Matematica Computazionale(6cfu) Ottimizzazione(8cfu) (a.a , lez.4)

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Matematica Computazionale(6cfu) Ottimizzazione(8cfu) (a.a , lez.4)"

Transcript

1 Doente: Maro Gaviano Corso di Laurea in Infomatia Corso di Laurea in Matematia Matematia Computaionale(6fu) Ottimiaione(8fu) (a.a. 5-6 le.4)

2 Matematia Computaionale Ottimiaione a.a. 5-6 Leione n.4 Il metodo del simplesso Il metodo del simplesso proposto da G.. Dantig nel 95 per la risoluione di un problema di PL è una proedura iterativa he genera una suessione di programmi di base in ui la funione obbiettivo derese.

3 Matematia Computaionale Ottimiaione a.a. 5-6 Leione n.4 I prinipi del metodo del simplesso Si onsideri un problema PL in forma standard minimia in ui A = [a a... a n ] è una matrie mn m<n. Si supponga he sia una base del sistema e he l'equaione A=d possa essere risritta ome segue A d 3

4 Matematia Computaionale Ottimiaione a.a. 5-6 Leione n.4 oppure +R R =d da ui si ottiene il sistema espliito in termini di variabili di base = - d - R R. ovvero 4. = - d Y R on Y [ R] R - R = Y = [... n-m ] = ( i ). d 4

5 Matematia Computaionale Ottimiaione a.a. 5-6 Leione n.4 Nel seguito mediante N e N R = N-N si indiheranno i sottoinsiemi di N orrispondenti agli indii delle variabili di base e seondarie rispettivamente. La orrispondente deomposiione della funione obiettivo è R R R 4. [ ] R Oppure 4. = - d -( Y - R ) R. 5

6 6 Matematia Computaionale Ottimiaione a.a. 5-6 Leione n.4 Per una soluione di base relativa a R = 4.3 e la 4. e 4. possono essere risritte ome o in modo equivalente 4.4 R R R Y Y ) ( d d ) ( N N N R R R

7 Matematia Computaionale Ottimiaione a.a. 5-6 Leione n.4 Indiando 4.5 N R Si ha 4.6 ( ) N R 7

8 8 Matematia Computaionale Ottimiaione a.a. 5-6 Leione n.4 Il problema iniiale viene sritto in funione di una soluione di base nota ) ( min R R N N min d A

9 Matematia Computaionale Ottimiaione a.a. 5-6 Leione n.4 Teorema Dato un programma ammissibile di base assoiato a una base se 4.7 k - k > e k per qualhe kn R non esiste alun programma ottimale. Dimostraione. Da 4.4 e 4.6 segue he se k allora -. 9

10 Matematia Computaionale Ottimiaione a.a. 5-6 Leione n.4 Teorema Dato un programma di base ammissibile assoiato ad una base se 4.8 per kn R k - k > e sk > per almeno un sn allora un nuovo programma di base ammissibile può essere ottenuto dando a un nuovo valore '.

11 Matematia Computaionale Ottimiaione a.a. 5-6 Leione n.4 Dimostraione Se si dà ad una variabile seondaria k il valore 4.9 k h hk min sk s sk s N k e si tengono uguali a ero le altre variabili seondarie allora i nuovi valori delle variabili di base dedotti da 4.4 diventano 4. s s sk k s N k N R

12 Matematia Computaionale Ottimiaione a.a. 5-6 Leione n.4 in ui per la 4.9 si ha h Le variabili { s} sh e k formano una nuova soluione di base ammissibile per la quale dalla 4.6 si ha k ( ) k k

13 Matematia Computaionale Ottimiaione a.a. 5-6 Leione n.4 Dato un programma di base ammissibile ed una variabile seondaria k tale he k - k > e sk > per almeno un sn il teorema fornise il seguente Criterio di usita h variabile prinipale he diventa seondaria tale he h hk min sk s sk s N 3

14 Matematia Computaionale Ottimiaione a.a. 5-6 Leione n.4 Teorema 3 Dato un programma di base ammissibile assoiato on un base una ondiione neessaria e suffiiente perhé esso sia ottimale è he - per ogni N R. La dimostraione segue da

15 Matematia Computaionale Ottimiaione a.a. 5-6 Leione n.4 Corollario Una ondiione neessaria e suffiiente affinhé un programma di base ottimale sia unio è he - < per ogni N R. Conseguena Dato un programma di base e alolati gli elementi di Y e i valori di - i teoremi e 3 permettono di stabilire: 5

16 Matematia Computaionale Ottimiaione a.a. 5-6 Leione n.4 se è neessario alolare un nuovo programma di base; se è neessario fermare il alolo o perhé un programma ottimale è stato trovato o perhé non esiste alun programma ottimale finito. Il alolo di una nuovo programma di base è soltanto il passaggio da una vehia base ad una nuova base ' imponendo he una variabile seondaria entri nella base e nello stesso tempo una variabile di base venga eliminata dalla base. 6

17 Matematia Computaionale Ottimiaione a.a. 5-6 Leione n.4 Cambio della base k sia la variabile he entra nella base e h determinata dal riterio di usita h s s N hk min sk sk sia la variabile he lasia la base. Allora 4.9 e 4. danno le formule di trasformaione h ' 4. k S S sk k s N k h hk. 7

18 Matematia Computaionale Ottimiaione a.a. 5-6 Leione n.4 Il nuovo valore della funione obiettivo è dato da 4. ( ) k k k La nuova base ' differise da per la sostituione della olonna a h on a k. Il passaggio da - a (') - può essere ottenuto mediante una trasformaione lineare(vedi Appendie). Se p è l'indie di olonna di a h in 4.3 (') - = J p - dove J p [e e...e p- v p e p... e m ] on 8

19 Matematia Computaionale Ottimiaione a.a. 5-6 Leione n.4 posiione i-ma e i [...] T vettore olonna 4.4 v p [ k pk - k pk... pk pk pk - pk pk... mk pk ] Invee di usare le formule di trasformaione 4. si può alolare il nuovo programma on l'aiuto di (') - 45 ( ) d 9

20 Matematia Computaionale Ottimiaione a.a. 5-6 Leione n.4 Esempio Si abbia il problema PL min Ponendo e 4 uguali a ero una soluione di base ammissibile è data da = =3 3 =8 4 = 5 =4. Si ha

21 Matematia Computaionale Ottimiaione a.a. 5-6 Leione n.4 Si ha Caloliamo ] [ R Y 4

22 Matematia Computaionale Ottimiaione a.a. 5-6 Leione n.4 e 4 può entrare nella base allora per il riterio di usita ese.. h p er min s4 s4 s 35) (s 4 min

23 3 Matematia Computaionale Ottimiaione a.a. 5-6 Leione n.4 Essendo l'indie di olonna di a in uguale a si alola suessivamente / 7/ / J 7 v / 7 / / / 7/ / ( ) / 37/ 3/ d ( ) ˆ

24 Matematia Computaionale Ottimiaione a.a. 5-6 Leione n.4 Seleione della variabile he entra nella base Quando la base viene ambiata la relaione - > è generalmente soddisfatta da un sottoinsieme di N R. Quindi è utile segliere k in modo tale da massimiare il deremento della. Poihè questo è uguale a h ˆ ( k k ) si può segliere k in modo he (riterio di entrata) hk 4.6 k k ma N R ( ). 4

25 Matematia Computaionale Ottimiaione a.a. 5-6 Leione n.4 Questa selta di k non produe la massima variaione della funione obiettivo però fornise un riterio di entrata semplie he funiona bene nelle appliaioni. 5

26 Matematia Computaionale Ottimiaione a.a. 5-6 Leione n.4 Convergena dell algoritmo del Simplesso Il metodo del simplesso garantise il passaggio da una soluione di base ad una nuova soluione di base ' on ' (ved. teorema ). Vale il segno < nel aso di soluioni di base non degeneri ( > ). Altrimenti potrebbe valere l uguagliana. Cioè la funione obbiettivo non è derementata. Nel primo aso siamo siuri della onvergena al minimo poihé il numero delle soluioni di base è finito. Nel seondo aso può avvenire he una variabile di base esa dalla base e poi vi rientri in una iteraione suessiva lasiando invariato il valore di. 6

27 Matematia Computaionale Ottimiaione a.a. 5-6 Leione n.4 Si parla allora di ilo infinito. Si possono ostruire esempi per ui tale situaione si verifia Sono state proposte varie tenihe he evitano questo fenomeno; per esempio il metodo leiografio del simplesso. In pratia su problemi reali anhe in presena di soluioni di base degenere fatto abbastana omune il ilo infinito non si è mai verifiato. Pertanto nelle implementaioni del simplesso non si introduono le nuove proedure he renderebbero l algoritmo meno effiiente. 7

Matematica Computazionale(6cfu) Ottimizzazione(8cfu) (a.a , lez.3)

Matematica Computazionale(6cfu) Ottimizzazione(8cfu) (a.a , lez.3) Docente: Marco Gaviano (e-mail:gaviano@unica.it) Corso di Laurea in Infomatica Corso di Laurea in Matematica Matematica Computazionale(6cfu) Ottimizzazione(8cfu) (a.a. -4 lez.) Matematica Computazionale

Dettagli

Teoria della Dualità

Teoria della Dualità eoria della Dualità Ad ogni problema di PL (Primale) è assoiato un problema Duale Problema Primale (P) min s. t. 1 1 + L+ n n a + L+ a b M 11 1 1n n 1 a + L+ a b m1 1 mn n m Problema Duale (D) ma b11+

Dettagli

Corso di Laurea in Ingegneria Robotica e dell Automazione Probabilità e Processi Stocastici (455AA) A.A. 2018/19 - Prova scritta

Corso di Laurea in Ingegneria Robotica e dell Automazione Probabilità e Processi Stocastici (455AA) A.A. 2018/19 - Prova scritta Corso di Laurea in Ingegneria Robotia e dell Automazione Probabilità e Proessi Stoastii (455AA) AA 208/9 - Prova sritta 209-02-5 La durata della prova è di due ore e mezzo Le risposte devono essere giustifiate

Dettagli

Unità Didattica 1. Sistemi di Numerazione

Unità Didattica 1. Sistemi di Numerazione Unità Didattia Sistemi di Numerazione Sistemi di Numerazione Posizionali Criterio per la rappresentazione di un insieme infinito di numeri mediante un insieme limitato di simoli. Un sistema di numerazione

Dettagli

G. Parmeggiani 15/5/2017. Algebra e matematica discreta, a.a. 2016/2017, Scuola di Scienze - Corso di laurea: Svolgimento degli Esercizi per casa 5

G. Parmeggiani 15/5/2017. Algebra e matematica discreta, a.a. 2016/2017, Scuola di Scienze - Corso di laurea: Svolgimento degli Esercizi per casa 5 G. Parmeggiani 5/5/7 Algera e matematia disreta, a.a. 6/7, Suola di Sienze - Corso di laurea: parte di Algera Informatia Svolgimento degli Eserizi per asa 5 Si dia quale delle due seguenti posizioni definise

Dettagli

Proprietà delle operazioni sui numeri naturali

Proprietà delle operazioni sui numeri naturali Proprietà delle operazioni sui numeri naturali 1. Le proprietà delle operazioni possono essere introdotte geometriamente in modo da fornirne una giustifiazione intuitiva e una visualizzazione : 2. Le proprietà

Dettagli

Proprietà delle operazioni sui numeri naturali. Introduzione geometrica alle proprietà delle operazioni = 11 = 8 + 3

Proprietà delle operazioni sui numeri naturali. Introduzione geometrica alle proprietà delle operazioni = 11 = 8 + 3 Proprietà delle operazioni sui numeri naturali 1. Le proprietà delle operazioni possono essere introdotte geometriamente in modo da fornirne una giustifiazione intuitiva e una visualizzazione : 2. Le proprietà

Dettagli

Il processo inverso della derivazione si chiama integrazione.

Il processo inverso della derivazione si chiama integrazione. Integrale Indefinito e l Antiderivata Il proesso inverso della derivazione si hiama integrazione. Nota la variazione istantanea di una grandezza p.es. la veloità) è neessario sapere ome si omporta tale

Dettagli

RICERCA OPERATIVA (a.a. 2017/18) Nome: Cognome: Matricola:

RICERCA OPERATIVA (a.a. 2017/18) Nome: Cognome: Matricola: Quinto appello 8//8 RICERCA OPERATIVA (a.a. 7/8) Nome: Cognome: Matriola: ) Si risolva il seguente problema di PL max x x x x x x x x x appliando l algoritmo del Simplesso Primale, per via algebria, a

Dettagli

RICERCA OPERATIVA (a.a. 2018/19) Nome: Cognome: Matricola:

RICERCA OPERATIVA (a.a. 2018/19) Nome: Cognome: Matricola: Sesto appello //9 RICERCA OPERATIVA (a.a. 8/9) Nome: Cognome: Matriola: ) Si onsideri il seguente problema di PL: max x + x x + x x + x x x Si verifihi se la soluzione x = [, ] sia ottima per il problema.

Dettagli

RICERCA OPERATIVA (a.a. 2009/10) Nome: Cognome: Matricola:

RICERCA OPERATIVA (a.a. 2009/10) Nome: Cognome: Matricola: o Appello 08/0/00 RICERCA OPERATIVA (a.a. 009/0) Nome: Cognome: Matriola: ) Dato il grafo in figura e l albero T evidenziato, si verifihi se T sia un albero dei ammini minimi di radie ; si modifihi poi

Dettagli

RICERCA OPERATIVA (a.a. 2018/19)

RICERCA OPERATIVA (a.a. 2018/19) 1 RICERC OPERTIV (a.a. 2018/19) 1) Fornire le definizioni di soluzione di base primale, ammissibile e non ammissibile, degenere e non degenere, e di soluzione di base duale, ammissibile e non ammissibile,

Dettagli

Appunti di Logica Ternaria: Operatori Diadici

Appunti di Logica Ternaria: Operatori Diadici Appunti di Logia Ternaria: Operatori Diadii Giuseppe Talario 27 Gennaio 2014 Nella logia ternaria, una taella di verità on due ingressi ha nove righe, per ui ne onsegue he il numero totale delle funzioni

Dettagli

Enrico Borghi L EQUAZIONE DI DIRAC NELLA APPROSSIMAZIONE DI PAULI

Enrico Borghi L EQUAZIONE DI DIRAC NELLA APPROSSIMAZIONE DI PAULI Enrio Borghi L EQUAZIONE DI DIRAC NELLA APPROSSIMAZIONE DI PAULI E. Borghi - L equazione di Dira nella approssimazione di Pauli Rihiami a studi presenti in fisiarivisitata Leggendo L equazione di Dira

Dettagli

RICERCA OPERATIVA (a.a. 2006/07) Nome: Cognome: Matricola:

RICERCA OPERATIVA (a.a. 2006/07) Nome: Cognome: Matricola: o Appello 0/0/008 RICERCA OPERATIVA (a.a. 00/0) Nome: Cognome: Matriola: ) Si onsideri il grafo in figura, in ui i osti assoiati agli arhi (, ), (, ) e (, ) non sono noti. Le unihe informazioni disponibili

Dettagli

Teoria dei Giochi 18;4

Teoria dei Giochi 18;4 Teoria dei Giohi Eserizio 1 Data la seguente matrie dei pay-off in ui 1 e 2 sono le strategie a disposizione del gioatore e 1 e 2 quelle a disposizione del gioatore a) Verifiate se vi sono strategie dominanti

Dettagli

Pag. 1. Esercizi sui Diagrammi di Flusso. Stampa di alcuni numeri interi

Pag. 1. Esercizi sui Diagrammi di Flusso. Stampa di alcuni numeri interi Università degli studi di Parma Dipartimento di Ingegneria dell Informazione Informatia a.a. 202/ Stampa di aluni numeri interi Informatia Faoltà di Mediina Veterinaria a.a. 202/ prof. Stefano Cagnoni

Dettagli

Nome Cognome: RICERCA OPERATIVA (a.a. 2010/11) 6 o Appello 2/9/ Corso di Laurea: L Sp Matricola:

Nome Cognome: RICERCA OPERATIVA (a.a. 2010/11) 6 o Appello 2/9/ Corso di Laurea: L Sp Matricola: o Appello /9/ RICERCA OPERATIVA (a.a. /) Nome Cognome: Corso di Laurea: L- Sp Matriola: ) Si individui un albero dei ammini minimi di radie sul grafo in figura 8-7 utilizzando l algoritmo più appropriato

Dettagli

RICERCA OPERATIVA (a.a. 2017/18) Nome: Cognome: Matricola:

RICERCA OPERATIVA (a.a. 2017/18) Nome: Cognome: Matricola: Seondo appello // RICERCA OPERATIVA (a.a. 7/) Nome: Cognome: Matriola: ) Si onsideri il seguente problema di PL: max x + x x + x x + x x x Si verifihi se la soluzione x = [, ] sia ottima per il problema.

Dettagli

Fisica dei mezzi trasmissivi Prof. G. Macchiarella Prova del 28 Febbraio 2013

Fisica dei mezzi trasmissivi Prof. G. Macchiarella Prova del 28 Febbraio 2013 Fisia dei mezzi trasmissivi Prof. G. Mahiarella Prova del 8 Febbraio 013 1 3 4 non srivere nella zona soprastante COGNOME E NOME MTRICO FIRM Eserizio 1 Un generatore, la ui tensione varia nel tempo ome

Dettagli

Equazioni di secondo grado intere letterali

Equazioni di secondo grado intere letterali Equazioni di seondo grado intere letterali Esempio. k ) x k + )x + k + 0 a k b k + ) k + Disussione. Se k 0 k l equazione si abbassa di grado. Disutiamo il aso a 0 aso in ui l equazione diventa di primo

Dettagli

RICERCA OPERATIVA (a.a. 2009/10) Nome: Cognome: Matricola:

RICERCA OPERATIVA (a.a. 2009/10) Nome: Cognome: Matricola: o Appello // RICERCA OPERATIVA (a.a. 9/) Nome: Cognome: Matriola: ) Si applihi l algoritmo di Kruskal per determinare un albero di opertura di osto minimo sul grafo in figura. Per ogni iterazione si indihino

Dettagli

Analisi di segnali campionati

Analisi di segnali campionati Analisi nel dominio della frequenza Analisi di segnali ampionati - 1 Analisi di segnali ampionati 1 Analisi dei segnali nel dominio della frequenza I prinipali metodi di analisi dei segnali di misura possono

Dettagli

Relazione di Fondamenti di automatica

Relazione di Fondamenti di automatica Università degli studi di Cassino relazione finale orso di fondamenti di automatia Elaborato J Relazione di Fondamenti di automatia Doente del orso: Stefano Chiaverini Riardo Galletti Matr. 65 - - Relazione

Dettagli

Analisi 1 e 2 - Quarto compitino Soluzioni proposte

Analisi 1 e 2 - Quarto compitino Soluzioni proposte Analisi 1 e 2 - Quarto ompitino Soluzioni proposte 23 maggio 2017 Eserizio 1. Risolvere il problema di Cauhy y = x(4 y2 ) y y(0) = α al variare di α R, α 0 Soluzione proposta. Se α = 2 oppure α = 2 abbiamo

Dettagli

L offerta della singola impresa: le curve di costo

L offerta della singola impresa: le curve di costo L offerta della singola impresa: le urve di osto La funzione di osto totale è di un impresa orrispondono alla somma dei osti fissi e dei osti variabili I osti fissi F sono quelli he sono sostenuti indipendentemente

Dettagli

CALCOLO DELL INDICE DI VULNERABILITÀ - Edifici in Muratura. Punteggi A B C D

CALCOLO DELL INDICE DI VULNERABILITÀ - Edifici in Muratura. Punteggi A B C D CALCOLO DELL INDICE DI VULNERABILITÀ - Edifii in Muratura tabella dei punteggi e dei pesi da assegnare ad ogni parametro della sheda di seondo livello EDIFICI IN MURATURA A B C D Peso 1 - Org. sist. resist.

Dettagli

Teoria dei Giochi 18;4

Teoria dei Giochi 18;4 Teoria dei Giohi Eserizio 1 ) Ordinate nel senso di Pareto i possibili esiti del gioo 1 2 1 2 18;4 Per verifiare se vi sono strategie dominanti è neessario vedere se esiste per il gioatore una strategia

Dettagli

Parte V: Rafforzamento di formulazioni e algoritmo dei piani di taglio

Parte V: Rafforzamento di formulazioni e algoritmo dei piani di taglio Parte V: Rafforamento di formulaioni e algoritmo dei piani di taglio Noioni di geometria Definiione: Un vettore y R n è combinaione conica dei vettori {,, k } se esistono k coefficienti reali λ,,λ k tali

Dettagli

Matematica Computazionale(6cfu) Ottimizzazione(8cfu) (a.a , lez.3)

Matematica Computazionale(6cfu) Ottimizzazione(8cfu) (a.a , lez.3) Docente: Marco Gaviano (e-mail:gaviano@unica.it) Corso di Laurea in Infomatica Corso di Laurea in Matematica Matematica Computazionale(6cfu) Ottimizzazione(8cfu) (a.a. 5-6 lez.) Matematica Computazionale

Dettagli

Esercitazione di Controll0 Digitale n 1

Esercitazione di Controll0 Digitale n 1 8 marzo 3 Eseritazione di Controll Digitale n a.a. /3 =. Si onsideri il segnale x( t) sin ( π t) + sin( 4π t) Si valuti la frequenza minima del ampionatore he permette la riostruibilità del segnale, e

Dettagli

Il calcolo letterale

Il calcolo letterale Il alolo letterale Monomi Si die ESPRESSIONE ALGEBRICA LETTERALE (o sempliemente espressione algebria) un espressione in ui ompaiono lettere he rappresentano numeri. Esempio: 5 b 4 + 5 1 OSS: QUANDO non

Dettagli

Le trasformazioni NON isometriche

Le trasformazioni NON isometriche Le trasformazioni NON isometrihe Sono trasformazioni non isometrihe quelle trasformazioni he non onservano le distanze fra i punti Fra queste rientrano le affinità L insieme delle affinità si può osì rappresentare

Dettagli

Fondamenti di Informatica Ingegneria Meccanica, Elettrica, Gestionale Prova scritta del 13 Aprile 2004

Fondamenti di Informatica Ingegneria Meccanica, Elettrica, Gestionale Prova scritta del 13 Aprile 2004 A Fonamenti i Informatia Ingegneria Meania, Elettria, Gestionale Prova sritta el 13 Aprile 200 NOME MATRICOLA Eserizio 1 Desrivere quale funzione i e n alola l algoritmo espresso al iagramma i flusso a

Dettagli

Linee di Trasmissione: Propagazione per onde

Linee di Trasmissione: Propagazione per onde inee di Trasmissione: Propagaione per onde v + () Rappresentaione shematia di una linea di trasmissione Definiione matematia dell onda di tensione he si propaga verso la resente: 0 v ( ) ( V e ) e j t

Dettagli

Lezione. Prof. Pier Paolo Rossi Università degli Studi di Catania

Lezione. Prof. Pier Paolo Rossi Università degli Studi di Catania Lezione TEIA DELLE STRUZII Prof. Pier Paolo Rossi Università degli Studi di atania 1 Flessione omposta 2 Verifia di sezioni soggette a flessione omposta 3 Flessione omposta 1 stadio (Formule di Sienza

Dettagli

Matematica Computazionale(6cfu) Ottimizzazione(8cfu) (a.a , lez.9)

Matematica Computazionale(6cfu) Ottimizzazione(8cfu) (a.a , lez.9) Docente: Marco Gaviano (e-mail:gaviano@unica.it) Corso di Laurea in Infomatica Corso di Laurea in Matematica Matematica Computazionale(6cfu) Ottimizzazione(8cfu) (a.a. 05-6, lez.9) Matematica Computazionale,

Dettagli

Gli integrali indefiniti

Gli integrali indefiniti Gli integrali indefiniti PREMESSA Il problema del alolo dell area del sotto-grafio di f() Un problema importante, anhe per le appliazioni in fisia, è quello del alolo dell area sotto a al grafio di una

Dettagli

RICERCA OPERATIVA (a.a. 2010/11) Nome: Cognome: Matricola:

RICERCA OPERATIVA (a.a. 2010/11) Nome: Cognome: Matricola: o Appello /7/ RICERCA OPERATIVA (a.a. /) Nome: Cognome: Matriola: ) Si individui un albero dei ammini minimi di radie sul grafo in figura 8 7 utilizzando l algoritmo più appropriato dal punto di vista

Dettagli

TRASFORMATA DI HILBERT

TRASFORMATA DI HILBERT TRASFORMATA DI ILBERT La Trasformata di ilbert è una partiolare rappresentazione he, ontrariamente ad altre trasformate (Fourier, Laplae, Z, ) non realizza un ambiamento del dominio di definizione. In

Dettagli

Algoritmo di best-fit (o fitting) sinusoidale a 3 parametri ( ) ( )

Algoritmo di best-fit (o fitting) sinusoidale a 3 parametri ( ) ( ) Algoritmo di best-it (o itting) sinusoidale a 3 parametri Supponiamo di disporre della versione digitalizzata di un segnale sinusoidale di ampiezza di pio A, requenza nota, ase assoluta ϕ e on omponente

Dettagli

Applicazione del principio di conservazione dell energia a sistemi aventi un gran numero di particelle.

Applicazione del principio di conservazione dell energia a sistemi aventi un gran numero di particelle. PRIMO PRINCIPIO DLLA RMODINAMICA In una trasformazione adiabatia: In una trasformazione isoora: L In una trasformazione generia: L (7) (Primo riniio della termodinamia) Aliazione del riniio di onservazione

Dettagli

Andrea Scozzari a.a Analisi di sensibilità

Andrea Scozzari a.a Analisi di sensibilità Andrea Sozzari a.a. 2012-2013 Analisi di sensibilità 1 Problema di Massimo in forma generale ma 130 100 1,5 0,3 0,5, 27 21 15 16 0 regione ammissibile 2 Problema di Massimo in forma generale ma 130 100

Dettagli

RICERCA OPERATIVA (a.a. 2015/16) Nome: Cognome: Matricola:

RICERCA OPERATIVA (a.a. 2015/16) Nome: Cognome: Matricola: o Appello //6 RICERCA OPERATIVA (a.a. /6) Nome: Cognome: Matriola: ) Si rappresenti il ono finitamente generato C = ono,, R ome ono poliedrio, giustifiando algebriamente le risposta fornita. Per derivare

Dettagli

Automatica. (Prof. Bascetta) Seconda prova scritta intermedia Anno accademico 2006/ Giugno 2007

Automatica. (Prof. Bascetta) Seconda prova scritta intermedia Anno accademico 2006/ Giugno 2007 Automatia (Prof. Basetta) Seonda prova sritta intermedia Anno aademio 2006/2007 27 Giugno 2007 Cognome:... Nome:... Matriola:... Firma:... Avvertenze: Il presente fasiolo si ompone di 6 pagine (ompresa

Dettagli

Moto vario elastico: fenomeno del colpo d ariete

Moto vario elastico: fenomeno del colpo d ariete Moto vario elastio: fenomeno del olpo d ariete 1. Desrizione del fenomeno Si onsideri un semplie impianto ostituito da un serbatoio di grande ampiezza in modo tale he in esso il livello di ario rimanga

Dettagli

Enrico Borghi QUANTIZZAZIONE DEL CAMPO DI KLEIN-GORDON

Enrico Borghi QUANTIZZAZIONE DEL CAMPO DI KLEIN-GORDON Enrio Borghi QUANTIZZAZIONE DEL CAMPO DI KLEIN-GORDON Rihiami a studi presenti in fisiarivisitata Leggendo la Quantizzazione del ampo di Klein-Gordon si inontrano rihiami ai seguenti studi: a) Introduzione

Dettagli

Verifica di una sezione circolare pressoinflessa

Verifica di una sezione circolare pressoinflessa Eserizi di Tenia delle Costruzioni I Verifihe allo SLU Verifia di una sezione irolare pressoinflessa Si effettua la verifia allo stato limite ultimo per tensioni normali di una sezione irolare. - Dati

Dettagli

Università di Roma Tor Vergata

Università di Roma Tor Vergata Università di Roma Tor Vergata Faoltà di Ingegneria Dipartimento di Ingegneria Industriale Corso di: TERMOTECNICA 1 DIMENSIONAMENTO DEGLI SCAMBIATORI DI CALORE Ing. G. Bovesehi gianluigi.bovesehi@gmail.om

Dettagli

Architettura degli Elaboratori - Corso A

Architettura degli Elaboratori - Corso A Arhitettura degli Elaboratori - Corso A Seonda Prova di Verifia Intermedia, a.a. 2004-05, 22 diembre 2004 Correzione Queste note, oltre he doumentare la soluzione della prova, hanno lo sopo di mostrare

Dettagli

16 L INTEGRALE INDEFINITO

16 L INTEGRALE INDEFINITO 9. Integrali immediati 6 L INTEGRALE INDEFINITO Riassumiamo le puntate preedenti: si die INTEGRALE INDEFINITO di una funzione f ( ), la famiglia di tutte e sole quelle funzioni la ui derivata è uguale

Dettagli

Fisica Prova d esempio per l esame (MIUR, dicembre 2018) Problema 2

Fisica Prova d esempio per l esame (MIUR, dicembre 2018) Problema 2 Fisia Prova d esempio per l esame (MIUR, diembre 018) Problema Due asteroidi, denominati α e β, sono stati individuati a distanze L 0α 4 ore lue (pari a 4,317 10 1 m) e L 0β 7,5 ore lue (pari a 8,094 10

Dettagli

0 1, x = A N = 0, ȳ = [ ], h = 5, B(h) = 2,

0 1, x = A N = 0, ȳ = [ ], h = 5, B(h) = 2, o Appello //8 RICERCA OPERATIVA (a.a. 7/8) Nome: Cognome: Matriola: ) Si risolva il problema di PL dato appliando l algoritmo del Simplesso Primale, per via algebria, a partire dalla base B = {, }. Per

Dettagli

Matematica Computazionale(6cfu) Ottimizzazione(8cfu) (a.a , lez.5)

Matematica Computazionale(6cfu) Ottimizzazione(8cfu) (a.a , lez.5) Docente: Marco Gaviano (e-mail:gaviano@unica.it) Corso di Laurea in Infomatica Corso di Laurea in Matematica Matematica Computazionale(6cfu) Ottimizzazione(8cfu) (a.a. 0- lez.5) Matematica Computazionale

Dettagli

ANGOLI ORIENTA ORIENT TI A

ANGOLI ORIENTA ORIENT TI A ANGOLI OIENTATI DEFINIZIONE CLASSICA DI ANGOLO L angolo è la porzione di piano ontenuta tra due semirette on la stessa origine. A - L origine omune O è detta vertie. a - Le due semirette OA a e OB b sono

Dettagli

PROVA SCRITTA DI CONTROLLO DIGITALE A.A. 2005/ giugno 2006 TESTO E SOLUZIONE

PROVA SCRITTA DI CONTROLLO DIGITALE A.A. 2005/ giugno 2006 TESTO E SOLUZIONE PROVA SCRITTA DI CONTROLLO DIGITALE A.A. 005/006 8 giugno 006 TESTO E SOLUZIONE Eserciio Domanda. Si consideri il sistema dinamico a tempo continuo descritto dalla funione di traferimento G(s) = 5 3 s

Dettagli

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2016/2017

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2016/2017 ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2016/2017 Eserizi svolti a lezione (diembre 2016) Valutazioni di operazioni finanziarie Eserizio 1. Un titolo on vita

Dettagli

G. Griva. 9529P - Macchine e Azionamenti Elettrici

G. Griva. 9529P - Macchine e Azionamenti Elettrici G. Griva 959 - Mahine e Azionamenti Elettrii rova di Esonero del 7 giugno 000. on proposta di soluzione 1 NTODUONE Questa proposta di soluzione è rivolta agli studenti he, avendo seguito il tutorato del

Dettagli

Analisi dei segnali campionati

Analisi dei segnali campionati Analisi dei segnali ampionati - 1 Analisi dei segnali ampionati 1 - Il teorema del ampionamento Campionamento ideale Il ampionamento (sampling) di un segnale analogio s( onsiste nel prenderne solo i valori

Dettagli

MATEMATICA CORSO A COMPITINO DI RECUPERO (Tema 2) 13 Febbraio 2014

MATEMATICA CORSO A COMPITINO DI RECUPERO (Tema 2) 13 Febbraio 2014 MATEMATICA CORSO A COMPITINO DI RECUPERO (Tema 2) 13 Febbraio 2014 Soluzioni 1. In un sahetto i sono 9 palline olorate: 2 rosse, 4 verdi e 3 gialle. Si fanno 3 estrazioni on rimessa. a) Calola la probabilità

Dettagli

Esercitazione su DOA (18 Giugno 2008)

Esercitazione su DOA (18 Giugno 2008) Eseritazione su DOA (8 Giugno 8) D. Donno Eserizio : DOA e periodogramma Si onsideri una shiera di N7 sensori (antenne omnidirezionali) on spaziatura su ui inide un onda elettromagnetia ( 3 8 m/s) monoromatia

Dettagli

1 Integrale multiplo di una funzione limitata su di un rettangolo

1 Integrale multiplo di una funzione limitata su di un rettangolo INTEGLE DELLE FUNZIONI DI PIÙ VIBILI INTEGLE MULTIPLO DI UN FUNZIONE LIMITT SU DI UN ETTNGOLO Integrale delle funzioni di più variabili Indie Integrale multiplo di una funzione limitata su di un rettangolo

Dettagli

viene detto il sostegno della curva. Se σè iniettiva, diciamo che la superficieè semplice. Le equazioni

viene detto il sostegno della curva. Se σè iniettiva, diciamo che la superficieè semplice. Le equazioni Fondamenti di Analisi Matematia 2 - a.a. 2010-11 (Canale 1) Corso di Laurea in Ingegneria Gestionale, Meania e Meatronia Valentina Casarino Appunti sulle superfii 1. Superfii regolari Riordiamo he si die

Dettagli

Proprietà globali delle funzioni continue

Proprietà globali delle funzioni continue Proprietà globali delle funzioni ontinue Tramite i limiti, abbiamo studiato il omportamento di una funzione nell intorno di un punto (proprietà loali). Ora i oupiamo di funzioni ontinue su tutto un intervallo,

Dettagli

Derivata di una funzione

Derivata di una funzione Derivata di una funzione Derivabilità e derivata in un punto Sia y = f x una funzione reale di variabile reale di dominio D(f), e sia D(f). Si die he la funzione è derivabile in se esiste ed è finito il

Dettagli

Enrico Borghi RELATIVIZZAZIONE DELL EQUAZIONE FONDAMENTALE DELLA MECCANICA NEWTONIANA PER UN CORPO CONTINUO

Enrico Borghi RELATIVIZZAZIONE DELL EQUAZIONE FONDAMENTALE DELLA MECCANICA NEWTONIANA PER UN CORPO CONTINUO Enrio Borghi RELATIVIZZAZIONE DELL EQUAZIONE FONDAMENTALE DELLA MECCANICA NEWTONIANA PER UN CORPO CONTINUO Ci proponiamo di relativizzare l equazione fondamentale della Meania newtoniana per un orpo ontinuo

Dettagli

Laboratorio di didattica Della matematica

Laboratorio di didattica Della matematica Didattia della matematia a.a. 004/00 Laboratorio di didattia Della matematia (La probabilita elementare ome strumento per un diverso approio ai numeri razionali) ANITA GARIBALDI Classe 9 Il onetto di frazione,

Dettagli

MOTORI PER AEROMOBILI

MOTORI PER AEROMOBILI MOORI PER AEROMOBILI Cap.2 CICLI DI URBINA A GAS PER LA PRODUZIONE DI POENZA (Shaft power yles) E opportuno suddividere i numerosi tipi di ili di turbina a gas in due ategorie: - ili di turbina a gas per

Dettagli

TEOREMA DEL CAMPIONAMENTO

TEOREMA DEL CAMPIONAMENTO 1 TEOREMA DEL CAMPIONAMENTO nota per il orso di Teleomuniazioni a ura di F. Benedetto G. Giunta 1. Introduzione Il proesso di ampionamento è di enorme importanza ai fini della realizzazione dei dispositivi

Dettagli

Problemi risolvibili con la programmazione dinamica

Problemi risolvibili con la programmazione dinamica Problemi riolvibili on la programmazione dinamia Abbiamo uato la programmazione dinamia per riolvere due problemi. Cerhiamo ora di apire quali problemi i poono riolvere on queta tenia. Sono dei problemi

Dettagli

RICERCA OPERATIVA (a.a. 2008/09) Nome: Cognome: Matricola:

RICERCA OPERATIVA (a.a. 2008/09) Nome: Cognome: Matricola: o Appello 09/02/200 RICERCA OPERATIVA (a.a. 2008/09) Nome: Cognome: Matriola: ) Si individui un albero dei ammini minimi di radie 5 sul grafo in figura, utilizzando l algoritmo più appropriato dal punto

Dettagli

Corso di Laurea in Ingegneria delle Telecomunicazioni ANALISI MATEMATICA 1. Prova scritta del 16 gennaio 2018 Fila 1.

Corso di Laurea in Ingegneria delle Telecomunicazioni ANALISI MATEMATICA 1. Prova scritta del 16 gennaio 2018 Fila 1. Corso di Laurea in Ingegneria delle Teleomuniazioni ANALISI MATEMATICA Prova sritta del 6 gennaio 8 Fila. Esporre il proedimento di risoluzione degli eserizi in maniera ompleta e leggibile.. (Punti 5)

Dettagli

Metodi Matematici per la Fisica

Metodi Matematici per la Fisica Metodi Mtemtii per l Fisi Prov sritt - 8 settemre Eseriio (4 punti) Si loli l integrle I = ln (x ) x + (x 3 + ) dx I poli del prte rionle sono d ui L integrle è quindi ugule x k = e i(+k)/3, k =,,, x 3

Dettagli

LIMITI- INTRODUZIONE

LIMITI- INTRODUZIONE LIMITI- INTRODUZIONE Consideriamo un impresa he produa un bene di largo onsumo e he abbia investito una somma resente nel tempo in pubbliità del proprio prodotto. I dati passati mostrano he l operazione

Dettagli

Enrico Borghi QUANTIZZAZIONE DEL CAMPO SCALARE HERMITIANO

Enrico Borghi QUANTIZZAZIONE DEL CAMPO SCALARE HERMITIANO Enrio Borghi QUANTIZZAZIONE DEL CAMPO SCALARE HERMITIANO Rihiami a studi presenti in fisiarivisitata Leggendo la Quantizzazione del ampo salare hermitiano si inontrano rihiami ai seguenti studi: a Introduzione

Dettagli

Scuola Sec. Secondo grado Squadre - Gara 1-14/15 ESERCIZIO 1

Scuola Sec. Secondo grado Squadre - Gara 1-14/15 ESERCIZIO 1 Suola Se. Seondo rado Squadre - Gara 1-1/15 Per risolvere dei prolemi semplii spesso esistono delle reole he, dai dati del prolema, permettono di alolare o dedurre la soluzione. Questa situazione si può

Dettagli

5.4.5 Struttura dell algoritmo ed esempi

5.4.5 Struttura dell algoritmo ed esempi CAPITOLO 5. IL METODO DEL SIMPLESSO 6 5.4.5 Struttura dell algoritmo ed esempi Come abbiamo già ampiamente osservato, la fase II del metodo del simplesso, a partire da una soluzione di base ammissibile,

Dettagli

1 Cambiamenti di coordinate nello spazio

1 Cambiamenti di coordinate nello spazio Camiamenti di oordinate nello spaio Sia fissato nello spaio un sistema di oordinate ortogonali monometrihe O. Vogliamo srivere le formule he legano le oordinate nel sistema O alle oordinate in un altro

Dettagli

Università degli studi di Cagliari. Corso di aggiornamento. Unità 4 PIASTRE IN C.A. E INSTABILITÀ. - Analisi Limite: Metodo delle Linee di rottura

Università degli studi di Cagliari. Corso di aggiornamento. Unità 4 PIASTRE IN C.A. E INSTABILITÀ. - Analisi Limite: Metodo delle Linee di rottura Università degli studi di Cagliari Dipartimento di Ingegneria Strutturale Corso di aggiornamento Unità 4 PIASTRE IN C.A. E INSTABILITÀ RELATORE: Ing. Igino MURA imura@unia.it -6 Giugno 00 - Analisi Limite:

Dettagli

FUNZIONI CONTINUE. funzioni di una variabile: def : Una funzione f(x) definita in un insieme D R si dice continua in un punto c D se risulta.

FUNZIONI CONTINUE. funzioni di una variabile: def : Una funzione f(x) definita in un insieme D R si dice continua in un punto c D se risulta. FUNZIONI CONTINUE funzioni di una variabile: def : Una funzione f(x) definita in un insieme D R si die ontinua in un punto D se risulta Analizza bene la definizione: lim x f ( x) = f ( ) Il punto deve

Dettagli

LA TRASFORMATA DI LAPLACE

LA TRASFORMATA DI LAPLACE LA TRASFORMATA DI LAPLACE I sistemi dinamii invarianti e lineari (e tali sono le reti elettrihe) possono essere studiati, nel dominio del tempo, attraverso le equazioni differenziali nelle quali l'inognita

Dettagli

TEORIA SUI LIMITI DEFINIZIONE DI LIMITE FINITO DI UNA FUNZIONE PER X CHE TENDE AD UN VALORE FINITO

TEORIA SUI LIMITI DEFINIZIONE DI LIMITE FINITO DI UNA FUNZIONE PER X CHE TENDE AD UN VALORE FINITO TEORIA SUI LIMITI DEFINIZIONE DI LIMITE FINITO DI UNA FUNZIONE PER X CHE TENDE AD UN VALORE FINITO Si die he, per he tende a, la funzione y=f() ha per ite l e si srive: l = l I( ) ESEMPIO DI VERIFICA DI

Dettagli

Circuiti a Microonde: Introduzione

Circuiti a Microonde: Introduzione Ciruiti a Miroonde: Introduzione Un iruito a miroonde è un interonnessione di elementi le ui dimensioni fisihe possono essere omparabili on la lunghezza d onda orrispondente alle frequenze operative Tipologie

Dettagli

ANALISI NUMERICA Prof.ssa Beatrice Paternoster studio 25 (Plesso di Fisciano) tel:

ANALISI NUMERICA Prof.ssa Beatrice Paternoster studio 25 (Plesso di Fisciano) tel: ANALISI NUMERICA Prof.ssa Beatrie Paternoster studio 5 (Plesso di Fisiano) tel: 089 9633 e-mail: paternoster@unisa.it Liro di testo: J.F.Epperson Introduzione all analisi numeria: teoria, metodi algoritmi

Dettagli

4. Teoria e Normativa

4. Teoria e Normativa 4. Teoria e Normatia Questa sezione del Manuale Utente ontiene la desrizione delle metodologie di alolo utilizzate nel programma. 4.1) Verifihe in ondizione di moto uniforme. La portata he defluise per

Dettagli

Le omotetie. Nel caso in cui il centro di omotetia O corrisponda con l'origine degli assi, le equazioni dell'omotetia sono. le equazioni sono ωch

Le omotetie. Nel caso in cui il centro di omotetia O corrisponda con l'origine degli assi, le equazioni dell'omotetia sono. le equazioni sono ωch O Le omotetie Dato un numero reale non nullo h e un punto P del piano l omotetia di rapporto h e entro O è quella trasformazione he assoia a P il punto P' tale he P P OP' = h OP. Se è P(xy) allora P'(hx

Dettagli

PRIMITIVA DI UNA FUNZIONE. INTEGRALE INDEFINITO. INTEGRALI IMMEDIATI O RICONDUCIBILI AD IMMEDIATI. METODI DI INTEGRAZIONE.

PRIMITIVA DI UNA FUNZIONE. INTEGRALE INDEFINITO. INTEGRALI IMMEDIATI O RICONDUCIBILI AD IMMEDIATI. METODI DI INTEGRAZIONE. PRIMITIVA DI UNA FUNZIONE. INTEGRALE INDEFINITO. INTEGRALI IMMEDIATI O RICONDUCIBILI AD IMMEDIATI. METODI DI INTEGRAZIONE. DEF. Una funzione F() si die primitiva di una funzione y f() definita nell intervallo

Dettagli

Note sulla correttezza di RSA e sulla complessità degli attacchi

Note sulla correttezza di RSA e sulla complessità degli attacchi Note sulla orrettezza di RSA e sulla omplessità degli attahi P. Bonatti 21 novembre 2016 1 Rihiami elementari di algebra Elevamento a potenza di binomi Riordiamo la definizione di oeffiiente binomiale:

Dettagli

Lagrangiana del campo elettromagnetico. Il campo elettromagnetico nel vuoto è descritto dalle equazioni di Maxwell (in unità MKSA)

Lagrangiana del campo elettromagnetico. Il campo elettromagnetico nel vuoto è descritto dalle equazioni di Maxwell (in unità MKSA) Lagrangiana del ampo elettromagnetio Il ampo elettromagnetio nel vuoto è desritto dalle equazioni di Maxwell (in unità MKSA) B = 0 () E = B (2) E = ϱ (3) ɛ 0 B = µ 0 j + µ 0 ɛ 0 E L equazione di ontinuità

Dettagli

x 1 x 2 x 3 x 5 La base iniziale è B 0 = I e risulta x B 0 = , x N 0 = Iterazione 0. Calcolo dei costi ridotti. γ 0 = c N 0 (N 0 ) T c B 0 =

x 1 x 2 x 3 x 5 La base iniziale è B 0 = I e risulta x B 0 = , x N 0 = Iterazione 0. Calcolo dei costi ridotti. γ 0 = c N 0 (N 0 ) T c B 0 = 56 IL METODO DEL SIMPLESSO 7.4 IL METODO DEL SIMPLESSO In questo paragrafo sono riportati alcuni esercizi risolti sul metodo del simplesso. Alcuni sono risolti utilizzando la procedura di pivot per determinare,

Dettagli

4.3 Esempio metodo del simplesso

4.3 Esempio metodo del simplesso 4.3 Esempio metodo del simplesso (P ) min -5x 4x 2 3x 3 s.v. 2x + 3x 2 + x 3 5 4x + x 2 + 2x 3 3x + 4x 2 + 2x 3 8 x, x 2, x 3 Per mettere il problema in forma standard si introducono le variabili di scarto

Dettagli

GEOMETRIA ANALITICA 8 LE CONICHE

GEOMETRIA ANALITICA 8 LE CONICHE GEOMETRIA ANALITICA 8 LE CONICHE Tra tutte le urve, ne esistono quattro partiolari he vengono hiamate onihe perhé sono ottenute tramite l intersezione di una superfiie i-onia on un piano. A seonda della

Dettagli

IL TORNANTE RETTIFILO CONTROCURVA RETTIFILO

IL TORNANTE RETTIFILO CONTROCURVA RETTIFILO IL TORNANTE il tornante è quella partiolare urva, esterna ai rettifili, he onsente un inversione della direzione dell asse, onsentendo di prendere quota all interno di una fasia di terreno relativamente

Dettagli

8-9 Analisi di reti normali

8-9 Analisi di reti normali Lati della rete ipoli normali lettrotenia 8-9 Analisi di reti normali Per iasuno degli l ipoli (lati) GT GC ell analisi sono da determinare l tensioni l orrenti l inognite G Sistema di equazioni di rete

Dettagli

Algoritmi: retrospettiva

Algoritmi: retrospettiva Algoritmi: retrospettiva Algoritmo (termine derivante dal nome di un matematio usbeo del IX seolo d.c.) = proedimento di alolo, sequenza di azioni he devono essere eseguite per giungere alla risoluzione

Dettagli

Ingegneria dei Sistemi Elettrici_3d

Ingegneria dei Sistemi Elettrici_3d Ingegneria dei Sistemi Elettrici_3d Soluioni di problemi elettrostatici I problemi elettrostatici riguardano lo studio degli effetti delle cariche elettriche fisse. I principi dei campi elettrostatici

Dettagli

CAMPIONAMENTO E RICOSTRUZIONE DI SEGNALI. 1 Fondamenti Segnali e Trasmissione

CAMPIONAMENTO E RICOSTRUZIONE DI SEGNALI. 1 Fondamenti Segnali e Trasmissione CAMPIONAMENTO E RICOSTRUZIONE DI SEGNALI Fondamenti Segnali e Trasmissione Numerizzazione dei segnali Nei moderni sistemi di memorizzazione e trasmissione i segnali in ingresso sono di tipo numerio, normalmente

Dettagli

Sistemi di misura digitali Segnali campionati - 1. Segnali campionati

Sistemi di misura digitali Segnali campionati - 1. Segnali campionati Sistemi di misura digitali Segnali ampionati - 1 Segnali ampionati 1 - Il teorema del ampionamento Campionamento ideale Il ampionamento (sampling di un segnale analogio onsiste nel prenderne solo i valori

Dettagli