Informatica A a.a. 15/16 2 a Prova in Itinere 08/02/16

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Informatica A a.a. 15/16 2 a Prova in Itinere 08/02/16"

Transcript

1 Politecico di Milao Dipartimeto di Elettroica, Iformazioe e Bioigegeria prof. Gerardo Peloi C.d.L. i Igegeria Getioale Iformatica A a.a. 15/16 2 a Prova i Itiere 08/02/16 Cogome Matricola Nome Firma Itruzioi No eparate queti fogli. Scrivete la oluzioe olo ui fogli ditriuiti, utilizzado il retro delle pagie i cao di eceità. Cacellate le parti di rutta (o ripudiate) co u tratto di pea. Ogi parte o cacellata a pea arà coiderata parte itegrate della oluzioe. È poiile crivere a matita (e o occorre ricalcare al mometo della coega!). È vietato utilizzare calcolatrici e qualuque dipoitivo elettroico. Chi teti di farlo vedrà aullata la ua prova. È ammea la coultazioe di liri e apputi, purché co pacata dicrezioe e eza diturare. Qualiai tetativo di comuicare co altri tudeti comporta l epulioe dall aula. No è poiile laciare l aula coervado il tema della prova i coro. È poiile ritirari eza pealità. Tempo a dipoizioe: 2h 15m Valore idicativo degli eercizi, voti parziali e voto fiale: Eercizio 1 ( 3,5 puti ) Eercizio 2 ( 7,5+x puti ) Eercizio 4 ( 4 puti ) Totale: ( 15+x puti ) Voto fiale:

2 Eercizio 1 Aalii di Codice ( 3,5 puti ) #iclude <tdio.h> #iclude <tdli.h> #iclude <trig.h> char* f( char* x, char** p ) { it = trle(x); char *; = malloc((+3)*izeof(char)); [0] = 'e'; [1] = '\0'; *p = malloc((+1)*izeof(char)); (*p)[] = '\0'; g(x,, *p); = trle(); [] = 'o'; [+1] = '\0'; retur ; void g( char*, char*, char* p) { it = trle(); if ( == 0 ) retur ; p[-1] = *; g( ++,, p ); = trle(); [] = *(-1); [+1] = '\0'; it mai() { char word[] = "reu", *p = NULL; char *r = f( word, &p ); pritf("\ %, %", r, p); (a) Si diegio lo tack dei record di attivazioe e la memoria allocata dal programma ello heap ell itate precedete al mometo i cui la fuzioe g() eegue per la prima volta l itruzioe retur idicata dalla freccia. Si rappreetio tutte le variaili adottado le olite covezioi (vettori: locchi cotigui; putatori: frecce; valori idefiiti: puti iterrogativi). [2,5 puti] free(r); free(p); retur 0; word[5] 0 word[5] 1 word[4] 2 word[3] 3 word[2] 4 word[1] 5 f(...) p e \0?????? x 5 mai() r? p u e r \0 0xCA... r e u \0 word Se i cotiua ul retro di qualche foglio, idicare quale Iformatica A a.a. 15/16 2a Prova i Itiere 08/02/1 Eercizio foglio 2 di 6

3 () Si motri la liea tampata dal programma ullo tadard output [0,5 puti], e i commeti revemete che coa computa la fuzioe void g( char*, char*, char* p); [0,5 puti] ullo tdadard output viee viualizzato: euero uer la fuzioe iverte la triga [] paata come primo parametro e memorizza due copie della triga ivera egli array diamici [] e p[]. La triga ivera i [] è calcolata co procedimeto ricorivo i alita ripetto alla cotruzioe dei record di attivazioe, metre la triga ivera i p[] è calcolata co procedimeto ricorivo i dicea ripetto alla cotruzioe dei record di attivazioe. Se i cotiua ul retro di qualche foglio, idicare quale Iformatica A a.a. 15/16 2a Prova i Itiere 08/02/1 Eercizio foglio 3 di 6

4 Eercizio 2 Sitei di Codice ( 7,5 + x puti, co 0 x 2,5 ) Ua galleria d arte opita motre tematiche dove vegoo mee i epoizioe le opere di diveri autori, alletedo le varie ale della galleria. Si coideri u itema iformativo emplificato per la getioe delle motre co delle trutture dati defiite come egue. #defie STRLEN (40+1) #defie NUMERO_SALE typedef truct ala { char omesala[strlen]; uiged piao; float mq; ala_t; ala_t taze[numero_sale]; typedef truct dettaglio { char titoloopera[strlen], tecica[strlen]; uiged aorealizzazioe; float quotazioeieuro; dettaglio_t; typedef truct opera { dettaglio_t d; ala_t* po; truct opera* ext; opera_t; typedef truct epoizioe { char omecogomeautore[strlen]; opera_t* portfolio; truct epoizioe* ext; epoizioe_t; typedef epoizioe_t* motra; Ua motra è rappreetata da ua lita diamica emplicemete cocateata (di tipo motra), i cui ogi odo cotiee le iformazioi relative alle opere di u igolo autore. Le opere di u igolo autore oo a loro volta orgaizzate i ua otto-lita diamica emplicemete cocateata i cui ciacu odo cotiee iformazioi circa i dettagli dell opera e il uo poizioameto i ua delle ale della galleria d arte. Ua variaile gloale (taze), memorizza le iformazioi circa il piao e la capieza di ogi ala della galleria d arte. (Nota: l array gloale taze memorizza le iformazioi di ciacua ala ua volta oltato; il ome di ua ala è auto eere uivoco all itero della galleria) (a) Si codifichi i C u otto-programma...guidaperautore(...) che memorizza i u file di teto l eleco dei titoli (i eu ordie particolare) di tutte le opere dell autore il cui ome è paato come parametro, riportado per ciacua opera ache il piao e il ome della ala i cui è epota. Il ome del file di teto creato dal ottoprogramma e l idirizzo del primo odo della lita diamica che rappreeta ua motra oo ach ei paati come parametri. [ 4 puti ] void guidaperautore(char autore[], char omefile[], motra L) { FILE* fp = fope(omefile, "w"); if ( fp == NULL ) { fpritf(tderr, "\ Errore: fope o riucita! \"); retur; while ( L!= NULL && trcmp(autore, L->omeCogomeAutore)!= 0 ) L = L->ext; if ( L!= NULL ) { opera_t* ptr = L->portfolio; while ( ptr!= NULL ) { fpritf(fp, "Titolo: %, Piao: %u, Nome Sala: %", ptr->d.titoloopera, ptr->po->piao, ptr->po->omesala); ptr = ptr->ext; fcloe(fp); Se i cotiua ul retro di qualche foglio, idicare quale Iformatica A a.a. 15/16 2a Prova i Itiere 08/02/1 Eercizio foglio 4 di 6

5 () Si codifichi i C u otto-programma...alaautore(...) che prededo i iput la lita diamica del porfolio di u autore, cotrolli e tutte le ue opere oo epote ella tea ala e i cao affermativo retituica il valore compleivo del portfolio e il ome della ala. Se le opere dell autore paato come parametro oo epote i più di ua ala, il otto-programma retituice -1.0 come valore del portfolio, e la triga vuota come ome della ala. [ 3,5 puti ] float alaautore( opera_t* P, char omesalaretituito[] ) { float quot = -1.0; char tmpnome[strlen] = {'\0'; if ( P == NULL P->po == NULL ) { trcpy(omesalaretituito, tmpnome); retur quot; trcpy(tmpnome, ptr->po->omesala); quot = P->d.quotazioeIEuro; P = P->ext; while ( P!= NULL && P->po!= NULL && trcmp(tmpnome, ptr->po->omesala) == 0 ) { quot += P->d.quotazioeIEuro; P = P->ext; if ( P!= NULL ) { trcpy(tmpnome, (char*)""); quot = -1.0; trcpy(omesalaretituito, tmpnome); retur quot; (c) Si codifichi i C u ottoprogramma...valorestaze(...) che prededo i iput la lita diamica di ua motra, retituica u vettore diamico che idichi, per ogi ala della galleria d arte, la omma delle quotazioi delle opere i ea coteute. La equeza delle quotazioi el vettore diamico è auta eere ello teo ordie i cui compaioo le ale ella variaile gloale taze. [ x puti ] float* valorestaze(motra L) { float* cout = NULL; if ( L!= NULL ) { cout = (float*) calloc(numero_sale, izeof(float)); opera_t* opptr = NULL; while ( L!= NULL ) { for ( opptr = L->portfolio; opptr!= NULL; opptr = opptr->ext ) for (it i = 0; i < NUMERO_SALE; ++i) if ( trcmp(opptr->po->omesala, taze[i].omesala) == 0 ) cout[i] += opptr->d.quotazioeieuro; L = L->ext; retur cout; Se i cotiua ul retro di qualche foglio, idicare quale Iformatica A a.a. 15/16 2a Prova i Itiere 08/02/1 Eercizio foglio 5 di 6

6 Eercizio 3 Bai di Dati - ( 4 puti ) La eguete ae di dati è relativa a u fetival auale dedicato alla cazoe italiaa. Si aume per emplicità che i titoli delle cazoi e i omi delle peroe iao uivoci ella toria della maifetazioe. Si oti che le cazoi pooo avere più di u iterprete e più di u autore. ARTISTA ( Nome, DataNacita, CittàNacita ) CANZONE ( Titolo, Ao, DirettoreOrchetra, PoizioeClaificaFiale ) AUTORE ( TitoloC, NomeAutore ) CANTANTE ( TitoloC, NomeIterprete ) (a) Etrarre i SQL gli artiti che hao vito al fetival i qualità di iterpreti e poi, i u edizioe ucceiva, i qualità di autori. SELECT DISTINCT CA. NomeIterprete FROM CANTANTE AS CA JOIN CANZONE AS CZ ON CA.TitoloC = CZ.Titolo WHERE CZ.PoizioeClaificaFiale = 1 AND CA.NomeIterprete IN ( SELECT A.NomeAutore FROM AUTORE AS A JOIN CANZONE AS CZ1 ON A.TitoloC = CZ1.Titolo WHERE CZ1.PoizioeClaificaFiale = 1 AND CZ1.Ao > CZ.Ao ) () Etrarre i SQL l autore che ha critto ll maggior umero di cazoi vicitrici. SELECT A.NomeAutore FROM AUTORE AS A JOIN CANZONE AS CZ ON A.TitoloC = CZ.Titolo WHERE CZ.PoizioeClaificaFiale = 1 GROUP BY A.NomeAutore HAVING cout(*) >= all ( SELECT cout(*) FROM AUTORE AS A1 JOIN CANZONE AS CZ1 ON A1.TitoloC = CZ1.Titolo WHERE CZ1.PoizioeClaificaFiale = 1 GROUP BY A1.NomeAutore ) Se i cotiua ul retro di qualche foglio, idicare quale Iformatica A a.a. 15/16 2a Prova i Itiere 08/02/1 Eercizio foglio 6 di 6

SERVIZIO NAZIONALE DI VALUTAZIONE

SERVIZIO NAZIONALE DI VALUTAZIONE SERVIZIO NAZIONALE DI VALUTAZIONE 0 2010 11 Le rilevazioi degli appredimeti A.S. 2010 11 La rilevazioe degli appredimeti elle clai II e V primaria, elle clai I e III (Prova azioale) della uola ecodaria

Dettagli

Controlli Automatici A

Controlli Automatici A Cotrolli Automatici A (Prof. Rocco) Ao accademico 03/04 Appello del Febbraio 04 Cogome:... Nome:... Matricola:... Firma:... Avverteze: Il preete facicolo i compoe di 8 pagie (comprea la copertia). Tutte

Dettagli

Lab 7 Passaggio per riferimento

Lab 7 Passaggio per riferimento Fodameti di Iformatica e Laboratorio T-AB Igegeria Elettroica e Telecomuicazioi Lab 7 Passaggio per riferimeto Lab7 1 Esercizio 1 I umeri complessi Data la otazioe cartesiaa di u umero complesso (i parte

Dettagli

Università degli Studi di Napoli Parthenope. Facoltà di Scienze Motorie a.a. 2011/2012. Statistica. Lezione V

Università degli Studi di Napoli Parthenope. Facoltà di Scienze Motorie a.a. 2011/2012. Statistica. Lezione V Uiverità degli Studi di Napoli Partheope Facoltà di Scieze Motorie a.a. 0/0 Statitica Lezioe V E-mail: paolo.mazzocchi@uipartheope.it Webite: www.tatmat.uipartheope.it DISTRIBUZIONE DOPPIA di frequeze

Dettagli

SVOLGIMENTO. a) 1) Ipotesi nulla ) Ipotesi alternativa 2. 3) Statistica test. Statistica test ( n 1 ) s. 4) Regola di decisione. α=

SVOLGIMENTO. a) 1) Ipotesi nulla ) Ipotesi alternativa 2. 3) Statistica test. Statistica test ( n 1 ) s. 4) Regola di decisione. α= ESERCIZIO 7. U uovo modello di termotato per frigorifero dovrebbe aicurare, tado alle pecifiche teciche, ua miore variabilità ella temperatura del frigo ripetto ai modelli della cocorreza. I particolare

Dettagli

Informatica 3. Informatica 3. LEZIONE 18: Ordinamento. Lezione 18 - Modulo 1. Introduzione. Analisi algoritmi di ordinamento.

Informatica 3. Informatica 3. LEZIONE 18: Ordinamento. Lezione 18 - Modulo 1. Introduzione. Analisi algoritmi di ordinamento. Iformatica 3 Iformatica 3 LEZIONE 18: Ordiameto Lezioe 18 - Modulo 1 Modulo 1: Algoritmi di base Modulo 2: Shellshort Modulo 3: Quicksort Algoritmi di base Politecico di Milao - Prof. Sara Comai 1 Politecico

Dettagli

Risposte nel tempo di sistemi LTI del 1 e 2 ordine

Risposte nel tempo di sistemi LTI del 1 e 2 ordine Ripote el tempo di itemi LTI del e ordie Fodameti di Automatica Prof. Silvia Strada Coro di Studi i Igegeria Getioale (Cogomi H PO) Sitemi del ordie E molto comue crivere G () a b µ + a + τ b τ K τ G ()

Dettagli

Problem solving elementare su dati scalari. Esercizi risolti

Problem solving elementare su dati scalari. Esercizi risolti 1 Esercizio: Fattoriale Esercizi risolti Si realizzi u programma che, letto u umero, stampi il valore del fattoriale per tutti i umeri da 0 a. Si ricordi che 0!=1. void mai (void) it i,, fatt; pritf ("Valore

Dettagli

Attivazione di funzione e record di attivazione

Attivazione di funzione e record di attivazione corsi di laurea i Igegeria Chiica,Elettroica,Telecouicazioi,Iforatica Fodaeti di Iforatica: copleeto didattico su Attivazioe di fuzioe e record di attivazioe Dispesa a putate: questa è la pria putata.

Dettagli

Trattamento e codifica di dati multimediali Esercizi svolti. Luca Chiodini

Trattamento e codifica di dati multimediali Esercizi svolti. Luca Chiodini Trattameto e codiica di dati multimediali Eercizi volti Luca Chiodii A.A. 207/208 Eercizio Dato il egale già campioato ( ) π x() = 6.4 co 0. Si determii la requeza ormalizzata di tale egale e i rappreeti

Dettagli

(per popolazioni finite)

(per popolazioni finite) Se o è oto I geere lo carto quadratico medio della popolazioe, al pari della media μ, o è oto. Pertato, per otteere u itervallo di cofideza per la media della popolazioe, occorre utilizzare la deviazioe

Dettagli

Analisi Parametrica della Stabilità

Analisi Parametrica della Stabilità Prof. Crlo Coetio Fodmeti di Automtic A.A. 6/7 Coro di Fodmeti di Automtic A.A. 6/7 Alii Prmetric dell Stbilità Prof. Crlo Coetio Diprtimeto di Medici Sperimetle e Cliic Uiverità degli Studi Mg Greci di

Dettagli

Verifica delle ipotesi

Verifica delle ipotesi Verifica delle ipotei U'ipotei tatitica è u'affermazioe o ua cogettura riguardate u parametro q che caratterizza il modello decrittivo della popolazioe, f(x;q), co qq, dove Q è lo pazio parametrico. olitamete,

Dettagli

Appunti complementari per il Corso di Statistica

Appunti complementari per il Corso di Statistica Apputi complemetari per il Corso di Statistica Corsi di Laurea i Igegeria Edile e Tessile Ilia Negri 24 settembre 2002 1 Schemi di campioameto Co il termie campioameto si itede l operazioe di estrazioe

Dettagli

Ingegneria Elettronica, Informatica e delle Telecomunicazioni Prova scritta di ANALISI B - 23/06/2006

Ingegneria Elettronica, Informatica e delle Telecomunicazioni Prova scritta di ANALISI B - 23/06/2006 Igegeria Elettroica, Iformatica e delle Telecomuicazioi Prova scritta di ANALISI B - 23/06/2006 CORSO DI STUDI IN INGEGNERIA... NOME E COGNOME:... NUMERO DI MATRICOLA:... (scrivere ome e cogome ache su

Dettagli

ANALISI MATEMATICA 1 Commissione L. Caravenna, V. Casarino, S. Zoccante Ingegneria Gestionale, Meccanica e Meccatronica, Vicenza

ANALISI MATEMATICA 1 Commissione L. Caravenna, V. Casarino, S. Zoccante Ingegneria Gestionale, Meccanica e Meccatronica, Vicenza ANALISI MATEMATICA Commissioe L. Caravea, V. Casario, S. occate Igegeria Gestioale, Meccaica e Meccatroica, Viceza Nome, Cogome, umero di matricola: Viceza, 6 Settembre 25 TEMA - parte B Esercizio ( puti).

Dettagli

BREVE PREMESSA FEDERAZIONE ITALIANA GIOCO BRIDGE QUADRO N 133

BREVE PREMESSA FEDERAZIONE ITALIANA GIOCO BRIDGE QUADRO N 133 BREVE PREMEA FEDERAZIOE ITALIAA GIOCO BRIDGE QUADRO 133 ECODO LA CIRCOTAZA ELLA QUALE È UATO, U EGALE PUÒ PORTARE UO DEI TRE EGUETI MEAGGI: 1. IL EGALE DI GRADIMETO (COME-O IGAL) 2. IL EGALE DI DARE IL

Dettagli

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione. Appello del TEMA 1. {e x 1. x 2 f(x) = 0 per x = 2.

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione. Appello del TEMA 1. {e x 1. x 2 f(x) = 0 per x = 2. ANALISI MATEMATICA 1 Area dell Igegeria dell Iformazioe Appello del 16.0.018 TEMA 1 Esercizio 1 [7 puti] Si cosideri la fuzioe {e x 1 x per x f(x = 0 per x =. i Determiare il domiio D di f, le sue evetuali

Dettagli

Teoria dei quadripoli

Teoria dei quadripoli 7 Teoria dei quadripoli Eercitazioi aggiutive Eercizio 7. Si determii l iduttaza dei due iduttori mutuamete accoppiati collegati i erie chematizzati i figura: I V C Si uppoga che il itema lieare e tempo-ivariate

Dettagli

SOLETTA PIENA. o 5. o = distanza tra due punti. di momento nullo. 5 ( o =70% luce effettiva per travi continue) Fig. 7.6

SOLETTA PIENA. o 5. o = distanza tra due punti. di momento nullo. 5 ( o =70% luce effettiva per travi continue) Fig. 7.6 73 Sezioe a T a emplice armatura Le travi i ca co ezioe a T o a L, co oletta i compreioe, oo origiate alla collaorazioe tra la trave rettagolare e ua parte ella oletta egli impalcati egli eiici (Fig 76)

Dettagli

Sintesi. Le funzioni in C++ Motivazioni. Programmazione delle funzioni. Esempio (1.1) Esempio (1)

Sintesi. Le funzioni in C++ Motivazioni. Programmazione delle funzioni. Esempio (1.1) Esempio (1) Sitesi Le fuioi i C++ Fodameti di Iformatica 1 R. Basili 2 ciclo a.a. 2000-2001 Motivaioi Uso delle fuioi U esempio Dichiaraioe e Defiiioe Uso dei parametri Passaggio per valore Passaggio per riferimeto

Dettagli

Esercitazione 5 del corso di Statistica (parte 2)

Esercitazione 5 del corso di Statistica (parte 2) Eercitazioe 5 del coro di Statitica (parte ) Dott.a Paola Cotatii 5 Maggio Eercizio Per verificare l efficacia di u coro di tatitica vegoo cofrotati i redimeti medi di due campioi di tudeti di ampiezza

Dettagli

Verifiche alle Tensioni Ammissibili. Verifica a presso-flessione di una Trave in C.A.

Verifiche alle Tensioni Ammissibili. Verifica a presso-flessione di una Trave in C.A. Coro di Teia delle Cotruzioi Eerizi Bozza del 1/11/005 Verifihe alle Teioi Ammiibili Verifia a preo-fleioe di ua Trave i C.A. a ura di Ezo Martielli 1 Ao aademio 004/05 Coro di Teia delle Cotruzioi Eerizi

Dettagli

Ogni parte non cancellata a penna sarà considerata parte integrante della soluzione.

Ogni parte non cancellata a penna sarà considerata parte integrante della soluzione. Politecnico di Milano Facoltà di Ingegneria Industriale INFORMATICA B Prova in itinere del 13 Novembre 2012 COGNOME E NOME RIGA COLONNA MATRICOLA Spazio riservato ai docenti Il presente plico contiene

Dettagli

UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II FACOLTÀ DI INGEGNERIA LAFIDIN

UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II FACOLTÀ DI INGEGNERIA LAFIDIN UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II FACOLTÀ DI INGEGNERIA LAFIDIN LABORATORIO/FISICO/DIDATTICO/INGEGNERIA VIA CLAUDIO, 1 8015 NAPOLI WWW.LAFIDIN.UNINA.IT - TEL. 081/7683603- FAX 081/768360 Corso

Dettagli

Ogni parte non cancellata a penna sarà considerata parte integrante della soluzione.

Ogni parte non cancellata a penna sarà considerata parte integrante della soluzione. Politecnico di Milano Facoltà di Ingegneria Industriale INFORMATICA B Prova in itinere del 13 Novembre 2012 COGNOME E NOME RIGA COLONNA MATRICOLA Spazio riservato ai docenti Il presente plico contiene

Dettagli

Analisi e Geometria 1

Analisi e Geometria 1 Aalisi e Geometria Politecico di Milao Igegeria Preparazioe al primo compito i itiere. Risolvere el campo complesso l equazioe z z = 4z.. Sia f la fuzioe a valori complessi defiita da f(z = per ogi z D,

Dettagli

Informatica A. Istruzioni

Informatica A. Istruzioni Informatica A Cognome Nome Matricola o Codice studente Istruzioni Non separate questi fogli. Scrivete la soluzione solo sui fogli distribuiti, utilizzando il retro delle pagine in caso di necessità. Cancellate

Dettagli

Programmazione dinamica vs. divide-et-impera

Programmazione dinamica vs. divide-et-impera Programmazioe diamica vs. divide-et-impera Aalogia Soo etrambi paradigmi di sitesi di algoritmi che risolvoo problemi combiado le soluzioi di sottoproblemi Differeza Secodo divide-et-impera si suddivide

Dettagli

Politecnico di Milano Facoltà di Ingegneria Industriale INFORMATICA B Appello del 1 settembre 2010 COGNOME E NOME RIGA COLONNA MATRICOLA

Politecnico di Milano Facoltà di Ingegneria Industriale INFORMATICA B Appello del 1 settembre 2010 COGNOME E NOME RIGA COLONNA MATRICOLA Politecnico di Milano Facoltà di Ingegneria Industriale INFORMATICA B Appello del 1 settembre 2010 COGNOME E NOME RIGA COLONNA MATRICOLA Spazio riservato ai docenti Il presente plico contiene 4 esercizi,

Dettagli

Domande di Reti Logiche compito del 17/02/2016

Domande di Reti Logiche compito del 17/02/2016 Barrare ua sola risposta per ogi domada Il puteggio fiale è -1 (. di risposte errate +. domade lasciate i biaco) Usare lo spazio biaco sul retro del foglio per apputi, se serve Per far sì che u Latch SR

Dettagli

Statistica per la ricerca

Statistica per la ricerca CDL i IGIENE DENTALE Statitica per la ricerca gbarbati@uit.it A.A. 2018-19 Icriveri al coro e caricare il materiale didattico da Moodle: Di volta i volta troverete qui tutto il materiale volto a lezioe

Dettagli

Ogni parte non cancellata a penna sarà considerata parte integrante della soluzione.

Ogni parte non cancellata a penna sarà considerata parte integrante della soluzione. Politecnico di Milano Facoltà di Ingegneria Industriale INFORMATICA B Appello del 16 Settembre 2011 COGNOME E NOME RIGA COLONNA MATRICOLA Spazio riservato ai docenti Il presente plico contiene 3 esercizi

Dettagli

FACOLTA DI INGEGNERIA

FACOLTA DI INGEGNERIA FACOLTA DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA CIVILE CORSO DI IDROLOGIA PROF. PASQUALE VERSACE SCHEDA DIDATTICA N 4 ARGOMENTO: ANALISI DI BASE DEI DATI CAMPIONARI A.A. 00- ANALISI DEI DATI Il primo

Dettagli

PROGETTAZIONE COSTRUZIONI E IMPIANTI. Prof. Stefano Pierri - Anno Scolastico

PROGETTAZIONE COSTRUZIONI E IMPIANTI. Prof. Stefano Pierri - Anno Scolastico Laboratorio teologio per l eilizia e eeritazioi i topografia PROGETTZONE COSTRUZON E PNT Prof. Stefao Pierri - o Solatio 01-014 etoo Teioi mmiibili - ETODO TELLRE SEZONE N C.. NFLESS Progetto Noti i materiali

Dettagli

Algoritmi e Strutture Dati (Mod. B) Programmazione Dinamica (Parte I)

Algoritmi e Strutture Dati (Mod. B) Programmazione Dinamica (Parte I) Algoritmi e Strutture Dati (Mod. B) Programmazioe Diamica (Parte I) Numeri di Fiboacci Defiizioe ricorsiva (o iduttiva) F() = F() = F() = F() + F() Algoritmo ricorsivo Fib(: itero) if = or = the retur

Dettagli

[ H ] = 16.1 (a) Ponendo y = jωc+1/( jωl), il quadripolo equivale al seguente. I 1 y I 2 + V 2 V 1. Si ricava: dunque la matrice [Y] è:

[ H ] = 16.1 (a) Ponendo y = jωc+1/( jωl), il quadripolo equivale al seguente. I 1 y I 2 + V 2 V 1. Si ricava: dunque la matrice [Y] è: 6. (a Poedo ωc/( ωl, il quadripolo equivale al eguete. Si ricava: ( ( duque la matrice Y è: Y La matrice Y o è ivertibile quidi o eite. Per quato riguarda le matrici H e T quete i pooo otteere dalla Y

Dettagli

Informatica A a.a. 2010/ /02/2011

Informatica A a.a. 2010/ /02/2011 Politecnico di Milano Dipartimento di Elettronica e Informazione Informatica A a.a. 2010/2011 23/02/2011 Cognome Matricola Nome Firma dello studente Istruzioni Non separate questi fogli. Scrivete la soluzione

Dettagli

Ogni parte non cancellata a penna sarà considerata parte integrante della soluzione.

Ogni parte non cancellata a penna sarà considerata parte integrante della soluzione. Politecnico di Milano Facoltà di Ingegneria Industriale INFORMATICA B Prova in itinere del 16 Novembre 2011 COGNOME E NOME RIGA COLONNA MATRICOLA Spazio riservato ai docenti Il presente plico contiene

Dettagli

Introduzione: funzioni razionali

Introduzione: funzioni razionali Apputi di Cotrolli Automatici Capitolo - parte III Atitraformata di Laplace ANTITRASFORMAZIONE I LAPLACE... Itroduzioe: fuzioi razioali... Atitraformazioe delle fuzioi razioali trettamete proprie... Applicazioe

Dettagli

Analisi Matematica II

Analisi Matematica II Uiversità degli Studi di Udie Ao Accademico 016/017 Dipartimeto di Scieze Matematiche, Iformatiche e Fisiche Corso di Laurea i Matematica Aalisi Matematica II Prova parziale del 6 febbraio 017 NB: scrivere

Dettagli

Trasmissione del calore con applicazioni numeriche: informatica applicata

Trasmissione del calore con applicazioni numeriche: informatica applicata Corsi di Laurea i Igegeria Meccaica Trasmissioe del calore co applicazioi umeriche: iformatica applicata a.a. 17/18 Teoria Parte I Prof. Nicola Forgioe Dipartimeto di Igegeria Civile e Idustriale E-mail:

Dettagli

Politecnico di Milano Facoltà di Ingegneria Industriale INFORMATICA B Appello dell 8 Febbraio 2010 COGNOME E NOME RIGA COLONNA MATRICOLA

Politecnico di Milano Facoltà di Ingegneria Industriale INFORMATICA B Appello dell 8 Febbraio 2010 COGNOME E NOME RIGA COLONNA MATRICOLA Politecnico di Milano Facoltà di Ingegneria Industriale INFORMATICA B Appello dell 8 Febbraio 2010 COGNOME E NOME RIGA COLONNA MATRICOLA Spazio riservato ai docenti Il presente plico contiene 4 esercizi,

Dettagli

SULLE MEDIE DI CESÀRO IN SPAZI DI BANACH.

SULLE MEDIE DI CESÀRO IN SPAZI DI BANACH. Liuc Paper. 63, Serie Metodi quatitativi 9, maggio 999 SULLE MEDIE DI CESÀRO IN SPAZI DI BANACH. Roberto D Agiò. Itroduzioe. I Lemmi -3 u cui i articola la dimotrazioe del Teorema (qui otto riportato)

Dettagli

Esercizi di Analisi Matematica

Esercizi di Analisi Matematica Uiversità degli Studi di Udie Ao Accademico 00/0 Facoltà di Scieze Matematiche Fisiche e Naturali Corso di Laurea i Iformatica Esercizi di Aalisi Matematica Dott. Paolo Baiti Esercizi del 5 Ottobre 00.

Dettagli

Laboratorio di Elaborazione di Dati, Segnali e Immagini Biomediche (Parte 2)

Laboratorio di Elaborazione di Dati, Segnali e Immagini Biomediche (Parte 2) Uiversità degli Studi di Padova - Facoltà di Igegeria Corso di Laurea i Igegeria Biomedica A.A. 27-28 Laboratorio di Elaborazioe di Dati, Segali e Immagii Biomediche (Parte 2) Prof. Giovai Sparacio Dipartimeto

Dettagli

x = 25,6 e deviazione standard = 2,2. Nella popolazione di riferimento, composta da tutti gli apprendisti, la media di

x = 25,6 e deviazione standard = 2,2. Nella popolazione di riferimento, composta da tutti gli apprendisti, la media di PSICOMETRIA Eercizi - 06 ) A u campioe i 96 iegati elle cuole meie, ati opo il 970, viee ommiitrata ua cala i Autoritarimo (SA) il cui puteggio va a 8 (bao autoritarimo) a 07 (alto autoritarimo). Si ottegoo

Dettagli

Architettura degli elaboratori

Architettura degli elaboratori iversità degli Studi dell Isubria Dipartimeto di Scieze Teoriche e pplicate rchitettura degli elaboratori Registri e Marco Tarii Dipartimeto di Scieze Teoriche e pplicate marco.tarii@uisubria.it Register

Dettagli

Soluzione IC=[20.6,22.6]

Soluzione IC=[20.6,22.6] Eercizio 1 Suppoiamo di etrarre u campioe cauale di umeroità = da ua popolazioe ormale co deviazioe tadard pari a 5.1. Sapedo che la media campioaria x è pari a 21.6, cotruire u itervallo di cofideza al

Dettagli

Fondamenti di Informatica 2

Fondamenti di Informatica 2 Matricola Nome Cog Firma Esercizio 1 (5 punti) Date le seguenti strutture dati: float elementi[5]; int numeroelementi; Vettore; float elementi[5][5]; int numerorighe; int numerocolonne; Matrice; Fondamenti

Dettagli

Grandezze fisiche, vettori:

Grandezze fisiche, vettori: Grandezze fiice, vettori: Generalità: oluzioni Problema di: Generalità - I0001 Sceda 3 Ripetizioni Cagliari di Manuele Atzeni - 3497702002 - info@ripetizionicagliari.it Eeguire le converioni di unità di

Dettagli

Il presente plico contiene 3 esercizi e deve essere debitamente compilato con cognome e nome, numero di matricola.

Il presente plico contiene 3 esercizi e deve essere debitamente compilato con cognome e nome, numero di matricola. Politecnico di Milano Facoltà di Ingegneria Industriale INFORMATICA B Appello 2 Settembre 2013 COGNOME E NOME RIGA COLONNA MATRICOLA Spazio riservato ai docenti Il presente plico contiene 3 esercizi e

Dettagli

FEDERAZIONE ITALIANA GIOCO BRIDGE LA DIFESA FEDERAZIONE ITALIANA GIOCO BRIDGE QUADRO N 220

FEDERAZIONE ITALIANA GIOCO BRIDGE LA DIFESA FEDERAZIONE ITALIANA GIOCO BRIDGE QUADRO N 220 FEDERAZIOE ITALIAA GIOCO BRIDGE LA DIFEA CAPITOLO 10 A CURA DI EZO RIOLO FEDERAZIOE ITALIAA GIOCO BRIDGE QUADRO 220 CODIFICA, DECODIFICA E OLUZIOI IL COTRATTO È 3A (1A-3A), EDUTO I OVET ATTACCHI CO IL

Dettagli

Esercizi commentati per il recupero - Modulo a

Esercizi commentati per il recupero - Modulo a Eercizi commetati per il recupero - Modulo a MODULO a LE IMPRESE INDUSTRIALI, ASPETTI STRUTTURALI, GESTIONALI E CONTABILI Scritture di aetameto e completameto del Coto ecoomico di bilacio ESERCIZIO Relativamete

Dettagli

Realizzazione, Raggiungibilità e Osservabilità

Realizzazione, Raggiungibilità e Osservabilità Prof. Carlo Cosetio Fodameti di Automatica, A.A. 26/7 Corso di Fodameti di Automatica A.A. 26/7 Realizzazioe, Raggiugiilità e Osservailità Prof. Carlo Cosetio Dipartimeto di Medicia Sperimetale e Cliica

Dettagli

I seguenti dati sono stati ottenuti in un reattore batch omogeneo per l esterificazione di butanolo (B) e acido acetico (A):

I seguenti dati sono stati ottenuti in un reattore batch omogeneo per l esterificazione di butanolo (B) e acido acetico (A): Dipartimeto di Eergia Politecico di Milao Piazza Leoardo da ici 2-2 MILNO Esercitazioi del corso ONDMENTI DI PROESSI HIMII Prof. Giapiero Groppi ESERITZIONE Reattore di esterificazioe del butaolo I segueti

Dettagli

Statistica. Capitolo 9. Stima: Ulteriori Argomenti. Cap. 9-1

Statistica. Capitolo 9. Stima: Ulteriori Argomenti. Cap. 9-1 Statitica Capitolo 9 Stima: Ulteriori Argometi Cap. 9-1 Obiettivi del Capitolo Dopo aver completato il capitolo, arete i grado di: Cotruire itervalli di cofideza per la differeza tra le medie di due popolazioi

Dettagli

Modelli per l ottica

Modelli per l ottica Modelli per l ottica Ottica quatitica e i tracurao gli effetti quatitici Elettrodiamica di Maxwell e i tracurao le emiioi di radiazioe Ottica odulatoria per piccole lughezze d oda può eere otituita da

Dettagli

Architettura degli elaboratori

Architettura degli elaboratori Marco Tarii - iversità dell'isubria.. 2017/18 iversità degli Studi dell Isubria Dipartimeto di Scieze Teoriche e pplicate rchitettura degli elaboratori Register File Marco Tarii Dipartimeto di Scieze Teoriche

Dettagli

Esame di Metodi Matematici per l Ingegneria

Esame di Metodi Matematici per l Ingegneria Esame di Metodi Matematici per l Igegeria Prof. M. Bramati Politecico di Milao, A.A. / Appello del Settembre Cogome: Nome N matr. o cod. persoa: Parte. Esercizi Esercizio. a. Calcolare il limite putuale

Dettagli

Il presente plico contiene 3 esercizi e deve essere debitamente compilato con cognome e nome, numero di matricola.

Il presente plico contiene 3 esercizi e deve essere debitamente compilato con cognome e nome, numero di matricola. Politecnico di Milano Facoltà di Ingegneria Industriale INFORMATICA B Appello 14 settembre 2016 COGNOME E NOME MATRICOLA Spazio riservato ai docenti Il presente plico contiene 3 esercizi e deve essere

Dettagli

Prova parziale 30 aprile 2018 Possibili soluzioni

Prova parziale 30 aprile 2018 Possibili soluzioni Prova parziale 30 aprile 2018 Possibili soluzioi Primo compito Rappresetare il umero -5 el sistema di rappresetazioe i eccesso a 16 su 5 bit. +5 i otazioe posizioale: 00101-5 i complemeto a due: 11011-5

Dettagli

TEOREMA DELLA PROIEZIONE, DISUGUAGLIANZA DI BESSEL E COMPLEMENTI SULLE SERIE DI FOURIER

TEOREMA DELLA PROIEZIONE, DISUGUAGLIANZA DI BESSEL E COMPLEMENTI SULLE SERIE DI FOURIER TEOREMA DELLA PROIEZIONE, DISUGUAGLIANZA DI BESSEL E COMPLEMENTI SULLE SERIE DI FOURIER I uo spazio euclideo di dimesioe fiita, ad esempio R 3, cosideriamo u sottospazio, ad esempio u piao passate per

Dettagli

Introduzione all Analisi di Fourier. Prof. Luigi Landini Ing. Nicola Vanello. (presentazione a cura di N. Vanello)

Introduzione all Analisi di Fourier. Prof. Luigi Landini Ing. Nicola Vanello. (presentazione a cura di N. Vanello) Itroduzioe all Aalisi di Prof. Luigi Ladii Ig. Nicola Vaello (presetazioe a cura di N. Vaello) ANALII DI FOURIER egali tempo cotiui: egali periodici egali aperiodici viluppo i serie di Itroduzioe alla

Dettagli

Il presente plico contiene 3 esercizi e deve essere debitamente compilato con cognome e nome, numero di matricola.

Il presente plico contiene 3 esercizi e deve essere debitamente compilato con cognome e nome, numero di matricola. Politecnico di Milano Facoltà di Ingegneria Industriale INFORMATICA B Appello 14 settembre 2016 COGNOME E NOME MATRICOLA Spazio riservato ai docenti Il presente plico contiene 3 esercizi e deve essere

Dettagli

Trasmissione del calore con applicazioni numeriche: informatica applicata

Trasmissione del calore con applicazioni numeriche: informatica applicata Corsi di Laurea i Igegeria Meccaica Trasmissioe del calore co applicazioi umerice: iformatica applicata a.a. 5/6 Teoria Parte IV Ig. Nicola Forgioe Dipartimeto di Igegeria Civile e Idustriale E-mail: icola.forgioe@ig.uipi.it;

Dettagli

BRUNO RIZZI ( ) E LA TEORIA DEI NUMERI

BRUNO RIZZI ( ) E LA TEORIA DEI NUMERI BRUNO RIZZI 935-995 E LA TEORIA DEI NUMERI Fraco EUGENI Preidete Accademia Piceo Arutia dei Velati Direttore Ui-Macago La matematica dicreta A matematica fiita: cami di Galoi, Geometrie fiite, Diegi, B

Dettagli

Ogni parte non cancellata a penna sarà considerata parte integrante della soluzione.

Ogni parte non cancellata a penna sarà considerata parte integrante della soluzione. Politecnico di Milano Facoltà di Ingegneria Industriale INFORMATICA B Prova in itinere del 13 Novembre 2012 COGNOME E NOME RIGA COLONNA MATRICOLA Spazio riservato ai docenti Il presente plico contiene

Dettagli

CPU (1) (4) (3) (2) dispatcher. Context switch. Concetti fondamentali. Il massimo impiego della CPU è ottenuto con la multiprogrammazione.

CPU (1) (4) (3) (2) dispatcher. Context switch. Concetti fondamentali. Il massimo impiego della CPU è ottenuto con la multiprogrammazione. Cocetti fodametali LABORATORIO DI PROGRAMMAZIONE 2 Corso di laurea i matematica Il massimo impiego della CPU è otteuto co la multiprogrammazioe. di processi e threads Preseza i memoria di umerosi processi

Dettagli

Spazio riservato ai docenti

Spazio riservato ai docenti Politecnico di Milano Facoltà di Ingegneria Industriale INFORMATICA B Prova in itinere del 25 Novembre 2015 COGNOME E NOME RIGA COLONNA MATRICOLA Tema A Spazio riservato ai docenti Il presente plico contiene

Dettagli

Ogni parte non cancellata a penna sarà considerata parte integrante della soluzione.

Ogni parte non cancellata a penna sarà considerata parte integrante della soluzione. Politecnico di Milano Facoltà di Ingegneria Industriale INFORMATICA B Prova in itinere del 13 Novembre 2012 COGNOME E NOME RIGA COLONNA MATRICOLA Spazio riservato ai docenti Il presente plico contiene

Dettagli

TEORIA DELLE MATRICI. dove aij K. = di ordine n, gli elementi aij con i = j (cioè gli elementi a 11

TEORIA DELLE MATRICI. dove aij K. = di ordine n, gli elementi aij con i = j (cioè gli elementi a 11 1 TEORIA DELLE MATRICI Dato u campo K, defiiamo matrice ad elemeti i K di tipo (m, ) u isieme di umeri ordiati secodo m righe ed coloe i ua tabella rettagolare del tipo a11 a12... a1 a21 a22... a2 A =.........

Dettagli

Campionamento casuale da popolazione finita (caso senza reinserimento )

Campionamento casuale da popolazione finita (caso senza reinserimento ) Campioameto casuale da popolazioe fiita (caso seza reiserimeto ) Suppoiamo di avere ua popolazioe di idividui e di estrarre u campioe di uità (co < ) Suppoiamo di studiare il carattere X che assume i valori

Dettagli

Esame di Statistica A-Di Prof. M. Romanazzi

Esame di Statistica A-Di Prof. M. Romanazzi 1 Uiversità di Veezia Esame di Statistica A-Di Prof. M. Romaazzi 12 Maggio 2014 Cogome e Nome..................................... N. Matricola.......... Valutazioe Il puteggio massimo teorico di questa

Dettagli

Politecnico di Milano Facoltà di Ingegneria Industriale INFORMATICA B Appello del 21 Luglio 2010 COGNOME E NOME RIGA COLONNA MATRICOLA

Politecnico di Milano Facoltà di Ingegneria Industriale INFORMATICA B Appello del 21 Luglio 2010 COGNOME E NOME RIGA COLONNA MATRICOLA Politecnico di Milano Facoltà di Ingegneria Industriale INFORMATICA B Appello del 21 Luglio 2010 COGNOME E NOME RIGA COLONNA MATRICOLA Spazio riservato ai docenti Il presente plico contiene 4 esercizi,

Dettagli

Sviluppi di Taylor. Andrea Corli 1 settembre Notazione o 1. 3 Formula di Taylor 3. 4 Esempi ed applicazioni 5

Sviluppi di Taylor. Andrea Corli 1 settembre Notazione o 1. 3 Formula di Taylor 3. 4 Esempi ed applicazioni 5 Sviluppi di Taylor Adrea Corli settembre 009 Idice Notazioe o Liearizzazioe di ua fuzioe 3 Formula di Taylor 3 4 Esempi ed applicazioi 5 I questo capitolo aalizziamo l approssimazioe di ua fuzioe regolare

Dettagli

Matematica - Ingegneria Gestionale - Prova scritta del 25 gennaio 2006

Matematica - Ingegneria Gestionale - Prova scritta del 25 gennaio 2006 Matematica - Igegeria Gestioale - Prova scritta del 5 geaio 6. Per ogua delle segueti serie si idichi se la serie coverge assolutamete ( AC ), coverge ma o coverge assolutamete ( C ) oppure o coverge (

Dettagli

Ampliamento della banca dati pluviometrica della Direzione generale Agenzia regionale del Distretto Idrografico della Sardegna

Ampliamento della banca dati pluviometrica della Direzione generale Agenzia regionale del Distretto Idrografico della Sardegna Ampliameto della baca dati pluviometrica della Direzioe geerale Agezia regioale del Distretto Idrografico della Sardega Giovai Puligheddu Direzioe Geerale della Protezioe Civile-Regioe Sardega Giorata

Dettagli

I appello - 11 Dicembre 2006

I appello - 11 Dicembre 2006 Facoltà di Igegeria - Corso di Laurea i Igegeria Civile A.A. 006/007 I appello - Dicembre 006 ) Calcolare il seguete ite: [ ( )] + cos. + ) Data la fuzioe f() = e +, < 0, 0, =, =,,..., log( + ), 0,, =,,...,

Dettagli

Politecnico di Milano - Facoltà di Ingegneria INFORMATICA A - Corso per allievi GESTIONALI - Prof. C. SILVANO A. A. 2001/ febbraio 2004

Politecnico di Milano - Facoltà di Ingegneria INFORMATICA A - Corso per allievi GESTIONALI - Prof. C. SILVANO A. A. 2001/ febbraio 2004 Politecnico di Milano - Facoltà di Ingegneria INFORMATICA A - Corso per allievi GESTIONALI - Prof. C. SILVANO A. A. 2001/2002-4 febbraio 2004 COGNOME: NOME: MATRICOLA: Istruzioni: Scrivere solo sui fogli

Dettagli

Ogni parte non cancellata a penna sarà considerata parte integrante della soluzione.

Ogni parte non cancellata a penna sarà considerata parte integrante della soluzione. Politecnico di Milano Facoltà di Ingegneria Industriale INFORMATICA B Appello del 20 Luglio 2011 COGNOME E NOME RIGA COLONNA MATRICOLA Spazio riservato ai docenti Il presente plico contiene 3 esercizi

Dettagli

Allegato A al Decreto n.174 del 14 agosto 2019 pag. 1/5

Allegato A al Decreto n.174 del 14 agosto 2019 pag. 1/5 giuta regioale Allegato A al Decreto.174 del 14 agosto 2019 pag. 1/5 COMUNICAZIONE DI CHIUSURA defiitiva/temporaea di SEDE SECONDARIA di agezia di viaggio (art. 38 L.R..11/2013) da iviare tramite SUAP

Dettagli

Algebra delle matrici

Algebra delle matrici Algebra delle matrici Prodotto di ua matrice per uo scalare Data ua matrice A di tipo m, e dato uo scalare r R, moltiplicado r per ciascu elemeto di A si ottiee ua uova matrice di tipo m, detta matrice

Dettagli

ESEMPI DI TRACCIAMENTO DIAGRAMMI DI BODE E NYQUIST

ESEMPI DI TRACCIAMENTO DIAGRAMMI DI BODE E NYQUIST ESEMPI DI TRACCIAMENTO DIAGRAMMI DI BODE E NYQUIST Eempio : Bode 3( + j. ( + j Puti di rottura / τ /.5 / τ /.5 cotributi elemetari G 3 G ( + j. G ( + j cotributo elemetare G ( j 3 G ( (. cotributo elemetare

Dettagli

Disegno. ing. giovanni mongiello e.mail

Disegno. ing. giovanni mongiello e.mail Disego ig. giovai mogiello e.mail giovai.mogiello@poliba.it Disego Il corso ha l obiettivo di forire, dal puto di vista teorico e pratico, gli elemeti ecessari alla rappresetazioe, e presetazioe el campo

Dettagli

( 4) ( ) ( ) ( ) ( ) LE DERIVATE ( ) ( ) (3) D ( x ) = 1 derivata di un monomio con a 0 1. GENERALITÀ

( 4) ( ) ( ) ( ) ( ) LE DERIVATE ( ) ( ) (3) D ( x ) = 1 derivata di un monomio con a 0 1. GENERALITÀ LE DERIVATE. GENERALITÀ Defiizioe A) Ituitiva. La derivata, a livello ituitivo, è u operatore tale che: a) ad ua fuzioe f associa u altra fuzioe; b) obbedisce alle segueti regole di derivazioe: () D a

Dettagli

CdL in Fisica Prova scritta di Analisi Matematica I del giorno C1

CdL in Fisica Prova scritta di Analisi Matematica I del giorno C1 del gioro 07-02-2007. C1 1) Studiare la successioe defiita per ricorreza a 1 1, a +1 = 1 + loga N 2) Studiare la serie umerica al variare del parametro reale positivo α 3) Calcolare il ite seguete 4) Data

Dettagli

SUCCESSIONI DI FUNZIONI

SUCCESSIONI DI FUNZIONI SUCCESSIONI DI FUNZIONI LUCIA GASTALDI 1. Defiizioi ed esempi Sia I u itervallo coteuto i R, per ogi N si cosideri ua fuzioe f : I R. Il simbolo f } =1 idica ua successioe di fuzioi, cioè l applicazioe

Dettagli

Def. R si dice raggio di convergenza; nel caso i) R = 0, nel caso ii)

Def. R si dice raggio di convergenza; nel caso i) R = 0, nel caso ii) Apputi sul corso di Aalisi Matematica complemeti (a) - prof. B.Bacchelli Apputi : Riferimeti: R.Adams, Calcolo Differeziale. -Si cosiglia vivamate di fare gli esercizi del testo. Cap. 9.5 - Serie di poteze,

Dettagli

Le successioni: intro

Le successioni: intro Le successioi: itro Si cosideri la seguete sequeza di umeri:,, 2, 3, 5, 8, 3, 2, 34, 55, 89, 44, 233, detti di Fiboacci. Essa rappreseta il umero di coppie di coigli preseti ei primi 2 mesi i u allevameto!

Dettagli

Stima di somme: esercizio

Stima di somme: esercizio Stima di somme: esercizio Valutare l'ordie di gradezza della somma k l (1 + 3 k ) Quado x

Dettagli

Probabilità e Statistica Esercitazioni. a.a. 2006/2007

Probabilità e Statistica Esercitazioni. a.a. 2006/2007 Probabilità e Statistica Esercitazioi a.a. 2006/2007 C.d.L.: Igegeria per l Ambiete ed il Territorio, Igegeria Civile, Igegeria Gestioale, Igegeria dell Iformazioe C.d.L.S.: Igegeria Civile Estrazioi-II

Dettagli

2.1 f : 6 π, 5 ] 2.2 f : [1, 4) R definita da f(x) = x f : [0, 2) [ 1, 1] definita da. 3.1 f 1 (x) = f( x). 3.2 f 2 (x) = f(3 x).

2.1 f : 6 π, 5 ] 2.2 f : [1, 4) R definita da f(x) = x f : [0, 2) [ 1, 1] definita da. 3.1 f 1 (x) = f( x). 3.2 f 2 (x) = f(3 x). c Adrea Dall Aglio - Esercizi di Aalisi Matematica - October, 6 Avverteze Questi esercizi soo i gra parte tratti da testi di esame di vari corsi Aalisi Matematica I per Matematica, Fisica, Iformatica,

Dettagli

CALCOLO COMBINATORIO

CALCOLO COMBINATORIO CALCOLO COMBINATORIO Che cosa sigifica cotare Tutti coosciamo la successioe dei umeri iteri Naturali N = {0, 1,,, } si tratta di ua struttura metale fodametale, chiaramete presete alla ostra ituizioe che

Dettagli

ALTRI ESERCIZI SULL INTEGRALE DI LEBESGUE. A. Figà Talamanca

ALTRI ESERCIZI SULL INTEGRALE DI LEBESGUE. A. Figà Talamanca ALTRI SRCIZI SULL INTGRAL DI LBSGU A. Figà Talamaca 29 ottobre 2006 2 L itegrale di Lebesgue che abbiamo defiito per le fuzioi misurabili, limitate defiite su u isieme misurabile di misura fiita, può essere

Dettagli

Funzioni continue. Definizione di limite e di funzione continua. Esercizio 1. x 0, 1 x 2, 3

Funzioni continue. Definizione di limite e di funzione continua. Esercizio 1. x 0, 1 x 2, 3 Fuzioi cotiue Defiizioe di limite e di fuzioe cotiua Esercizio. Dire quali delle segueti fuzioi soo cotiue. f : 0,, 3, f 0,, 3 Plot Piecewise,,,,, 0, 3.0 0.8 0.6 0.4 0. f è cotiua. Ifatti, fissiamo y [0,].

Dettagli

Ricerca di un elemento in una matrice

Ricerca di un elemento in una matrice Ricerca di u elemeto i ua matrice Sia data ua matrice xm, i cui gli elemeti di ogi riga e di ogi coloa soo ordiati i ordie crescete. Si vuole u algoritmo che determii se u elemeto x è presete ella matrice

Dettagli

Prof.ssa Paola Vicard

Prof.ssa Paola Vicard Cosideriamo come esempio il data set coteuto el foglio excel esercizio9_dati.xls. Il data set, riportato el foglio di lavoro dataset, si riferisce a fodi di ivestimeto su cui soo state rilevate ua serie

Dettagli

1.6 Serie di potenze - Esercizi risolti

1.6 Serie di potenze - Esercizi risolti 6 Serie di poteze - Esercizi risolti Esercizio 6 Determiare il raggio di covergeza e l isieme di covergeza della serie Soluzioe calcolado x ( + ) () Per la determiazioe del raggio di covergeza utilizziamo

Dettagli