Olimpiadi di Matematica Scuola Media

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Olimpiadi di Matematica Scuola Media"

Transcript

1 Olimpiadi di Matematica Scuola Media Giochi di Archimede - 1 Dicembre 2010 QUESITO N.1 (Punti 20) - Inglese/Francese Il berretto di Anna In a dark room there are three bonnets, two red ones and a white one. Anne and Brigitte take one each, put it on and leave the room, Anne first, then Brigitte. Brigitte can see the colour of Anne s bonnet but Anne can t see the colour of Brigitte s bonnet. Brigitte says: «I am not sure what the colour of my bonnet is». Anne answers:«so I know the colour of mine». What colour is Anne s bonnet? Explain why. Il berretto di Anna Dance une pièce obscure il y a trois bonnets, deux rouge et un blanc. Anne et Brigitte en prennent chacune un, s en coiffent et sortent de la pièce. Anne d abord, puis Brigitte. Brigitte voit la couleur du bonnet d Anne mais Anne ne voit pas la couleur du bonnet de Brigitte. Brigitte dit: «Je ne suis pas sure de la couleur de mon bonnet». Anne repond : «Alors moi ; je connais la couleur du mien». De quelle couleur est le bonnet d Anne? Expliquer pourquoi Anne le sait. 2

2 Giochi di Archimede dell Soluzioni Quesito N.1(Punti 20 = ). Risposta: Anna indossa un berretto di colore rosso. Il fatto che Brigitte afferma di non essere sicura del colore del suo berretto è perché, potendo vedere quello di Anna, che la precede, nota che è di colore rosso. Essendoci due berretti di colore rosso il suo potrebbe essere rosso o bianco. Da qui la sua insicurezza. Ma la sua affermazione è sufficiente ad Anna per essere certa che lei indossa un berretto di colore rosso. Quesito N.2 (Punti 5). La risposta corretta è (B). Cancellando tutti i multipli di 7, si cancellano 14 numeri; cancellando tutti i multipli di 11, si cancellano solo 8 numeri, tenuto conto che 77 è stato già cancellato come multiplo di 7. Quindi le caselle vuote sono 22. Quesito N.3 (Punti 10). La risposta corretta è (B). L apotema della piramide è pari all altezza di un triangolo equilatero unitario, e vale. L altezza h della piramide può essere calcolata applicando il teorema di Pitagora al triangolo rettangolo VOH e quindi h= = da cui il volume risulta : = = = Quesito N.4 (Punti 10). La risposta corretta è (B). Il numero degli studenti della scuola è lo stesso sia per quest anno che per l anno scorso. Alla fine dello scorso anno hanno lasciato la scuola complessivamente il 21% degli studenti (la somma dei diplomati e di quelli che si sono trasferiti). Quest anno sono arrivati 84 studenti nuovi. Poiché il numero complessivo di studenti è rimasto invariato, deduciamo che il 21% di è pari ad 84. Quindi l 1% degli studenti è 84/21= 4 ed vale 400. Quesito N.5 (Punti 10). La risposta corretta è (A). Lanciando contemporaneamente due dadi si ottengono 36 possibili casi (tutte i numeri del primo dado abbinati, uno alla volta, con quelli del secondo). Le coppie che contengono due numeri la cui somma è multipla di 3 sono: 2,1,1,2, 2,4,4,2,3,3,1,5,5,1, 3,6,6,3,6,6,4,5,5,4 in tutto 12, per cui la risposta è 1/3. Quesito N.6 (Punti 10). La risposta corretta è (D). Chiamiamo,, il numero dei cubi di lato 3,4 e 5 rispettivamente. Essi sono numeri interi strettamente positivi che soddisfano le due relazioni: ++ =10 e =577. Dalla prima equazione si ottiene: =10 + che, sostituita nella seconda, dà: = =307. Da essa segue che non può essere maggiore di 2, perché se fosse 3, dovrebbe essere necessariamente minore di 1, il che è impossibile. Quindi =1 oppure 2. Ma =1 dà un numero non intero, per cui dev essere =2 che dà =3 e,di conseguenza,dev essere =5. Quesito N.7 (Punti 5). La risposta corretta è (B). Il fanciullo sale a sinistra verso l alto fino ad entrare nel quarto triangolo in alto a destra, poi scende di tre triangoli fino in fondo ed esce in basso a destra per la porta (e). Per uscire dalle altre porte dovrebbe attraversare almeno una stanza avente forma quadrangolare. Quesito N.8 (Punti 10). La risposta corretta è (B). Per numerare i fogli da 1 a 9 occorrono 9 etichette adesive; da 10 a 99 occorrono 90x2 = 180 etichette perché ogni numero ha due cifre; infine per numerare i fogli da 100 a 284 occorrono 185x3 = 555 etichette poiché i numeri sono di tre cifre. In totale occorrono = 744 etichette adesive per numerare tutti gli appunti di Anatomia. Quesito N.9 (Punti 5). La risposta corretta è (B). Prima riga: ; seconda riga: ; terza riga: ; eventuali altre soluzioni, che rispettino i vincoli posti, sono esatte. Esse, comunque, non alterano il numero dei quadrati perfetti che sono 7 (tre 1, tre 4, un 9). Quesito N.10 (Punti 10). La risposta corretta è (A). Quando le due macchine si incrociano, avranno percorso insieme l intera circonferenza, ovvero: S A + S B = 180. Sappiamo che S A : S B = : quindi = SA= SB e, componendo, 180 =5 2, per cui =72 ed = 108 km. Tenuto conto che =90/h e =60/h, 72 : 60 = 108 : 90 = 1,2 h; per cui si incontrano dopo 72 minuti. Quesito N.11 (Punti da 0 a 20; la risposta è Bea). Le affermazioni di Anna e Bea sono in contraddizione tra loro. Infatti se Anna ha un poker deve avere almeno una carta di cuori e quindi Bea non può avere tutte le cinque carte di cuori. Quindi una tra Anna e Bea mente. Se fosse Anna a mentire, le affermazioni di Bea, Caio e Dino dovrebbero essere tutte vere. D altra parte Dino afferma di avere tre carte dello stesso valore, quindi in particolare ha una carta rossa, ma Bea ha tutte le carte di cuori e di conseguenza Caio, che ha cinque carte rosse, deve avere tutte le carte di quadri. Quindi l affermazione di Dino è in contrasto con quelle di Bea e Caio. Deduciamo che Bea, Caio e Dino non stanno dicendo tutti la verità, quindi Anna afferma il vero e Bea mente. Le affermazioni di Anna, Caio e Dino sono tra loro compatibili. Anna, ad esempio, potrebbe avere un poker di assi e il re di picche; Caio il re di cuori, il re di quadri, la regina di quadri, la regina di cuori e il fante di cuori; Dino il fante di quadri, di picche e di fiori, il dieci di cuori e di quadri; Bea le cinque carte rimanenti. 7

3 Quesito N.1 Traduzione e risoluzione). 6

4 U.M.I - I.T.C.G. Pitagora-Calvosa Castrovillari OLIMPIADI DI MATEMATICA SCUOLA MEDIA Giochi di Archimede - 1 Dicembre 2010 Istruzioni 1) Non sfogliate questo fascicolo finchè l insegnante non dice di farlo. 2) I quesiti che sottoponiamo sono a risposta multipla dal n.2 al n.10. Ogni domanda è seguita da cinque risposte indicate con le lettere A, B, C, D, E. 3) Ciascuna delle domande ammette una sola risposta corretta: la lettera corrispondente alla risposta esatta dovrà, per ogni quesito, essere riportata in fondo a questa pagina nella relativa finestrella. 4) Ogni risposta esatta vale il numero di punti indicato nel testo, ogni risposta errata vale 0 punti, ogni problema lasciato senza risposta vale 0 punti. 5) Il quesito n. 1 vale da 0 a 20 punti, di cui la metà per la traduzione; il quesito n. 11 vale da 0 a 20 punti. Il procedimento del n.1 va illustrato su foglio a parte, preceduto dalla traduzione in italiano del testo in lingua straniera, mentre il n.11 va svolto sullo stesso foglio della traccia. 6) Durante la prova NON E AMMESSO L USO DI CALCOLATRICI TASCABILI, mentre, trattandosi di lavoro di gruppo è lecita, tra gli allievi componenti la classe, ogni utile forma di collaborazione o strategia. 7) In caso di classi bilingue il quesito n.1 può essere tradotto da una delle due lingue indifferentemente. 8) Quando l insegnante darà il via potrete cominciare a lavorare. Avrete 2 ore di tempo. Buon lavoro! CLASSE : SCUOLA Indirizzo: Città: Risposte ai quesiti da 2 a PUNTEGGIO (da riempirsi a cura dell insegnante) Valutazione esercizi da 2 a 10 Valutazione esercizio n.1 Valutazione esercizio n.11 PUNTEGGIO TOTALE 1

5 Quesito N. 2(Punti 5). Su una griglia rettangolare, vedi figura, costituita da 100 caselle sono riportati i primi 100 numeri interi positivi nell ordine da 1 a 100. Quante caselle resteranno vuote dopo aver cancellato tutti i multipli di 7 e di 11? (A) 23 (B ) 22 (C) 21 (B ) 25 (D) 24 Quesito N. 3 (Punti 10). Una piramide retta a base quadrata ha tutti gli spigoli di lunghezza unitaria. Il suo volume è: V (A) (D) (B) (E) (C) C O D H Quesito N. 4 (Punti 10). Al termine dell anno scorso in una scuola di musica si è diplomato il 18% degli studenti di tutta la scuola e un altro 3% degli studenti si è trasferito in altre scuole. Quest anno si sono iscritti alla scuola 84 nuovi studenti e ora il numero di studenti è uguale quello dello scorso anno. Quanti studenti ha la scuola? (A) 324 (B) 400 (C) 500 A B (D) 525 (E) 600 Quesito N. 5 (Punti 10). Si lanciano contemporaneamente due dadi regolari, dire qual è la probabilità che la somma dei due numeri estratti sia multipla di tre. (A) (B) (C) (D) (E) Quesito N. 6 (Punti 10). Gabriele ha 10 cubi, di tre dimensioni: alcuni hanno lato di 3 cm, altri hanno il lato di 4 cm ed altri ancora hanno il lato di 5cm (ne ha almeno uno di ciascun tipo). La somma dei volumi dei 10 cubi è 577 cm 3. Quanti sono i cubi con lato di 3 cm? (A) 2 (B) 3 (C) 4 (D) 5 (E) 6 3

6 Quesito N. 7(Punti 5). Un fanciullo, per curiosità, entra in un labirinto, che ha la pianta come in figura, dalla porta indicata dalla freccia. Ha smarrito l orientamento ma sa che se vuole uscire deve attraversare solo stanze triangolari. Da quale porta deve uscire? a b c (A) dalla porta a (B) dalla porta e (C) dalla porta b d (D) dalla porta c (E) dalla porta d e Quesito N. 8 (Punti 10). Aldo è uno studente del primo anno di medicina e possiede 284 fogli contenti appunti di Anatomia. I fogli sono sciolti e Aldo, per evitare che si crei confusione tra essi, decide di ordinarli apponendo su ogni foglio, avanti e dietro, un numero intero, progressivo, da 1 a 284. Egli dispone di tantissime etichette adesive che riportano le cifre decimali da 0 a 9. Di quante etichette necessita per numerare i suoi appunti? (A) 720 (B) 744 (C) 284 (D) 656 (E) 740 Quesito N. 9 (Punti 5). Nel disegno a lato scrivi in ogni casella vuota un numero intero, utilizzando solo i numeri 1, 2, 3, 4, 5, 6 in modo che in ogni riga ed in ogni colonna i numeri siano tutti diversi tra loro ed inoltre la somma in colonna dia come risultato il numero posto in cima nel triangolo. Completato lo schema, si dica quanti quadrati perfetti compaiono nella figura. (A) 6 (B) 7 (C) 10 (D) 11 (E) 4 Quesito N. 10 (Punti 10). Due macchine partono da due stazioni A e B, diametralmente opposte, e si muovono in senso contrario su un percorso circolare lungo180 km, con velocità costante. Tenuto conto che la prima macchina impiega 3 ore per fare l intero percorso e la seconda 2 ore, indicare dopo quanti minuti le due macchine si incontrano per la prima volta. (A) 72 (B) 80 (C) 60 (D) 120 (E) 76 4

7 QUESITO N. 11 (Punti 0-20). I quattro amici Quattro amici, Anna, Bea, Caio e Dino, giocano a poker con 20 carte di uno stesso mazzo: i quattro re, le quattro regine, i quattro fanti, i quattro assi e i quattro dieci. Vengono distribuite 5 carte a testa. Anna dice: Io ho un poker (quattro carte dello stesso valore). Bea dice. Io ho tutte e cinque le carte di cuori. Caio dice: Io ho cinque carte rosse. Infine Dino dice: Io ho tre carte di uno stesso valore e anche le altre due hanno tra loro lo stesso valore. Sappiamo che una e una sola delle affermazioni è falsa; chi sta mentendo? Dire, secondo voi, chi e spiegare il perché. (N.B. Le 20 carte sono metà nere e metà rosse, a due a due dello stesso valore) 5

8

9

Kangourou Italia Gara del 19 marzo 2015 Categoria Student Per studenti di quarta e quinta della secondaria di secondo grado

Kangourou Italia Gara del 19 marzo 2015 Categoria Student Per studenti di quarta e quinta della secondaria di secondo grado Kangourou Italia Gara del 19 marzo 2015 Categoria Student Per studenti di quarta e quinta della secondaria di secondo grado I quesiti dal N. 1 al N. 10 valgono 3 punti ciascuno 1. Angela è nata nel 1997,

Dettagli

Le soluzioni dei quesiti sono in fondo alla prova

Le soluzioni dei quesiti sono in fondo alla prova SCUOLA MEDIA STATALE GIULIANO DA SANGALLO Via Giuliano da Sangallo,11-Corso Duca di Genova,135-00121 Roma Tel/fax 06/5691345-e.mail:scuola.sangallo@libero.it SELEZIONE INTERNA PER LA MARATONA DI MATEMATICA

Dettagli

ESAME DI STATO 2002 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO

ESAME DI STATO 2002 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO ARCHIMEDE 4/ 97 ESAME DI STATO SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO Il candidato risolva uno dei due problemi e 5 dei quesiti in cui si articola il questionario. PROBLEMA In un

Dettagli

ESAME DI STATO 2010 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO

ESAME DI STATO 2010 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO Archimede ESAME DI STATO SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO ARTICOLO Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. Sia ABCD un quadrato di

Dettagli

8. Qual è la probabilità di estrarre da un mazzo di 40 carte napoletane una figura?

8. Qual è la probabilità di estrarre da un mazzo di 40 carte napoletane una figura? www.matematicamente.it Probabilità 1 Calcolo delle probabilità Cognome e nome: Classe Data 1. Quali affermazioni sono vere? A. Un evento impossibile ha probabilità 1 B. Un vento certo ha probabilità 0

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 004 Il candidato risolva uno dei due problemi e 5 dei 10 quesiti in cui si articola il questionario. PROBLEMA 1 Sia f la funzione definita da: f

Dettagli

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:...

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:... Ministero della Pubblica Istruzione Rilevazione degli apprendimenti Anno Scolastico 2006 2007 PROVA DI MATEMATICA Scuola Secondaria di II grado Classe Terza Tipo A Codici Scuola:..... Classe:.. Studente:.

Dettagli

esame di stato 2013 seconda prova scritta per il liceo scientifico di ordinamento

esame di stato 2013 seconda prova scritta per il liceo scientifico di ordinamento Archimede esame di stato seconda prova scritta per il liceo scientifico di ordinamento ARTICOLO Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. PROBLEMA La funzione f

Dettagli

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:...

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:... Ministero della Pubblica Istruzione Rilevazione degli apprendimenti Anno Scolastico 2006 2007 PROVA DI MATEMATICA Scuola Secondaria di II grado Classe Terza Tipo A Codici Scuola:..... Classe:.. Studente:.

Dettagli

Svolgimento della prova

Svolgimento della prova Svolgimento della prova D1. Il seguente grafico rappresenta la distribuzione dei lavoratori precari in Italia suddivisi per età nell anno 2012. a. Quanti sono in totale i precari? A. Circa due milioni

Dettagli

PROVA DI MATEMATICA - Scuola Primaria - Classe Seconda

PROVA DI MATEMATICA - Scuola Primaria - Classe Seconda PROVA DI MATEMATICA - Scuola Primaria - Classe Seconda Rilevazione degli apprendimenti Anno Scolastico 2011 2012 PROVA DI MATEMATICA Scuola Primaria Classe Seconda Spazio per l etichetta autoadesiva ISTRUZIONI

Dettagli

UNA LEZIONE SUI NUMERI PRIMI: NASCE LA RITABELLA

UNA LEZIONE SUI NUMERI PRIMI: NASCE LA RITABELLA UNA LEZIONE SUI NUMERI PRIMI: NASCE LA RITABELLA Tutti gli anni, affrontando l argomento della divisibilità, trovavo utile far lavorare gli alunni sul Crivello di Eratostene. Presentavo ai ragazzi una

Dettagli

Esercizi di calcolo combinatorio

Esercizi di calcolo combinatorio CORSO DI CALCOLO DELLE PROBABILITÀ E STATISTICA Esercizi di calcolo combinatorio Nota: Alcuni esercizi sono tradotti, più o meno fedelmente, dal libro A first course in probability di Sheldon Ross, quinta

Dettagli

Calcolo combinatorio

Calcolo combinatorio Probabilità e Statistica Esercitazioni a.a. 2009/2010 C.d.L.S.: Ingegneria Civile-Architettonico, Ingegneria Civile-Strutturistico Calcolo combinatorio Ines Campa e Marco Longhi Probabilità e Statistica

Dettagli

Introduzione ad Access

Introduzione ad Access Introduzione ad Access Luca Bortolussi Dipartimento di Matematica e Informatica Università degli studi di Trieste Access E un programma di gestione di database (DBMS) Access offre: un supporto transazionale

Dettagli

PROVA DI MATEMATICA - Scuola Primaria - Classe Quinta

PROVA DI MATEMATICA - Scuola Primaria - Classe Quinta Rilevazione degli apprendimenti PROVA DI MATEMATICA - Scuola Primaria - Classe Quinta Anno Scolastico 2011 2012 PROVA DI MATEMATICA Scuola Primaria Classe Quinta Spazio per l etichetta autoadesiva ISTRUZIONI

Dettagli

I Grafici. La creazione di un grafico

I Grafici. La creazione di un grafico I Grafici I grafici servono per illustrare meglio un concetto o per visualizzare una situazione di fatto e pertanto la scelta del tipo di grafico assume notevole importanza. Creare grafici con Excel è

Dettagli

Problema n. 1: CURVA NORD

Problema n. 1: CURVA NORD Problema n. 1: CURVA NORD Sei il responsabile della gestione del settore Curva Nord dell impianto sportivo della tua città e devi organizzare tutti i servizi relativi all ingresso e all uscita degli spettatori,

Dettagli

MATEMATICA. { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un numero x ed un numero y che risolvano entrambe le equazioni.

MATEMATICA. { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un numero x ed un numero y che risolvano entrambe le equazioni. MATEMATICA. Sistemi lineari in due equazioni due incognite. Date due equazioni lineari nelle due incognite x, y come ad esempio { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un

Dettagli

TEST DELL'ABILITA' PRATICA DEL RAGIONAMENTO GLOBALE

TEST DELL'ABILITA' PRATICA DEL RAGIONAMENTO GLOBALE TEST DELL'ABILITA' PRATICA DEL RAGIONAMENTO GLOBALE COPYRIGHT 2008 PROCTER & GAMBLE CINCINNATI, OH 45202 U.S.A. AVVERTENZA: Tutti i diritti riservati. Questo opuscolo non può essere riprodotto in alcun

Dettagli

esame di stato 2012 seconda prova scritta per il liceo scientifico di ordinamento

esame di stato 2012 seconda prova scritta per il liceo scientifico di ordinamento RTICL rchimede 4 esame di stato seconda prova scritta per il liceo scientifico di ordinamento Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario PRBLEM Siano f e g le funzioni

Dettagli

I numeri che si ottengono successivamente sono 98-2 = 96 4 = 92 8 = 84 16 = 68 32 = 36 e ci si ferma perché non possibile togliere 64

I numeri che si ottengono successivamente sono 98-2 = 96 4 = 92 8 = 84 16 = 68 32 = 36 e ci si ferma perché non possibile togliere 64 Problemini e indovinelli 2 Le palline da tennis In uno scatolone ci sono dei tubi che contengono ciascuno 4 palline da tennis.approfittando di una offerta speciale puoi acquistare 4 tubi spendendo 20.

Dettagli

1A ARITMETICA. I numeri naturali e le quattro operazioni. Esercizi supplementari di verifica

1A ARITMETICA. I numeri naturali e le quattro operazioni. Esercizi supplementari di verifica A ARITMETICA I numeri naturali e le quattro operazioni Esercizi supplementari di verifica Esercizio Rappresenta sulla retta orientata i seguenti numeri naturali. ; ; ; 0;. 0 Esercizio Metti una crocetta

Dettagli

Soluzione Punto 1 Si calcoli in funzione di x la differenza d(x) fra il volume del cono avente altezza AP e base il

Soluzione Punto 1 Si calcoli in funzione di x la differenza d(x) fra il volume del cono avente altezza AP e base il Matematica per la nuova maturità scientifica A. Bernardo M. Pedone 74 PROBLEMA Considerata una sfera di diametro AB, lungo, per un punto P di tale diametro si conduca il piano α perpendicolare ad esso

Dettagli

Cenni sul calcolo combinatorio

Cenni sul calcolo combinatorio Cenni sul calcolo combinatorio Disposizioni semplici Le disposizioni semplici di n elementi distinti di classe k con kn sono tutti i gruppi di k elementi scelti fra gli n, che differiscono per almeno un

Dettagli

Griglia di correzione Fascicolo di Italiano Prova Nazionale anno scolastico 2008-2009

Griglia di correzione Fascicolo di Italiano Prova Nazionale anno scolastico 2008-2009 Griglia di correzione Fascicolo di Italiano Prova Nazionale anno scolastico 2008-2009 Il buon nome - Chiavi di risposta e classificazione degli item Item Risposta corretta Ambito di valutazione Processi

Dettagli

CORSO DI CALCOLO DELLE PROBABILITÀ E STATISTICA. Esercizi su eventi, previsioni e probabilità condizionate

CORSO DI CALCOLO DELLE PROBABILITÀ E STATISTICA. Esercizi su eventi, previsioni e probabilità condizionate CORSO DI CALCOLO DELLE PROBABILITÀ E STATISTICA Esercizi su eventi, previsioni e probabilità condizionate Nota: Alcuni esercizi sono tradotti, più o meno fedelmente, dal libro A first course in probability

Dettagli

RETTE, PIANI, SFERE, CIRCONFERENZE

RETTE, PIANI, SFERE, CIRCONFERENZE RETTE, PIANI, SFERE, CIRCONFERENZE 1. Esercizi Esercizio 1. Dati i punti A(1, 0, 1) e B(, 1, 1) trovare (1) la loro distanza; () il punto medio del segmento AB; (3) la retta AB sia in forma parametrica,

Dettagli

Introduzione alla probabilità

Introduzione alla probabilità Introduzione alla probabilità CAPITOLO TEORIA Il dilemma di Monty Hall In un popolare show televisivo americano il presentatore mostra al concorrente tre porte chiuse. Dietro a una di esse si cela il premio

Dettagli

Guida rapida. Cos è GeoGebra? Notizie in pillole

Guida rapida. Cos è GeoGebra? Notizie in pillole Guida rapida Cos è GeoGebra? Un pacchetto completo di software di matematica dinamica Dedicato all apprendimento e all insegnamento a qualsiasi livello scolastico Riunisce geometria, algebra, tabelle,

Dettagli

esame di stato 2014 seconda prova scritta per i licei scientifici di ordinamento

esame di stato 2014 seconda prova scritta per i licei scientifici di ordinamento ARTICOLO Archimede 4 4 esame di stato 4 seconda prova scritta per i licei scientifici di ordinamento Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. PROBLEMA Nella figura

Dettagli

186. Un gioco d incertezza: Forse che sì, forse che no Rosa Marincola rosamarincola@virgilio.it

186. Un gioco d incertezza: Forse che sì, forse che no Rosa Marincola rosamarincola@virgilio.it 186. Un gioco d incertezza: Forse che sì, forse che no Rosa Marincola rosamarincola@virgilio.it Premessa Durante una mia visita al Palazzo Ducale di Mantova, nell ammirare i tanti capolavori che custodisce,

Dettagli

PROBABILITA, VALORE ATTESO E VARIANZA DELLE QUANTITÁ ALEATORIE E LORO RELAZIONE CON I DATI OSSERVATI

PROBABILITA, VALORE ATTESO E VARIANZA DELLE QUANTITÁ ALEATORIE E LORO RELAZIONE CON I DATI OSSERVATI statistica, Università Cattaneo-Liuc, AA 006-007, lezione del 08.05.07 IDICE (lezione 08.05.07 PROBABILITA, VALORE ATTESO E VARIAZA DELLE QUATITÁ ALEATORIE E LORO RELAZIOE CO I DATI OSSERVATI 3.1 Valore

Dettagli

ISTITUTO COMPRENSIVO N 1 LANCIANO - SCUOLA SECONDARIA DI PRIMO GRADO CURRICOLO VERTICALE - Classe Prima MATEMATICA a.s. 2014/2015

ISTITUTO COMPRENSIVO N 1 LANCIANO - SCUOLA SECONDARIA DI PRIMO GRADO CURRICOLO VERTICALE - Classe Prima MATEMATICA a.s. 2014/2015 NUMERI. SPAZIO E FIGURE. RELAZIONI, FUNZIONI, MISURE, DATI E PREVISIONI Le sociali e ISTITUTO COMPRENSIVO N 1 LANCIANO - SCUOLA SECONDARIA DI PRIMO GRADO CURRICOLO VERTICALE - Classe Prima MATEMATICA procedure

Dettagli

Percorsi di matematica per il ripasso e il recupero

Percorsi di matematica per il ripasso e il recupero Giacomo Pagina Giovanna Patri Percorsi di matematica per il ripasso e il recupero 1 per la Scuola secondaria di secondo grado UNITÀ CMPIONE Edizioni del Quadrifoglio à t i n U 1 Insiemi La teoria degli

Dettagli

(V) (FX) Z 6 è un campo rispetto alle usuali operazioni di somma e prodotto.

(V) (FX) Z 6 è un campo rispetto alle usuali operazioni di somma e prodotto. 29 giugno 2009 - PROVA D ESAME - Geometria e Algebra T NOME: MATRICOLA: a=, b=, c= Sostituire ai parametri a, b, c rispettivamente la terzultima, penultima e ultima cifra del proprio numero di matricola

Dettagli

Test d ingresso per i curricula in lingua inglese Coloro che intendono iscriversi ai curricula in lingua inglese Economics of Financial and Insurance

Test d ingresso per i curricula in lingua inglese Coloro che intendono iscriversi ai curricula in lingua inglese Economics of Financial and Insurance Note e istruzioni per i test di ingresso ai Corsi di Studio del Dipartimento di Scienze Economiche, Aziendali, Matematiche e Statistiche (DEAMS) a.a. 2013/2014 Gli insegnamenti relativi ai Corsi di Laurea

Dettagli

APPUNTI DI MATEMATICA GLI INSIEMI NUMERICI

APPUNTI DI MATEMATICA GLI INSIEMI NUMERICI APPUNTI DI MATEMATICA GLI INSIEMI NUMERICI I numeri naturali I numeri interi I numeri razionali Teoria degli insiemi (cenni) ALESSANDRO BOCCONI Indice 1 L insieme N dei numeri naturali 4 1.1 Introduzione.........................................

Dettagli

SIMULAZIONE DI PROVA D ESAME CORSO DI ORDINAMENTO

SIMULAZIONE DI PROVA D ESAME CORSO DI ORDINAMENTO SIMULAZINE DI PRVA D ESAME CRS DI RDINAMENT Risolvi uno dei due problemi e 5 dei quesiti del questionario. PRBLEMA Considera la famiglia di funzioni k ln f k () se k se e la funzione g() ln se. se. Determina

Dettagli

Rapporti e Proporzioni

Rapporti e Proporzioni Rapporti e Proporzioni (a cura Prof.ssa R. Limiroli) Rapporto tra numeri Il rapporto diretto tra due numeri a e b, il secondo dei quali diverso da zero, si indica con Ricorda a e b sono i termini del rapporto

Dettagli

Calcolo delle Probabilità

Calcolo delle Probabilità Calcolo delle Probabilità Il calcolo delle probabilità studia i modelli matematici delle cosidette situazioni di incertezza. Molte situazioni concrete sono caratterizzate a priori da incertezza su quello

Dettagli

Flusso a costo minimo e simplesso su reti

Flusso a costo minimo e simplesso su reti Flusso a costo minimo e simplesso su reti La particolare struttura di alcuni problemi di PL può essere talvolta utilizzata per la progettazione di tecniche risolutive molto più efficienti dell algoritmo

Dettagli

Servizio Nazionale di Valutazione a.s. 2013/14 Guida alla lettura Prova di Matematica Classe seconda Scuola secondaria di II grado

Servizio Nazionale di Valutazione a.s. 2013/14 Guida alla lettura Prova di Matematica Classe seconda Scuola secondaria di II grado Servizio Nazionale di Valutazione a.s. 2013/14 Guida alla lettura Prova di Matematica Classe seconda Scuola secondaria di II grado I quesiti sono distribuiti negli ambiti secondo la tabella seguente Ambito

Dettagli

CARIBBEAN POKER. Come si gioca

CARIBBEAN POKER. Come si gioca CARIBBEAN POKER INDICE Caribbean Poker 2 Il tavolo da gioco 3 Le carte da gioco 4 Il Gioco 5 Jackpot Progressive 13 Pagamenti 14 Pagamenti con Jackpot 16 Combinazioni 18 Regole generali 24 CARIBBEAN POKER

Dettagli

C è solo un acca tra pi e phi ing. Rosario Turco, prof. Maria Colonnese

C è solo un acca tra pi e phi ing. Rosario Turco, prof. Maria Colonnese C è solo un acca tra pi e phi ing. Rosario Turco, prof. Maria Colonnese Introduzione Nell articolo vengono mostrate vari possibili legami tra la costante di Archimede (pi greco) e la sezione aurea (phi).

Dettagli

LE FUNZIONI MATEMATICHE

LE FUNZIONI MATEMATICHE ALGEBRA LE FUNZIONI MATEMATICHE E IL PIANO CARTESIANO PREREQUISITI l l l l l conoscere il concetto di insieme conoscere il concetto di relazione disporre i dati in una tabella rappresentare i dati mediante

Dettagli

A. 5 m / s 2. B. 3 m / s 2. C. 9 m / s 2. D. 2 m / s 2. E. 1 m / s 2. Soluzione: equazione oraria: s = s0 + v0

A. 5 m / s 2. B. 3 m / s 2. C. 9 m / s 2. D. 2 m / s 2. E. 1 m / s 2. Soluzione: equazione oraria: s = s0 + v0 1 ) Un veicolo che viaggia inizialmente alla velocità di 1 Km / h frena con decelerazione costante sino a fermarsi nello spazio di m. La sua decelerazione è di circa: A. 5 m / s. B. 3 m / s. C. 9 m / s.

Dettagli

SCUOLA PRIMARIA DI MONTE VIDON COMBATTE CLASSE V INS. VIRGILI MARIA LETIZIA

SCUOLA PRIMARIA DI MONTE VIDON COMBATTE CLASSE V INS. VIRGILI MARIA LETIZIA SCUOLA PRIMARIA DI MONTE VIDON COMBATTE CLASSE V INS. VIRGILI MARIA LETIZIA Regoli di Nepero Moltiplicazioni In tabella Moltiplicazione a gelosia Moltiplicazioni Con i numeri arabi Regoli di Genaille Moltiplicazione

Dettagli

In base alla formula di torneo adottata i tornei possono pertanto prevedere lo svolgimento di una o più partite.

In base alla formula di torneo adottata i tornei possono pertanto prevedere lo svolgimento di una o più partite. Formule di gioco La successione di mani necessarie per l eliminazione del penultimo giocatore o per la determinazione dei giocatori che accedono ad un turno successivo costituisce una partita. In base

Dettagli

Trasformazioni Geometriche 1 Roberto Petroni, 2011

Trasformazioni Geometriche 1 Roberto Petroni, 2011 1 Trasformazioni Geometriche 1 Roberto etroni, 2011 Trasformazioni Geometriche sul piano euclideo 1) Introduzione Def: si dice trasformazione geometrica una corrispondenza biunivoca che associa ad ogni

Dettagli

STUDIO DI UNA FUNZIONE

STUDIO DI UNA FUNZIONE STUDIO DI UNA FUNZIONE OBIETTIVO: Data l equazione Y = f(x) di una funzione a variabili reali (X R e Y R), studiare l andamento del suo grafico. PROCEDIMENTO 1. STUDIO DEL DOMINIO (CAMPO DI ESISTENZA)

Dettagli

Argomento interdisciplinare

Argomento interdisciplinare 1 Argomento interdisciplinare Tecnologia-Matematica Libro consigliato: Disegno Laboratorio - IL MANUALE DI TECNOLOGIA _G.ARDUINO_LATTES studiare da pag.19.da 154 a 162 Unità aggiornata: 7/2012 2 Sono corpi

Dettagli

Svolgimento del gioco. Un gioco di Matthias Cramer per 2-5 persone dai 10 anni

Svolgimento del gioco. Un gioco di Matthias Cramer per 2-5 persone dai 10 anni Un gioco di Matthias Cramer per 2-5 persone dai 10 anni Anno 1413 Il nuovo re d'inghilterra, Enrico V di Lancaster persegue gli ambiziosi progetti di unificare l'inghilterra e di conquistare la corona

Dettagli

Calc è il programma per la gestione di fogli di calcolo della suite OpenOffice.org.

Calc è il programma per la gestione di fogli di calcolo della suite OpenOffice.org. Calc è il programma per la gestione di fogli di calcolo della suite OpenOffice.org. Nuovo documento Anteprima di stampa Annulla Galleria Apri Controllo ortografico Ripristina Sorgente dati Salva Controllo

Dettagli

Risposta: L area del triangolo è dove sono le misure di due lati e è l ampiezza dell angolo tra essi compreso ;

Risposta: L area del triangolo è dove sono le misure di due lati e è l ampiezza dell angolo tra essi compreso ; 1. Un triangolo ha area 3 e due lati che misurano 2 e 3. Qual è la misura del terzo lato? : L area del triangolo è dove sono le misure di due lati e è l ampiezza dell angolo tra essi compreso ; nel nostro

Dettagli

Amministrazione, finanza e marketing - Turismo Ministero dell Istruzione, dell Università e della Ricerca PROGRAMMAZIONE DISCIPLINARE PER U. di A.

Amministrazione, finanza e marketing - Turismo Ministero dell Istruzione, dell Università e della Ricerca PROGRAMMAZIONE DISCIPLINARE PER U. di A. UdA n. 1 Titolo: Disequazioni algebriche Saper esprimere in linguaggio matematico disuguaglianze e disequazioni Risolvere problemi mediante l uso di disequazioni algebriche Le disequazioni I principi delle

Dettagli

A CHE COSA SERVE LA PROVA DI AMMISSIONE

A CHE COSA SERVE LA PROVA DI AMMISSIONE INDICE A che cosa serve la prova di ammissione pag. I Come è strutturata la prova III Come rispondere al questionario V Indicazioni sulle principali conoscenze richieste XII Testo della prova del 4 settembre

Dettagli

ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE

ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE 1 DIPENDENZA E INDIPENDENZA LINEARE Se ho alcuni vettori v 1, v 2,, v n in uno spazio vettoriale V, il sottospazio 1 W = v 1,, v n di V da loro generato è

Dettagli

I numeri relativi. Il calcolo letterale

I numeri relativi. Il calcolo letterale Indice Il numero unità I numeri relativi VIII Indice L insieme R Gli insiemi Z e Q Confronto di numeri relativi Le operazioni fondamentali in Z e Q 0 L addizione 0 La sottrazione La somma algebrica La

Dettagli

F S V F? Soluzione. Durante la spinta, F S =ma (I legge di Newton) con m=40 Kg.

F S V F? Soluzione. Durante la spinta, F S =ma (I legge di Newton) con m=40 Kg. Spingete per 4 secondi una slitta dove si trova seduta la vostra sorellina. Il peso di slitta+sorella è di 40 kg. La spinta che applicate F S è in modulo pari a 60 Newton. La slitta inizialmente è ferma,

Dettagli

Maturità Scientifica PNI, sessione ordinaria 2000-2001

Maturità Scientifica PNI, sessione ordinaria 2000-2001 Matematica per la nuova maturità scientifica A. Bernardo M. Pedone Maturità Scientifica PNI, sessione ordinaria 000-00 Problema Sia AB un segmento di lunghezza a e il suo punto medio. Fissato un conveniente

Dettagli

ITCG Cattaneo via Matilde di canossa n.3 - Castelnovo ne' Monti (RE) SEZIONE I.T.I. - Corso di Fisica - prof. Massimo Manvilli

ITCG Cattaneo via Matilde di canossa n.3 - Castelnovo ne' Monti (RE) SEZIONE I.T.I. - Corso di Fisica - prof. Massimo Manvilli ITCG C. CATTANEO via Matilde di Canossa n.3 - Castelnovo ne' Monti (Reggio Emilia) Costruzione del grafico di una funzione con Microsoft Excel Supponiamo di aver costruito la tabella riportata in figura

Dettagli

Parte 3. Rango e teorema di Rouché-Capelli

Parte 3. Rango e teorema di Rouché-Capelli Parte 3. Rango e teorema di Rouché-Capelli A. Savo Appunti del Corso di Geometria 203-4 Indice delle sezioni Rango di una matrice, 2 Teorema degli orlati, 3 3 Calcolo con l algoritmo di Gauss, 6 4 Matrici

Dettagli

Ancora sull indipendenza. Se A e B sono indipendenti allora lo sono anche

Ancora sull indipendenza. Se A e B sono indipendenti allora lo sono anche Ancora sull indipendenza Se A e B sono indipendenti allora lo sono anche A e B Ā e B Ā e B Sfruttiamo le leggi di De Morgan Leggi di De Morgan A B = Ā B A B = Ā B P (Ā B) = P (A B) = 1 P (A B) = 1 (P (A)

Dettagli

TIMSS 2007 Quadro di riferimento di matematica. dal volume: "TIMSS 2007 Assessment Frameworks"

TIMSS 2007 Quadro di riferimento di matematica. dal volume: TIMSS 2007 Assessment Frameworks Capitolo Uno TIMSS 2007 Quadro di riferimento di matematica dal volume: "TIMSS 2007 Assessment Frameworks" a cura di Anna Maria Caputo, Cristiano Zicchi Copyright 2005 IEA International Association for

Dettagli

I Numeri Complessi. Si verifica facilmente che, per l operazione di somma in definita dalla (1), valgono le seguenti

I Numeri Complessi. Si verifica facilmente che, per l operazione di somma in definita dalla (1), valgono le seguenti Y T T I Numeri Complessi Operazioni di somma e prodotto su Consideriamo, insieme delle coppie ordinate di numeri reali, per cui si ha!"# $&% '( e )("+* Introduciamo in tale insieme una operazione di somma,/0"#123045"#

Dettagli

Che cosa e come valutano le prove di matematica e con quali risultati. nell A.S. 2008 2009

Che cosa e come valutano le prove di matematica e con quali risultati. nell A.S. 2008 2009 Che cosa e come valutano le prove di matematica e con quali risultati nell A.S. 2008 2009 Presentazione a cura di Roberta Michelini Casalpusterlengo, 8 gennaio 2010 http://www.invalsi.it/esamidistato0809/

Dettagli

LA FINESTRA DI OPEN OFFICE CALC

LA FINESTRA DI OPEN OFFICE CALC LA FINESTRA DI OPEN OFFICE CALC Barra di Formattazione Barra Standard Barra del Menu Intestazione di colonna Barra di Calcolo Contenuto della cella attiva Indirizzo della cella attiva Cella attiva Intestazione

Dettagli

FIGURE GEOMETRICHE SIMILI

FIGURE GEOMETRICHE SIMILI FIGUE GEOMETICHE SIMILI Nel linguaggio comune si dice che due oggetti sono simili quando si «assomigliano». Così si dicono simili due cani della stessa razza, i fiori della stessa pianta, gli abiti dello

Dettagli

Parte 2. Determinante e matrice inversa

Parte 2. Determinante e matrice inversa Parte. Determinante e matrice inversa A. Savo Appunti del Corso di Geometria 013-14 Indice delle sezioni 1 Determinante di una matrice, 1 Teorema di Cramer (caso particolare), 3 3 Determinante di una matrice

Dettagli

Matematica B - a.a 2006/07 p. 1

Matematica B - a.a 2006/07 p. 1 Matematica B - a.a 2006/07 p. 1 Definizione 1. Un sistema lineare di m equazioni in n incognite, in forma normale, è del tipo a 11 x 1 + + a 1n x n = b 1 a 21 x 1 + + a 2n x n = b 2 (1) = a m1 x 1 + +

Dettagli

Esercizi svolti sui numeri complessi

Esercizi svolti sui numeri complessi Francesco Daddi - ottobre 009 Esercizio 1 Risolvere l equazione z 1 + i = 1. Soluzione. Moltiplichiamo entrambi i membri per 1 + i in definitiva la soluzione è z 1 + i 1 + i = 1 1 + i z = 1 1 i. : z =

Dettagli

Gli eventi sono stati definiti come i possibili risultati di un esperimento. Ogni evento ha una probabilità

Gli eventi sono stati definiti come i possibili risultati di un esperimento. Ogni evento ha una probabilità Probabilità Probabilità Gli eventi sono stati definiti come i possibili risultati di un esperimento. Ogni evento ha una probabilità Se tutti gli eventi fossero ugualmente possibili, la probabilità p(e)

Dettagli

ELASTICITÀ. Sarebbe conveniente per il produttore aumentare ulteriormente il prezzo nella stessa misura del caso

ELASTICITÀ. Sarebbe conveniente per il produttore aumentare ulteriormente il prezzo nella stessa misura del caso Esercizio 1 Data la funzione di domanda: ELASTICITÀ Dire se partendo da un livello di prezzo p 1 = 1.5, al produttore converrà aumentare il prezzo fino al livello p 2 = 2. Sarebbe conveniente per il produttore

Dettagli

NUMERI COMPLESSI. Esercizi svolti., e) i 34, f) i 7. 10 i

NUMERI COMPLESSI. Esercizi svolti., e) i 34, f) i 7. 10 i NUMERI COMPLESSI Esercizi svolti 1. Calcolare le seguenti potenze di i: a) i, b) i, c) i 4, d) 1 i, e) i 4, f) i 7. Semplificare le seguenti espressioni: a) ( i) i(1 ( 1 i), b) ( + i)( i) 5 + 1 ) 10 i,

Dettagli

Come realizzare una buona presentazione (traduzione libera a cura della redazione di EpiCentro)

Come realizzare una buona presentazione (traduzione libera a cura della redazione di EpiCentro) Come realizzare una buona presentazione (traduzione libera a cura della redazione di EpiCentro) Quando si realizzano dei documenti visivi per illustrare dati e informazioni chiave, bisogna sforzarsi di

Dettagli

Esercizi di consolidamento di probabilità e calcolo combinatorio parte 1

Esercizi di consolidamento di probabilità e calcolo combinatorio parte 1 Esercizi di consolidamento di probabilità e calcolo combinatorio parte 1 1. Si lancia una moneta 2 volte: qual è la probabilità che esca TESTA 0 volte? 1 volta? 2 volte? 2. Si lancia una moneta 3 volte:

Dettagli

a) Nel disegno contrassegnato con il numero uno. RSB0002 a) 20. b) 18. c) 16. d) 22. c

a) Nel disegno contrassegnato con il numero uno. RSB0002 a) 20. b) 18. c) 16. d) 22. c RSB0001 In quale/i dei disegni proposti l area tratteggiata é maggiore dell area lasciata invece bianca? a) Nel disegno contrassegnato con il numero uno. b) In nessuno dei due. c) Nel disegno contrassegnato

Dettagli

Numeri naturali numeri naturali minore maggiore Operazioni con numeri naturali

Numeri naturali numeri naturali minore maggiore Operazioni con numeri naturali 1 Numeri naturali La successione di tutti i numeri del tipo: 0,1, 2, 3, 4,..., n,... forma l'insieme dei numeri naturali, che si indica con il simbolo N. Tale insieme si può disporre in maniera ordinata

Dettagli

APPUNTI DI MATEMATICA LE DISEQUAZIONI NON LINEARI

APPUNTI DI MATEMATICA LE DISEQUAZIONI NON LINEARI APPUNTI DI MATEMATICA LE DISEQUAZIONI NON LINEARI Le disequazioni fratte Le disequazioni di secondo grado I sistemi di disequazioni Alessandro Bocconi Indice 1 Le disequazioni non lineari 2 1.1 Introduzione.........................................

Dettagli

Terne pitagoriche e teorema di Pitagora, numeri e triangoli. Riccardo Ricci: Dipartimento di Matematica U.Dini ricci@math.unif.it

Terne pitagoriche e teorema di Pitagora, numeri e triangoli. Riccardo Ricci: Dipartimento di Matematica U.Dini ricci@math.unif.it 3 4 5 Terne pitagoriche e teorema di Pitagora, numeri e triangoli Riccardo Ricci: Dipartimento di Matematica U.Dini ricci@math.unif.it Qualche osservazione preliminare sul Teorema di Pitagora e le terne

Dettagli

IV-1 Funzioni reali di più variabili

IV-1 Funzioni reali di più variabili IV- FUNZIONI REALI DI PIÙ VARIABILI INSIEMI IN R N IV- Funzioni reali di più variabili Indice Insiemi in R n. Simmetrie degli insiemi............................................ 4 2 Funzioni da R n a R

Dettagli

Guida Breve alle Regole del FootGolf

Guida Breve alle Regole del FootGolf Guida Breve alle Regole del FootGolf Lo Spirito del Gioco INTRODUZIONE Il Footgolf è giocato, per la maggior parte, senza la supervisione di un arbitro. Il gioco si affida all integrità dell individuo

Dettagli

COME MASSIMIZZARE UNA FUNZIONE DI UTILITÀ

COME MASSIMIZZARE UNA FUNZIONE DI UTILITÀ icroeconomia Douglas Bernheim, ichael Whinston Copyright 009 The cgraw-hill Companies srl COE ASSIIZZARE UNA FUNZIONE DI UTILITÀ Supponiamo che il reddito mensile di Elena sia pari a Y e sia interamente

Dettagli

Nel triangolo disegnato a lato, qual è la misura, in gradi e primi sessagesimali, di α?

Nel triangolo disegnato a lato, qual è la misura, in gradi e primi sessagesimali, di α? QUESITO 1 Nel triangolo disegnato a lato, qual è la misura, in gradi e primi sessagesimali, di α? Applicando il Teorema dei seni si può determinare il valore di senza indeterminazione, in quanto dalla

Dettagli

IL MOTO. 1 - Il moto dipende dal riferimento.

IL MOTO. 1 - Il moto dipende dal riferimento. 1 IL MOTO. 1 - Il moto dipende dal riferimento. Quando un corpo è in movimento? Osservando la figura precedente appare chiaro che ELISA è ferma rispetto a DAVIDE, che è insieme a lei sul treno; mentre

Dettagli

EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE

EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE 1. EQUAZIONI Definizione: un equazione è un uguaglianza tra due espressioni letterali (cioè in cui compaiono numeri, lettere

Dettagli

Come si può esprimere il risultato dl un conteggio e di una misura? Quando si dice che In una

Come si può esprimere il risultato dl un conteggio e di una misura? Quando si dice che In una NUMERI INTERI E NUMERI DECIMALI Come si può esprimere il risultato dl un conteggio e di una misura? Quando si dice che In una cassetta sono contenuti 45 penne e che una lamiera misura 1,35 m. dl lunghezza,

Dettagli

1 n. Intero frazionato. Frazione

1 n. Intero frazionato. Frazione Consideriamo un intero, prendiamo un rettangolo e dividiamolo in sei parti uguali, ciascuna di queste parti rappresenta un sesto del rettangolo, cioè una sola delle sei parti uguali in cui è stato diviso.

Dettagli

conquista il mondo in pochi minuti!

conquista il mondo in pochi minuti! conquista il mondo in pochi minuti! Il gioco di conquista e sviluppo più veloce che c è! Il gioco si spiega in meno di 1 minuto e dura, per le prime partite, non più di quindici minuti. Mai nessuno ha

Dettagli

ACCREDITAMENTO EVENTI

ACCREDITAMENTO EVENTI E.C.M. Educazione Continua in Medicina ACCREDITAMENTO EVENTI Manuale utente Versione 1.5 Maggio 2015 E.C.M. Manuale utente per Indice 2 Indice Revisioni 4 1. Introduzione 5 2. Accesso al sistema 6 2.1

Dettagli

a) Si descriva, internamente al triangolo, con centro in B e raggio x, l arco di circonferenza di π π

a) Si descriva, internamente al triangolo, con centro in B e raggio x, l arco di circonferenza di π π PROBLEMA Il triangolo rettangolo ABC ha l ipotenusa AB = a e l angolo CAB =. a) Si descriva, internamente al triangolo, con centro in B e raggio, l arco di circonferenza di estremi P e Q rispettivamente

Dettagli

Logica Numerica Approfondimento 1. Minimo Comune Multiplo e Massimo Comun Divisore. Il concetto di multiplo e di divisore. Il Minimo Comune Multiplo

Logica Numerica Approfondimento 1. Minimo Comune Multiplo e Massimo Comun Divisore. Il concetto di multiplo e di divisore. Il Minimo Comune Multiplo Logica Numerica Approfondimento E. Barbuto Minimo Comune Multiplo e Massimo Comun Divisore Il concetto di multiplo e di divisore Considerato un numero intero n, se esso viene moltiplicato per un numero

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO 2006 Indirizzo Scientifico Tecnologico Progetto Brocca

ESAME DI STATO DI LICEO SCIENTIFICO 2006 Indirizzo Scientifico Tecnologico Progetto Brocca ESAME DI STATO DI LICEO SCIENTIFICO 2006 Indirizzo Scientifico Tecnologico Progetto Brocca Trascrizione del testo e redazione delle soluzioni di Paolo Cavallo. La prova Il candidato svolga una relazione

Dettagli

L : L/2 = 1 : ½ = 2 : 1

L : L/2 = 1 : ½ = 2 : 1 LA SCALA PITAGORICA (e altre scale) 1 IL MONOCORDO I Greci, già circa 500 anni prima dell inizio dell era cristiana, utilizzavano un semplice strumento: il monocordo. Nel monocordo, un ponticello mobile

Dettagli

razionali Figura 1. Rappresentazione degli insiemi numerici Numeri reali algebrici trascendenti frazionari decimali finiti

razionali Figura 1. Rappresentazione degli insiemi numerici Numeri reali algebrici trascendenti frazionari decimali finiti 4. Insiemi numerici 4.1 Insiemi numerici Insieme dei numeri naturali = {0,1,,3,,} Insieme dei numeri interi relativi = {..., 3,, 1,0, + 1, +, + 3, } Insieme dei numeri razionali n 1 1 1 1 = : n, m \{0}

Dettagli

Corso di Matematica e Statistica 4 Calcolo combinatorio e probabilità. Le disposizioni semplici di n elementi di classe k

Corso di Matematica e Statistica 4 Calcolo combinatorio e probabilità. Le disposizioni semplici di n elementi di classe k Pordenone Corso di Matematica e Statistica 4 Calcolo combinatorio e probabilità UNIVERSITAS STUDIORUM UTINENSIS Giorgio T. Bagni Facoltà di Scienze della Formazione Dipartimento di Matematica e Informatica

Dettagli

Lezione 10: Il problema del consumatore: Preferenze e scelta ottimale

Lezione 10: Il problema del consumatore: Preferenze e scelta ottimale Corso di Scienza Economica (Economia Politica) prof. G. Di Bartolomeo Lezione 10: Il problema del consumatore: Preferenze e scelta ottimale Facoltà di Scienze della Comunicazione Università di Teramo Scelta

Dettagli

Gli algoritmi. Gli algoritmi. Analisi e programmazione

Gli algoritmi. Gli algoritmi. Analisi e programmazione Gli algoritmi Analisi e programmazione Gli algoritmi Proprietà ed esempi Costanti e variabili, assegnazione, istruzioni, proposizioni e predicati Vettori e matrici I diagrammi a blocchi Analisi strutturata

Dettagli