALI Acquisire maggiore capacità di osservare, di problematizzare, di ordinare, di quantificare e di misurare fatti e fenomeni della realtà; sviluppare le abilità necessarie per

Dettagli

Elementi di Statistica descrittiva Parte I

Elementi di Statistica descrittiva Parte I Elementi di Statistica descrittiva Parte I Che cos è la statistica Metodo di studio di caratteri variabili, rilevabili su collettività. La statistica si occupa di caratteri (ossia aspetti osservabili)

Dettagli

La pista del mio studio Riflettiamo sulla pista. Guida per l insegnante

La pista del mio studio Riflettiamo sulla pista. Guida per l insegnante Riflettiamo sulla pista Guida per l insegnante Obiettivi educativi generali Compito di specificazione - possiede capacità progettuale - è in grado di organizzare il proprio tempo e di costruire piani per

Dettagli

B. Vogliamo determinare l equazione della retta

B. Vogliamo determinare l equazione della retta Risoluzione quesiti ordinamento Quesito N.1 Indicata con α la misura dell angolo CAB, si ha che: 1 Area ( ABC ) = AC AB sinα = 3 sinα π 3 sinα = 3 sinα = 1 α = Il triangolo è quindi retto in A. La misura

Dettagli

3. Sia g(x) = 4. Si calcoli l area del triangolo mistilineo ROS, ove l arco RS appartiene al grafico di f(x) o, indifferentemente, di g(x).

3. Sia g(x) = 4. Si calcoli l area del triangolo mistilineo ROS, ove l arco RS appartiene al grafico di f(x) o, indifferentemente, di g(x). Esame liceo Scientifico : ordinamento Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. PROBLEMI Problema. Sia ABCD un quadrato di lato, P un punto di AB e γ la circonferenza

Dettagli

UNO STUDIO DI FUNZIONE CON DERIVE a cura del prof. Guida. 4 x

UNO STUDIO DI FUNZIONE CON DERIVE a cura del prof. Guida. 4 x UNO STUDIO DI FUNZIONE CON DERIVE a cura del prof. Guida Con questa guida si vuol proporre un esempio di studio di funzione con Derive. La versione che ho utilizzato per questo studio è la 6.0. Consideriamo

Dettagli

ISTAT bt.viewer: Basi Territoriali MANUALE UTENTE. Servizio INT Sistema Informativo Geografico

ISTAT bt.viewer: Basi Territoriali MANUALE UTENTE. Servizio INT Sistema Informativo Geografico ISTAT bt.viewer: Basi Territoriali MANUALE UTENTE Servizio INT Sistema Informativo Geografico INDICE Utilizzare il bt.viewer Navigare nella mappa Confrontare foto aeree Tematismi Tematismi: applicare la

Dettagli

IMSV 0.8. (In Media Stat Virtus) Manuale Utente

IMSV 0.8. (In Media Stat Virtus) Manuale Utente Introduzione IMSV 0.8 (In Media Stat Virtus) Manuale Utente IMSV è una applicazione che calcola che voti può'prendere uno studente negli esami che gli mancano per ottenere la media che desidera. Importante:

Dettagli

Catalogo Elettronico MAZDA. Manuale sulla Navigazione

Catalogo Elettronico MAZDA. Manuale sulla Navigazione Catalogo Elettronico MAZDA Manuale sulla Navigazione Indice Manuale Introduzione Navigazione per VIN (n di telaio) Caratteristiche prodotto Utilizzo carrello Visualizzazione Ricambi Navigazione alternativa

Dettagli

CORSO BASE DI CARTOMANZIA

CORSO BASE DI CARTOMANZIA CORSO BASE DI CARTOMANZIA (TAROCCHI MARSIGLIESI) DISPENSA 9 Copyright Grif.Inter@ctve S.r.l Via Mecenate, 76/3-20138 Milano tel 02.50.90.80.70 - fax. 02/50390.80.71 e.mail - suggestions@oroscopofree.com

Dettagli

4 LA PALETTA È possibile «svuotare» la paletta spostando solo due segmenti. Sai dire come?

4 LA PALETTA È possibile «svuotare» la paletta spostando solo due segmenti. Sai dire come? GIOCHI MATEMATICI 1 CUORI, QUADRI, PICCHE E FIORI Riempi le caselle della griglia con i simboli,, e in modo che ogni simbolo compaia una sola volta in ogni riga e in ogni colonna. GIOCHI MATEMATICI 2 LA

Dettagli

(71,1), (35,1), (17,1), (8,1), (4,0), (2,0), (1,0), (0,1) 0, 7155 2 = 1, 431 0, 431 2 = 0, 862 0, 896 2 = 1, 792 0, 724 2 = 1, 448 0, 448 2 = 0, 896

(71,1), (35,1), (17,1), (8,1), (4,0), (2,0), (1,0), (0,1) 0, 7155 2 = 1, 431 0, 431 2 = 0, 862 0, 896 2 = 1, 792 0, 724 2 = 1, 448 0, 448 2 = 0, 896 2 Esercizio 2.2 La rappresentazione esadecimale prevede 16 configurazioni corrispondenti a 4 bit. Il contenuto di una parola di 16 bit può essere rappresentato direttamente con 4 digit esadecimali, sostituendo

Dettagli

Capitolo 3. L applicazione Java Diagrammi ER. 3.1 La finestra iniziale, il menu e la barra pulsanti

Capitolo 3. L applicazione Java Diagrammi ER. 3.1 La finestra iniziale, il menu e la barra pulsanti Capitolo 3 L applicazione Java Diagrammi ER Dopo le fasi di analisi, progettazione ed implementazione il software è stato compilato ed ora è pronto all uso; in questo capitolo mostreremo passo passo tutta

Dettagli

Percorsi di matematica per il ripasso e il recupero

Percorsi di matematica per il ripasso e il recupero Giacomo Pagina Giovanna Patri Percorsi di matematica per il ripasso e il recupero 2 per la Scuola secondaria di secondo grado UNITÀ CAMPIONE Edizioni del Quadrifoglio à t i n U 1 Sistemi di primo grado

Dettagli

Diagrammi di Bode. I Diagrammi di Bode sono due: 1) il diagramma delle ampiezze rappresenta α = ln G(jω) in funzione

Diagrammi di Bode. I Diagrammi di Bode sono due: 1) il diagramma delle ampiezze rappresenta α = ln G(jω) in funzione 0.0. 3.2 Diagrammi di Bode Possibili rappresentazioni grafiche della funzione di risposta armonica F (ω) = G(jω) sono: i Diagrammi di Bode, i Diagrammi di Nyquist e i Diagrammi di Nichols. I Diagrammi

Dettagli