3 CENNI DI TEORIA DELLA COMPLESSITA COMPUTAZIONALE. E. Amaldi Fondamenti di R.O. Politecnico di Milano 1

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "3 CENNI DI TEORIA DELLA COMPLESSITA COMPUTAZIONALE. E. Amaldi Fondamenti di R.O. Politecnico di Milano 1"

Transcript

1 3 CENNI DI TEORIA DELLA COMPLESSITA COMPUTAZIONALE E. Amaldi Fondamenti di R.O. Politecnico di Milano 1

2 Scopo: Stimare l onere computazionale per risolvere problemi di ottimizzazione e di altra natura Due tipi di obiettivi: Determinare l efficienza di un specifico algoritmo A per risolvere un dato problema P Tentare di valutare la difficoltà intrinseca di un dato problema P Particolare attenzione ai problemi di ottimizzazione combinatoria E. Amaldi Fondamenti di R.O. Politecnico di Milano 2

3 3.1 Complessità degli algoritmi Scopo: stimare l onere computazionale di algoritmi alternativi per risolvere un dato problema P al fine di selezionare quello più efficiente Definizione: Una istanza I di un problema P è un caso specifico del problema. Esempio Problema P : ordinare m numeri interi c 1,..., c m Istanza I : m = 3, c 1 = 2, c 2 = 7, c 3 = 5 E. Amaldi Fondamenti di R.O. Politecnico di Milano 3

4 Tempo di calcolo valutato in termini di numero di operazioni elementari ( aritmetiche, confronti, accessi memoria,... ) necessarie per risolvere una data istanza I Ipotesi: tutte le operazioni elementari richiedono un unità di tempo Chiaramente il numero di operazioni elementari dipende dalla dimensione dell istanza I E. Amaldi Fondamenti di R.O. Politecnico di Milano 4

5 Dimensione di una istanza Definizione: La dimensione di un istanza I, indicata I, è il numero di bit necessari a codificare (descrivere) I. Esempio Istanza specificata dai valori di m e c 1,..., c m Poiché la codifica di un intero i richiede lo g i bit, I log m + m log c max dove c max = max{c j : 1 j m} Per istanza m = 3, c 1 = 2, c 2 = 7, c 3 = 5 I log log 7 E. Amaldi Fondamenti di R.O. Politecnico di Milano 5

6 Rapidità di crescita asintotica: f(n) = O(g(n)) se c > 0 tale che f(n) c g(n) per n sufficientemente grande c g(n) f (n) Si dice che f(n) è dell ordine di g(n) n 0 n Esempio Per il problema di ordinamento di m interi I log m + m log c max = O(log m + m log c max ) E. Amaldi Fondamenti di R.O. Politecnico di Milano 6

7 Ordine di complessità Si cerca una funzione f (n) tale che, per ogni istanza I di dimensione I n, il numero di operazioni elementari per risolvere istanza I sia f (n) Osservazioni: Poiché f (n) è un limite superiore I con I n, si considera il caso peggiore f (n) espressa in termini di rapidità di crescita asintotica Esempio Per l ordinamento di m interi esistono algoritmi con complessità O(m log m) E. Amaldi Fondamenti di R.O. Politecnico di Milano 7

8 Definizione: Un algoritmo è polinomiale se richiede, nel caso peggiore, un numero di operazioni elementari f(n) = O(n d ) dove d è costante e n = I è la dimensione dell istanza. Si distinguono algoritmi con ordini di complessità: O(n d ) polinomiale O(2 n ) esponenziale Un algoritmo in O(n 7 ) non è efficiente in pratica! E. Amaldi Fondamenti di R.O. Politecnico di Milano 8

9 Esempi Algoritmo di Dijkstra per problema dei cammini minimi Dimensione di una istanza: I = O(m log n + m log c max ) Complessità: O(n 2 ) dove n è il numero di nodi Rapidità di crescita polinomiale rispetto a I ( I m n -1) Versione di base dell algoritmo di Ford-Fulkerson per problema di flusso massimo Dimensione di una istanza: I = O(m log n + m log k max ) Complessità: O(m 2 k max ) dove m è il numero di archi Rapidità di crescita non polinomiale rispetto a I E. Amaldi Fondamenti di R.O. Politecnico di Milano 9

10 3.2 Complessità dei problemi Scopo: stimare la difficoltà intrinseca di un problema per adottare l approccio risolutivo più adeguato Intuitivamente, la difficoltà intrinseca corrisponde alla complessità del migliore possibile algoritmo! Definizione: Un problema P è polinomiale ( facile ) se esiste un algoritmo polinomiale che fornisce una soluzione (ottima) per ogni istanza. Esempi: cammini minimi, flussi di valore massimo,... E. Amaldi Fondamenti di R.O. Politecnico di Milano 10

11 ? Esistono problemi difficili? Per molti problemi di ottimizzazione i migliori algoritmi noti tutt oggi richiedono un numero di operazioni elementari che cresce, nel caso peggiore, esponenzialmente con la dimensione dell istanza N.B.: Non dimostra che sono effettivamente difficili! E. Amaldi Fondamenti di R.O. Politecnico di Milano 11

12 Problema del commesso viaggiatore Travelling Salesman Problem (TSP) Un commesso viaggiatore deve visitare ciascuna di n città esattamente una volta e ritornare al punto di partenza nel minor tempo possibile. collegamenti con tempi Problema Dato G = (N, A) orientato con un costo c ij Z per ogni (i, j) A, determinare un circuito di costo minimo che visita esattamente una volta ogni nodo. E. Amaldi Fondamenti di R.O. Politecnico di Milano 12

13 Definizione: Un circuito C è hamiltoniano se passa esattamente una volta per ogni nodo. Indicando con H l insieme di tutti i circuiti hamiltoniani di G, il problema equivale a m in C H ( i, j ) C c ij H contiene un numero finito di elementi: H ( n 1 )! Applicazioni: distribuzione, sequenziamento ottimo, VLSI, Numerose varianti ed estensioni (Vehicle Routing Problem --VRP) E. Amaldi Fondamenti di R.O. Politecnico di Milano 13

14 14

15 3.3 Teoria della NP-completezza Si fa riferimento ai problemi di riconoscimento e non a quelli di ottimizzazione Definizione: Un problema di riconoscimento è un problema che richiede una risposta si / no Ad ogni problema di ottimizzazione viene associata una versione di riconoscimento Esempio TSP-r Dato G = (N, A) con distanze c ij intere e un intero L, esiste un circuito hamiltoniano di lunghezza L? E. Amaldi Fondamenti di R.O. Politecnico di Milano 15

16 Problemi di riconoscimento Qualsiasi problema di ottimizzazione è almeno altrettanto difficile della sua versione di riconoscimento Esempio Se si riesce a individuare un circuito hamiltoniano di lunghezza minima si può chiaramente rispondere alla domanda di TSP-r (ne esiste uno di lunghezza L?) Se versione di riconoscimento è difficile il problema di ottimizzazione è anch esso difficile E. Amaldi Fondamenti di R.O. Politecnico di Milano 16

17 Classe di complessità P Definizione: P indica l insieme dei problemi di riconoscimento che si possono risolvere in tempo polinomiale. Esempi: quelli associati ai problemi di alberi ottimi, di cammini minimi e di flussi massimi Per ciascuno di essi esiste un algoritmo che permette di stabilire per ogni istanza I se la risposta è si o no in tempo polinomiale in I Definizione formale di P in termini di macchina di Turing (deterministica) polinomiale E. Amaldi Fondamenti di R.O. Politecnico di Milano 17

18 Classe di complessità NP Definizione: NP indica l insieme dei problemi di riconoscimento tali che per ogni istanza con risposta si esiste una prova concisa (certificato) che permette di verificare in tempo polinomiale che la risposta è si. Esempio TSP-r poiché si può verificare in tempo polinomiale se una sequenza di nodi è un circuito hamiltoniano e se lunghezza L E. Amaldi Fondamenti di R.O. Politecnico di Milano 18

19 Definizione formale: NP indica l insieme dei problemi di riconoscimento per i quali un polinomio p(n) e un algoritmo di verifica del certificato A vc tale che : istanza I ha risposta si un certificato (I) di dimensione polinomiale ( (I) p( I ) ) e A vc applicato all input I, (I) da risposta si in un numero di operazioni elementari p( I ). N.B.: Non importa quanto è difficile ottenere il certificato (può essere fornito da un oracolo ) basta che esista e sia verificabile in tempo polinomiale! E. Amaldi Fondamenti di R.O. Politecnico di Milano 19

20 Chiaramente P NP P P NP Congettura P NP Uno dei Millennium Prize Problems 2000!! NP non sta per Non Polinomiale ma per Nondeterministico Polinomiale (fa riferimento alle macchine di Turing non-deterministiche polinomiali) E. Amaldi Fondamenti di R.O. Politecnico di Milano 20

21 Riduzione polinomiale tra problemi Concetto di riduzione polinomiale permette di confrontare i problemi di riconoscimento ed individuare quelli più difficili Definizione: Sia P 1 e P 2 NP, P 1 si riduce in tempo polinomiale a P 2 (P 1 P 2 ) se esiste un algoritmo per risolvere P 1 che chiama un certo numero di volte un ipotetico algoritmo per P 2, e risulta polinomiale se si suppone che quello per P 2 richieda un unica unità di tempo. E. Amaldi Fondamenti di R.O. Politecnico di Milano 21

22 Caso più semplice: l algoritmo per P 2 viene chiamato un unica volta. Esempio P 1 : Dato un grafo non orientato G = ( N, E ) con costi e un intero L, un ciclo hamiltoniano di lunghezza L? P 2 : Dato un grafo orientato G = ( N, A ) con costi e un intero L, un circuito hamiltoniano di lunghezza L? P 1 P 2 E. Amaldi Fondamenti di R.O. Politecnico di Milano 22

23 Riduzione polinomiale dal caso non orientato a quello orientato : in tempo e spazio polinomiale I 1 P 1 è facile costruire una particolare I 2 P G=(N,E) G =(N,A ) L = 15 L = tale che I 1 ha risposta si I 2 ha la risposta si E. Amaldi Fondamenti di R.O. Politecnico di Milano 23

24 Conseguenza: Se P 1 P 2 e P 2 è risolubile mediante un algoritmo polinomiale, allora anche P 1 può essere risolto in tempo polinomiale. P 2 P P 1 P E. Amaldi Fondamenti di R.O. Politecnico di Milano 24

25 Problemi NP-completi Definizione: Un problema P è NP-completo se e solo se 1) appartiene a NP 2) ogni altro problema in NP è riducibile ad esso in tempo polinomiale ( P P, P NP ) NP-completi P NP E. Amaldi Fondamenti di R.O. Politecnico di Milano 25

26 Proprietà: Se un problema NP-completo P fosse risolubile in tempo polinomiale (se P ), allora lo sarebbero tutti i problemi di NP, cioè si avrebbe P =NP!! eventualità considerata estremamente improbabile La NP-completezza è quindi un forte indizio di difficoltà intrinseca cf. lunga lista di problemi di riconoscimento importanti che risultano NP-completi e per i quali non sono noti algoritmi polinomiali E. Amaldi Fondamenti di R.O. Politecnico di Milano 26

27 Esistono problemi NP-completi? Soddisfacibilità (SAT) Date m clausole booleane C 1,, C m ( disgiunzioni -- OR -- di variabili booleane y j e loro complementi y j ), esiste un assegnamento di valori vero o falso alle variabili che rende vere tutte le clausole? Esempio C 1 : ( y 1 y 2 y 3 ) C 2 : ( y 1 y 2 ) C 3 : ( y 2 y 3 ) assegnamento: y 1 = vero, y 2 = falso, y 3 = falso E. Amaldi Fondamenti di R.O. Politecnico di Milano 27

28 Primo problema dimostrato NP-completo: Teorema (Cook 1971) SAT è NP-completo Stephen A.Cook Tramite i concetti di macchina di Turing e riduzione polinomiale E. Amaldi Fondamenti di R.O. Politecnico di Milano 28

29 (1974) Richard M. Karp Mostra che le versioni di riconoscimento di 21 problemi di ottimizzazione combinatoria sono NP-completi E. Amaldi Fondamenti di R.O. Politecnico di Milano 29

30 Come mostrare la NP-completezza? Per stabilire che P 2 NP è NP-completo basta mostrare che un problema NP-completo P 1 si riduce polinomialmente a P 2 : P P 1, P NP, e P 1 P 2 implica per transitività che P P 2, P NP Esempio P 1 : Dato G non orientato con costi e un intero L, un ciclo hamiltoniano di lunghezza L? P 2 : Dato G orientato con costi e un intero L, un circuito hamiltoniano di lunghezza L? P 2 NP e P 1 P 2 con P 1 NP-completo E. Amaldi Fondamenti di R.O. Politecnico di Milano 30

31 Dato G = (N, E) non orientato, esiste un ciclo hamiltoniano? (Karp 74) Dato un sistema lineare A x b con coefficienti interi, esiste una soluzione x con componenti 0-1?. Esempi di problemi NP-completi Dato G = (N, A) orientato, due nodi assegnati s e t, e un intero L, esiste un cammino semplice (con nodi distinti) da s a t che contiene un numero di archi L? Dato G = (N, A) orientato con costi sugli archi, due nodi s e t, e un intero L, esiste un cammino semplice da s a t di costo L? E. Amaldi Fondamenti di R.O. Politecnico di Milano 31

32 Problemi NP-difficili Definizione: Un problema è NP-difficile se ogni problema in NP è riducibile ad esso in tempo polinomiale (anche se non appartiene ad NP ) Esempio TSP poiché TSP-r (esiste un circuito hamiltoniano di lunghezza L?) è NP-completo. Tutti i problemi di otttimizzazione di cui la versione di riconoscimento è NP-completa sono NP-difficili. E. Amaldi Fondamenti di R.O. Politecnico di Milano 32

33 Programmazione Lineare Intera (PLI): Dati A m n, b m 1 e c n 1 con coefficienti interi, trovare x con componenti intere tale che Ax b e minimizza c T x. Proposizione (Karp 74): PLI è NP-difficile. 1) Verificare che la versione di riconoscimento del caso binario, r-pl0-1, appartiene a NP. r-pl0-1: Dato A x b con coefficienti interi, esiste una soluzione x {0, 1} n? 2) Mostrare che SAT (NP-completo) si riduce polinomialmente a r-pl0-1. (cf. esercizio 3.3) E. Amaldi Fondamenti di R.O. Politecnico di Milano 33

34 Esempi di problemi NP-difficili Dato G = (N, A) orientato con costi sugli archi, due nodi assegnati s e t, determinare un cammino semplice di costo massimo tra s e t. Dato G = (N, A) orientato con costi sugli archi, due nodi s e t, determinare un cammino semplice di costo minimo tra s e t. Dati matrice A m n, e vettori b m 1 e c n 1 con componenti intere, trovare un x {0, 1} n che soddisfi Ax b e minimizzi c T x.. E. Amaldi Fondamenti di R.O. Politecnico di Milano 34

35 Esercizio Qual è la dimensione di un istanza del problema dell albero di supporto di costo minimo? E. Amaldi Fondamenti di R.O. Politecnico di Milano 35

Il problema del commesso viaggiatore

Il problema del commesso viaggiatore ITTS Vito Volterra Progetto ABACUS Ottimizzazione combinatoria Il problema del commesso viaggiatore Studente: Davide Talon Esame di stato 2013 Anno scolastico 2012-2013 Indice 1. Introduzione........................................

Dettagli

Capitolo 3: Ottimizzazione Discreta. E. Amaldi DEIB, Politecnico di Milano

Capitolo 3: Ottimizzazione Discreta. E. Amaldi DEIB, Politecnico di Milano Capitolo 3: Ottimizzazione Discreta E. Amaldi DEIB, Politecnico di Milano 3.1 Modelli di PLI e PLMI Moltissimi problemi decisionali complessi possono essere formulati o approssimati come problemi di Programmazione

Dettagli

Complessità e Approssimazione

Complessità e Approssimazione 1 Complessità e Approssimazione Corso di Laurea in Scienze dell'informazione Corso di Laurea Specialistica in Matematica Docente: Mauro Leoncini 2 Aspetti organizzativi Sito web: http://algo.ing.unimo.it/people/mauro

Dettagli

Problemi computazionali

Problemi computazionali Problemi computazionali Intrattabilità e classi computazionali Decidibilità e Trattabilità Problemi decidibili possono richiedere tempi di risoluzione elevati: Torri di Hanoi Decidibilità e Trattabilità

Dettagli

Introduzione ai problemi NP-completi

Introduzione ai problemi NP-completi Corso di Algoritmi e Strutture Dati Introduzione ai problemi NP-completi Nuova versione del capitolo 13 delle dispense (basata sui modelli non deterministici) Anno accademico 2007/2008 Corso di laurea

Dettagli

Esercizi di Ricerca Operativa I

Esercizi di Ricerca Operativa I Esercizi di Ricerca Operativa I Dario Bauso, Raffaele Pesenti May 10, 2006 Domande Programmazione lineare intera 1. Gli algoritmi per la programmazione lineare continua possono essere usati per la soluzione

Dettagli

Note del Corso di Modelli Biologici Discreti: Un paio di algoritmi DNA per risolvere SAT

Note del Corso di Modelli Biologici Discreti: Un paio di algoritmi DNA per risolvere SAT Note del Corso di Modelli Biologici Discreti: Un paio di algoritmi DNA per risolvere SAT Giuditta Franco Corso di Laurea in Bioinformatica - AA 2012/2013 Uno dei più grossi risultati nell informatica degli

Dettagli

Capitolo 5: Ottimizzazione Discreta. E. Amaldi DEI, Politecnico di Milano

Capitolo 5: Ottimizzazione Discreta. E. Amaldi DEI, Politecnico di Milano Capitolo 5: Ottimizzazione Discreta E. Amaldi DEI, Politecnico di Milano 5.1 Modelli di PLI, formulazioni equivalenti ed ideali Il modello matematico di un problema di Ottimizzazione Discreta è molto spesso

Dettagli

Le parole dell informatica: modello di calcolo, complessità e trattabilità

Le parole dell informatica: modello di calcolo, complessità e trattabilità Le parole dell informatica: modello di calcolo, complessità e trattabilità Angelo Montanari Dipartimento di Matematica e Informatica Università degli Studi di Udine Ciclo di seminari su un Vocabolario

Dettagli

Complessità computazionale degli algoritmi

Complessità computazionale degli algoritmi Complessità computazionale degli algoritmi Lezione n. 3.bis I precursori dei calcolatore Calcolatore di Rodi o di Andikithira 65 a.c. Blaise Pascale pascalina XVII secolo Gottfried Leibniz Joseph Jacquard

Dettagli

Ricerca Operativa A.A. 2007/2008

Ricerca Operativa A.A. 2007/2008 Ricerca Operativa A.A. 2007/2008 9. Cenni su euristiche e metaeuristiche per ottimizzazione combinatoria Motivazioni L applicazione di metodi esatti non è sempre possibile a causa della complessità del

Dettagli

Capitolo 4: Ottimizzazione non lineare non vincolata parte II. E. Amaldi DEIB, Politecnico di Milano

Capitolo 4: Ottimizzazione non lineare non vincolata parte II. E. Amaldi DEIB, Politecnico di Milano Capitolo 4: Ottimizzazione non lineare non vincolata parte II E. Amaldi DEIB, Politecnico di Milano 4.3 Algoritmi iterativi e convergenza Programma non lineare (PNL): min f(x) s.v. g i (x) 0 1 i m x S

Dettagli

Metodi e Modelli per l Ottimizzazione Combinatoria Il problema del flusso di costo minimo

Metodi e Modelli per l Ottimizzazione Combinatoria Il problema del flusso di costo minimo Metodi e Modelli per l Ottimizzazione Combinatoria Il problema del flusso di costo minimo L. De Giovanni G. Zambelli 1 Problema del flusso a costo minimo Il problema del flusso a costo minimo é definito

Dettagli

ESEMPIO P.L. : PIANIFICAZIONE DI INVESTIMENTI

ESEMPIO P.L. : PIANIFICAZIONE DI INVESTIMENTI ESEMPIO P.L. : PIANIFICAZIONE DI INVESTIMENTI PROBLEMA: un azienda deve scegliere fra due possibili investimenti al fine di massimizzare il profitto netto nel rispetto delle condizioni interne e di mercato

Dettagli

TSP con eliminazione di sottocicli

TSP con eliminazione di sottocicli TSP con eliminazione di sottocicli Un commesso viaggiatore deve visitare 7 clienti in modo da minimizzare la distanza percorsa. Le distanze (in Km) tra ognuno dei clienti sono come segue: 7-8 9 7 9-8 79

Dettagli

TSP con eliminazione di sottocicli

TSP con eliminazione di sottocicli TSP con eliminazione di sottocicli Un commesso viaggiatore deve visitare 7 clienti in modo da minimizzare la distanza percorsa. Le distanze (in Km) tra ognuno dei clienti sono come segue: 3 5 7-8 9 57

Dettagli

(ETC) MATRICOLE DISPARI

(ETC) MATRICOLE DISPARI Elementi di Teoria della Computazione (ETC) MATRICOLE DISPARI Docente: Prof. Luisa Gargano BENVENUTI! Finalità: Fornire gli elementi di base delle teorie che sono di fondamento all'informatica 1. Computabilità

Dettagli

4.1 Modelli di calcolo analisi asintotica e ricorrenze

4.1 Modelli di calcolo analisi asintotica e ricorrenze 4 Esercizi Prima Parte 4.1 Modelli di calcolo analisi asintotica e ricorrenze Esercizio 4 1 Rispondere alle seguenti domande: 1. Come misuriamo l efficienza di un algoritmo?. Quali sono gli algoritmi più

Dettagli

Dispense del corso di Logica a.a. 2015/16: Problemi di primo livello. V. M. Abrusci

Dispense del corso di Logica a.a. 2015/16: Problemi di primo livello. V. M. Abrusci Dispense del corso di Logica a.a. 2015/16: Problemi di primo livello V. M. Abrusci 12 ottobre 2015 0.1 Problemi logici basilari sulle classi Le classi sono uno dei temi della logica. Esponiamo in questa

Dettagli

Algoritmi e Strutture Dati (Mod. B) Introduzione

Algoritmi e Strutture Dati (Mod. B) Introduzione Algoritmi e Strutture Dati (Mod. B) Introduzione Modulo B Orari Lunedì ore 11-13 aula A6 Mercoledì ore 14-16 aula A6 Ricevimento Martedì ore 14-16 Ufficio 2M13 Dip. Fisica (2 piano edificio M) Laboratori

Dettagli

Appunti di Logistica. F. Mason E. Moretti F. Piccinonno

Appunti di Logistica. F. Mason E. Moretti F. Piccinonno Appunti di Logistica F. Mason E. Moretti F. Piccinonno 2 1 Introduzione La Logistica è una disciplina molto vasta che, in prima approssimazione, si suddivide in logistica interna (alle aziende) e logistica

Dettagli

Politecnico di Milano. Reti Wireless. Seminari didattici. Introduzione all ottimizzazione. Ilario Filippini

Politecnico di Milano. Reti Wireless. Seminari didattici. Introduzione all ottimizzazione. Ilario Filippini Politecnico di Milano Reti Wireless Seminari didattici Introduzione all ottimizzazione Ilario Filippini 2 Esempio 1! 3 Esempio 1!! 4 Esempio 2!!? 5 Ottimizzazione!!!!!! Ottimizzazione 6 Approccio matematico

Dettagli

Tipologie di macchine di Turing

Tipologie di macchine di Turing Tipologie di macchine di Turing - Macchina di Turing standard - Macchina di Turing con un nastro illimitato in una sola direzione - Macchina di Turing multinastro - Macchina di Turing non deterministica

Dettagli

Entropia. Motivazione. ? Quant è l informazione portata dalla sequenza? Abbiamo una sequenza S di N simboli (campioni audio, pixel, caratteri,...

Entropia. Motivazione. ? Quant è l informazione portata dalla sequenza? Abbiamo una sequenza S di N simboli (campioni audio, pixel, caratteri,... Entropia Motivazione Abbiamo una sequenza S di N simboli (campioni audio, pixel, caratteri,... ) s,s 2,s 3,... ognuno dei quali appartiene ad un alfabeto A di M elementi.? Quant è l informazione portata

Dettagli

Algoritmi Euristici introduzione. Vittorio Maniezzo Università di Bologna

Algoritmi Euristici introduzione. Vittorio Maniezzo Università di Bologna 9 Algoritmi Euristici introduzione Vittorio Maniezzo Università di Bologna 1 Molti problemi reali richiedono soluzioni algoritmiche I camion devono essere instradati VRP, NP-hard I depositi o i punti di

Dettagli

Ottimizzazione Multi Obiettivo

Ottimizzazione Multi Obiettivo Ottimizzazione Multi Obiettivo 1 Ottimizzazione Multi Obiettivo I problemi affrontati fino ad ora erano caratterizzati da una unica (e ben definita) funzione obiettivo. I problemi di ottimizzazione reali

Dettagli

Complessità computazionale

Complessità computazionale 1 Introduzione alla complessità computazionale Un problema spesso può essere risolto utilizzando algoritmi diversi Come scegliere il migliore? La bontà o efficienza di un algoritmo si misura in base alla

Dettagli

Esame di Ricerca Operativa del 19/01/2016

Esame di Ricerca Operativa del 19/01/2016 Esame di Ricerca Operativa del 19/01/201 (Cognome) (Nome) (Matricola) Esercizio 1. Una banca offre ai suoi clienti diversi tipi di prestito: mutuo casa, credito auto, credito famiglia, che rendono un interesse

Dettagli

Elementi di Complessità Computazionale

Elementi di Complessità Computazionale Elementi di Complessità Computazionale Ultima modifica 23.06.2004 Il problema Esiste una misura oggettiva per valutare l'efficienza di un algoritmo? In che relazione sono gli input di un algoritmo con

Dettagli

USO DI CONCETTI PROBABILISTICI NEL PROGETTO E NELL ANALISI DI ALGORITMI

USO DI CONCETTI PROBABILISTICI NEL PROGETTO E NELL ANALISI DI ALGORITMI USO DI CONCETTI PROBABILISTICI NEL PROGETTO E NELL ANALISI DI ALGORITMI - Analisi probabilistica di algoritmi deterministici: si assume una distribuzione di probabilità delle istanze e si calcola il tempo

Dettagli

Seconda Prova di Ricerca Operativa. Cognome Nome Numero Matricola A 1/12 A 2/12

Seconda Prova di Ricerca Operativa. Cognome Nome Numero Matricola A 1/12 A 2/12 A / A / Seconda Prova di Ricerca Operativa Cognome Nome Numero Matricola Nota: LA RISOLUZIONE CORRETTA DEGLI ESERCIZI CONTRADDISTINTI DA UN ASTERISCO È CONDIZIONE NECESSARIA PER IL RAGGIUNGIMENTO DELLA

Dettagli

PROVA FINALE V. AULETTA G. PERSIANO ALGORITMI II - -MAGIS INFO

PROVA FINALE V. AULETTA G. PERSIANO ALGORITMI II - -MAGIS INFO PROVA FINALE V. AULETTA G. PERSIANO ALGORITMI II - -MAGIS INFO 1. Load Balancing Un istanza del problema del load balancing consiste di una sequenza p 1,..., p n di interi positivi (pesi dei job) e un

Dettagli

Approssimazione polinomiale di funzioni e dati

Approssimazione polinomiale di funzioni e dati Approssimazione polinomiale di funzioni e dati Approssimare una funzione f significa trovare una funzione f di forma più semplice che possa essere usata al posto di f. Questa strategia è utilizzata nell

Dettagli

Esame di Ricerca Operativa del 19/01/2016

Esame di Ricerca Operativa del 19/01/2016 Esame di Ricerca Operativa del 9/0/06 (Cognome) (Nome) (Matricola) Esercizio. Una banca offre ai suoi clienti diversi tipi di prestito: mutuo casa, credito auto, credito famiglia, che rendono un interesse

Dettagli

Gestione della produzione e della supply chain Logistica distributiva. Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena

Gestione della produzione e della supply chain Logistica distributiva. Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena Gestione della produzione e della supply chain Logistica distributiva Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena Problemi di Distribuzione: Il problema del Vehicle Rou:ng

Dettagli

(ETC) MATRICOLE DISPARI

(ETC) MATRICOLE DISPARI Elementi di Teoria della Computazione (ETC) MATRICOLE DISPARI Docente: Prof. Luisa Gargano BENVENUTI! Finalità: Fornire gli elementi di base delle teorie che sono di fondamento all'informatica 1. Computabilità

Dettagli

IL PROBLEMA DELLO SHORTEST SPANNING TREE

IL PROBLEMA DELLO SHORTEST SPANNING TREE IL PROBLEMA DELLO SHORTEST SPANNING TREE n. 1 - Formulazione del problema Consideriamo il seguente problema: Abbiamo un certo numero di città a cui deve essere fornito un servizio, quale può essere l energia

Dettagli

Algoritmi e strutture dati. Codici di Huffman

Algoritmi e strutture dati. Codici di Huffman Algoritmi e strutture dati Codici di Huffman Memorizzazione dei dati Quando un file viene memorizzato, esso va memorizzato in qualche formato binario Modo più semplice: memorizzare il codice ASCII per

Dettagli

Parte 3. Rango e teorema di Rouché-Capelli

Parte 3. Rango e teorema di Rouché-Capelli Parte 3. Rango e teorema di Rouché-Capelli A. Savo Appunti del Corso di Geometria 203-4 Indice delle sezioni Rango di una matrice, 2 Teorema degli orlati, 3 3 Calcolo con l algoritmo di Gauss, 6 4 Matrici

Dettagli

Corso di Analisi Numerica - AN1. Parte 2: metodi diretti per sistemi lineari. Roberto Ferretti

Corso di Analisi Numerica - AN1. Parte 2: metodi diretti per sistemi lineari. Roberto Ferretti Corso di Analisi Numerica - AN1 Parte 2: metodi diretti per sistemi lineari Roberto Ferretti Richiami sulle norme e sui sistemi lineari Il Metodo di Eliminazione di Gauss Il Metodo di Eliminazione con

Dettagli

Progetto di Reti di Telecomunicazione Modelli in Programmazione Lineare Problemi di flusso

Progetto di Reti di Telecomunicazione Modelli in Programmazione Lineare Problemi di flusso Progetto di Reti di Telecomunicazione Modelli in Programmazione Lineare Problemi di flusso Flusso di costo minimo È dato un grafo direzionato G = (N, A). Ad ogni arco (i, j) A è associato il costo c ij

Dettagli

Complessità Computazionale

Complessità Computazionale Complessità Computazionale Analisi Algoritmi e pseudocodice Cosa significa analizzare un algoritmo Modello di calcolo Analisi del caso peggiore e del caso medio Esempio di algoritmo in pseudocodice INSERTION

Dettagli

PROBLEMA DELLA RICERCA DI UN ELEMENTO IN UN ARRAY E ALGORITMI RISOLUTIVI

PROBLEMA DELLA RICERCA DI UN ELEMENTO IN UN ARRAY E ALGORITMI RISOLUTIVI PROBLEMA DELLA RICERCA DI UN ELEMENTO IN UN ARRAY E ALGORITMI RISOLUTIVI PROBLEMA DELLA RICERCA in termini generali: Dati in input un insieme S di elementi (numeri, caratteri, stringhe, ) e un elemento

Dettagli

b i 1,1,1 1,1,1 0,1,2 0,3,4

b i 1,1,1 1,1,1 0,1,2 0,3,4 V o Appello // RICERCA OPERATIVA - Corso A (a.a. 9/) Nome Cognome: Corso di Laurea: L C6 LS LM Matricola: ) Si consideri il problema di flusso di costo minimo in figura. Si verifichi se il flusso ammissibile

Dettagli

NP-Completezza. Andrea S. Gozzi Valerio Romeo. Andrea Samuele 1

NP-Completezza. Andrea S. Gozzi Valerio Romeo. Andrea Samuele 1 NP-Completezza di Andrea S. Gozzi Valerio Romeo Andrea Samuele 1 Argomenti trattati Out of intense complexities, intense simplicities emerge. Winston Churchill Concetti base & formalismi Introduzione alla

Dettagli

UD 3.4b: Trattabilità e Intrattabilità. Dispense, cap. 4.2

UD 3.4b: Trattabilità e Intrattabilità. Dispense, cap. 4.2 UD 3.4b: Trattabilità e Intrattabilità Dispense, cap. 4.2 Problemi Intrattabili Esistono problemi che, pur avendo un algoritmo di soluzione, non forniranno mai una soluzione in tempi ragionevoli nemmeno

Dettagli

Note sulle classi di complessità P, NP e NPC per ASD (DRAFT)

Note sulle classi di complessità P, NP e NPC per ASD (DRAFT) Note sulle classi di complessità P, NP e NPC per ASD 2010-11 (DRAFT) Nicola Rebagliati 20 dicembre 2010 1 La complessità degli algoritmi Obiettivo principale della teoria della complessità: ottenere una

Dettagli

Sommario. Linguaggi formali: motivazioni, definizione ed esempi operazioni su parole e linguaggi

Sommario. Linguaggi formali: motivazioni, definizione ed esempi operazioni su parole e linguaggi Sommario Linguaggi formali: motivazioni, definizione ed esempi operazioni su parole e linguaggi 1 Tipi di problemi Nelle teorie della calcolabilità e della complessità si considerano problemi di decisione,

Dettagli

La programmazione con vincoli in breve. La programmazione con vincoli in breve

La programmazione con vincoli in breve. La programmazione con vincoli in breve Obbiettivi Introdurre la nozione di equivalenza di CSP. Dare una introduzione intuitiva dei metodi generali per la programmazione con vincoli. Introdurre il framework di base per la programmazione con

Dettagli

Algoritmi enumerativi

Algoritmi enumerativi Capitolo 7 Algoritmi enumerativi Come abbiamo visto, né gli algoritmi greedy né quelli basati sulla ricerca locale sono in grado, in molti casi, di garantire l ottimalità della soluzione trovata. Nel caso

Dettagli

Dimensionamento dei lotti di produzione: il caso con variabilità nota

Dimensionamento dei lotti di produzione: il caso con variabilità nota Dimensionamento dei lotti di produzione: il caso con variabilità nota A. Agnetis In questi appunti studieremo alcuni modelli per il problema del lot sizing, vale a dire il problema di programmare la dimensione

Dettagli

Esame di Ricerca Operativa del 20/12/13. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

Esame di Ricerca Operativa del 20/12/13. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare: Esame di Ricerca Operativa del 0// (Cognome) (Nome) (Corso di laurea) Esercizio. Completare la seguente tabella considerando il problema di programmazione lineare: max x x x + x x +x x x x x x x 0 x x

Dettagli

Alternanza, parallelismo e complessità

Alternanza, parallelismo e complessità Facoltà di Scienze Matematiche, Fisiche e Naturali Corso di Laurea Triennale in Matematica Tesi di Laurea Triennale Alternanza, parallelismo e complessità Candidato Pietro Battiston Relatore Prof. Alessandro

Dettagli

estratto da Competenze assi culturali Raccolta delle rubriche di competenza formulate secondo i livelli EFQ a cura USP Treviso Asse matematico

estratto da Competenze assi culturali Raccolta delle rubriche di competenza formulate secondo i livelli EFQ a cura USP Treviso Asse matematico Competenza matematica n. BIENNIO, BIENNIO Utilizzare le tecniche e le procedure del calcolo aritmetico ed algebrico, rappresentandole anche sotto forma grafica BIENNIO BIENNIO Operare sui dati comprendendone

Dettagli

Sistemi Operativi mod. B. Sistemi Operativi mod. B A B C A B C P 1 2 0 0 P 1 1 2 2 3 3 2 P 2 3 0 2 P 2 6 0 0 P 3 2 1 1 P 3 0 1 1 < P 1, >

Sistemi Operativi mod. B. Sistemi Operativi mod. B A B C A B C P 1 2 0 0 P 1 1 2 2 3 3 2 P 2 3 0 2 P 2 6 0 0 P 3 2 1 1 P 3 0 1 1 < P 1, > Algoritmo del banchiere Permette di gestire istanze multiple di una risorsa (a differenza dell algoritmo con grafo di allocazione risorse). Ciascun processo deve dichiarare a priori il massimo impiego

Dettagli

Esame di Ricerca Operativa del 18/12/12. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

Esame di Ricerca Operativa del 18/12/12. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare: Esame di Ricerca Operativa del 8// (Cognome) (Nome) (Corso di laurea) Esercizio. Completare la seguente tabella considerando il problema di programmazione lineare: max x x x x x x x + x x x + x 8 x Base

Dettagli

Ricerca Operativa Branch-and-Bound per problemi di Programmazione Lineare Intera

Ricerca Operativa Branch-and-Bound per problemi di Programmazione Lineare Intera Ricerca Operativa Branch-and-Bound per problemi di Programmazione Lineare Intera L. De Giovanni AVVERTENZA: le note presentate di seguito non hanno alcuna pretesa di completezza, né hanno lo scopo di sostituirsi

Dettagli

Sintesi di Reti Sequenziali Sincrone

Sintesi di Reti Sequenziali Sincrone LABORATORIO DI ARCHITETTURA DEI CALCOLATORI lezione n 9 Prof. Rosario Cerbone rosario.cerbone@uniparthenope.it a.a. 2007-2008 http://digilander.libero.it/rosario.cerbone Sintesi di Reti Sequenziali Sincrone

Dettagli

Cognome:.. Nome:.. 1/5

Cognome:.. Nome:.. 1/5 Cognome:.. Nome:.. 1/5 Sistemi P2P Prova del 17/12/2007 Note: 1) Per ogni risposta corretta a domande di tipo A vengono assegnati 4 punti 2) Per ogni risposta scorretta a domande di tipo A viene sottratto

Dettagli

1. Considerazioni generali

1. Considerazioni generali 1. Considerazioni generali Modelli di shop scheduling In molti ambienti produttivi l esecuzione di un job richiede l esecuzione non simultanea di un certo numero di operazioni su macchine dedicate. Ogni

Dettagli

Parte 3: Gestione dei progetti, Shop scheduling

Parte 3: Gestione dei progetti, Shop scheduling Parte : Gestione dei progetti, Shop scheduling Rappresentazione reticolare di un progetto Insieme di attività {,...,n} p i durata (nota e deterministica dell attività i) relazione di precedenza fra attività:

Dettagli

2) Codici univocamente decifrabili e codici a prefisso.

2) Codici univocamente decifrabili e codici a prefisso. Argomenti della Lezione ) Codici di sorgente 2) Codici univocamente decifrabili e codici a prefisso. 3) Disuguaglianza di Kraft 4) Primo Teorema di Shannon 5) Codifica di Huffman Codifica di sorgente Il

Dettagli

MATEMATICA DEL DISCRETO elementi di teoria dei grafi. anno acc. 2009/2010

MATEMATICA DEL DISCRETO elementi di teoria dei grafi. anno acc. 2009/2010 elementi di teoria dei grafi anno acc. 2009/2010 Grafi semplici Un grafo semplice G è una coppia ordinata (V(G), L(G)), ove V(G) è un insieme finito e non vuoto di elementi detti vertici o nodi di G, mentre

Dettagli

METODI MATEMATICI PER LE DECISIONI ECONOMICHE E AZIENDALI 12 CANDIDATO.. VOTO

METODI MATEMATICI PER LE DECISIONI ECONOMICHE E AZIENDALI 12 CANDIDATO.. VOTO METODI MATEMATICI PER LE DECISIONI ECONOMICHE E AZIENDALI 12 1) In un problema multiattributo i pesi assegnati ai vari obiettivi ed i risultati che essi assumono in corrispondenza alle varie alternative

Dettagli

Progetto e analisi di algoritmi

Progetto e analisi di algoritmi Progetto e analisi di algoritmi Roberto Cordone DTI - Università degli Studi di Milano Polo Didattico e di Ricerca di Crema Tel. 0373 / 898089 E-mail: cordone@dti.unimi.it Ricevimento: su appuntamento

Dettagli

- Trovare soluzione ottima primale ( con il simplesso o algoritmo analogo)

- Trovare soluzione ottima primale ( con il simplesso o algoritmo analogo) Se si ha un problema lineare e' possibile risolverlo in piu' modi (equivalenti ) - Trovare soluzione ottima primale ( con il simplesso o algoritmo analogo) - Trovare soluzione ottima duale (con il simplesso

Dettagli

Appunti del corso di Informatica 1 (IN1 Fondamenti) 2 Introduzione alla programmazione

Appunti del corso di Informatica 1 (IN1 Fondamenti) 2 Introduzione alla programmazione Università Roma Tre Facoltà di Scienze M.F.N. Corso di Laurea in Matematica Appunti del corso di Informatica 1 (IN1 Fondamenti) 2 Introduzione alla programmazione Marco Liverani (liverani@mat.uniroma3.it)

Dettagli

Management Sanitario. Modulo di Ricerca Operativa

Management Sanitario. Modulo di Ricerca Operativa Management Sanitario per il corso di Laurea Magistrale SCIENZE RIABILITATIVE DELLE PROFESSIONI SANITARIE Modulo di Ricerca Operativa Prof. Laura Palagi http://www.dis.uniroma1.it/ palagi Dipartimento di

Dettagli

ANALISI DEL CONDIZIONAMENTO DI UN SISTEMA LINEARE

ANALISI DEL CONDIZIONAMENTO DI UN SISTEMA LINEARE ANALISI DEL CONDIZIONAMENTO DI UN SISTEMA LINEARE Algebra lineare numerica 121 Ax = b A, b affetti dall errore di round-off si risolve sempre un sistema perturbato: con (A + A)(x + x) = b + b A = ( a i,j

Dettagli

Esercizi per il corso di Algoritmi e Strutture Dati

Esercizi per il corso di Algoritmi e Strutture Dati 1 Esercizi per il corso di Algoritmi e Strutture Dati Esercizi sulla Tecnica Divide et Impera N.B. Tutti gli algoritmi vanno scritti in pseudocodice (non in Java, né in C++, etc. ). Di tutti gli algoritmi

Dettagli

Varianti Macchine di Turing

Varianti Macchine di Turing Varianti Macchine di Turing Esistono definizioni alternative di macchina di Turing. Chiamate Varianti. Tra queste vedremo: MdT a più nastri e MdT non deterministiche. Mostriamo: tutte le varianti ragionevoli

Dettagli

b) Costruire direttamente le relazioni e poi correggere quelle che presentano anomalie

b) Costruire direttamente le relazioni e poi correggere quelle che presentano anomalie TEORIA RELAZIONALE: INTRODUZIONE 1 Tre metodi per produrre uno schema relazionale: a) Partire da un buon schema a oggetti e tradurlo b) Costruire direttamente le relazioni e poi correggere quelle che presentano

Dettagli

Macchine a stati finiti. Sommario. Sommario. M. Favalli. 5th June 2007

Macchine a stati finiti. Sommario. Sommario. M. Favalli. 5th June 2007 Sommario Macchine a stati finiti M. Favalli 5th June 27 4 Sommario () 5th June 27 / 35 () 5th June 27 2 / 35 4 Le macchine a stati si utilizzano per modellare di sistemi fisici caratterizzabili mediante:

Dettagli

Problema del trasporto

Problema del trasporto p. 1/1 Problema del trasporto Supponiamo di avere m depositi in cui è immagazzinato un prodotto e n negozi che richiedono tale prodotto. Nel deposito i è immagazzinata la quantità a i di prodotto. Nel

Dettagli

Tecniche avanzate di sintesi di algoritmi: Programmazione dinamica Algoritmi greedy

Tecniche avanzate di sintesi di algoritmi: Programmazione dinamica Algoritmi greedy Tecniche avanzate di sintesi di algoritmi: Programmazione dinamica Algoritmi greedy Dr Maria Federico Programmazione dinamica Solitamente usata per risolvere problemi di ottimizzazione il problema ammette

Dettagli

Macchine a stati finiti. Sommario. Sommario. M. Favalli. Le macchine a stati si utilizzano per modellare di sistemi fisici caratterizzabili mediante:

Macchine a stati finiti. Sommario. Sommario. M. Favalli. Le macchine a stati si utilizzano per modellare di sistemi fisici caratterizzabili mediante: Sommario Macchine a stati finiti M. Favalli Engineering Department in Ferrara 4 Sommario (ENDIF) Analisiesintesideicircuitidigitali / 35 (ENDIF) Analisiesintesideicircuitidigitali 2 / 35 4 Le macchine

Dettagli

Barriere assorbenti nelle catene di Markov e una loro applicazione al web

Barriere assorbenti nelle catene di Markov e una loro applicazione al web Università Roma Tre Facoltà di Scienze M.F.N Corso di Laurea in Matematica a.a. 2001/2002 Barriere assorbenti nelle catene di Markov e una loro applicazione al web Giulio Simeone 1 Sommario Descrizione

Dettagli

Algoritmo per A. !(x) Istanza di B

Algoritmo per A. !(x) Istanza di B Riduzioni polinomiali Una funzione f: T*!T* è detta computabile in tempo polinomiale se esiste una macchina di Turing limitata polinomialmente che la computi. Siano L 1 e L 2 " T* due linguaggi. Una funzione

Dettagli

Proof. Dimostrazione per assurdo. Consideriamo l insieme complementare di P nell insieme

Proof. Dimostrazione per assurdo. Consideriamo l insieme complementare di P nell insieme G Pareschi Principio di induzione Il Principio di Induzione (che dovreste anche avere incontrato nel Corso di Analisi I) consente di dimostrare Proposizioni il cui enunciato è in funzione di un numero

Dettagli

Esercizi Capitolo 6 - Alberi binari di ricerca

Esercizi Capitolo 6 - Alberi binari di ricerca Esercizi Capitolo 6 - Alberi binari di ricerca Alberto Montresor 23 settembre 200 Alcuni degli esercizi che seguono sono associati alle rispettive soluzioni. Se il vostro lettore PDF lo consente, è possibile

Dettagli

Problemi complessi : come trovare una soluzione soddisfacente?

Problemi complessi : come trovare una soluzione soddisfacente? Informatica nel futuro, sfide e prospettive - evento scientifico per i 40 anni di ated Manno, 7 ottobre 2011 Problemi complessi : come trovare una soluzione soddisfacente? Marino Widmer Università di Friburgo

Dettagli

Codifiche a lunghezza variabile

Codifiche a lunghezza variabile Sistemi Multimediali Codifiche a lunghezza variabile Marco Gribaudo marcog@di.unito.it, gribaudo@elet.polimi.it Assegnazione del codice Come visto in precedenza, per poter memorizzare o trasmettere un

Dettagli

2 Formulazione dello shortest path come problema di flusso

2 Formulazione dello shortest path come problema di flusso Strumenti della Teoria dei Giochi per l Informatica A.A. 2009/10 Lecture 20: 28 Maggio 2010 Cycle Monotonicity Docente: Vincenzo Auletta Note redatte da: Annibale Panichella Abstract In questa lezione

Dettagli

PROVA INTRACORSO TRACCIA A Pagina 1 di 6

PROVA INTRACORSO TRACCIA A Pagina 1 di 6 PROVA INTRACORSO DI ELEMENTI DI INFORMATICA MATRICOLA COGNOME E NOME TRACCIA A DOMANDA 1 Calcolare il risultato delle seguenti operazioni binarie tra numeri interi con segno rappresentati in complemento

Dettagli

Problemi, istanze, soluzioni

Problemi, istanze, soluzioni lgoritmi e Strutture di Dati II 2 Problemi, istanze, soluzioni Un problema specifica una relazione matematica tra dati di ingresso e dati di uscita. Una istanza di un problema è formata dai dati di un

Dettagli

Esercizi Capitolo 14 - Algoritmi Greedy

Esercizi Capitolo 14 - Algoritmi Greedy Esercizi Capitolo 14 - Algoritmi Greedy Alberto Montresor 19 Agosto, 2014 Alcuni degli esercizi che seguono sono associati alle rispettive soluzioni. Se il vostro lettore PDF lo consente, è possibile saltare

Dettagli

La macchina universale

La macchina universale La macchina universale Una immediata conseguenza della dimostrazione è la seguente Corollario il linguaggio L H = {M (w) M rappresenta una macchina di Turing che si ferma con input w} sull alfabeto {0,1}*

Dettagli

Calcolatori: Algebra Booleana e Reti Logiche

Calcolatori: Algebra Booleana e Reti Logiche Calcolatori: Algebra Booleana e Reti Logiche 1 Algebra Booleana e Variabili Logiche I fondamenti dell Algebra Booleana (o Algebra di Boole) furono delineati dal matematico George Boole, in un lavoro pubblicato

Dettagli

La macchina di Turing (Alan Turing, 1936)*

La macchina di Turing (Alan Turing, 1936)* DNA-computing La macchina di Turing (Alan Turing, 1936)* Un meccanismo (finite control) si muove tra una coppia di nastri:. legge le istruzioni da un nastro (input tape). scrive il risultato sull altro

Dettagli

Ottimizzazione non Vincolata

Ottimizzazione non Vincolata Dipartimento di Informatica e Sitemistica Università di Roma Corso Dottorato Ingegneria dei Sistemi 15/02/2010, Roma Outline Ottimizzazione Non Vincolata Introduzione Ottimizzazione Non Vincolata Algoritmi

Dettagli

La Macchina RAM Shepherdson e Sturgis (1963)

La Macchina RAM Shepherdson e Sturgis (1963) La Macchina RAM Shepherdson e Sturgis (963) Nastro di ingresso.......... PROGRAM COUNTER Nastro di uscita PROGRAMMA ACCUMULATORE UNITA' ARITMETICA............... 2 3 4 M E M O R I A Formato delle Istruzioni

Dettagli

Planning as Model Checking Presentazione della Tesina di Intelligenza Artificiale

Planning as Model Checking Presentazione della Tesina di Intelligenza Artificiale Planning as Model Checking Presentazione della Tesina di Intelligenza Artificiale di Francesco Maria Milizia francescomilizia@libero.it Model Checking vuol dire cercare di stabilire se una formula è vera

Dettagli

Il Metodo Branch and Bound

Il Metodo Branch and Bound Il Laura Galli Dipartimento di Informatica Largo B. Pontecorvo 3, 56127 Pisa laura.galli@unipi.it http://www.di.unipi.it/~galli 4 Novembre 2014 Ricerca Operativa 2 Laurea Magistrale in Ingegneria Gestionale

Dettagli

Reti complesse modelli e proprietà

Reti complesse modelli e proprietà Reti complesse Modelli e proprietà dellamico@disi.unige.it Applicazioni di rete 2 A.A. 2006-07 Outline Modello di Erdös Rényi 1 Modello di Erdös Rényi Denizione Proprietà 2 Introduzione Modello Barabási

Dettagli

Due dimostrazioni alternative nella teoria di Ramsey

Due dimostrazioni alternative nella teoria di Ramsey Due dimostrazioni alternative nella teoria di Ramsey 28 Marzo 2007 Introduzione Teoria di Ramsey: sezione della matematica a metà tra la combinatoria e la teoria degli insiemi. La questione tipica è quella

Dettagli

Sintesi di reti logiche multilivello. Sommario. Motivazioni. Sommario. M. Favalli

Sintesi di reti logiche multilivello. Sommario. Motivazioni. Sommario. M. Favalli Sommario Sintesi di reti logiche multilivello M. Favalli Engineering Department in Ferrara 1 2 3 Aspetti tecnologici Sommario Analisi e sintesi dei circuiti digitali 1 / Motivazioni Analisi e sintesi dei

Dettagli

Elementi di Informatica e Programmazione

Elementi di Informatica e Programmazione Elementi di Informatica e Programmazione Il concetto di Algoritmo e di Calcolatore Corsi di Laurea in: Ingegneria Civile Ingegneria per l Ambiente e il Territorio Università degli Studi di Brescia Cos

Dettagli

2.3.4 Pianificazione di progetti

2.3.4 Pianificazione di progetti .. Pianificazione di progetti Un progetto è costituito da un insieme di attività i, con i =,..., m, ciascuna di durata d i. stima Tra alcune coppie di attività esistono relazioni di precedenza del tipo

Dettagli

Linguaggi di programmazione

Linguaggi di programmazione Linguaggi di programmazione Programmazione L attività con cui si predispone l elaboratore ad eseguire un particolare insieme di azioni su particolari dati, allo scopo di risolvere un problema Dati Input

Dettagli

Modelli di Programmazione Lineare. PRTLC - Modelli

Modelli di Programmazione Lineare. PRTLC - Modelli Modelli di Programmazione Lineare PRTLC - Modelli Schema delle esercitazioni Come ricavare la soluzione ottima Modelli Solver commerciali Come ricavare una stima dell ottimo Rilassamento continuo - generazione

Dettagli