FONDAMENTI DI PSICOMETRIA - 8 CFU

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "FONDAMENTI DI PSICOMETRIA - 8 CFU"

Transcript

1 Ψ FONDAMENTI DI PSICOMETRIA - 8 CFU STIMA DELL ATTENDIBILITA

2 STIMA DELL ATTENDIBILITA DEFINIZIONE DI ATTENDIBILITA (affidabilità, fedeltà) Grado di accordo tra diversi tentativi di misurare uno stesso concetto teorico

3 STIMA DELL ATTENDIBILITA Formula di base della teoria classica X V + E X punteggio osservato V punteggio vero E errore casuale

4 STIMA DELL ATTENDIBILITA Le assunzioni statistiche della teoria E n r VE 0 r E1E2 0 0 La media degli errori casuali deve essere nulla per N Punteggio vero e errore sono indipendenti Due errori casuali sono indipendenti

5 STIMA DELL ATTENDIBILITA Da questo deriva: X ( V + E) n V n + E n E Per n 0 n X V

6 STIMA DELL ATTENDIBILITA Si dimostra che la varianza di X è: Dividendo per σ 2 X σ X 2 σ V 2 + σ E 2 σ X 2 σ X 2 σ 2 V 2 σ X + σ 2 E 2 σ X σ V 2 σ X 2 1 σ 2 E 2 σ X r tt COEFFICIENTE DI ATTENDIBILITA

7 STIMA DELL ATTENDIBILITA PROPRIETA Varia tra 0 e 1 Aumenta al diminuire della varianza di errore Maggiore r tt maggiore precisione dello strumento

8 STIMA DELL ATTENDIBILITA Metodo del Test-Retest Si somministra il test al tempo T 1 ed al tempo T 2 e si calcola la correlazione tra i punteggi. Questo metodo non necessità di ulteriori specificazioni. Basta saper calcolare la r di Pearson tra due serie di punteggi.

9 STIMA DELL ATTENDIBILITA Metodo delle Forme Parallele Si somministrano due versioni equivalenti del test (stessa media e stessa dev. st.) al tempo T 1 ed al tempo T 2. La correlazione tra le due forme è una stima dell attendibilità

10 STIMA DELL ATTENDIBILITA Metodo dello Split-Half Si somministra il test in un unico tempo T 1. Si divide il test a metà e si considerano le due metà come forme parallele (stessa media e stessa dev. st.) La correlazione tra le due metà è una stima dell attendibilità. Va corretta con la formula profetica di Spearman-Brown, dato che la vera lunghezza della scala è doppia rispetto a quella delle due metà.

11 STIMA DELL ATTENDIBILITA Formula profetica di Spearman-Brown, utilizzabile per prevedere l attendibilità Di un test al variare della sua lunghezza r ntt nr tt ( n 1r ) tt 1 + r ntt attendibilità della forma ipotetica n rapporto tra numero di item della forma ipotetica e numero di item nella versione già esistente del test

12 STIMA DELL ATTENDIBILITA Con la stessa formula possiamo anche risolvere il caso inverso, cioè stimare quanto dovremmo allungare o accorciare il test per ottenere un attendibilità prefissata: n r r ntt tt ( 1 r ) tt ( 1 r ) ntt

13 STIMA DELL ATTENDIBILITA ESEMPIO Abbiamo un test composto da 20 item con attendibilità r tt.83 Possiamo stimare l attendibilità del nostro test se aggiungessimo 8 item con caratteristiche simili ai 20 esistenti 28 ) x x.83 r 20 ntt ( ) r ntt 1 + nr tt ( n 1r ) tt.87

14 n STIMA DELL ATTENDIBILITA OPPURE Abbiamo un test composto da 20 item con attendibilità r tt.83 Quanti item dovremmo aggiungere per avere un attendibilità di.90? r r ntt tt ( 1 r ) tt ( 1 r ) ntt.90x(1.83).153 n.83x(1.90) n rapporto tra numero di item della forma ipotetica e numero di item nella versione già esistente del test

15 STIMA DELL ATTENDIBILITA finali 1.84? 1. iniziali 84 20? 20x Occorrerà aggiungere 17 item ( ) per avere un attendibilità di.90

16 STIMA DELL ATTENDIBILITA Metodo della Coerenza Interna Si somministra il test in un unico tempo T1. Ogni item viene considerato un test a se stante. Si stima (con apposite formule) la correlazione media tra tutti gli item, e si riassume la coerenza degli indicatori tramite l indice α di Cronbach. Questo è spesso il metodo più utilizzato

17 STIMA DELL ATTENDIBILITA Metodo della coerenza interna Il coefficiente α di Cronbach Concettualmente è il rapporto fra la varianza della scala totale rispetto alla somme delle varianze dei singoli item. Si utilizza per item dicotomici o politomici

18 STIMA DELL ATTENDIBILITA Metodo della coerenza interna Il coefficiente α di Cronbach Varia fra 0 e 1. Valori superiori a.70 sono considerati buoni. All aumentare del numero degli item, tende ad aumentare avvicinandosi asintoticamente a 1. n 2 n σi 1 α 1 2 n 1 σ X

19 STIMA DELL ATTENDIBILITA Accordo fra rater Capita di fare ricerche in cui vanno codificati dei comportamenti o delle risposte in alcune categorie Per evitare classificazioni totalmente soggettive si ricorre spesso a più osservatori

20 STIMA DELL ATTENDIBILITA Accordo fra rater Per valutare il grado di accordo fra i rater si calcola il coefficiente K di Cohen Questo indice tiene conto della percentuale di accordo corretta per la probabilità casuale di accordo.

21 COEFFICIENTE K DI COHEN E l indice più usato per misurare l accordo tra codificatori o osservatori: varia da 0 (nessun accordo) a 1(accordo perfetto) Si costruisce una matrice k x k (matrice di confusione o di accordo)dove k è il numero delle categorie di codifica e le righe rappresentano il primo codificatore e le colonne il secondo

22 COEFFICIENTE K DI COHEN Esempio 1 a b c d a b c d

23 COEFFICIENTE K DI COHEN P oss k i 1 X X ++ ii dove X ii sono le frequenze lungo la diagonale e X ++ è il totale delle osservazioni P att k i 1 X X i X + i dove X +i e X i+ sono i totali di riga e colonna e X ++ è il totale delle osservazioni

24 COEFFICIENTE K DI COHEN Esempio P oss x x x x15 P.287 att K

25 COEFFICIENTE K DI COHEN K è un indice riassuntivo che deriva dalla matrice di accordo: K P 1 oss P P P att att dove P oss sono le proporzioni di accordo osservate (diagonale della matrice) e P att sono le poporzioni di accordo dovute al caso

26 ERRORE STANDARD DI MISURA DEFINIZIONE Stima della deviazione standard dei punteggi osservati intorno al punteggio vero Partendo da Si ottiene con facili passaggi: 2 2 σ V 1 σ E V 1 2 σ σ X 2 X σ E σ X ( 1 r ) tt ERRORE STANDARD DI MISURA

27 ERRORE STANDARD DI MISURA ESEMPIO Supponiamo di avere un test del quale conosciamo l attendibilità r tt.82 e la 2 varianza σ X 9 Vogliamo conoscere l ERRORE STANDARD DI MISURA del test. Applichiamo la σ E σ X ( 1 r ) tt σ 9 (1.82) 3x.424 E 1.273

28 USO DELL ERRORE STANDARD Partendo dal punteggio ottenuto da un soggetto ad un test, conoscendo l errore standard del test, possiamo ricavare l intervallo di fiducia all interno del quale cadrà il punteggio vero V del soggetto se si ripetesse il test un numero infinito di volte. Assumiamo che la distribuzione dei punteggi osservati intorno al punteggio vero sia NORMALE e usiamo le proprietà della curva per stimare l intervallo di confidenza al 95% della posizione di V

29 USO DELL ERRORE STANDARD Dato z X σ E V possiamo scrivere: [ 1.96 < ( X V) / σ < ]. 95 p E p [ 1.96 σ < ( X V ) < σ ]. 95 E E p [ X 1.96σ < ( V) < X σ ]. 95 E E

30 USO DELL ERRORE STANDARD FORMULA GENERALE Per il calcolo dei limiti dell intervallo di fiducia (o di confidenza) ( X z σ ) < V < ( X + z σ ) + z ( α ) E ( α) E Limite inferiore Limite superiore Dove z α è il valore critico di z per α prefissato

31 USO DELL ERRORE STANDARD Esempio: Otteniamo un punteggio pari a 108. L errore standard è In quale ambito cade il suo punteggio vero con un margine di fiducia del 95%? ( X z σ ) < V < ( X + z σ ) + z ( α ) E ( α) ( ) < V < ( ) < V < E

32 STIMA DEL PUNTEGGIO VERO Si può anche dimostrare che la correlazione tra il punteggio vero e quello osservato è: σ σ V r XV X r tt Indice di attendibilità

33 STIMA DEL PUNTEGGIO VERO Utilizzando un approccio in termini di regressione, possiamo STIMARE il punteggio vero con la seguente formula: Vˆ Vˆ X + r tt ( X X ) che equivale a: Vˆ ( 1 r ) X r X tt + tt

34 STIMA DEL PUNTEGGIO VERO ESEMPIO Se avessimo ottenuto un punteggio X 108 somministrando un test con media 100 e r tt.82, il punteggio stimato applicando la formula Vˆ ( 1 r ) X + r X sarebbe ( 1.82) x108 tt Vˆ tt

35 Ψ PSICOMETRIA Corso di laurea in Valutazione e Consulenza clinica (classe 34) ESERCIZI SULL ATTENDIBILITA

36 ESERCIZIO (a) Un ricercatore ha somministrato un test la misura dell ansia composto da 24 item. L attendibilità del test è pari a.80, la media e la deviazione standard nel campione normativo sono pari a 65 e 12 rispettivamente.

37 ESERCIZIO a) Calcolare il valore dell attendibilità se si togliessero 6 item b) Calcolare il valore dell attendibilità se si aggiungessero 6 item c) Calcolare quanti item simili bisognerebbe aggiungere al test per ottenere r tt.90

38 ESERCIZIO d) Calcolare la stima del punteggio vero di un soggetto che ha ottenuto un punteggio osservato pari a 61 e) Calcolare l errore standard di misura del test f) Definire l intervallo di fiducia al 95% per il punteggio vero di un soggetto che ha un punteggio osservato di 62

39 ESERCIZIO soluzione a) Calcolare il valore dell attendibilità se si togliessero 6 item Si applica la formula profetica di Spearman Brown: r ntt 1 + nr tt ( n 1r ) tt n 18 / x.80 r ntt x.80 (.75 ).75

40 ESERCIZIO soluzione b) Calcolare il valore dell attendibilità se si aggiungessero 6 item Si applica la formula profetica di Spearman Brown: r ntt 1 + nr tt ( n 1r ) tt n 30 / x.80 r ntt x.80 ( 1.25 ).83

41 ESERCIZIO soluzione c)calcolare quanti item simili bisognerebbe aggiungere al test per ottenere r tt.90 Si applica la formula inversa: (.80 ) (.90 ).90 1 n n r r ntt tt ( 1 r ) tt ( 1 r ) ( 2.25) x24 54 n. Item finali ntt Gli item da aggiungere sono 30

42 ESERCIZIO soluzione d) Calcolare la stima del punteggio vero di un soggetto che ha ottenuto un punteggio osservato pari a 61 Si applica la formula: Vˆ ( 1 r ) X r X + tt tt ( 1.80) x x Vˆ

43 ESERCIZIO soluzione Definire l intervallo di fiducia al 95% per il punteggio vero di un soggetto che ha un punteggio osservato di 62 Si applica la formula: ( X z σ ) < V < ( X σ ) + z ( α ) E ( α ) E Dato che z(. 05 ) e σ 5. E 4 ( x5.4) < V < ( x5.4) 51 < V < 73

Disegni di Ricerca e Analisi dei Dati in Psicologia Clinica. Indici di Affidabilità

Disegni di Ricerca e Analisi dei Dati in Psicologia Clinica. Indici di Affidabilità Disegni di Ricerca e Analisi dei Dati in Psicologia Clinica Indici di Affidabilità L Attendibilità È il livello in cui una misura è libera da errore di misura È la proporzione di variabilità della misurazione

Dettagli

Si comincia a costruire un test partendo dallo studio della caratteristica da misurare.

Si comincia a costruire un test partendo dallo studio della caratteristica da misurare. VALIDITA A PRIORI Si comincia a costruire un test partendo dallo studio della caratteristica da misurare. Indicatori della caratteristica da misurare vanno valutati in rapporto all attinenza della caratteristica

Dettagli

Elementi di Psicometria

Elementi di Psicometria Elementi di Psicometria 12-Correlazione vers. 1.1 (27 novembre 2012) Germano Rossi 1 germano.rossi@unimib.it 1 Dipartimento di Psicologia, Università di Milano-Bicocca 2011-2012 G. Rossi (Dip. Psicologia)

Dettagli

Facoltà di Psicologia Università di Padova Anno Accademico 2010-2011

Facoltà di Psicologia Università di Padova Anno Accademico 2010-2011 Facoltà di Psicologia Università di Padova Anno Accademico 010-011 Corso di Psicometria - Modulo B Dott. Marco Vicentini marco.vicentini@unipd.it Rev. 10/01/011 La distribuzione F di Fisher - Snedecor

Dettagli

Metodi statistici per le ricerche di mercato

Metodi statistici per le ricerche di mercato Metodi statistici per le ricerche di mercato Prof.ssa Isabella Mingo A.A. 2013-2014 Facoltà di Scienze Politiche, Sociologia, Comunicazione Corso di laurea Magistrale in «Organizzazione e marketing per

Dettagli

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 8

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 8 CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 8 Dott.ssa Antonella Costanzo a.costanzo@unicas.it Esercizio 1. Test delle ipotesi sulla varianza In un azienda che produce componenti meccaniche, è stato

Dettagli

LA CORRELAZIONE LINEARE

LA CORRELAZIONE LINEARE LA CORRELAZIONE LINEARE La correlazione indica la tendenza che hanno due variabili (X e Y) a variare insieme, ovvero, a covariare. Ad esempio, si può supporre che vi sia una relazione tra l insoddisfazione

Dettagli

Il concetto di correlazione

Il concetto di correlazione SESTA UNITA Il concetto di correlazione Fino a questo momento ci siamo interessati alle varie statistiche che ci consentono di descrivere la distribuzione dei punteggi di una data variabile e di collegare

Dettagli

Università di Firenze - Corso di laurea in Statistica Seconda prova intermedia di Statistica. 18 dicembre 2008

Università di Firenze - Corso di laurea in Statistica Seconda prova intermedia di Statistica. 18 dicembre 2008 Università di Firenze - Corso di laurea in Statistica Seconda prova intermedia di Statistica 18 dicembre 008 Esame sull intero programma: esercizi da A a D Esame sulla seconda parte del programma: esercizi

Dettagli

T DI STUDENT Quando si vogliono confrontare solo due medie, si può utilizzare il test t di Student La formula per calcolare il t è la seguente:

T DI STUDENT Quando si vogliono confrontare solo due medie, si può utilizzare il test t di Student La formula per calcolare il t è la seguente: T DI STUDENT Quando si vogliono confrontare solo due medie, si può utilizzare il test t di Student La formula per calcolare il t è la seguente: t = X i X j s 2 i (n i 1) + s 2 j (n j 1) n i + n j - 2 1

Dettagli

Elementi di Psicometria con Laboratorio di SPSS 1

Elementi di Psicometria con Laboratorio di SPSS 1 Elementi di Psicometria con Laboratorio di SPSS 1 10-Il test t per un campione e la stima intervallare (vers. 1.1, 25 ottobre 2015) Germano Rossi 1 germano.rossi@unimib.it 1 Dipartimento di Psicologia,

Dettagli

Inferenza statistica I Alcuni esercizi. Stefano Tonellato

Inferenza statistica I Alcuni esercizi. Stefano Tonellato Inferenza statistica I Alcuni esercizi Stefano Tonellato Anno Accademico 2006-2007 Avvertenza Una parte del materiale è stato tratto da Grigoletto M. e Ventura L. (1998). Statistica per le scienze economiche,

Dettagli

Metodi statistici per l economia (Prof. Capitanio) Slide n. 9. Materiale di supporto per le lezioni. Non sostituisce il libro di testo

Metodi statistici per l economia (Prof. Capitanio) Slide n. 9. Materiale di supporto per le lezioni. Non sostituisce il libro di testo Metodi statistici per l economia (Prof. Capitanio) Slide n. 9 Materiale di supporto per le lezioni. Non sostituisce il libro di testo 1 TEST D IPOTESI Partiamo da un esempio presente sul libro di testo.

Dettagli

E naturale chiedersi alcune cose sulla media campionaria x n

E naturale chiedersi alcune cose sulla media campionaria x n Supponiamo che un fabbricante stia introducendo un nuovo tipo di batteria per un automobile elettrica. La durata osservata x i delle i-esima batteria è la realizzazione (valore assunto) di una variabile

Dettagli

Università del Piemonte Orientale. Corsi di Laurea Triennale. Corso di Statistica e Biometria. Introduzione e Statistica descrittiva

Università del Piemonte Orientale. Corsi di Laurea Triennale. Corso di Statistica e Biometria. Introduzione e Statistica descrittiva Università del Piemonte Orientale Corsi di Laurea Triennale Corso di Statistica e Biometria Introduzione e Statistica descrittiva Corsi di Laurea Triennale Corso di Statistica e Biometria: Introduzione

Dettagli

Elementi di Psicometria

Elementi di Psicometria Elementi di Psicometria E2-Riepilogo finale vers. 1.2 Germano Rossi 1 germano.rossi@unimib.it 1 Dipartimento di Psicologia, Università di Milano-Bicocca 2010-2011 G. Rossi (Dip. Psicologia) ElemPsico 2010-2011

Dettagli

Corso di Psicometria Progredito

Corso di Psicometria Progredito Corso di Psicometria Progredito Soluzioni della simulazione del 17/05/2011 Gianmarco Altoè Dipartimento di Psicologia Università di Cagliari, Anno Accademico 2010-2011 Leggere BENE le avvertenze prima

Dettagli

Appunti di Statistica Descrittiva

Appunti di Statistica Descrittiva Appunti di Statistica Descrittiva 30 dicembre 009 1 La tabella a doppia entrata Per studiare dei fenomeni con caratteristiche statistiche si utilizza l espediente della tabella a doppia entrata Per esempio

Dettagli

Elaborazione dati in Analisi Sensoriale

Elaborazione dati in Analisi Sensoriale Elaborazione dati in Analisi Sensoriale Si è parlato di interpretazione corretta dei risultati ottenuti; a questo concorrono due fattori: affidabilità e validità. Se i test fossero stati ripetuti con lo

Dettagli

I punteggi zeta e la distribuzione normale

I punteggi zeta e la distribuzione normale QUINTA UNITA I punteggi zeta e la distribuzione normale I punteggi ottenuti attraverso una misurazione risultano di difficile interpretazione se presi in stessi. Affinché acquistino significato è necessario

Dettagli

Elementi di Psicometria con Laboratorio di SPSS 1

Elementi di Psicometria con Laboratorio di SPSS 1 Elementi di Psicometria con Laboratorio di SPSS 1 12-Il t-test per campioni appaiati vers. 1.2 (7 novembre 2014) Germano Rossi 1 germano.rossi@unimib.it 1 Dipartimento di Psicologia, Università di Milano-Bicocca

Dettagli

Metodi statistici per le ricerche di mercato

Metodi statistici per le ricerche di mercato Metodi statistici per le ricerche di mercato Prof.ssa Isabella Mingo A.A. 2014-2015 Facoltà di Scienze Politiche, Sociologia, Comunicazione Corso di laurea Magistrale in «Organizzazione e marketing per

Dettagli

Corso di Psicometria Progredito

Corso di Psicometria Progredito Corso di Psicometria Progredito 4.2 I principali test statistici per la verifica di ipotesi: Il test F Gianmarco Altoè Dipartimento di Pedagogia, Psicologia e Filosofia Università di Cagliari, Anno Accademico

Dettagli

TEST DI AUTOVALUTAZIONE INTERVALLI DI CONFIDENZA E TEST

TEST DI AUTOVALUTAZIONE INTERVALLI DI CONFIDENZA E TEST TEST DI AUTOVALUTAZIONE INTERVALLI DI CONFIDENZA E TEST I diritti d autore sono riservati. Ogni sfruttamento commerciale non autorizzato sarà perseguito. Statistica 1 Parte A 1.1 La formula µ = x ± s n

Dettagli

Lezione n. 2 (a cura di Chiara Rossi)

Lezione n. 2 (a cura di Chiara Rossi) Lezione n. 2 (a cura di Chiara Rossi) QUANTILE Data una variabile casuale X, si definisce Quantile superiore x p : X P (X x p ) = p Quantile inferiore x p : X P (X x p ) = p p p=0.05 x p x p Graficamente,

Dettagli

INVALSI English Language Test

INVALSI English Language Test INVALSI English Language Test Rapporto scuola Scuola secondaria di primo grado Settembrini - Roma Pretest 2012 APPENDICE 1. Risultati dei singoli studenti Introduzione Questo rapporto presenta i risultati

Dettagli

è decidere sulla verità o falsità

è decidere sulla verità o falsità I test di ipotesi I test di ipotesi Il test delle ipotesi consente di verificare se, e in quale misura, una determinata ipotesi (di carattere sociale, biologico, medico, economico, ecc.) è supportata dall

Dettagli

Capitolo 11 Test chi-quadro

Capitolo 11 Test chi-quadro Levine, Krehbiel, Berenson Statistica II ed. 2006 Apogeo Capitolo 11 Test chi-quadro Insegnamento: Statistica Corso di Laurea Triennale in Ingegneria Gestionale Facoltà di Ingegneria, Università di Padova

Dettagli

Inferenza statistica. Statistica medica 1

Inferenza statistica. Statistica medica 1 Inferenza statistica L inferenza statistica è un insieme di metodi con cui si cerca di trarre una conclusione sulla popolazione sulla base di alcune informazioni ricavate da un campione estratto da quella

Dettagli

1a) Calcolare gli estremi dell intervallo di confidenza per µ al 90% in corrispondenza del campione osservato.

1a) Calcolare gli estremi dell intervallo di confidenza per µ al 90% in corrispondenza del campione osservato. Esercizio 1 Sia X 1,..., X un campione casuale estratto da una variabile aleatoria normale con media pari a µ e varianza pari a 1. Supponiamo che la media campionaria sia x = 2. 1a) Calcolare gli estremi

Dettagli

Il coefficiente di correlazione di Spearman per ranghi

Il coefficiente di correlazione di Spearman per ranghi Il coefficiente di correlazione di Spearman per ranghi Questo indice di correlazione non parametrico viene indicato con r s o Spearman rho e permette di valutare la forza del rapporto tra due variabili

Dettagli

Slide Cerbara parte1 5. Le distribuzioni teoriche

Slide Cerbara parte1 5. Le distribuzioni teoriche Slide Cerbara parte1 5 Le distribuzioni teoriche I fenomeni biologici, demografici, sociali ed economici, che sono il principale oggetto della statistica, non sono retti da leggi matematiche. Però dalle

Dettagli

Psicometria (8 CFU) Corso di Laurea triennale STANDARDIZZAZIONE

Psicometria (8 CFU) Corso di Laurea triennale STANDARDIZZAZIONE Psicometria (8 CFU) Corso di Laurea triennale Un punteggio all interno di una distribuzione è in realtà privo di significato se preso da solo. Sapere che un soggetto ha ottenuto un punteggio x=52 in una

Dettagli

Teoria della Stima. Stima della Media e di una Porzione di Popolazione. Introduzione. Corso di Laurea in Scienze Motorie AA2002/03 - Analisi dei Dati

Teoria della Stima. Stima della Media e di una Porzione di Popolazione. Introduzione. Corso di Laurea in Scienze Motorie AA2002/03 - Analisi dei Dati Teoria della Stima. Stima della Media e di una Porzione di Popolazione Introduzione La proceduta in base alla quale ad uno o più parametri di popolazione si assegna il valore numerico calcolato dalle informazioni

Dettagli

Correzione dell Esame di Statistica Descrittiva (Mod. B) 1 Appello - 28 Marzo 2007 Facoltà di Astronomia

Correzione dell Esame di Statistica Descrittiva (Mod. B) 1 Appello - 28 Marzo 2007 Facoltà di Astronomia Correzione dell Esame di Statistica Descrittiva (Mod. B) 1 Appello - 8 Marzo 007 Facoltà di Astronomia ESERCIZIO 1 La seguente tabella riporta la distribuzione congiunta della situazione lavorativa e dello

Dettagli

MISURAZIONE. Sistema empirico (SE): ciò che si vuole misurare; costituito da elementi legati tra loro da relazioni

MISURAZIONE. Sistema empirico (SE): ciò che si vuole misurare; costituito da elementi legati tra loro da relazioni Attendibilità Misurazione I problemi di misurazione degli oggetti di studio sono comuni a tutte le discipline scientifiche. In psicologia il problema è solo più evidente, non più grave. I costrutti che

Dettagli

Il corso si colloca nell ambito del corso integrato di scienze quantitative, al secondo anno, primo semestre.

Il corso si colloca nell ambito del corso integrato di scienze quantitative, al secondo anno, primo semestre. Corso di Statistica Medica 2004-2005 Il corso si colloca nell ambito del corso integrato di scienze quantitative, al secondo anno, primo semestre. Sono previste 30 ore di lezione di statistica e 12 di

Dettagli

1. Distribuzioni campionarie

1. Distribuzioni campionarie Università degli Studi di Basilicata Facoltà di Economia Corso di Laurea in Economia Aziendale - a.a. 2012/2013 lezioni di statistica del 3 e 6 giugno 2013 - di Massimo Cristallo - 1. Distribuzioni campionarie

Dettagli

INDICE PREFAZIONE VII

INDICE PREFAZIONE VII INDICE PREFAZIONE VII CAPITOLO 1. LA STATISTICA E I CONCETTI FONDAMENTALI 1 1.1. Un po di storia 3 1.2. Fenomeno collettivo, popolazione, unità statistica 4 1.3. Caratteri e modalità 6 1.4. Classificazione

Dettagli

Istituzioni di Statistica e Statistica Economica

Istituzioni di Statistica e Statistica Economica Istituzioni di Statistica e Statistica Economica Università degli Studi di Perugia Facoltà di Economia, Assisi, a.a. 2013/14 Esercitazione n. 4 A. Si supponga che la durata in giorni delle lampadine prodotte

Dettagli

VALIDITA DELLE MISURE

VALIDITA DELLE MISURE VALIDITA DELLE MISURE Misurazione In psicologia si misurano spesso costrutti, formati da dimensioni (o fattori), tramite indicatori. Ogni atto di misurazione comporta degli errori Gli errori possono essere

Dettagli

Test non parametrici. Test non parametrici. Test non parametrici. Test non parametrici

Test non parametrici. Test non parametrici. Test non parametrici. Test non parametrici Test non parametrici Test non parametrici Il test T di Student per uno o per due campioni, il test F di Fisher per l'analisi della varianza, la correlazione, la regressione, insieme ad altri test di statistica

Dettagli

Microeconometria (Silvia Tiezzi) 01 aprile2011 Esercitazione

Microeconometria (Silvia Tiezzi) 01 aprile2011 Esercitazione Microeconometria (Silvia Tiezzi) 01 aprile2011 Esercitazione Esercizio 1 Si consideri il seguente modello ad effetti fissi con variabili binarie: + 1 2 a) supponete che N=3. Si mostri che i regressori

Dettagli

DATI NORMATIVI PER LA SOMMINISTRAZIONE DELLE PROVE PAC-SI A BAMBINI DI INIZIO SCUOLA PRIMARIA 1

DATI NORMATIVI PER LA SOMMINISTRAZIONE DELLE PROVE PAC-SI A BAMBINI DI INIZIO SCUOLA PRIMARIA 1 DATI NORMATIVI PER LA SOMMINISTRAZIONE DELLE PROVE PAC-SI A BAMBINI DI INIZIO SCUOLA PRIMARIA 1 Marta Desimoni**, Daniela Pelagaggi**, Simona Fanini**, Loredana Romano**,Teresa Gloria Scalisi* * Dipartimento

Dettagli

Parte 3. Rango e teorema di Rouché-Capelli

Parte 3. Rango e teorema di Rouché-Capelli Parte 3. Rango e teorema di Rouché-Capelli A. Savo Appunti del Corso di Geometria 203-4 Indice delle sezioni Rango di una matrice, 2 Teorema degli orlati, 3 3 Calcolo con l algoritmo di Gauss, 6 4 Matrici

Dettagli

Matlab per applicazioni statistiche

Matlab per applicazioni statistiche Matlab per applicazioni statistiche Marco J. Lombardi 19 aprile 2005 1 Introduzione Il sistema Matlab è ormai uno standard per quanto riguarda le applicazioni ingegneristiche e scientifiche, ma non ha

Dettagli

Pietro Giorgio Lovaglio 1

Pietro Giorgio Lovaglio 1 I fondamenti statistici per la costruzione di scale psicometriche Pietro Giorgio Lovaglio 1 1 Dipartimento di statistica, Facoltà di Scienze Statistiche, Milano-Bicocca, P.za dell Ateneo Nuovo 1, Edificio

Dettagli

STATISTICA INFERENZIALE

STATISTICA INFERENZIALE STATISTICA INFERENZIALE Premessa importante: si ipotizza che il comportamento della popolazione rispetto ad una variabile casuale X viene descritto attraverso una funzione parametrica di probabilità p

Dettagli

Analisi bivariata. Dott. Cazzaniga Paolo. Dip. di Scienze Umane e Sociali paolo.cazzaniga@unibg.it

Analisi bivariata. Dott. Cazzaniga Paolo. Dip. di Scienze Umane e Sociali paolo.cazzaniga@unibg.it Dip. di Scienze Umane e Sociali paolo.cazzaniga@unibg.it Introduzione : analisi delle relazioni tra due caratteristiche osservate sulle stesse unità statistiche studio del comportamento di due caratteri

Dettagli

Misure della dispersione o della variabilità

Misure della dispersione o della variabilità QUARTA UNITA Misure della dispersione o della variabilità Abbiamo visto che un punteggio di per sé non ha alcun significato e lo acquista solo quando è posto a confronto con altri punteggi o con una statistica.

Dettagli

Statistica multivariata. Statistica multivariata. Analisi multivariata. Dati multivariati. x 11 x 21. x 12 x 22. x 1m x 2m. x nm. x n2.

Statistica multivariata. Statistica multivariata. Analisi multivariata. Dati multivariati. x 11 x 21. x 12 x 22. x 1m x 2m. x nm. x n2. Analisi multivariata Statistica multivariata Quando il numero delle variabili rilevate sullo stesso soggetto aumentano, il problema diventa gestirle tutte e capirne le relazioni. Cercare di capire le relazioni

Dettagli

Dr. Marco Vicentini marco.vicentini@unipd.it Anno Accademico 2010 2011 Rev 30/03/2011

Dr. Marco Vicentini marco.vicentini@unipd.it Anno Accademico 2010 2011 Rev 30/03/2011 Università degli Studi di Padova Facoltà di Psicologia, L4, Psicometria, Modulo B Dr. Marco Vicentini marco.vicentini@unipd.it Anno Accademico 2010 2011 Rev 30/03/2011 Statistica descrittiva e inferenziale

Dettagli

l insieme delle misure effettuate costituisce il campione statistico

l insieme delle misure effettuate costituisce il campione statistico Statistica negli esperimenti reali si effettuano sempre un numero finito di misure, ( spesso molto limitato ) l insieme delle misure effettuate costituisce il campione statistico Statistica descrittiva

Dettagli

Probabilità condizionata: p(a/b) che avvenga A, una volta accaduto B. Evento prodotto: Evento in cui si verifica sia A che B ; p(a&b) = p(a) x p(b/a)

Probabilità condizionata: p(a/b) che avvenga A, una volta accaduto B. Evento prodotto: Evento in cui si verifica sia A che B ; p(a&b) = p(a) x p(b/a) Probabilità condizionata: p(a/b) che avvenga A, una volta accaduto B Eventi indipendenti: un evento non influenza l altro Eventi disgiunti: il verificarsi di un evento esclude l altro Evento prodotto:

Dettagli

1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario:

1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario: Esempi di domande risposta multipla (Modulo II) 1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario: 1) ha un numero di elementi pari a 5; 2) ha un numero di elementi

Dettagli

ESERCITAZIONE 13 : STATISTICA DESCRITTIVA E ANALISI DI REGRESSIONE

ESERCITAZIONE 13 : STATISTICA DESCRITTIVA E ANALISI DI REGRESSIONE ESERCITAZIONE 13 : STATISTICA DESCRITTIVA E ANALISI DI REGRESSIONE e-mail: tommei@dm.unipi.it web: www.dm.unipi.it/ tommei Ricevimento: su appuntamento Dipartimento di Matematica, piano terra, studio 114

Dettagli

Servizi di consulenza specialistica per IGRUE 2009 2012

Servizi di consulenza specialistica per IGRUE 2009 2012 Allegato 9A Metodo della stima delle differenze Descrizione della procedura Il metodo della stima delle differenze è indicato qualora il controllore ritenga che la popolazione sia affetta da un tasso di

Dettagli

ESERCIZI DI ALGEBRA LINEARE E GEOMETRIA

ESERCIZI DI ALGEBRA LINEARE E GEOMETRIA ESERCIZI DI ALGEBRA LINEARE E GEOMETRIA Francesco Bottacin Padova, 24 febbraio 2012 Capitolo 1 Algebra Lineare 1.1 Spazi e sottospazi vettoriali Esercizio 1.1. Sia U il sottospazio di R 4 generato dai

Dettagli

(accuratezza) ovvero (esattezza)

(accuratezza) ovvero (esattezza) Capitolo n 2 2.1 - Misure ed errori In un analisi chimica si misurano dei valori chimico-fisici di svariate grandezze; tuttavia ogni misura comporta sempre una incertezza, dovuta alla presenza non eliminabile

Dettagli

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 6

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 6 CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 6 Dott.ssa Antonella Costanzo a.costanzo@unicas.it Esercizio 1. Stima puntuale per la proporzione Da un lotto di arance se ne estraggono 400, e di queste 180

Dettagli

Elementi di Psicometria con Laboratorio di SPSS 1

Elementi di Psicometria con Laboratorio di SPSS 1 Elementi di Psicometria con Laboratorio di SPSS 1 5-Indici di variabilità (vers. 1.0c, 20 ottobre 2015) Germano Rossi 1 germano.rossi@unimib.it 1 Dipartimento di Psicologia, Università di Milano-Bicocca

Dettagli

Strumenti di indagine per la valutazione psicologica

Strumenti di indagine per la valutazione psicologica Strumenti di indagine per la valutazione psicologica 2.2 Mettere a punto un test psicologico Davide Massidda davide.massidda@gmail.com Da dove partire C'è davvero bisogno di un nuovo strumento di misura?

Dettagli

Dott.ssa Caterina Gurrieri

Dott.ssa Caterina Gurrieri Dott.ssa Caterina Gurrieri Le relazioni tra caratteri Data una tabella a doppia entrata, grande importanza riveste il misurare se e in che misura le variabili in essa riportata sono in qualche modo

Dettagli

Come descrivere un fenomeno in ambito sanitario fondamenti di statistica descrittiva. Brugnaro Luca

Come descrivere un fenomeno in ambito sanitario fondamenti di statistica descrittiva. Brugnaro Luca Come descrivere un fenomeno in ambito sanitario fondamenti di statistica descrittiva Brugnaro Luca Progetto formativo complessivo Obiettivo: incrementare le competenze degli operatori sanitari nelle metodiche

Dettagli

Statistica descrittiva: prime informazioni dai dati sperimentali

Statistica descrittiva: prime informazioni dai dati sperimentali SECONDO APPUNTAMENTO CON LA SPERIMENTAZIONE IN AGRICOLTURA Statistica descrittiva: prime informazioni dai dati sperimentali La statistica descrittiva rappresenta la base di partenza per le applicazioni

Dettagli

Stima per intervalli Nei metodi di stima puntuale è sempre presente un ^ errore θ θ dovuto al fatto che la stima di θ in genere non coincide con il parametro θ. Sorge quindi l esigenza di determinare una

Dettagli

MINIMI QUADRATI. REGRESSIONE LINEARE

MINIMI QUADRATI. REGRESSIONE LINEARE MINIMI QUADRATI. REGRESSIONE LINEARE Se il coefficiente di correlazione r è prossimo a 1 o a -1 e se il diagramma di dispersione suggerisce una relazione di tipo lineare, ha senso determinare l equazione

Dettagli

Esercizi test ipotesi. Prof. Raffaella Folgieri Email: folgieri@mtcube.com aa 2009/2010

Esercizi test ipotesi. Prof. Raffaella Folgieri Email: folgieri@mtcube.com aa 2009/2010 Esercizi test ipotesi Prof. Raffaella Folgieri Email: folgieri@mtcube.com aa 2009/2010 Verifica delle ipotesi - Esempio quelli di Striscia la Notizia" effettuano controlli casuali per vedere se le pompe

Dettagli

EPG Metodologia della ricerca e Tecniche Multivariate dei dati. Dott.ssa Antonella Macchia E-mail: a.macchia@unich.it. www.psicometria.unich.

EPG Metodologia della ricerca e Tecniche Multivariate dei dati. Dott.ssa Antonella Macchia E-mail: a.macchia@unich.it. www.psicometria.unich. EPG Metodologia della ricerca e Tecniche Multivariate dei dati Dott.ssa Antonella Macchia E-mail: a.macchia@unich.it www.psicometria.unich.it GIORNI E ORARI LEZIONI Sabato 01-03-2014 h 08:00-12:00 Sabato

Dettagli

CAPITOLO III CONFRONTI TRA DISTRIBUZIONI

CAPITOLO III CONFRONTI TRA DISTRIBUZIONI CAPITOLO III CONFRONTI TRA DISTRIBUZIONI 3.1 CONFRONTI TRA DISTRIBUZIONI OSSERVATE E DISTRIBUZIONI TEORICHE OD ATTESE. Nella teoria statistica e nella pratica sperimentale, è frequente la necessità di

Dettagli

Tabella per l'analisi dei risultati

Tabella per l'analisi dei risultati Vai a... UniCh Test V_Statistica_Eliminatorie Quiz V_Statistica_Eliminatorie Aggiorna Quiz Gruppi visibili Tutti i partecipanti Info Anteprima Modifica Risultati Riepilogo Rivalutazione Valutazione manuale

Dettagli

Corso di Laurea in Ingegneria Informatica Anno Accademico 2014/2015 Calcolo delle Probabilità e Statistica Matematica

Corso di Laurea in Ingegneria Informatica Anno Accademico 2014/2015 Calcolo delle Probabilità e Statistica Matematica Corso di Laurea in Ingegneria Informatica Anno Accademico 2014/2015 Calcolo delle Probabilità e Statistica Matematica Nome N. Matricola Ancona, 14 luglio 2015 1. Tre macchine producono gli stessi pezzi

Dettagli

DEFINIZIONE La statistica è una scienza che si propone di definire con dei numeri cose che non si possono numerare ne misurare.

DEFINIZIONE La statistica è una scienza che si propone di definire con dei numeri cose che non si possono numerare ne misurare. Appunti di Statistica DEFINIZIONE La statistica è una scienza che si propone di definire con dei numeri cose che non si possono numerare ne misurare. PROCESSO STATISTICO L indagine statistica comprende

Dettagli

STATISTICA ESERCITAZIONE 11 Dott. Giuseppe Pandolfo 3 febbraio 2015. Modelli continui di probabilità: la v.c. uniforme continua

STATISTICA ESERCITAZIONE 11 Dott. Giuseppe Pandolfo 3 febbraio 2015. Modelli continui di probabilità: la v.c. uniforme continua STATISTICA ESERCITAZIONE 11 Dott. Giuseppe Pandolfo febbraio 2015 Modelli continui di probabilità: la v.c. uniforme continua Esercizio 1 Anna ha una gift card da 50 euro. Non si sa se sia mai stata utilizzata

Dettagli

Elaborazione dei dati su PC Regressione Multipla

Elaborazione dei dati su PC Regressione Multipla 21 Elaborazione dei dati su PC Regressione Multipla Analizza Regressione Statistiche Grafici Metodo di selezione Analisi dei dati 21.1 Introduzione 21.2 Regressione lineare multipla con SPSS 21.3 Regressione

Dettagli

Capitolo 12 La regressione lineare semplice

Capitolo 12 La regressione lineare semplice Levine, Krehbiel, Berenson Statistica II ed. 2006 Apogeo Capitolo 12 La regressione lineare semplice Insegnamento: Statistica Corso di Laurea Triennale in Economia Facoltà di Economia, Università di Ferrara

Dettagli

Relazioni tra variabili

Relazioni tra variabili Università degli Studi di Padova Facoltà di Medicina e Chirurgia Corso di Laurea in Medicina e Chirurgia - A.A. 009-10 Scuole di specializzazione in: Medicina Legale, Medicina del Lavoro, Igiene e Medicina

Dettagli

LA STATISTICA E IL CALCOLO DELLE PROBABILITÀ

LA STATISTICA E IL CALCOLO DELLE PROBABILITÀ LA STATISTICA E IL CALCOLO DELLE PROBABILITÀ Prof. Francesco Tottoli Versione 3 del 20 febbraio 2012 DEFINIZIONE È una scienza giovane e rappresenta uno strumento essenziale per la scoperta di leggi e

Dettagli

1 La Matrice dei dati

1 La Matrice dei dati Dispense sull uso di Excel Daniela Marella 1 La Matrice dei dati Un questionario è costituito da un insieme di domande raccolte su un determinato supporto (cartaceo o elettronico) e somministrate alla

Dettagli

2. Un carattere misurato in un campione: elementi di statistica descrittiva e inferenziale

2. Un carattere misurato in un campione: elementi di statistica descrittiva e inferenziale BIOSTATISTICA 2. Un carattere misurato in un campione: elementi di statistica descrittiva e inferenziale Marta Blangiardo, Imperial College, London Department of Epidemiology and Public Health m.blangiardo@imperial.ac.uk

Dettagli

8 Elementi di Statistica

8 Elementi di Statistica 8 Elementi di Statistica La conoscenza di alcuni elementi di statistica e di analisi degli errori è importante quando si vogliano realizzare delle osservazioni sperimentali significative, ed anche per

Dettagli

I ESERCITAZIONE. Gruppo I 100 individui. Trattamento I Nuovo Farmaco. Osservazione degli effetti sul raffreddore. Assegnazione casuale

I ESERCITAZIONE. Gruppo I 100 individui. Trattamento I Nuovo Farmaco. Osservazione degli effetti sul raffreddore. Assegnazione casuale I ESERCITAZIONE ESERCIZIO 1 Si vuole testare un nuovo farmaco contro il raffreddore. Allo studio partecipano 200 soggetti sani della stessa età e dello stesso sesso e con caratteristiche simili. i) Che

Dettagli

Esercitazioni di Statistica

Esercitazioni di Statistica Esercitazioni di Statistica Test d ipotesi sul valor medio e test χ 2 di adattamento Prof. Livia De Giovanni statistica@dis.uniroma1.it Esercizio 1 Si supponga che il diametro degli anelli metallici prodotti

Dettagli

Statistica descrittiva univariata

Statistica descrittiva univariata Statistica descrittiva univariata Elementi di statistica 2 1 Tavola di dati Una tavola (o tabella) di dati è l insieme dei caratteri osservati nel corso di un esperimento o di un rilievo. Solitamente si

Dettagli

Elementi di Statistica

Elementi di Statistica Elementi di Statistica Contenuti Contenuti di Statistica nel corso di Data Base Elementi di statistica descrittiva: media, moda, mediana, indici di dispersione Introduzione alle variabili casuali e alle

Dettagli

UNIVERSITA DEGLI STUDI DI PERUGIA STATISTICA MEDICA. Prof.ssa Donatella Siepi donatella.siepi@unipg.it tel: 075 5853525

UNIVERSITA DEGLI STUDI DI PERUGIA STATISTICA MEDICA. Prof.ssa Donatella Siepi donatella.siepi@unipg.it tel: 075 5853525 UNIVERSITA DEGLI STUDI DI PERUGIA STATISTICA MEDICA Prof.ssa Donatella Siepi donatella.siepi@unipg.it tel: 075 5853525 2 LEZIONE Statistica descrittiva STATISTICA DESCRITTIVA Rilevazione dei dati Rappresentazione

Dettagli

Il corso si colloca nell ambito del corso integrato di scienze quantitative, al primo anno.

Il corso si colloca nell ambito del corso integrato di scienze quantitative, al primo anno. Corso di Statistica Medica Il corso si colloca nell ambito del corso integrato di scienze quantitative, al primo anno. Sono previste 40 ore complessive, di cui almeno 16 di lezione frontale e le restanti

Dettagli

VERIFICA DELLE IPOTESI

VERIFICA DELLE IPOTESI VERIFICA DELLE IPOTESI Introduzione Livelli di significatività Verifica di ipotesi sulla media di una popolazione normale Verifica di ipotesi sulla varianza di una popolazione normale Verifica di ipotesi

Dettagli

La validità. La validità

La validità. La validità 1. Validità interna 2. Validità di costrutto 3. Validità esterna 4. Validità statistica La validità La validità La validità di una ricerca ci permette di valutare se quello che è stato trovato nella ricerca

Dettagli

Analizza/Confronta medie. ELEMENTI DI PSICOMETRIA Esercitazione n. 7-8-9-107. Test t. Test t. t-test test e confronto tra medie chi quadrato

Analizza/Confronta medie. ELEMENTI DI PSICOMETRIA Esercitazione n. 7-8-9-107. Test t. Test t. t-test test e confronto tra medie chi quadrato Analizza/Confronta medie ELEMENTI DI PSICOMETRIA Esercitazione n. 7-8-9-107 t-test test e confronto tra medie chi quadrato C.d.L. Comunicazione e Psicologia a.a. 2008/09 Medie Calcola medie e altre statistiche

Dettagli

Statistiche campionarie

Statistiche campionarie Statistiche campionarie Sul campione si possono calcolare le statistiche campionarie (come media campionaria, mediana campionaria, varianza campionaria,.) Le statistiche campionarie sono stimatori delle

Dettagli

Abbiamo visto due definizioni del valore medio e della deviazione standard di una grandezza casuale, in funzione dalle informazioni disponibili:

Abbiamo visto due definizioni del valore medio e della deviazione standard di una grandezza casuale, in funzione dalle informazioni disponibili: Incertezze di misura Argomenti: classificazione delle incertezze; definizione di incertezza tipo e schemi di calcolo; schemi per il calcolo dell incertezza di grandezze combinate; confronto di misure affette

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Funzioni di trasferimento: stabilità, errore a regime e luogo delle radici Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 0532 974839 E-mail:

Dettagli

Statistica Medica. Verranno presi in esame:

Statistica Medica. Verranno presi in esame: Statistica Medica Premessa: il seguente testo cerca di riassumere e rendere in forma comprensibile ai non esperti in matematica e statistica le nozioni e le procedure necessarie a svolgere gli esercizi

Dettagli

ANALISI DELLE FREQUENZE: IL TEST CHI 2

ANALISI DELLE FREQUENZE: IL TEST CHI 2 ANALISI DELLE FREQUENZE: IL TEST CHI 2 Quando si hanno scale nominali o ordinali, non è possibile calcolare il t, poiché non abbiamo medie, ma solo frequenze. In questi casi, per verificare se un evento

Dettagli

Che cosa è la Validità?

Che cosa è la Validità? Validità Che cosa è la Validità? Un test è valido quando misura ciò che intende misurare. Si tratta di un giudizio complessivo della misura in cui prove empiriche e principi teorici supportano l adeguatezza

Dettagli

Università del Piemonte Orientale. Corsi di laurea triennale di area tecnica. Corso di Statistica Medica. Analisi dei dati in tabelle di contingenza

Università del Piemonte Orientale. Corsi di laurea triennale di area tecnica. Corso di Statistica Medica. Analisi dei dati in tabelle di contingenza Università del Piemonte Orientale Corsi di laurea triennale di area tecnica Corso di Statistica Medica Analisi dei dati in tabelle di contingenza Corsi di laurea triennale di area tecnica - Corso di Statistica

Dettagli

LA CRESCITA DELLE POPOLAZIONI ANIMALI

LA CRESCITA DELLE POPOLAZIONI ANIMALI LA CRESCITA DELLE POPOLAZIONI ANIMALI Riccardo Scipioni Generalmente, con il termine crescita di una popolazione si intende l aumento, nel tempo, del numero di individui appartenenti ad una stessa popolazione.

Dettagli

ESAME DI STATISTICA Nome: Cognome: Matricola:

ESAME DI STATISTICA Nome: Cognome: Matricola: ESAME DI STATISTICA Nome: Cognome: Matricola: ISTRUZIONI: Per la prova è consentito esclusivamente l uso di una calcolatrice tascabile, delle tavole della normale e della t di Student. I risultati degli

Dettagli

ESTRAZIONE DI RADICE

ESTRAZIONE DI RADICE ESTRAZIONE DI RADICE La radice è l operazione inversa dell elevamento a potenza. L esponente della potenza è l indice della radice che può essere: quadrata (); cubica (); quarta (4); ecc. La base della

Dettagli