Olimpiadi di Matematica Scuola Media

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Olimpiadi di Matematica Scuola Media"

Transcript

1 Olimpiadi di Matematica Scuola Media Giochi di Archimede - 1 Dicembre 2010 QUESITO N.1 (Punti 20) - Inglese/Francese Il berretto di Anna In a dark room there are three bonnets, two red ones and a white one. Anne and Brigitte take one each, put it on and leave the room, Anne first, then Brigitte. Brigitte can see the colour of Anne s bonnet but Anne can t see the colour of Brigitte s bonnet. Brigitte says: «I am not sure what the colour of my bonnet is». Anne answers:«so I know the colour of mine». What colour is Anne s bonnet? Explain why. Il berretto di Anna Dance une pièce obscure il y a trois bonnets, deux rouge et un blanc. Anne et Brigitte en prennent chacune un, s en coiffent et sortent de la pièce. Anne d abord, puis Brigitte. Brigitte voit la couleur du bonnet d Anne mais Anne ne voit pas la couleur du bonnet de Brigitte. Brigitte dit: «Je ne suis pas sure de la couleur de mon bonnet». Anne repond : «Alors moi ; je connais la couleur du mien». De quelle couleur est le bonnet d Anne? Expliquer pourquoi Anne le sait. 2

2 Giochi di Archimede dell Soluzioni Quesito N.1(Punti 20 = ). Risposta: Anna indossa un berretto di colore rosso. Il fatto che Brigitte afferma di non essere sicura del colore del suo berretto è perché, potendo vedere quello di Anna, che la precede, nota che è di colore rosso. Essendoci due berretti di colore rosso il suo potrebbe essere rosso o bianco. Da qui la sua insicurezza. Ma la sua affermazione è sufficiente ad Anna per essere certa che lei indossa un berretto di colore rosso. Quesito N.2 (Punti 5). La risposta corretta è (B). Cancellando tutti i multipli di 7, si cancellano 14 numeri; cancellando tutti i multipli di 11, si cancellano solo 8 numeri, tenuto conto che 77 è stato già cancellato come multiplo di 7. Quindi le caselle vuote sono 22. Quesito N.3 (Punti 10). La risposta corretta è (B). L apotema della piramide è pari all altezza di un triangolo equilatero unitario, e vale. L altezza h della piramide può essere calcolata applicando il teorema di Pitagora al triangolo rettangolo VOH e quindi h= = da cui il volume risulta : = = = Quesito N.4 (Punti 10). La risposta corretta è (B). Il numero degli studenti della scuola è lo stesso sia per quest anno che per l anno scorso. Alla fine dello scorso anno hanno lasciato la scuola complessivamente il 21% degli studenti (la somma dei diplomati e di quelli che si sono trasferiti). Quest anno sono arrivati 84 studenti nuovi. Poiché il numero complessivo di studenti è rimasto invariato, deduciamo che il 21% di è pari ad 84. Quindi l 1% degli studenti è 84/21= 4 ed vale 400. Quesito N.5 (Punti 10). La risposta corretta è (A). Lanciando contemporaneamente due dadi si ottengono 36 possibili casi (tutte i numeri del primo dado abbinati, uno alla volta, con quelli del secondo). Le coppie che contengono due numeri la cui somma è multipla di 3 sono: 2,1,1,2, 2,4,4,2,3,3,1,5,5,1, 3,6,6,3,6,6,4,5,5,4 in tutto 12, per cui la risposta è 1/3. Quesito N.6 (Punti 10). La risposta corretta è (D). Chiamiamo,, il numero dei cubi di lato 3,4 e 5 rispettivamente. Essi sono numeri interi strettamente positivi che soddisfano le due relazioni: ++ =10 e =577. Dalla prima equazione si ottiene: =10 + che, sostituita nella seconda, dà: = =307. Da essa segue che non può essere maggiore di 2, perché se fosse 3, dovrebbe essere necessariamente minore di 1, il che è impossibile. Quindi =1 oppure 2. Ma =1 dà un numero non intero, per cui dev essere =2 che dà =3 e,di conseguenza,dev essere =5. Quesito N.7 (Punti 5). La risposta corretta è (B). Il fanciullo sale a sinistra verso l alto fino ad entrare nel quarto triangolo in alto a destra, poi scende di tre triangoli fino in fondo ed esce in basso a destra per la porta (e). Per uscire dalle altre porte dovrebbe attraversare almeno una stanza avente forma quadrangolare. Quesito N.8 (Punti 10). La risposta corretta è (B). Per numerare i fogli da 1 a 9 occorrono 9 etichette adesive; da 10 a 99 occorrono 90x2 = 180 etichette perché ogni numero ha due cifre; infine per numerare i fogli da 100 a 284 occorrono 185x3 = 555 etichette poiché i numeri sono di tre cifre. In totale occorrono = 744 etichette adesive per numerare tutti gli appunti di Anatomia. Quesito N.9 (Punti 5). La risposta corretta è (B). Prima riga: ; seconda riga: ; terza riga: ; eventuali altre soluzioni, che rispettino i vincoli posti, sono esatte. Esse, comunque, non alterano il numero dei quadrati perfetti che sono 7 (tre 1, tre 4, un 9). Quesito N.10 (Punti 10). La risposta corretta è (A). Quando le due macchine si incrociano, avranno percorso insieme l intera circonferenza, ovvero: S A + S B = 180. Sappiamo che S A : S B = : quindi = SA= SB e, componendo, 180 =5 2, per cui =72 ed = 108 km. Tenuto conto che =90/h e =60/h, 72 : 60 = 108 : 90 = 1,2 h; per cui si incontrano dopo 72 minuti. Quesito N.11 (Punti da 0 a 20; la risposta è Bea). Le affermazioni di Anna e Bea sono in contraddizione tra loro. Infatti se Anna ha un poker deve avere almeno una carta di cuori e quindi Bea non può avere tutte le cinque carte di cuori. Quindi una tra Anna e Bea mente. Se fosse Anna a mentire, le affermazioni di Bea, Caio e Dino dovrebbero essere tutte vere. D altra parte Dino afferma di avere tre carte dello stesso valore, quindi in particolare ha una carta rossa, ma Bea ha tutte le carte di cuori e di conseguenza Caio, che ha cinque carte rosse, deve avere tutte le carte di quadri. Quindi l affermazione di Dino è in contrasto con quelle di Bea e Caio. Deduciamo che Bea, Caio e Dino non stanno dicendo tutti la verità, quindi Anna afferma il vero e Bea mente. Le affermazioni di Anna, Caio e Dino sono tra loro compatibili. Anna, ad esempio, potrebbe avere un poker di assi e il re di picche; Caio il re di cuori, il re di quadri, la regina di quadri, la regina di cuori e il fante di cuori; Dino il fante di quadri, di picche e di fiori, il dieci di cuori e di quadri; Bea le cinque carte rimanenti. 7

3 Quesito N.1 Traduzione e risoluzione). 6

4 U.M.I - I.T.C.G. Pitagora-Calvosa Castrovillari OLIMPIADI DI MATEMATICA SCUOLA MEDIA Giochi di Archimede - 1 Dicembre 2010 Istruzioni 1) Non sfogliate questo fascicolo finchè l insegnante non dice di farlo. 2) I quesiti che sottoponiamo sono a risposta multipla dal n.2 al n.10. Ogni domanda è seguita da cinque risposte indicate con le lettere A, B, C, D, E. 3) Ciascuna delle domande ammette una sola risposta corretta: la lettera corrispondente alla risposta esatta dovrà, per ogni quesito, essere riportata in fondo a questa pagina nella relativa finestrella. 4) Ogni risposta esatta vale il numero di punti indicato nel testo, ogni risposta errata vale 0 punti, ogni problema lasciato senza risposta vale 0 punti. 5) Il quesito n. 1 vale da 0 a 20 punti, di cui la metà per la traduzione; il quesito n. 11 vale da 0 a 20 punti. Il procedimento del n.1 va illustrato su foglio a parte, preceduto dalla traduzione in italiano del testo in lingua straniera, mentre il n.11 va svolto sullo stesso foglio della traccia. 6) Durante la prova NON E AMMESSO L USO DI CALCOLATRICI TASCABILI, mentre, trattandosi di lavoro di gruppo è lecita, tra gli allievi componenti la classe, ogni utile forma di collaborazione o strategia. 7) In caso di classi bilingue il quesito n.1 può essere tradotto da una delle due lingue indifferentemente. 8) Quando l insegnante darà il via potrete cominciare a lavorare. Avrete 2 ore di tempo. Buon lavoro! CLASSE : SCUOLA Indirizzo: Città: Risposte ai quesiti da 2 a PUNTEGGIO (da riempirsi a cura dell insegnante) Valutazione esercizi da 2 a 10 Valutazione esercizio n.1 Valutazione esercizio n.11 PUNTEGGIO TOTALE 1

5 Quesito N. 2(Punti 5). Su una griglia rettangolare, vedi figura, costituita da 100 caselle sono riportati i primi 100 numeri interi positivi nell ordine da 1 a 100. Quante caselle resteranno vuote dopo aver cancellato tutti i multipli di 7 e di 11? (A) 23 (B ) 22 (C) 21 (B ) 25 (D) 24 Quesito N. 3 (Punti 10). Una piramide retta a base quadrata ha tutti gli spigoli di lunghezza unitaria. Il suo volume è: V (A) (D) (B) (E) (C) C O D H Quesito N. 4 (Punti 10). Al termine dell anno scorso in una scuola di musica si è diplomato il 18% degli studenti di tutta la scuola e un altro 3% degli studenti si è trasferito in altre scuole. Quest anno si sono iscritti alla scuola 84 nuovi studenti e ora il numero di studenti è uguale quello dello scorso anno. Quanti studenti ha la scuola? (A) 324 (B) 400 (C) 500 A B (D) 525 (E) 600 Quesito N. 5 (Punti 10). Si lanciano contemporaneamente due dadi regolari, dire qual è la probabilità che la somma dei due numeri estratti sia multipla di tre. (A) (B) (C) (D) (E) Quesito N. 6 (Punti 10). Gabriele ha 10 cubi, di tre dimensioni: alcuni hanno lato di 3 cm, altri hanno il lato di 4 cm ed altri ancora hanno il lato di 5cm (ne ha almeno uno di ciascun tipo). La somma dei volumi dei 10 cubi è 577 cm 3. Quanti sono i cubi con lato di 3 cm? (A) 2 (B) 3 (C) 4 (D) 5 (E) 6 3

6 Quesito N. 7(Punti 5). Un fanciullo, per curiosità, entra in un labirinto, che ha la pianta come in figura, dalla porta indicata dalla freccia. Ha smarrito l orientamento ma sa che se vuole uscire deve attraversare solo stanze triangolari. Da quale porta deve uscire? a b c (A) dalla porta a (B) dalla porta e (C) dalla porta b d (D) dalla porta c (E) dalla porta d e Quesito N. 8 (Punti 10). Aldo è uno studente del primo anno di medicina e possiede 284 fogli contenti appunti di Anatomia. I fogli sono sciolti e Aldo, per evitare che si crei confusione tra essi, decide di ordinarli apponendo su ogni foglio, avanti e dietro, un numero intero, progressivo, da 1 a 284. Egli dispone di tantissime etichette adesive che riportano le cifre decimali da 0 a 9. Di quante etichette necessita per numerare i suoi appunti? (A) 720 (B) 744 (C) 284 (D) 656 (E) 740 Quesito N. 9 (Punti 5). Nel disegno a lato scrivi in ogni casella vuota un numero intero, utilizzando solo i numeri 1, 2, 3, 4, 5, 6 in modo che in ogni riga ed in ogni colonna i numeri siano tutti diversi tra loro ed inoltre la somma in colonna dia come risultato il numero posto in cima nel triangolo. Completato lo schema, si dica quanti quadrati perfetti compaiono nella figura. (A) 6 (B) 7 (C) 10 (D) 11 (E) 4 Quesito N. 10 (Punti 10). Due macchine partono da due stazioni A e B, diametralmente opposte, e si muovono in senso contrario su un percorso circolare lungo180 km, con velocità costante. Tenuto conto che la prima macchina impiega 3 ore per fare l intero percorso e la seconda 2 ore, indicare dopo quanti minuti le due macchine si incontrano per la prima volta. (A) 72 (B) 80 (C) 60 (D) 120 (E) 76 4

7 QUESITO N. 11 (Punti 0-20). I quattro amici Quattro amici, Anna, Bea, Caio e Dino, giocano a poker con 20 carte di uno stesso mazzo: i quattro re, le quattro regine, i quattro fanti, i quattro assi e i quattro dieci. Vengono distribuite 5 carte a testa. Anna dice: Io ho un poker (quattro carte dello stesso valore). Bea dice. Io ho tutte e cinque le carte di cuori. Caio dice: Io ho cinque carte rosse. Infine Dino dice: Io ho tre carte di uno stesso valore e anche le altre due hanno tra loro lo stesso valore. Sappiamo che una e una sola delle affermazioni è falsa; chi sta mentendo? Dire, secondo voi, chi e spiegare il perché. (N.B. Le 20 carte sono metà nere e metà rosse, a due a due dello stesso valore) 5

8

9

IGiochidiArchimede--Soluzionitriennio

IGiochidiArchimede--Soluzionitriennio PROGETTO OLIMPIADI DI MATEMATICA U.M.I. UNIONE MATEMATICA ITALIANA MINISTERO DELLA PUBBLICA ISTRUZIONE SCUOLA NORMALE SUPERIORE IGiochidiArchimede--Soluzionitriennio 18 novembre 2009 Griglia delle risposte

Dettagli

PROGETTO OLIMPIADI DI MATEMATICA U.M.I. UNIONE MATEMATICA ITALIANA MINISTERO DELLA PUBBLICA ISTRUZIONE SCUOLA NORMALE SUPERIORE

PROGETTO OLIMPIADI DI MATEMATICA U.M.I. UNIONE MATEMATICA ITALIANA MINISTERO DELLA PUBBLICA ISTRUZIONE SCUOLA NORMALE SUPERIORE PROGETTO OLIMPIADI DI MATEMATICA U.M.I. UNIONE MATEMATICA ITALIANA MINISTERO DELLA PUBBLICA ISTRUZIONE SCUOLA NORMALE SUPERIORE IGiochidiArchimede-GaraTriennio 18 novembre 2009 1) La prova consiste di

Dettagli

DA GIOCHI D AUTUNNO 2006 SOLUZIONI E COMMENTI

DA GIOCHI D AUTUNNO 2006 SOLUZIONI E COMMENTI DA GIOCHI D AUTUNNO 2006 SOLUZIONI E COMMENTI 1. GIOCO DI CUBI L altezza della piramide di Luca è 95 cm. = (14 + 13 + 12 + + 7 + 6 + 5) 2. LA PARTENZA Anna saluterà le amiche nel seguente ordine: S-I-G-C

Dettagli

IGiochidiArchimede--Soluzionitriennio 22 novembre 2011

IGiochidiArchimede--Soluzionitriennio 22 novembre 2011 PROGETTO OLIMPIADI DI MATEMATICA U.M.I. UNIONE MATEMATICA ITALIANA MINISTERO DELLA PUBBLICA ISTRUZIONE SCUOLA NORMALE SUPERIORE IGiochidiArchimede--Soluzionitriennio 22 novembre 2011 Griglia delle risposte

Dettagli

I quesiti dal N. 1 al N. 10 valgono 3 punti ciascuno

I quesiti dal N. 1 al N. 10 valgono 3 punti ciascuno Kangourou Italia Gara del 21 marzo 2002 Categoria Cadet Per studenti di terza media e prima superiore Regole: La prova è individuale. Ogni tipo di calcolatrice è vietato Vi è una sola risposta esatta per

Dettagli

4 LA PALETTA È possibile «svuotare» la paletta spostando solo due segmenti. Sai dire come?

4 LA PALETTA È possibile «svuotare» la paletta spostando solo due segmenti. Sai dire come? GIOCHI MATEMATICI 1 CUORI, QUADRI, PICCHE E FIORI Riempi le caselle della griglia con i simboli,, e in modo che ogni simbolo compaia una sola volta in ogni riga e in ogni colonna. GIOCHI MATEMATICI 2 LA

Dettagli

IGiochidiArchimede-SoluzioniBiennio 22 novembre 2006

IGiochidiArchimede-SoluzioniBiennio 22 novembre 2006 PROGETTO OLIMPII I MTEMTI U.M.I. UNIONE MTEMTI ITLIN SUOL NORMLE SUPERIORE IGiochidirchimede-Soluzioniiennio novembre 006 Griglia delle risposte corrette Problema Risposta corretta E 4 5 6 7 8 9 E 0 Problema

Dettagli

17 Rally Matematico Transalpino, prova 1

17 Rally Matematico Transalpino, prova 1 17 Rally Matematico Transalpino, prova 1 I problemi del RMT sono protetti da diritti di autore. Per un'utilizzazione in classe deve essere indicata la provenienza del problema inserendo la dicitura " ARMT".

Dettagli

I quesiti dal N. 1 al N. 10 valgono 3 punti ciascuno

I quesiti dal N. 1 al N. 10 valgono 3 punti ciascuno Kangourou Italia Gara del 19 marzo 2015 Categoria Cadet Per studenti di terza della scuola secondaria di primo grado e prima della secondaria di secondo grado I quesiti dal N. 1 al N. 10 valgono 3 punti

Dettagli

B. Vogliamo determinare l equazione della retta

B. Vogliamo determinare l equazione della retta Risoluzione quesiti ordinamento Quesito N.1 Indicata con α la misura dell angolo CAB, si ha che: 1 Area ( ABC ) = AC AB sinα = 3 sinα π 3 sinα = 3 sinα = 1 α = Il triangolo è quindi retto in A. La misura

Dettagli

Kangourou Italia Gara del 19 marzo 2015 Categoria Student Per studenti di quarta e quinta della secondaria di secondo grado

Kangourou Italia Gara del 19 marzo 2015 Categoria Student Per studenti di quarta e quinta della secondaria di secondo grado Kangourou Italia Gara del 19 marzo 2015 Categoria Student Per studenti di quarta e quinta della secondaria di secondo grado I quesiti dal N. 1 al N. 10 valgono 3 punti ciascuno 1. Angela è nata nel 1997,

Dettagli

Primo allenamento per i Giochi Kangourou della Matematica

Primo allenamento per i Giochi Kangourou della Matematica Primo allenamento per i Giochi Kangourou della Matematica Per gli alunni di prima e seconda media i quesiti sono dal numero 1 al numero 11 Per gli alunni di terza media i quesiti sono dal numero 7 al numero

Dettagli

Kangourou Italia Gara del 19 marzo 2009 Categoria Ecolier Per studenti di quarta o quinta della scuola primaria

Kangourou Italia Gara del 19 marzo 2009 Categoria Ecolier Per studenti di quarta o quinta della scuola primaria Testi_09.qxp 15-04-2009 20:23 Pagina 5 Kangourou Italia Gara del 19 marzo 2009 Categoria Per studenti di quarta o quinta della scuola primaria I quesiti dal N. 1 al N. 8 valgono 3 punti ciascuno 1. Hai

Dettagli

m, (C) 1 m, (D) 2 3 m, (E) 4 3 m. 3

m, (C) 1 m, (D) 2 3 m, (E) 4 3 m. 3 PROGETTO OLIMPIADI DI MATEMATICA U.M.I. UNIONE MATEMATICA ITALIANA MINISTERO DELLA PUBBLICA ISTRUZIONE SCUOLA NORMALE SUPERIORE IGiochidiArchimede-GaraBiennio 22 novembre 2011 1) La prova consiste di 20

Dettagli

Le soluzioni dei quesiti sono in fondo alla prova

Le soluzioni dei quesiti sono in fondo alla prova SCUOLA MEDIA STATALE GIULIANO DA SANGALLO Via Giuliano da Sangallo,11-Corso Duca di Genova,135-00121 Roma Tel/fax 06/5691345-e.mail:scuola.sangallo@libero.it SELEZIONE INTERNA PER LA MARATONA DI MATEMATICA

Dettagli

GIOCHI A SQUADRE. 30 marzo 2012

GIOCHI A SQUADRE. 30 marzo 2012 Centro Pristem Università Bocconi GIOCHI A SQUADRE 30 marzo 2012 1. La campestre Carla, Milena, Anna, Fausta e Debora hanno partecipato alla corsa campestre della loro classe. Carla e Anna non hanno vinto.

Dettagli

I Giochi di Archimede - Soluzioni Biennio 27 novembre 2014

I Giochi di Archimede - Soluzioni Biennio 27 novembre 2014 PROGETTO OLIMPIADI DI MATEMATICA U.M.I. UNIONE MATEMATICA ITALIANA MINISTERO DELLA PUBBLICA ISTRUZIONE I Giochi di Archimede - Soluzioni Biennio 7 novembre 0 Risoluzione dei problemi (l ordine si riferisce

Dettagli

Kangourou Italia Gara del 18 marzo 2010 Categoria Ecolier Per studenti di quarta o quinta della scuola primaria

Kangourou Italia Gara del 18 marzo 2010 Categoria Ecolier Per studenti di quarta o quinta della scuola primaria Testi_10Mat.qxp 15-02-2010 7:17 Pagina 5 Kangourou Italia Gara del 18 marzo 2010 Categoria Per studenti di quarta o quinta della scuola primaria I quesiti dal N. 1 al N. 8 valgono 3 punti ciascuno 1. Nella

Dettagli

Kangourou Italia Gara del 15 marzo 2001 Categoria Ecolier Per studenti di quarta e quinta elementare

Kangourou Italia Gara del 15 marzo 2001 Categoria Ecolier Per studenti di quarta e quinta elementare Kangourou Italia Gara del 15 marzo 2001 Categoria Ecolier Per studenti di quarta e quinta elementare Regole:! La prova è individuale. E vietato l uso di calcolatrici di qualunque tipo.! Vi è una sola risposta

Dettagli

2 CERTAMEN NAZIONALE DI PROBABILITA E STATISTICA FELICE FUSATO Fase di Istituto 15 febbraio 2011

2 CERTAMEN NAZIONALE DI PROBABILITA E STATISTICA FELICE FUSATO Fase di Istituto 15 febbraio 2011 2 CERTAMEN NAZIONALE DI PROBABILITA E STATISTICA FELICE FUSATO Fase di Istituto 15 febbraio 2011 1) Non sfogliare questo fascicolo finché l insegnante non ti dice di farlo. 2) E ammesso l utilizzo di calcolatrici

Dettagli

Test sul calcolo della probabilità

Test sul calcolo della probabilità Test sul calcolo della probabilità 2 Test sul calcolo della probabilità Test sul calcolo della probabilità. La probabilità p di un evento E, quando si indica con E il suo complementare, è : a) 0 se E è

Dettagli

INVALSI. Ministero dell Istruzione dell Università e della Ricerca

INVALSI. Ministero dell Istruzione dell Università e della Ricerca X MATEMATICA_COP_Layout 1 15/03/11 08:51 Pagina 2 Ministero dell Istruzione dell Università e della Ricerca INVALSI Istituto nazionale per la valutazione del sistema educativo di istruzione e di formazione

Dettagli

IGiochidiArchimede--Soluzionibiennio

IGiochidiArchimede--Soluzionibiennio PROGETTO OLIMPIADI DI MATEMATICA U.M.I. UNIONE MATEMATICA ITALIANA MINISTERO DELLA PUBBLICA ISTRUZIONE SCUOLA NORMALE SUPERIORE IGiochidiArchimede--Soluzionibiennio 17 novembre 2010 Griglia delle risposte

Dettagli

Servizio Nazionale di Valutazione a.s. 2014/15 Guida alla lettura Prova di Matematica Classe seconda Scuola primaria

Servizio Nazionale di Valutazione a.s. 2014/15 Guida alla lettura Prova di Matematica Classe seconda Scuola primaria Servizio Nazionale di Valutazione a.s. 2014/15 Guida alla lettura Prova di Matematica Classe seconda Scuola primaria I quesiti sono distribuiti negli ambiti secondo la tabella seguente Ambito Numero di

Dettagli

I quesiti dal N. 1 al N. 10 valgono 3 punti ciascuno

I quesiti dal N. 1 al N. 10 valgono 3 punti ciascuno Testi_09.qxp 15-04-2009 20:26 agina 16 Kangourou Italia Gara del 19 marzo 2009 Categoria Cadet er studenti di terza della scuola secondaria di primo grado o prima della secondaria di secondo grado I quesiti

Dettagli

GIOCHI D AUTUNNO 2003 SOLUZIONI

GIOCHI D AUTUNNO 2003 SOLUZIONI GIOCHI D AUTUNNO 2003 SOLUZIONI 1) MARATONA DI MATHTOWN Pietro arriva alle 16.56, Renato alle 17.01, Desiderio alle 16.54 e Angelo alle 17.04. L ultimo ad arrivare è Angelo che arriva alle 17.04 2) PARI

Dettagli

SIMULAZIONE QUARTA PROVA: MATEMATICA

SIMULAZIONE QUARTA PROVA: MATEMATICA SIMULAZIONE QUARTA PROVA: MATEMATICA COGNOME: NOME: TEMPO IMPIEGATO: VOTO: TEMPO DELLA PROVA = 44 (a fianco di ogni quesito si trova il tempo consigliato per lo svolgimento dell esercizio). PUNTEGGIO TOTALE

Dettagli

Kangourou Italia Gara del 15 marzo 2007 Categoria Junior Per studenti di seconda o terza della secondaria di secondo grado

Kangourou Italia Gara del 15 marzo 2007 Categoria Junior Per studenti di seconda o terza della secondaria di secondo grado Testi_07.qxp 16-04-2007 12:06 Pagina 22 Kangourou Italia Gara del 15 marzo 2007 Categoria Junior Per studenti di seconda o terza della secondaria di secondo grado I quesiti dal N. 1 al N. 10 valgono 3

Dettagli

Matematica Discreta 2005 Esercizi di preparazione

Matematica Discreta 2005 Esercizi di preparazione Matematica Discreta 2005 Esercizi di preparazione Esercizio 1. Supponiamo di avere un rettangolo di cartone di dimensioni intere n e m e di tagliarlo successivamente secondo la seguente regola: togliamo

Dettagli

Kangourou Italia Gara del 15 marzo 2007 Categoria Ecolier Per studenti di quarta o quinta della scuola primaria

Kangourou Italia Gara del 15 marzo 2007 Categoria Ecolier Per studenti di quarta o quinta della scuola primaria Testi_07.qxp 16-04-2007 12:02 Pagina 5 Kangourou Italia Gara del 15 marzo 2007 Categoria Per studenti di quarta o quinta della scuola primaria I quesiti dal N. 1 al N. 8 valgono 3 punti ciascuno 1. Osserva

Dettagli

Kangourou Italia Gara del 15 marzo 2007 Categoria Student Per studenti di quarta o quinta della secondaria di secondo grado

Kangourou Italia Gara del 15 marzo 2007 Categoria Student Per studenti di quarta o quinta della secondaria di secondo grado Testi_07.qxp 6-04-2007 2:07 Pagina 28 Kangourou Italia Gara del 5 marzo 2007 Categoria Student Per studenti di quarta o quinta della secondaria di secondo grado I quesiti dal N. al N. 0 valgono 3 punti

Dettagli

Progetto Pilota Valutazione della scuola italiana. Anno Scolastico 2002 2003 PROVA DI MATEMATICA. Scuola Secondaria Superiore.

Progetto Pilota Valutazione della scuola italiana. Anno Scolastico 2002 2003 PROVA DI MATEMATICA. Scuola Secondaria Superiore. Gruppo di lavoro per la predisposizione degli indirizzi per l attuazione delle disposizioni concernenti la valutazione del servizio scolastico Progetto Pilota Valutazione della scuola italiana Anno Scolastico

Dettagli

SERVIZIO NAZIONALE DI VALUTAZIONE 2010 11

SERVIZIO NAZIONALE DI VALUTAZIONE 2010 11 SERVIZIO NAZIONALE DI VALUTAZIONE 2010 11 Rapporto tecnico sulle caratteristiche delle prove INVALSI 2011 Scuola secondaria di secondo grado classe II MATEMATICA Domanda D1 item a D1. Nella tabella che

Dettagli

cm, (C) cm, (D) cm, (B) cm, (E) (A) 262 6) Per quanti valori distinti del numero reale b l equazione x 2 + bx 16 = 0,

cm, (C) cm, (D) cm, (B) cm, (E) (A) 262 6) Per quanti valori distinti del numero reale b l equazione x 2 + bx 16 = 0, PROGETTO OLIMPIADI DI MATEMATICA U.M.I. UNIONE MATEMATICA ITALIANA MINISTERO DELLA PUBBLICA ISTRUZIONE SCUOLA NORMALE SUPERIORE IGiochidiArchimede-GaraTriennio 19 novembre 2008 1) La prova consiste di

Dettagli

Esercizi di calcolo combinatorio e probabilità Svolgimento a cura di Mattia Puddu

Esercizi di calcolo combinatorio e probabilità Svolgimento a cura di Mattia Puddu Esercizi di calcolo combinatorio e probabilità Svolgimento a cura di Mattia Puddu 1. Gli interi da 1 a 9 sono scritti nelle 9 caselle di una scacchiera 3x3, ogni intero in ogni casella diversa, in modo

Dettagli

Terza Edizione Giochi di Achille (13-12-07) - Olimpiadi di Matematica Soluzioni Categoria E4 (Alunni di quarta elementare)

Terza Edizione Giochi di Achille (13-12-07) - Olimpiadi di Matematica Soluzioni Categoria E4 (Alunni di quarta elementare) Il Responsabile coordinatore dei giochi: Prof. Agostino Zappacosta Chieti tel. 0871 6584 (cell.: 40 47 47 952) e-mail:agostino_zappacosta@libero.it Terza Edizione Giochi di Achille (1-12-07) - Olimpiadi

Dettagli

3 IL CRUCIVERBA NUMERICO Trova i numeri e inseriscili nel cruciverba (una cifra in ogni casella). Buon divertimento!

3 IL CRUCIVERBA NUMERICO Trova i numeri e inseriscili nel cruciverba (una cifra in ogni casella). Buon divertimento! GIOCHI MATEMATICI 1 I PALLONCINI NUMERICI Inserisci nei palloncini i numeri da 1 a 6 in modo che la somma su ogni lato sia uguale a 10. GIOCHI MATEMATICI 2 IL QUADRATO NUMERICO Disponi i numeri da 1 a

Dettagli

Terza Edizione Giochi di Achille (13-12-07) - Olimpiadi di Matematica Soluzioni Categoria M1 (Alunni di prima media)

Terza Edizione Giochi di Achille (13-12-07) - Olimpiadi di Matematica Soluzioni Categoria M1 (Alunni di prima media) Il Responsabile coordinatore dei giochi: Prof. Agostino Zappacosta Chieti tel. 087 65843 (cell.: 340 47 47 95) e-mail:agostino_zappacosta@libero.it Terza Edizione Giochi di Achille (3--07) - Olimpiadi

Dettagli

Kangourou Italia Gara del 15 marzo 2001 Categoria Student Per studenti di quarta e quinta superiore

Kangourou Italia Gara del 15 marzo 2001 Categoria Student Per studenti di quarta e quinta superiore Kangourou Italia Gara del 1 marzo 001 Categoria Student Per studenti di quarta e quinta superiore Regole:! La prova è individuale. E vietato l uso di calcolatrici di qualunque tipo.! Vi è una sola risposta

Dettagli

PROVA DI AMMISIONE AI CORSI DI LAUREA DI SCIENZE (10 SETTEMBRE 2013)

PROVA DI AMMISIONE AI CORSI DI LAUREA DI SCIENZE (10 SETTEMBRE 2013) PROVA DI AMMISIONE AI CORSI DI LAUREA DI SCIENZE (10 SETTEMBRE 2013) Linguaggio matematico di base 1. Qual è l area del triangolo avente i vertici nei punti di coordinate (0,2), (4,0) e (7,6)? A 10 B 30

Dettagli

TEST INVALSI DI MATEMATICA PER LE CLASSI SECONDE (a.s. 2010-2011)

TEST INVALSI DI MATEMATICA PER LE CLASSI SECONDE (a.s. 2010-2011) TEST INVALSI DI MATEMATICA PER LE CLASSI SECONDE (a.s. 2010-2011) D1. Nella tabella che vedi sono riportati i dati relativi alla distribuzione di alunni e insegnanti nella scuola secondaria di primo grado

Dettagli

Kangourou Italia Gara del 20 marzo 2003 Categoria Junior Per studenti di seconda o terza superiore

Kangourou Italia Gara del 20 marzo 2003 Categoria Junior Per studenti di seconda o terza superiore Junior.qxd 29/03/2003 8.22 Pagina 22 Kangourou Italia Gara del 20 marzo 2003 Categoria Junior Per studenti di seconda o terza superiore I quesiti dal N. 1 al N. 10 valgono 3 punti ciascuno 1. Da una torta

Dettagli

Una selezione di prove dai Giochi di Archimede http://olimpiadi.dm.unibo.it/

Una selezione di prove dai Giochi di Archimede http://olimpiadi.dm.unibo.it/ 74 Una selezione di prove dai Giochi di Archimede http://olimpiadi.dm.unibo.it/ TESTO DEI GIOCHI DI ARCHIMEDE 005 (clicca qui per le risposte) 4 5 1) Quante cifre ha il numero 5 10? (A) Sei (B) sette (C)

Dettagli

INdAM QUESITI A RISPOSTA MULTIPLA

INdAM QUESITI A RISPOSTA MULTIPLA INdAM Prova scritta per il concorso a 40 borse di studio, 2 borse aggiuntive e a 40 premi per l iscrizione ai Corsi di Laurea in Matematica, anno accademico 2011/2012. Piano Lauree Scientifiche. La prova

Dettagli

Sommando 5 al doppio di un numero si ottiene la stessa cifra che si ottiene sottraendo 3 al triplo di quel numero. Qual è il numero?

Sommando 5 al doppio di un numero si ottiene la stessa cifra che si ottiene sottraendo 3 al triplo di quel numero. Qual è il numero? Stampato il: 13/04/2015 MATEMATICA pag. 1 1 2 3 4 5 6 In un gruppo di 10 amici, 3 ragazzi hanno 19 anni ciascuno, 4 ragazzi hanno 22 anni ciascuno e 3 ragazzi hanno 15 anni ciascuno. Qual è l età media

Dettagli

MATEMATICA 2001. p = 4/6 = 2/3; q = 1-2/3 = 1/3. La risposta corretta è quindi la E).

MATEMATICA 2001. p = 4/6 = 2/3; q = 1-2/3 = 1/3. La risposta corretta è quindi la E). MATEMATICA 2001 66. Quale fra le seguenti affermazioni è sbagliata? A) Tutte le funzioni ammettono la funzione inversa B) Una funzione dispari è simmetrica rispetto all origine C) Una funzione pari è simmetrica

Dettagli

I Giochi di Archimede -- Soluzioni triennio 21 novembre 2007

I Giochi di Archimede -- Soluzioni triennio 21 novembre 2007 PROGETTO OLIMPIDI DI MTEMTI U.M.I. UNIONE MTEMTI ITLIN MINISTERO DELL PULI ISTRUZIONE SUOL NORMLE SUPERIORE I Giochi di rchimede -- Soluzioni triennio 1 novembre 007 Griglia delle risposte corrette Problema

Dettagli

Kangourou Italia Gara del 18 marzo 2010 Categoria Junior Per studenti di seconda o terza della secondaria di secondo grado

Kangourou Italia Gara del 18 marzo 2010 Categoria Junior Per studenti di seconda o terza della secondaria di secondo grado Testi_10Mat.qxp 15-02-2010 7:17 Pagina 22 Kangourou Italia Gara del 18 marzo 2010 Categoria Per studenti di seconda o terza della secondaria di secondo grado I quesiti dal N. 1 al N. 10 valgono 3 punti

Dettagli

I Giochi di Archimede - Soluzioni Biennio 22 novembre 2012

I Giochi di Archimede - Soluzioni Biennio 22 novembre 2012 PROGETTO OLIMPIADI DI MATEMATICA U.M.I. UNIONE MATEMATICA ITALIANA MINISTERO DELLA PUBBLICA ISTRUZIONE I Giochi di Archimede - Soluzioni Biennio novembre 0 Griglia delle risposte corrette Problema Risposta

Dettagli

Proporzionalità diretta k = 60 kcal

Proporzionalità diretta k = 60 kcal Domanda D1. Paola, quando corre, consuma 60 kcal per ogni chilometro percorso. a. Completa la seguente tabella che indica le kcal consumate da Paola al variare dei chilometri percorsi. Chilometri percorsi

Dettagli

Soluzioni Giochi di Archimede 2015 Fase Istituto GARA BIENNIO

Soluzioni Giochi di Archimede 2015 Fase Istituto GARA BIENNIO Soluzioni Giochi di Archimede 05 Fase Istituto GARA BIENNIO. Nel paese Gnallucci circolano quattro monete: dobloni, zecchini, talleri e fufignezi. Un doblone vale quanto uno zecchino più un tallero e un

Dettagli

Kangourou Italia Gara del 18 marzo 2004 Categoria Cadet Per studenti di terza media o prima superiore

Kangourou Italia Gara del 18 marzo 2004 Categoria Cadet Per studenti di terza media o prima superiore 15-20-.qxd 22/02/2004 22.51 Pagina 16 Kangourou Italia Gara del 18 marzo 2004 Categoria Per studenti di terza media o prima superiore I quesiti dal N. 1 al N. 10 valgono 3 punti ciascuno 1. Qual è il risultato

Dettagli

I PROBLEMI ALGEBRICI

I PROBLEMI ALGEBRICI I PROBLEMI ALGEBRICI La risoluzione di problemi è una delle attività fondamentali della matematica. Una grande quantità di problemi è risolubile mediante un modello algebrico costituito da equazioni e

Dettagli

ESAME DI STATO 2002 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO

ESAME DI STATO 2002 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO ARCHIMEDE 4/ 97 ESAME DI STATO SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO Il candidato risolva uno dei due problemi e 5 dei quesiti in cui si articola il questionario. PROBLEMA In un

Dettagli

Tra questi il più conosciuto è il sudoku.

Tra questi il più conosciuto è il sudoku. I giochi logici sono una particolare categoria di giochi a griglia. Tra questi il più conosciuto è il sudoku. Sono giochi adatti a tutti perché non richiedono conoscenze matematiche avanzate ma buone doti

Dettagli

Kangourou Italia Gara del 18 marzo 2004 Categoria Benjamin Per studenti di prima o seconda media. I quesiti dal N. 1 al N. 10 valgono 3 punti ciascuno

Kangourou Italia Gara del 18 marzo 2004 Categoria Benjamin Per studenti di prima o seconda media. I quesiti dal N. 1 al N. 10 valgono 3 punti ciascuno 9-14-.qxd 22/02/2004 16.53 Pagina 10 Kangourou Italia Gara del 18 marzo 2004 Categoria Per studenti di prima o seconda media I quesiti dal N. 1 al N. 10 valgono 3 punti ciascuno 1. (10 x 100) x (20 x 80)

Dettagli

2. NUMERO DA INDOVINARE

2. NUMERO DA INDOVINARE 1. L ASINO DI TOBIA (Cat. 3) Tobia è andato in paese ed ha acquistato 6 sacchi di provviste. Li vuole trasportare con il suo asino fino alla sua casa sulla cima del monte. Ecco i sacchi di provviste sui

Dettagli

Kangourou Italia Gara del 15 marzo 2001 Categoria Cadet Per studenti di terza media e prima superiore

Kangourou Italia Gara del 15 marzo 2001 Categoria Cadet Per studenti di terza media e prima superiore Kangourou Italia Gara del 15 marzo 2001 Categoria Cadet Per studenti di terza media e prima superiore Regole:! La prova è individuale. E' vietato l'uso di calcolatrici di qualunque tipo.! Vi è una sola

Dettagli

CAM Measure Manuale d utilizzo

CAM Measure Manuale d utilizzo CAM Measure Manuale d utilizzo Per tutti quelli che vogliono misurare con un telefonino! App scritta da Adriano, per maggiori informazioni, visita: http://ovi.petrucci.ch Introduzione... 2 Calibrazione

Dettagli

Rilevazione degli apprendimenti. Anno Scolastico 2012 2013 PROVA DI MATEMATICA. Scuola primaria. Classe Quinta Fascicolo 1

Rilevazione degli apprendimenti. Anno Scolastico 2012 2013 PROVA DI MATEMATICA. Scuola primaria. Classe Quinta Fascicolo 1 Prova di MateMatica - Scuola Primaria - Classe Quinta Rilevazione degli apprendimenti Anno Scolastico 2012 2013 PROVA DI MATEMATICA Scuola primaria Classe Quinta Fascicolo 1 Spazio per l etichetta autoadesiva

Dettagli

FINALE ITALIANA 1998. 16 maggio 1998 - Università Bocconi

FINALE ITALIANA 1998. 16 maggio 1998 - Università Bocconi FINALE ITALIANA 1998 16 maggio 1998 - Università Bocconi 1. UN PROBLEMA TURCO Scrivere le quattro cifre del numero 1998 nelle caselle sottostanti in modo che il risultato delle operazioni indicate sia

Dettagli

Esame scritto di Matematica per la Formazione di Base 14 giugno 2013. 1. Siano a e b due numeri naturali che si scrivono nel modo seguente

Esame scritto di Matematica per la Formazione di Base 14 giugno 2013. 1. Siano a e b due numeri naturali che si scrivono nel modo seguente Esame scritto di Matematica per la Formazione di Base 14 giugno 2013 1. Siano a e b due numeri naturali che si scrivono nel modo seguente a =1012 3 b= 124 5 a) si scrivano a e b in base dieci; b) si scriva

Dettagli

Test di autovalutazione

Test di autovalutazione Test di autovalutazione 0 0 0 0 0 0 0 70 80 90 00 n Il mio punteggio, in centesimi, è n Rispondi a ogni quesito segnando una sola delle alternative. n onfronta le tue risposte con le soluzioni. n olora,

Dettagli

Nella seconda partita Tommaso ha vinto o perso delle figurine? E quante? Spiegate il vostro ragionamento.

Nella seconda partita Tommaso ha vinto o perso delle figurine? E quante? Spiegate il vostro ragionamento. 11 o RALLY MATEMATICO TRANSALPINO - PROVA II marzo 2003 ARMT.2003 p. 1 1. GIOCHI CON ME? (Cat. 3) /ARMT/2003-11 - II prova Tommaso va a casa di Francesco per giocare con le figurine. Tommaso ha 27 figurine.

Dettagli

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:...

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:... Ministero della Pubblica Istruzione Rilevazione degli apprendimenti Anno Scolastico 2006 2007 PROVA DI MATEMATICA Scuola Secondaria di II grado Classe Terza Tipo A Codici Scuola:..... Classe:.. Studente:.

Dettagli

Rilevazione degli apprendimenti

Rilevazione degli apprendimenti Rilevazione degli apprendimenti Anno Scolastico 00-0 PROVA DI MATEMATIA Scuola secondaria di II grado lasse... Studente... Simulazioni di prove costruite secondo il Quadro di riferimento Invalsi pubblicato

Dettagli

No titolo 3 4 5 6 7 8 9 Ar. Alg. Gé. Lo.. Orig.

No titolo 3 4 5 6 7 8 9 Ar. Alg. Gé. Lo.. Orig. 13 RALLY MATEMATICO TRANSALPINO PROVA 1 gennaio-febbraio 2005 ARMT.2005 p. 1 No titolo 3 4 5 6 7 8 9 Ar. Alg. Gé. Lo.. Orig. 1 Adesivi 3 X C.I. 2 RMT 2005 3 4 X C.I. 3 Le ordinazioni 3 4 X SR 4 Belle colonne

Dettagli

Scuola Primaria Conta oggetti o eventi, a voce e a mente, in senso progressivo e regressivo e per salti di due, tre ;

Scuola Primaria Conta oggetti o eventi, a voce e a mente, in senso progressivo e regressivo e per salti di due, tre ; Primo anno Secondo anno Terzo anno Primo anno MATEMATICA Scuola dell Infanzia Scuola Primaria Conta oggetti o eventi, a voce e a mente, in senso progressivo e regressivo e per salti di due, tre ; legge

Dettagli

Kangourou Italia Gara del 20 marzo 2014 Categoria Junior Per studenti di seconda e terza della secondaria di secondo grado

Kangourou Italia Gara del 20 marzo 2014 Categoria Junior Per studenti di seconda e terza della secondaria di secondo grado Kangourou Italia Gara del 20 marzo 2014 Categoria Junior Per studenti di seconda e terza della secondaria di secondo grado I quesiti dal N. 1 al N. 10 valgono 3 punti ciascuno 1. Una grande nave cargo

Dettagli

Quanti cubetti ha utilizzato in tutto Sofia per costruire la sua doppia scala?

Quanti cubetti ha utilizzato in tutto Sofia per costruire la sua doppia scala? 10 RALLY MATEMATICO TRANSALPINO - PROVA I - gennaio-febbraio 2002 /ARMT/2002 p. 1 7. Doppia scala (Cat. 4, 5, 6) /ARMT/2002-10 - I prova Sofia ha costruito una doppia scala regolare di 1 metro di altezza

Dettagli

Geometria analitica di base (prima parte)

Geometria analitica di base (prima parte) SAPERE Al termine di questo capitolo, avrai appreso: come fissare un sistema di riferimento cartesiano ortogonale il significato di equazione di una retta il significato di coefficiente angolare di una

Dettagli

Syllabus delle conoscenze per il modulo: matematica. Esempi di domande

Syllabus delle conoscenze per il modulo: matematica. Esempi di domande Syllabus delle conoscenze per il modulo: matematica Esempi di domande Nelle pagine che seguono sono riportati, come esempio, quindici quesiti proposti nel 2008/09. Le risposte corrette (che si consiglia

Dettagli

Primi esercizi per gli studenti del corso di Statistica ed Elementi di Probabilita

Primi esercizi per gli studenti del corso di Statistica ed Elementi di Probabilita Primi esercizi per gli studenti del corso di Statistica ed Elementi di Probabilita NOTA 1 Gli esercizi sono presi da compiti degli scorsi appelli, oppure da testi o dispense di colleghi. A questi ultimi

Dettagli

Guida SH.Shop. Inserimento di un nuovo articolo:

Guida SH.Shop. Inserimento di un nuovo articolo: Guida SH.Shop Inserimento di un nuovo articolo: Dalla schermata principale del programma, fare click sul menu file, quindi scegliere Articoli (File Articoli). In alternativa, premere la combinazione di

Dettagli

ESERCITAZIONI PROPEDEUTICHE DI MATEMATICA. A. Concetti e proprietà di base del sistema dei numeri della matematica ( ) + 64 7 10 :5

ESERCITAZIONI PROPEDEUTICHE DI MATEMATICA. A. Concetti e proprietà di base del sistema dei numeri della matematica ( ) + 64 7 10 :5 ESERCITAZIONI PROPEDEUTICHE DI MATEMATICA PER IL CORSO DI LAUREA IN SCIENZE DELLA FORMAZIONE PRIMARIA Ana Millán Gasca Luigi Regoliosi La lettura e lo studio del libro Pensare in matematica da parte degli

Dettagli

IGiochidiArchimede-GaraTriennio 22 novembre 2006

IGiochidiArchimede-GaraTriennio 22 novembre 2006 PROGTTO OLIMPII I MTMTI U.M.I. UNION MTMTI ITLIN SUOL NORML SUPRIOR IGiochidirchimede-GaraTriennio novembre 006 1) La prova consiste di 5 problemi; ogni domanda è seguita da cinquerisposteindicate con

Dettagli

(concetto classico di probabilità)

(concetto classico di probabilità) Probabilità matematica (concetto classico di probabilità) Teoria ed esempi Introduzione Il calcolo delle probabilità è la parte della matematica che si occupa di prevedere, sulla base di regole e leggi

Dettagli

PROVA DI MATEMATICA. Scuola Primaria. Classe Quinta. Rilevazione degli apprendimenti. Anno Scolastico 2011 2012

PROVA DI MATEMATICA. Scuola Primaria. Classe Quinta. Rilevazione degli apprendimenti. Anno Scolastico 2011 2012 Ministero dell Istruzione dell Università e della Ricerca Rilevazione degli apprendimenti Anno Scolastico 2011 2012 PROVA DI MATEMATICA Scuola Primaria Classe Quinta Spazio per l etichetta autoadesiva

Dettagli

Le applicazioni degli integrali al calcolo di aree e volumi nelle prove di maturità

Le applicazioni degli integrali al calcolo di aree e volumi nelle prove di maturità Le applicazioni degli integrali al calcolo di aree e volumi nelle prove di maturità Angelo Ambrisi Ne plus ultra. Non si va oltre! Gli integrali costituiscono le colonne d Ercole dell insegnamento della

Dettagli

Sesta Edizione Giochi di Achille e la tartaruga (Giochi Matematici) 16 dicembre 2010 Categoria: Sup-B (Alunni Biennio Superiori)

Sesta Edizione Giochi di Achille e la tartaruga (Giochi Matematici) 16 dicembre 2010 Categoria: Sup-B (Alunni Biennio Superiori) Il Responsabile coordinatore dei giochi: Prof. Agostino Zappacosta Chieti tel. 0871 65843 (cell.: 340 47 47 952) e-mail: agostino_zappacosta@libero.it Sesta Edizione Giochi di Achille e la tartaruga (Giochi

Dettagli

Kangourou Italia Gara del 15 marzo 2012 Categoria Benjamin Per studenti di prima o seconda della scuola secondaria di primo grado

Kangourou Italia Gara del 15 marzo 2012 Categoria Benjamin Per studenti di prima o seconda della scuola secondaria di primo grado Testi_Mat_5-8-Ecolier.qxd 4/06/ 7:7 Pagina 0 Kangourou Italia Gara del 5 marzo 0 Categoria Per studenti di prima o seconda della scuola secondaria di primo grado I quesiti dal N. al N. 0 valgono punti

Dettagli

BUON LAVORO E BUON DIVERTIMENTO

BUON LAVORO E BUON DIVERTIMENTO MINISTERO DELL ISTRUZIONE, DELL UNIVERSITA E DELLA RICERCA UFFICIO SCOLASTICO REGIONALE PER IL LAZIO S.M.S. PABLO NERUDA Via Casal del Marmo n. 216-00135 Roma 06/30812886 fax 06/30812292 RMMM51100Q@istruzione.it

Dettagli

Prova di Matematica. www.matematicamente.it Prove Invalsi Secondaria di primo grado classe III 2009-2010

Prova di Matematica. www.matematicamente.it Prove Invalsi Secondaria di primo grado classe III 2009-2010 Prova di Matematica D. Su una confezione di succo di frutta da 250 ml trovi le seguenti informazioni nutrizionali: INFORMAZIONI NUTRIZIONALI Valori medi per 00 ml Valore energetico 54 Kcal 228 kj Proteine

Dettagli

Ogni primino sa che...

Ogni primino sa che... Ogni primino sa che... A cura della équipe di matematica 25 giugno 2015 Competenze in ingresso Tradizionalmente, nei primi giorni di scuola, gli studenti delle classi prime del Pascal sostengono una prova

Dettagli

Esercizi di Probabilità e statistica. Francesco Caravenna Paolo Dai Pra

Esercizi di Probabilità e statistica. Francesco Caravenna Paolo Dai Pra Esercizi di Probabilità e statistica Francesco Caravenna Paolo Dai Pra Capitolo 1 Spazi di probabilità discreti 1.1 Proprietà fondamentali Esercizio 1 Esprimere ciascuno dei seguenti eventi in termini

Dettagli

Dipartimento di Scienze Biomediche, Sperimentali e Cliniche «Mario Serio»

Dipartimento di Scienze Biomediche, Sperimentali e Cliniche «Mario Serio» PRECORSO 2014 Problemi di Matematica Giovanni Romano Dipartimento di Scienze Biomediche, Sperimentali e Cliniche «Mario Serio» PRECORSO 2014: ciclo formativo di orientamento alle prove di ammissione ai

Dettagli

UNA LEZIONE SUI NUMERI PRIMI: NASCE LA RITABELLA

UNA LEZIONE SUI NUMERI PRIMI: NASCE LA RITABELLA UNA LEZIONE SUI NUMERI PRIMI: NASCE LA RITABELLA Tutti gli anni, affrontando l argomento della divisibilità, trovavo utile far lavorare gli alunni sul Crivello di Eratostene. Presentavo ai ragazzi una

Dettagli

20 RMT PROVA II marzo - aprile 2012 ARMT 2012 1

20 RMT PROVA II marzo - aprile 2012 ARMT 2012 1 20 RMT PROVA II marzo - aprile 2012 ARMT 2012 1 Problemi Categorie Argomenti Origine 1. Cornice multicolore 3 4 Co LU 2. Il robot Arturo 3 4 Ar Geo BB 3 Lotteria di fine anno 3 4 5 Ar SI 4. Scenario 3

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2008

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2008 PRVA SPERIMENTALE P.N.I. 8 ESAME DI STAT DI LICE SCIENTIFIC CRS SPERIMENTALE P.N.I. 8 Il candidato risolva uno dei due problemi e 5 dei quesiti in cui si articola il questionario. PRBLEMA Nel piano riferito

Dettagli

Archimede 1 2009 BORSE 2008 DELL ISTITUTO NAZIONALE DI ALTA MATEMATICA

Archimede 1 2009 BORSE 2008 DELL ISTITUTO NAZIONALE DI ALTA MATEMATICA ARTICOLO Archimede 1 009 BORSE 008 DELL ISTITUTO NAZIONALE DI ALTA MATEMATICA Si è svolto il 9 settembre 008 il consueto concorso per l assegnazione di 40 borse di studio a studenti che si immatricolino

Dettagli

Servizio Nazionale di Valutazione a.s. 2015/16 Guida alla lettura Prova di Matematica Classe seconda Scuola primaria

Servizio Nazionale di Valutazione a.s. 2015/16 Guida alla lettura Prova di Matematica Classe seconda Scuola primaria Servizio Nazionale di Valutazione a.s. 2015/16 Guida alla lettura Prova di Matematica Classe seconda Scuola primaria I quesiti sono distribuiti negli ambiti secondo la tabella seguente Ambito Numero di

Dettagli

Cacciuccata Matematica 2011 Selezione 2 7 Aprile 2011

Cacciuccata Matematica 2011 Selezione 2 7 Aprile 2011 (1) Nella gara di nuoto di Matepaperopoli, GastonTre nuota il triplo delle vasche di OrazioDue, mentre Zio PaperonUno, che si è allenato nuotando nell'oro, nuota il doppio delle vasche di OrazioDue. Quante

Dettagli

INVALSI. C l. Ministero dell Istruzione dell Università e della Ricerca

INVALSI. C l. Ministero dell Istruzione dell Università e della Ricerca V MATEMATICA_COP_Layout 1 15/03/11 08:15 Pagina 2 Ministero dell Istruzione dell Università e della Ricerca INVALSI Istituto nazionale per la valutazione del sistema educativo di istruzione e di formazione

Dettagli

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Primaria. Classe Quarta. Codici. Scuola:... Classe:..

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Primaria. Classe Quarta. Codici. Scuola:... Classe:.. Ministero della Pubblica Istruzione Rilevazione degli apprendimenti Anno Scolastico 2006 2007 PROVA DI MATEMATICA Scuola Primaria Classe Quarta Codici Scuola:..... Classe:.. Studente:. Spazio per l etichetta

Dettagli

scaricato da www.risorsedidattiche.net

scaricato da www.risorsedidattiche.net MOLTIPLICA E DIVIDI PER 10, 100, 1.000 A. Osserva, scrivi i risultati e poi completa la regola. X10 X1.000 X100 1 X 10 = 1 X 100 = 1 X 1.000 = Regola Se moltiplico un numero per 10 scrivo questo numero

Dettagli

Laboratorio Da Euclide ai pannelli solari piegando la carta

Laboratorio Da Euclide ai pannelli solari piegando la carta Summer School La matematica incontra le altre Scienze San Pellegrino Terme 8 9-10 Settembre 2014 Laboratorio Da Euclide ai pannelli solari piegando la carta I Parte : Relazioni tra tetraedro regolare e

Dettagli

Kangourou Italia Gara del 20 marzo 2003 Categoria Cadet Per studenti di terza media o prima superiore

Kangourou Italia Gara del 20 marzo 2003 Categoria Cadet Per studenti di terza media o prima superiore 15-20-.qxd 29/03/2003 8.22 Pagina 16 Kangourou Italia Gara del 20 marzo 2003 Categoria Per studenti di terza media o prima superiore I quesiti dal N. 1 al N. 10 valgono 3 punti ciascuno 1. Quale dei seguenti

Dettagli

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:...

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:... Ministero della Pubblica Istruzione Rilevazione degli apprendimenti Anno Scolastico 2006 2007 PROVA DI MATEMATICA Scuola Secondaria di II grado Classe Terza Tipo A Codici Scuola:..... Classe:.. Studente:.

Dettagli

Probabilità e Statistica Esercitazioni. a.a. 2006/2007

Probabilità e Statistica Esercitazioni. a.a. 2006/2007 Probabilità e Statistica Esercitazioni a.a. 2006/2007 C.d.L.: Ingegneria per l Ambiente ed il Territorio, Ingegneria Civile, Ingegneria Gestionale, Ingegneria dell Informazione C.d.L.S.: Ingegneria Civile

Dettagli

CURRICOLO MATEMATICA

CURRICOLO MATEMATICA 1 CURRICOLO MATEMATICA Competenza 1 al termine della scuola dell Infanzia 2 NUMERI Raggruppare, ordinare, contare, misurare oggetti, grandezze ed eventi direttamente esperibili. Utilizzare calendari settimanali

Dettagli