Corso di Laurea in Scienze e Tecnologie Biomolecolari. NOME COGNOME N. Matr.

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Corso di Laurea in Scienze e Tecnologie Biomolecolari. NOME COGNOME N. Matr."

Transcript

1 Corso di Laurea in Scienze e Tecnologie Biomolecolari Matematica e Statistica II Prova di esame del 18/7/2013 NOME COGNOME N. Matr. Rispondere ai punti degli esercizi nel modo più completo possibile, cercando di giustificare i passaggi. Alle domande a quiz va indicata una sola risposta (se è corretta essa vale 2 punti; se errata -1/2) Il compito è diviso in due parti. Per essere ammessi all orale è necessario ottenere almeno metà dei punti possibili in ognuna delle parti. PARTE I ESERCIZIO 1 (6 punti) Sappiamo che il colore dei semi di pisello è controllato da un unico gene, e l allele che codifica per il colore giallo è recessivo rispetto a quello che codifica per il verde. Dalle leggi di Mendel segue che il seme prodotto da un incrocio fra due eterozigoti sarà giallo con probabilià pari a 1/4. 1. Qual è la probabilità che meno del 20% di n semi prodotti da un tale incrocio sia giallo per n = 20? [Scrivere la formula esatta ed approssimarla con un metodo appropriato] 2. Per n = 50 tale probabilità sarà maggiore, uguale o minore? Rispondere senza fare il conto, ma con un ragionamento. 3. Quanto deve essere grande n perché tale probabilità sia minore del 5%?

2 ESERCIZIO 2 (6 punti) Un urna contiene 8 palline rosse, 5 bianche e 2 nere. Si estrae una pallina e, dopo averla guardata, la si reinserisce nell urna aggiungendovi anche 1 pallina di ciascuno degli altri due colori (prese da una scatola che si ha a disposizione); dopo, si estrae una seconda pallina. (a) Calcolare la probabilità che la seconda pallina estratta sia bianca. (b) Calcolare la probabilità che le due palline estratte siano dello stesso colore. (c) Calcolare la probabilità che la prima pallina estratta sia bianca sapendo che la seconda estratta è bianca.

3 PARTE II ESERCIZIO 3 (6+1 punti) In un controllo di qualità della produzione, si è trovato che il 10% dei pneumatici di un campione non soddisfa gli standard dell azienda. 1. Costruire un intervallo di confidenza al 99% per la proporzione della produzione al di sotto degli standard, se il campione ha dimensione n = 10. Usate il metodo dell approssimazione normale, nei due modi visti a lezione, e discutete se tali approssimazioni siano appropriate. 2. Supponiamo ora che lo statistico dell azienda segua i metodi bayesiani e, sulla base delle sue conoscenze dei metodi di produzione, scelga una distribuzione a priori Beta(a, b) con a+b = 10 e valore atteso 5%. Mostrare il procedimento con cui si costruirebbe la distribuzione a posteriori; che cosa si può usare in questa impostazione al posto dell intervallo di confidenza al 99%? [rispondere con una formula o graficamente] opzionale trovare i valori di a e b e la formula esatta della distribuzione a posteriori.

4 ESERCIZIO 4 (7 punti) Si è notato che spesso le civette delle tane raccolgono pezzetti di sterco di grandi mammiferi e li lasciano nelle vicinanze delle loro tane; si pensa che ciò sia fatto allo scopo di attirare scarabei stercorari, che sono una delle principali prede di queste civette. Per studiare se ciò sia verosimile, un gruppo di ricercatori ha posto dei frammenti di sterco davanti alle tane di 10 civette mentre hanno tenuto libere da sterco le tane di altre 10 civette (gruppo di controllo). Successivamente hanno contato quanti scarabei hanno catturato le civette dei due gruppi, trovand che il numero medio era 4,8 per il gruppo con sterco, mentre era 0,51 per il gruppo di controllo. Le deviazioni standard per i due gruppi sono state 3,26 e 0,89 rispettivamente. 1. Calcolate l intervallo di confidenza al 95% per il numero medio di scarabei catturati, separatamente per i due gruppi. 2. Studiate, tramite un test studiato nel corso, se il numero medio di scarabei catturati nei due gruppi sia significativamente diverso. Specificare le ipotesi esatte usate nel test. 3. Si noterà che non tutte le ipotesi alla base del test appaiono soddisfatte. Quali test si potrebbero effettuare per ovviare a questo problema?

5 ESERCIZIO 5 (4 punti) È stato condotto un esperimento per confrontare il numero di uccelli morti a causa degli urti contro finestre verticali (V), finestre inclinate verso il basso di 20 (I20), finestre inclinate verso il basso di 40 rispetto alla verticale (I40). Le inclinazioni sono state assegnate casualmente a 6 finestre identiche e variate ogni giorno, facendo sì che complessivamente fosse uguale l intervallo di tempo durante il quale ogni finestra avesse una certa inclinazione. Alla fine del periodo di studio, 30 uccelli erano rimasti uccisi dallo scontro con finestre V, 15 da quello con finestre I20, 8 da quello con finestre I40. Vogliamo verificare se l inclinazione delle finestre influisca sulla probabilità che un uccello rimanga ucciso scontrandosi con la finestra. 1. Posto M i il numero di uccelli morti nel trattamento i = 1, 2, 3 sta per V, I20, I40, un appropriata ipotesi nulla ed alternativa per un test è H 0 : M i P ois(λ), H 1 : M i P ois(λ i ), λ i non tutti uguali. H 0 : M i Bin(53, 1/3), H 1 : M i Bin(53, p i ), p i non tutti uguali a 1/3. H 0 : (M 1, M 2, M 3 ) Multinom(53; 1/3, 1/3, 1/3), H 1 : M i Multinom(53; p 1, p 2, p 3 ), p i non tutti uguali a 1/3. H 0 : M i N(53/3, σ 2 ), H 1 : M i N(µ i, σ 2 ), µ i non tutti uguali a 53/3. 2. Scelto un test, mostrate le modalità della sua effettuazione? [non effettuate calcoli, ma mostrate la procedura in modo comprensibile] 3. Perché l inclinazione delle finestre è stata assegnata casualmente e cambiata giornalmente? DOMANDA 6 La potenza di un test aumenta al crescere della dimensione n del campione; è la probabilità di accettare l ipotesi nulla H 0 quando essa è vera; è la probabilità di rifiutare l ipotesi nulla H 0 quando essa è vera; è la probabilità che H 1 sia vera quando i dati cadono nella regione critica.

Corso di Laurea in Scienze e Tecnologie Biomolecolari. NOME COGNOME N. Matr.

Corso di Laurea in Scienze e Tecnologie Biomolecolari. NOME COGNOME N. Matr. Corso di Laurea in Scienze e Tecnologie Biomolecolari Matematica e Statistica II Prova di esame dell 11/1/2012 NOME COGNOME N. Matr. Rispondere alle domande nel modo più completo possibile, cercando di

Dettagli

Elementi di Psicometria con Laboratorio di SPSS 1

Elementi di Psicometria con Laboratorio di SPSS 1 Elementi di Psicometria con Laboratorio di SPSS 1 10-Il test t per un campione e la stima intervallare (vers. 1.1, 25 ottobre 2015) Germano Rossi 1 germano.rossi@unimib.it 1 Dipartimento di Psicologia,

Dettagli

E naturale chiedersi alcune cose sulla media campionaria x n

E naturale chiedersi alcune cose sulla media campionaria x n Supponiamo che un fabbricante stia introducendo un nuovo tipo di batteria per un automobile elettrica. La durata osservata x i delle i-esima batteria è la realizzazione (valore assunto) di una variabile

Dettagli

ESAME DI STATISTICA Nome: Cognome: Matricola:

ESAME DI STATISTICA Nome: Cognome: Matricola: ESAME DI STATISTICA Nome: Cognome: Matricola: ISTRUZIONI: Per la prova è consentito esclusivamente l uso di una calcolatrice tascabile, delle tavole della normale e della t di Student. I risultati degli

Dettagli

Università di Firenze - Corso di laurea in Statistica Seconda prova intermedia di Statistica. 18 dicembre 2008

Università di Firenze - Corso di laurea in Statistica Seconda prova intermedia di Statistica. 18 dicembre 2008 Università di Firenze - Corso di laurea in Statistica Seconda prova intermedia di Statistica 18 dicembre 008 Esame sull intero programma: esercizi da A a D Esame sulla seconda parte del programma: esercizi

Dettagli

TEST DI AUTOVALUTAZIONE INTERVALLI DI CONFIDENZA E TEST

TEST DI AUTOVALUTAZIONE INTERVALLI DI CONFIDENZA E TEST TEST DI AUTOVALUTAZIONE INTERVALLI DI CONFIDENZA E TEST I diritti d autore sono riservati. Ogni sfruttamento commerciale non autorizzato sarà perseguito. Statistica 1 Parte A 1.1 La formula µ = x ± s n

Dettagli

STATISTICA INFERENZIALE

STATISTICA INFERENZIALE STATISTICA INFERENZIALE Premessa importante: si ipotizza che il comportamento della popolazione rispetto ad una variabile casuale X viene descritto attraverso una funzione parametrica di probabilità p

Dettagli

1a) Calcolare gli estremi dell intervallo di confidenza per µ al 90% in corrispondenza del campione osservato.

1a) Calcolare gli estremi dell intervallo di confidenza per µ al 90% in corrispondenza del campione osservato. Esercizio 1 Sia X 1,..., X un campione casuale estratto da una variabile aleatoria normale con media pari a µ e varianza pari a 1. Supponiamo che la media campionaria sia x = 2. 1a) Calcolare gli estremi

Dettagli

Temi di Esame a.a. 2012-2013. Statistica - CLEF

Temi di Esame a.a. 2012-2013. Statistica - CLEF Temi di Esame a.a. 2012-2013 Statistica - CLEF I Prova Parziale di Statistica (CLEF) 11 aprile 2013 Esercizio 1 Un computer è collegato a due stampanti, A e B. La stampante A è difettosa ed il 25% dei

Dettagli

Tema A. 1.2. Se due eventi A e B sono indipendenti e tali che P (A) = 1/2 e P (B) = 2/3, si può certamente concludere che

Tema A. 1.2. Se due eventi A e B sono indipendenti e tali che P (A) = 1/2 e P (B) = 2/3, si può certamente concludere che Statistica Cognome: Laurea Triennale in Biologia Nome: 26 luglio 2012 Matricola: Tema A 1. Parte A 1.1. Sia x 1, x 2,..., x n un campione di n dati con media campionaria x e varianza campionaria s 2 x

Dettagli

Istituzioni di Statistica e Statistica Economica

Istituzioni di Statistica e Statistica Economica Istituzioni di Statistica e Statistica Economica Università degli Studi di Perugia Facoltà di Economia, Assisi, a.a. 2013/14 Esercitazione n. 4 A. Si supponga che la durata in giorni delle lampadine prodotte

Dettagli

Test statistici di verifica di ipotesi

Test statistici di verifica di ipotesi Test e verifica di ipotesi Test e verifica di ipotesi Il test delle ipotesi consente di verificare se, e quanto, una determinata ipotesi (di carattere biologico, medico, economico,...) è supportata dall

Dettagli

Genetica. Mendel e la genetica

Genetica. Mendel e la genetica Genetica Le leggi dell ereditarietà di Mendel Ereditarietà e cromosomi Estensioni della genetica mendeliana Applicazioni della genetica Genoma umano Mendel e la genetica Mendel 81822-1884), un monaco di

Dettagli

COMPITO n. 1. 3. Siano X, Y due variabili aleatorie tali che il vettore (X, Y ) sia distribuito uniformemente

COMPITO n. 1. 3. Siano X, Y due variabili aleatorie tali che il vettore (X, Y ) sia distribuito uniformemente COMPITO n. 1 a) Nel gioco del poker ad ogni giocatore vengono distribuite cinque carte da un normale mazzo di 52. Quant è la probabilità che un giocatore riceva una scala di re (ovvero 9, 10, J, Q, K anche

Dettagli

ESERCIZI DI STATISTICA DESCRITTIVA

ESERCIZI DI STATISTICA DESCRITTIVA ESERCIZI DI STATISTICA DESCRITTIVA ES1 Data la seguente serie di dati su Sesso e Altezza di 8 pazienti, riempire opportunamente due tabelle per rappresentare le distribuzioni di frequenze dei due caratteri,

Dettagli

Analisi dei Dati 12/13 Esercizi proposti 3 soluzioni

Analisi dei Dati 12/13 Esercizi proposti 3 soluzioni Analisi dei Dati 1/13 Esercizi proposti 3 soluzioni 0.1 Un urna contiene 6 palline rosse e 8 palline nere. Si estraggono simultaneamente due palline. Qual è la probabilità di estrarle entrambe rosse? (6

Dettagli

Corso di Laurea in Ingegneria Informatica e Automatica (A-O) Università di Roma La Sapienza

Corso di Laurea in Ingegneria Informatica e Automatica (A-O) Università di Roma La Sapienza Corso di Laurea in Ingegneria Informatica e Automatica (A-O) Università di Roma La Sapienza CALCOLO DELLE PROBABILITÀ E STATISTICA ESAME DEL 28/05/2015 NOME: COGNOME: MATRICOLA: Esercizio 1 Nel gico del

Dettagli

Esame di Statistica del 17 luglio 2006 (Corso di Laurea Triennale in Biotecnologie, Università degli Studi di Padova).

Esame di Statistica del 17 luglio 2006 (Corso di Laurea Triennale in Biotecnologie, Università degli Studi di Padova). Esame di Statistica del 17 luglio 2006 (Corso di Laurea Triennale in Biotecnologie, Università degli Studi di Padova). Cognome Nome Matricola Es. 1 Es. 2 Es. 3 Es. 4 Somma Voto finale Attenzione: si consegnano

Dettagli

Inferenza statistica. Statistica medica 1

Inferenza statistica. Statistica medica 1 Inferenza statistica L inferenza statistica è un insieme di metodi con cui si cerca di trarre una conclusione sulla popolazione sulla base di alcune informazioni ricavate da un campione estratto da quella

Dettagli

CAPITOLO III CONFRONTI TRA DISTRIBUZIONI

CAPITOLO III CONFRONTI TRA DISTRIBUZIONI CAPITOLO III CONFRONTI TRA DISTRIBUZIONI 3.1 CONFRONTI TRA DISTRIBUZIONI OSSERVATE E DISTRIBUZIONI TEORICHE OD ATTESE. Nella teoria statistica e nella pratica sperimentale, è frequente la necessità di

Dettagli

R - Esercitazione 5. Lorenzo Di Biagio dibiagio@mat.uniroma3.it. Lunedì 2 Dicembre 2013. Università Roma Tre

R - Esercitazione 5. Lorenzo Di Biagio dibiagio@mat.uniroma3.it. Lunedì 2 Dicembre 2013. Università Roma Tre R - Esercitazione 5 Lorenzo Di Biagio dibiagio@mat.uniroma3.it Università Roma Tre Lunedì 2 Dicembre 2013 Intervalli di confidenza (1) Sia X 1,..., X n un campione casuale estratto da un densità f (x,

Dettagli

Analisi dei residui. Test Esatto di Fisher. Differenza fra proporzioni

Analisi dei residui. Test Esatto di Fisher. Differenza fra proporzioni Statistica Economica Materiale didattico a cura del docente Analisi dei residui Test Esatto di Fisher Differenza fra proporzioni 1 Analisi dei residui Il test statistico ed il suo p-valore riassumono la

Dettagli

Esercizi sul calcolo delle probabilità

Esercizi sul calcolo delle probabilità Esercizi sul calcolo delle probabilità Svolti e da svolgere (per MAR 13 marzo) Dati due eventi A e B dello spazio campionario Ω. Si sappia che P(A c )=0,3 P(B)=0,4 e P(A B c )=0,5 si determinino le probabilità

Dettagli

Statistiche campionarie

Statistiche campionarie Statistiche campionarie Sul campione si possono calcolare le statistiche campionarie (come media campionaria, mediana campionaria, varianza campionaria,.) Le statistiche campionarie sono stimatori delle

Dettagli

Esercitazione n.2 Inferenza su medie

Esercitazione n.2 Inferenza su medie Esercitazione n.2 Esercizio L ufficio del personale di una grande società intende stimare le spese mediche familiari dei suoi impiegati per valutare la possibilità di attuare un programma di assicurazione

Dettagli

Inferenza statistica I Alcuni esercizi. Stefano Tonellato

Inferenza statistica I Alcuni esercizi. Stefano Tonellato Inferenza statistica I Alcuni esercizi Stefano Tonellato Anno Accademico 2006-2007 Avvertenza Una parte del materiale è stato tratto da Grigoletto M. e Ventura L. (1998). Statistica per le scienze economiche,

Dettagli

Elementi di Psicometria con Laboratorio di SPSS 1

Elementi di Psicometria con Laboratorio di SPSS 1 Elementi di Psicometria con Laboratorio di SPSS 1 12-Il t-test per campioni appaiati vers. 1.2 (7 novembre 2014) Germano Rossi 1 germano.rossi@unimib.it 1 Dipartimento di Psicologia, Università di Milano-Bicocca

Dettagli

Criteri di Valutazione della scheda - Solo a carattere indicativo -

Criteri di Valutazione della scheda - Solo a carattere indicativo - Criteri di Valutazione della scheda - Solo a carattere indicativo - Previsioni Sono state fatte le previsioni e discussi i valori attesi con il ragionamento con cui sono stati calcolati E stata usata la

Dettagli

Metodi statistici per le ricerche di mercato

Metodi statistici per le ricerche di mercato Metodi statistici per le ricerche di mercato Prof.ssa Isabella Mingo A.A. 2013-2014 Facoltà di Scienze Politiche, Sociologia, Comunicazione Corso di laurea Magistrale in «Organizzazione e marketing per

Dettagli

Corso di ELEMENTI DI STATISTICA Alcuni problemi di probabilità, con soluzioni

Corso di ELEMENTI DI STATISTICA Alcuni problemi di probabilità, con soluzioni Corso di ELEMENTI DI STATISTICA Alcuni problemi di probabilità, con soluzioni Si tratta di problemi elementari, formulati nel linguaggio ordinario Quindi, per ogni problema la suluzione proposta è sempre

Dettagli

Corso di Laurea in Ingegneria Informatica e Automatica (A-O) Università di Roma La Sapienza

Corso di Laurea in Ingegneria Informatica e Automatica (A-O) Università di Roma La Sapienza Corso di Laurea in Ingegneria Informatica e Automatica (A-O) Università di Roma La Sapienza CALCOLO DELLE PROBABILITÀ E STATISTICA ESAME DEL 17/06/2015 NOME: COGNOME: MATRICOLA: Esercizio 1 Un sistema

Dettagli

ELEMENTI DI CALCOLO DELLE PROBABILITA

ELEMENTI DI CALCOLO DELLE PROBABILITA Statistica, CLEA p. 1/55 ELEMENTI DI CALCOLO DELLE PROBABILITA Premessa importante: il comportamento della popolazione rispetto una variabile casuale X viene descritto attraverso una funzione parametrica

Dettagli

8 Elementi di Statistica

8 Elementi di Statistica 8 Elementi di Statistica La conoscenza di alcuni elementi di statistica e di analisi degli errori è importante quando si vogliano realizzare delle osservazioni sperimentali significative, ed anche per

Dettagli

VERIFICA DELLE IPOTESI

VERIFICA DELLE IPOTESI VERIFICA DELLE IPOTESI Introduzione Livelli di significatività Verifica di ipotesi sulla media di una popolazione normale Verifica di ipotesi sulla varianza di una popolazione normale Verifica di ipotesi

Dettagli

Il confronto fra proporzioni

Il confronto fra proporzioni L. Boni Il rapporto Un rapporto (ratio), attribuendo un ampio significato al termine, è il risultato della divisione di una certa quantità a per un altra quantità b Il rapporto Spesso, in maniera più specifica,

Dettagli

Esercitazione #5 di Statistica. Test ed Intervalli di Confidenza (per una popolazione)

Esercitazione #5 di Statistica. Test ed Intervalli di Confidenza (per una popolazione) Esercitazione #5 di Statistica Test ed Intervalli di Confidenza (per una popolazione) Dicembre 00 1 Esercizi 1.1 Test su media (con varianza nota) Esercizio n. 1 Il calore (in calorie per grammo) emesso

Dettagli

Cosa dobbiamo già conoscere?

Cosa dobbiamo già conoscere? Cosa dobbiamo già conoscere? Insiemistica (operazioni, diagrammi...). Insiemi finiti/numerabili/non numerabili. Perché la probabilità? In molti esperimenti l esito non è noto a priori tuttavia si sa dire

Dettagli

Statistica inferenziale, Varese, 18 novembre 2009 Prima parte - Modalità C

Statistica inferenziale, Varese, 18 novembre 2009 Prima parte - Modalità C Statistica inferenziale, Varese, 18 novembre 2009 Prima parte - Modalità C Cognome Nome: Part time: Numero di matricola: Diurno: ISTRUZIONI: Il punteggio relativo alla prima parte dell esame viene calcolato

Dettagli

ELEMENTI DI STATISTICA

ELEMENTI DI STATISTICA Dipartimento di Ingegneria Meccanica Chimica e dei Materiali PROGETTAZIONE E GESTIONE DEGLI IMPIANTI INDUSTRIALI Esercitazione 6 ORE ELEMENTI DI STATISTICA Prof. Ing. Maria Teresa Pilloni Anno Accademico

Dettagli

Esercizi di Calcolo delle Probabilità (calcolo combinatorio)

Esercizi di Calcolo delle Probabilità (calcolo combinatorio) Esercizi di Calcolo delle Probabilità (calcolo combinatorio 1. Lanciamo due dadi regolari. Qual è la probabilità che la somma delle facce rivolte verso l alto sia pari a 7? 1/6 2. Due palline vengono estratte

Dettagli

Metodi statistici per l economia (Prof. Capitanio) Slide n. 9. Materiale di supporto per le lezioni. Non sostituisce il libro di testo

Metodi statistici per l economia (Prof. Capitanio) Slide n. 9. Materiale di supporto per le lezioni. Non sostituisce il libro di testo Metodi statistici per l economia (Prof. Capitanio) Slide n. 9 Materiale di supporto per le lezioni. Non sostituisce il libro di testo 1 TEST D IPOTESI Partiamo da un esempio presente sul libro di testo.

Dettagli

Le leggi di Mendel esposte in modo ragionato e critico di Luciano Porta

Le leggi di Mendel esposte in modo ragionato e critico di Luciano Porta Le leggi di Mendel esposte in modo ragionato e critico di Luciano Porta Le tre leggi di Mendel, che descrivono la trasmissione dei caratteri ereditari da una generazione all altra, segnano l inizio della

Dettagli

Esercizi sulle variabili aleatorie Corso di Probabilità e Inferenza Statistica, anno 2007-2008, Prof. Mortera

Esercizi sulle variabili aleatorie Corso di Probabilità e Inferenza Statistica, anno 2007-2008, Prof. Mortera Esercizi sulle variabili aleatorie Corso di Probabilità e Inferenza Statistica, anno 2007-2008, Prof. Mortera 1. Avete risparmiato 10 dollari che volete investire per un anno in azioni e/o buoni del tesoro

Dettagli

l insieme delle misure effettuate costituisce il campione statistico

l insieme delle misure effettuate costituisce il campione statistico Statistica negli esperimenti reali si effettuano sempre un numero finito di misure, ( spesso molto limitato ) l insieme delle misure effettuate costituisce il campione statistico Statistica descrittiva

Dettagli

Esercizi. Rappresentando le estrazioni con un grafo ad albero, calcolare la probabilità che:

Esercizi. Rappresentando le estrazioni con un grafo ad albero, calcolare la probabilità che: Esercizi Esercizio 4. Un urna contiene inizialmente 2 palline bianche e 4 palline rosse. Si effettuano due estrazioni con la seguente modalità: se alla prima estrazione esce una pallina bianca, la si rimette

Dettagli

Esercizi di calcolo combinatorio

Esercizi di calcolo combinatorio CORSO DI CALCOLO DELLE PROBABILITÀ E STATISTICA Esercizi di calcolo combinatorio Nota: Alcuni esercizi sono tradotti, più o meno fedelmente, dal libro A first course in probability di Sheldon Ross, quinta

Dettagli

Esperienze del primo semestre del Laboratorio di Fisica I

Esperienze del primo semestre del Laboratorio di Fisica I Esperienze del primo semestre del Laboratorio di Fisica I 25 settembre 2003 Meccanica Pendolo semplice Il pendolo semplice, che trovate montato a fianco del tavolo, è costituito da una piccola massa (intercambiabile)

Dettagli

Corso di Psicometria Progredito

Corso di Psicometria Progredito Corso di Psicometria Progredito 4.2 I principali test statistici per la verifica di ipotesi: Il test F Gianmarco Altoè Dipartimento di Pedagogia, Psicologia e Filosofia Università di Cagliari, Anno Accademico

Dettagli

Esercizi di Probabilità e Statistica

Esercizi di Probabilità e Statistica Esercizi di Probabilità e Statistica Samuel Rota Bulò 19 marzo 2007 Spazi di probabilità finiti e uniformi Esercizio 1 Un urna contiene due palle nere e una rossa. Una seconda urna ne contiene una bianca

Dettagli

Test sul calcolo della probabilità

Test sul calcolo della probabilità Test sul calcolo della probabilità 2 Test sul calcolo della probabilità Test sul calcolo della probabilità. La probabilità p di un evento E, quando si indica con E il suo complementare, è : a) 0 se E è

Dettagli

VARIABILI ALEATORIE MULTIPLE E TEOREMI ASSOCIATI. Dopo aver trattato delle distribuzioni di probabilità di una variabile aleatoria, che

VARIABILI ALEATORIE MULTIPLE E TEOREMI ASSOCIATI. Dopo aver trattato delle distribuzioni di probabilità di una variabile aleatoria, che VARIABILI ALATORI MULTIPL TORMI ASSOCIATI Fonti: Cicchitelli Dall Aglio Mood-Grabill. Moduli 6 9 0 del programma. VARIABILI ALATORI DOPPI Dopo aver trattato delle distribuzioni di probabilità di una variabile

Dettagli

Statistica 1. Esercitazioni. Dott. Luigi Augugliaro 1. Università di Palermo

Statistica 1. Esercitazioni. Dott. Luigi Augugliaro 1. Università di Palermo Statistica 1 Esercitazioni Dott. 1 1 Dipartimento di Scienze Statistiche e Matematiche S. Vianelli, Università di Palermo ricevimento: lunedì ore 15-17 mercoledì ore 15-17 e-mail: luigi.augugliaro@unipa.it

Dettagli

Test statistici non-parametrici

Test statistici non-parametrici Test statistici non-parametrici Il test t di Student e l ANOVA sono basati su alcune assunzioni. Variabili continue o almeno misurate in un intervallo (es. non conosco il valore assoluto, ma posso quantificare

Dettagli

CORSO DI CALCOLO DELLE PROBABILITÀ E STATISTICA. Esercizi su eventi, previsioni e probabilità condizionate

CORSO DI CALCOLO DELLE PROBABILITÀ E STATISTICA. Esercizi su eventi, previsioni e probabilità condizionate CORSO DI CALCOLO DELLE PROBABILITÀ E STATISTICA Esercizi su eventi, previsioni e probabilità condizionate Nota: Alcuni esercizi sono tradotti, più o meno fedelmente, dal libro A first course in probability

Dettagli

Esercizi di Calcolo delle Probabilita (I)

Esercizi di Calcolo delle Probabilita (I) Esercizi di Calcolo delle Probabilita (I) 1. Si supponga di avere un urna con 15 palline di cui 5 rosse, 8 bianche e 2 nere. Immaginando di estrarre due palline con reimmissione, si dica con quale probabilità:

Dettagli

Metodi statistici per le ricerche di mercato

Metodi statistici per le ricerche di mercato Metodi statistici per le ricerche di mercato Prof.ssa Isabella Mingo A.A. 2014-2015 Facoltà di Scienze Politiche, Sociologia, Comunicazione Corso di laurea Magistrale in «Organizzazione e marketing per

Dettagli

STATISTICA (I MODULO INFERENZA STATISTICA) Esercitazione I 27/4/2007

STATISTICA (I MODULO INFERENZA STATISTICA) Esercitazione I 27/4/2007 Esercitazione I 7/4/007 In una scatola contenente 0 pezzi di un articolo elettronico risultano essere difettosi. Si estraggono a caso due pezzi, uno alla volta senza reimmissione. Quale è la probabilità

Dettagli

STATISTICA DESCRITTIVA UNIVARIATA

STATISTICA DESCRITTIVA UNIVARIATA Capitolo zero: STATISTICA DESCRITTIVA UNIVARIATA La STATISTICA è la scienza che si occupa di fenomeni collettivi che richiedono lo studio di un grande numero di dati. Il termine STATISTICA deriva dalla

Dettagli

ESERCIZI DI CALCOLO COMBINATORIO

ESERCIZI DI CALCOLO COMBINATORIO ESERCIZI DI CALCOLO COMBINATORIO 1. Calcolare il numero degli anagrammi che possono essere formati con le lettere della parola Amore. [120] 2. Quante partite di poker diverse possono essere giocate da

Dettagli

Statistica. Lezione 6

Statistica. Lezione 6 Università degli Studi del Piemonte Orientale Corso di Laurea in Infermieristica Corso integrato in Scienze della Prevenzione e dei Servizi sanitari Statistica Lezione 6 a.a 011-01 Dott.ssa Daniela Ferrante

Dettagli

Si considerino gli eventi A = nessuno studente ha superato l esame e B = nessuno studente maschio ha superato l esame. Allora A c B è uguale a:

Si considerino gli eventi A = nessuno studente ha superato l esame e B = nessuno studente maschio ha superato l esame. Allora A c B è uguale a: TEST DI AUTOVALUTAZIONE - SETTIMANA 2 I diritti d autore sono riservati. Ogni sfruttamento commerciale non autorizzato sarà perseguito. Metodi statistici per la biologia 1 Parte A 1.1 Si considerino gli

Dettagli

Probabilità e Statistica Esercitazioni. a.a. 2006/2007

Probabilità e Statistica Esercitazioni. a.a. 2006/2007 Probabilità e Statistica Esercitazioni a.a. 2006/2007 C.d.L.: Ingegneria per l Ambiente ed il Territorio, Ingegneria Civile, Ingegneria Gestionale, Ingegneria dell Informazione C.d.L.S.: Ingegneria Civile

Dettagli

ESERCIZI DI RIEPILOGO 2. 7 jj(addi

ESERCIZI DI RIEPILOGO 2. 7 jj(addi ESERCIZI DI RIEPILOGO 2 ESERCIZIO 1 Da un comune mazzo di 52 carte francesi (13 carte per ognuno dei quattro semi: picche, cuori, fiori e quadri) viene estratta casualmente una carta. Definiti gli eventi:

Dettagli

Continua sul retro 42.1 39.7 38.0 38.7 41.4 37.5 38.6 40.5 39.8 38.0 36.9 40.3 42.0 41.3 40.4 39.1 38.4 42.0

Continua sul retro 42.1 39.7 38.0 38.7 41.4 37.5 38.6 40.5 39.8 38.0 36.9 40.3 42.0 41.3 40.4 39.1 38.4 42.0 Statistica per l azienda Esame del 19.06.12 COGNOME NOME Matr. Firma Modulo: singolo con Informatica con StatII & PDRM con Mat. & PDRM altro (specificare) Attenzione: Il presente foglio deve essere compilato

Dettagli

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 6

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 6 CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 6 Dott.ssa Antonella Costanzo a.costanzo@unicas.it Esercizio 1. Stima puntuale per la proporzione Da un lotto di arance se ne estraggono 400, e di queste 180

Dettagli

www.fisiokinesiterapia.biz LE LEGGI DI MENDEL

www.fisiokinesiterapia.biz LE LEGGI DI MENDEL www.fisiokinesiterapia.biz LE LEGGI DI MENDEL Gregor Johann Mendel (1822-1884) Comprese i principi che regolano la trasmissione dei caratteri ereditari alla progenie senza conoscere - l esistenza dei geni

Dettagli

ORDINALI E NOMINALI LA PROBABILITÀ. Nell ambito della manifestazione di un fenomeno niente è certo, tutto è probabile.

ORDINALI E NOMINALI LA PROBABILITÀ. Nell ambito della manifestazione di un fenomeno niente è certo, tutto è probabile. ORDINALI E NOMINALI LA PROBABILITÀ Statistica5 23/10/13 Nell ambito della manifestazione di un fenomeno niente è certo, tutto è probabile. Se si afferma che un vitello di razza chianina pesa 780 kg a 18

Dettagli

La Genetica. Le leggi di Mendel

La Genetica. Le leggi di Mendel La Genetica Le leggi di Mendel La Genetica Il monaco Gregor Mendel (1822-1884) fu il primo a studiare in modo rigoroso il fenomeno della trasmissione dei caratteri ereditari. Per questo, pur non avendo

Dettagli

Tabella 7. Dado truccato

Tabella 7. Dado truccato 0 ALBERTO SARACCO 4. Compiti a casa 7novembre 200 4.. Ordini di grandezza e calcolo approssimato. Esercizio 4.. Una valigia misura 5cm di larghezza, 70cm di lunghezza e 45cm di altezza. Quante palline

Dettagli

Esercitazioni del corso di Statistica Prof. Mortera a.a. 2010/2011. Esercizi di stima puntuale, intervalli di confidenza e test T 2 = 1 2 X

Esercitazioni del corso di Statistica Prof. Mortera a.a. 2010/2011. Esercizi di stima puntuale, intervalli di confidenza e test T 2 = 1 2 X Esercitazioni del corso di Statistica Prof. Mortera a.a. 2010/2011 Esercizi di stima puntuale, intervalli di confidenza e test 1. Si consideri il campione (X 1, X 2, X 3, X 4 ) composto da variabili i.i.d.

Dettagli

Esercizi di Probabilità e Statistica

Esercizi di Probabilità e Statistica Esercizi di Probabilità e Statistica Samuel Rota Bulò 9 giugno 006 Spazi di probabilità finiti e uniformi Esercizio Un urna contiene 6 palline rosse, 4 nere, 8 bianche. Si estrae una pallina; calcolare

Dettagli

STATISTICA E PROBABILITá

STATISTICA E PROBABILITá STATISTICA E PROBABILITá Statistica La statistica è una branca della matematica, che descrive un qualsiasi fenomeno basandosi sulla raccolta di informazioni, sottoforma di dati. Questi ultimi risultano

Dettagli

CLASSIFICAZIONE DEI CARATTERI

CLASSIFICAZIONE DEI CARATTERI CLASSIFICAZIONE DEI CARATTERI Come abbiamo visto, su ogni unità statistica si rilevano una o più informazioni di interesse (caratteri). Il modo in cui un carattere si manifesta in un unità statistica è

Dettagli

Statistical Process Control

Statistical Process Control Statistical Process Control ESERCIZI Esercizio 1. Per la caratteristica di un processo distribuita gaussianamente sono note media e deviazione standard: µ = 100, σ = 0.2. 1a. Calcolare la linea centrale

Dettagli

Probabilità e Statistica Esercitazioni. a.a. 2009/2010. C.d.L.S.: Ingegneria Civile-Architettonico, Ingegneria Civile-Strutturistico.

Probabilità e Statistica Esercitazioni. a.a. 2009/2010. C.d.L.S.: Ingegneria Civile-Architettonico, Ingegneria Civile-Strutturistico. Probabilità e Statistica Esercitazioni a.a. 2009/2010 C.d.L.S.: Ingegneria Civile-Architettonico, Ingegneria Civile-Strutturistico Probabilità Ines Campa e Marco Longhi Probabilità e Statistica - Esercitazioni

Dettagli

Teoria della Stima. Stima della Media e di una Porzione di Popolazione. Introduzione. Corso di Laurea in Scienze Motorie AA2002/03 - Analisi dei Dati

Teoria della Stima. Stima della Media e di una Porzione di Popolazione. Introduzione. Corso di Laurea in Scienze Motorie AA2002/03 - Analisi dei Dati Teoria della Stima. Stima della Media e di una Porzione di Popolazione Introduzione La proceduta in base alla quale ad uno o più parametri di popolazione si assegna il valore numerico calcolato dalle informazioni

Dettagli

La logica statistica della verifica (test) delle ipotesi

La logica statistica della verifica (test) delle ipotesi La logica statistica della verifica (test) delle ipotesi Come posso confrontare diverse ipotesi? Nella statistica inferenziale classica vengono sempre confrontate due ipotesi: l ipotesi nulla e l ipotesi

Dettagli

1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario:

1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario: Esempi di domande risposta multipla (Modulo II) 1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario: 1) ha un numero di elementi pari a 5; 2) ha un numero di elementi

Dettagli

1.2 Funzioni, dominio, codominio, invertibilità elementare, alcune identità trigonometriche

1.2 Funzioni, dominio, codominio, invertibilità elementare, alcune identità trigonometriche . Funzioni, dominio, codominio, invertibilità elementare, alcune identità trigonometriche Per le definizioni e teoremi si fa riferimento ad uno qualsiasi dei libri M.Bertsch - R.Dal Passo Lezioni di Analisi

Dettagli

Università del Piemonte Orientale. Corso di laurea in biotecnologia. Corso di Statistica Medica. Analisi dei dati quantitativi :

Università del Piemonte Orientale. Corso di laurea in biotecnologia. Corso di Statistica Medica. Analisi dei dati quantitativi : Università del Piemonte Orientale Corso di laurea in biotecnologia Corso di Statistica Medica Analisi dei dati quantitativi : Confronto tra due medie Università del Piemonte Orientale Corso di laurea in

Dettagli

Tabella iniziale con i dati. Malattia Malati Non malati Totale Test Positivo 183 Negativo 280 Totale 199 512. Calcolo i valori mancanti per differenza

Tabella iniziale con i dati. Malattia Malati Non malati Totale Test Positivo 183 Negativo 280 Totale 199 512. Calcolo i valori mancanti per differenza ESERCIZIO DI STATISTICA D.U. / simulazione di esame Esercizio 1: Per una malattia particolarmente grave viene sperimentato l utilizzo di una nuova tecnica radiologica allo scopo di identificare correttamente

Dettagli

Primi esercizi per gli studenti del corso di Statistica ed Elementi di Probabilita

Primi esercizi per gli studenti del corso di Statistica ed Elementi di Probabilita Primi esercizi per gli studenti del corso di Statistica ed Elementi di Probabilita NOTA 1 Gli esercizi sono presi da compiti degli scorsi appelli, oppure da testi o dispense di colleghi. A questi ultimi

Dettagli

CAPITOLO 8 LA VERIFICA D IPOTESI. I FONDAMENTI

CAPITOLO 8 LA VERIFICA D IPOTESI. I FONDAMENTI VERO FALSO CAPITOLO 8 LA VERIFICA D IPOTESI. I FONDAMENTI 1. V F Un ipotesi statistica è un assunzione sulle caratteristiche di una o più variabili in una o più popolazioni 2. V F L ipotesi nulla unita

Dettagli

Statistica e biometria. D. Bertacchi. Variabili aleatorie. V.a. discrete e continue. La densità di una v.a. discreta. Esempi.

Statistica e biometria. D. Bertacchi. Variabili aleatorie. V.a. discrete e continue. La densità di una v.a. discreta. Esempi. Iniziamo con definizione (capiremo fra poco la sua utilità): DEFINIZIONE DI VARIABILE ALEATORIA Una variabile aleatoria (in breve v.a.) X è funzione che ha come dominio Ω e come codominio R. In formule:

Dettagli

LA STATISTICA E IL CALCOLO DELLE PROBABILITÀ

LA STATISTICA E IL CALCOLO DELLE PROBABILITÀ LA STATISTICA E IL CALCOLO DELLE PROBABILITÀ Prof. Francesco Tottoli Versione 3 del 20 febbraio 2012 DEFINIZIONE È una scienza giovane e rappresenta uno strumento essenziale per la scoperta di leggi e

Dettagli

Le immagini digitali: introduzione

Le immagini digitali: introduzione Le immagini digitali: introduzione 1 L immagine digitale Un immagine pittorica è compsta da milioni di pigmenti colorati molto piccoli che, messi vicino l uno all altro, danno l impressione dei vari oggetti.

Dettagli

PROBABILITA' E VARIABILI CASUALI

PROBABILITA' E VARIABILI CASUALI PROBABILITA' E VARIABILI CASUALI ESERCIZIO 1 Due giocatori estraggono due carte a caso da un mazzo di carte napoletane. Calcolare: 1) la probabilità che la prima carta sia una figura oppure una carta di

Dettagli

Esame di Statistica del 9 gennaio 2008 (Corso di Laurea Triennale in Biotecnologie, Università degli Studi di Padova). Cognome Nome Matricola

Esame di Statistica del 9 gennaio 2008 (Corso di Laurea Triennale in Biotecnologie, Università degli Studi di Padova). Cognome Nome Matricola Esame di Statistica del 9 gennaio 2008 (Corso di Laurea Triennale in Biotecnologie, Università degli Studi di Padova). Cognome Nome Matricola Es. Es. 2 Es. 3 Es. 4 Somma Voto finale Attenzione: si consegnano

Dettagli

Microeconometria (Silvia Tiezzi) 01 aprile2011 Esercitazione

Microeconometria (Silvia Tiezzi) 01 aprile2011 Esercitazione Microeconometria (Silvia Tiezzi) 01 aprile2011 Esercitazione Esercizio 1 Si consideri il seguente modello ad effetti fissi con variabili binarie: + 1 2 a) supponete che N=3. Si mostri che i regressori

Dettagli

STATISTICA IX lezione

STATISTICA IX lezione Anno Accademico 013-014 STATISTICA IX lezione 1 Il problema della verifica di un ipotesi statistica In termini generali, si studia la distribuzione T(X) di un opportuna grandezza X legata ai parametri

Dettagli

generazione filiale ibridi

generazione filiale ibridi La Genetica Mendel, una volta che si fu assicurato di aver piante pure per un determinato carattere iniziò la fecondazione incrociata: ad esempio, prelevò del polline da una varietà dal fiore bianco e

Dettagli

Esercizi di Probabilità e statistica. Francesco Caravenna Paolo Dai Pra

Esercizi di Probabilità e statistica. Francesco Caravenna Paolo Dai Pra Esercizi di Probabilità e statistica Francesco Caravenna Paolo Dai Pra Capitolo 1 Spazi di probabilità discreti 1.1 Proprietà fondamentali Esercizio 1 Esprimere ciascuno dei seguenti eventi in termini

Dettagli

FONDAMENTI DI PSICOMETRIA - 8 CFU

FONDAMENTI DI PSICOMETRIA - 8 CFU Ψ FONDAMENTI DI PSICOMETRIA - 8 CFU STIMA DELL ATTENDIBILITA STIMA DELL ATTENDIBILITA DEFINIZIONE DI ATTENDIBILITA (affidabilità, fedeltà) Grado di accordo tra diversi tentativi di misurare uno stesso

Dettagli

Capitolo 11 Test chi-quadro

Capitolo 11 Test chi-quadro Levine, Krehbiel, Berenson Statistica II ed. 2006 Apogeo Capitolo 11 Test chi-quadro Insegnamento: Statistica Corso di Laurea Triennale in Ingegneria Gestionale Facoltà di Ingegneria, Università di Padova

Dettagli

2 CERTAMEN NAZIONALE DI PROBABILITA E STATISTICA FELICE FUSATO Fase di Istituto 15 febbraio 2011

2 CERTAMEN NAZIONALE DI PROBABILITA E STATISTICA FELICE FUSATO Fase di Istituto 15 febbraio 2011 2 CERTAMEN NAZIONALE DI PROBABILITA E STATISTICA FELICE FUSATO Fase di Istituto 15 febbraio 2011 1) Non sfogliare questo fascicolo finché l insegnante non ti dice di farlo. 2) E ammesso l utilizzo di calcolatrici

Dettagli

Esercitazione del 14/02/2012 Istituzioni di Calcolo delle Probabilità

Esercitazione del 14/02/2012 Istituzioni di Calcolo delle Probabilità Esercitazione del 14/02/2012 Istituzioni di Calcolo delle Probabilità David Barbato Questa raccolta comprende sia gli esercizi dell esercitazione del 14 febbraio sia gli esercizi di ricapitolazione sulle

Dettagli

Università del Piemonte Orientale. Corsi di laurea triennale di area tecnica. Corso di Statistica Medica. Analisi dei dati in tabelle di contingenza

Università del Piemonte Orientale. Corsi di laurea triennale di area tecnica. Corso di Statistica Medica. Analisi dei dati in tabelle di contingenza Università del Piemonte Orientale Corsi di laurea triennale di area tecnica Corso di Statistica Medica Analisi dei dati in tabelle di contingenza Corsi di laurea triennale di area tecnica - Corso di Statistica

Dettagli

Le strategie mendeliane

Le strategie mendeliane Le strategie mendeliane Il punto di partenza: il rompicapo sull eredità e come l approccio sperimentale innovativo di Mendel aiutò a risolverlo. Il lavoro vero e proprio: l analisi genetica secondo Mendel,compresa

Dettagli

SOLUZIONI AI PROBLEMI DEL CAPITOLO 2. Domande concettuali

SOLUZIONI AI PROBLEMI DEL CAPITOLO 2. Domande concettuali SOLUZIONI AI PROBLEMI DEL CAPITOLO 2 Domande concettuali C1. Il lavoro di Mendel dimostrò che i determinanti genetici vengono ereditati con modalità dominante/recessiva. Questo era evidente in molti dei

Dettagli

Statistica descrittiva: prime informazioni dai dati sperimentali

Statistica descrittiva: prime informazioni dai dati sperimentali SECONDO APPUNTAMENTO CON LA SPERIMENTAZIONE IN AGRICOLTURA Statistica descrittiva: prime informazioni dai dati sperimentali La statistica descrittiva rappresenta la base di partenza per le applicazioni

Dettagli